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Abstract. Autonomous software agents provide a promising solution to the
needs of decentralised networked systems, able to adapt their behaviour in a com-
plex and dynamically changing environment.

Current agent-oriented software engineering methodologies tend to focus on
different levels to realise such a self-adapting behaviour, namely the agent individ-
ual level and the global system level. The first requires to design a goal-directed
agent behaviour, the second to design agents able to optimize their coordination
with other peer agents in the organization, giving rise to system-level adaptation.

In this paper we propose to extend a goal-oriented engineering methodology
to deal with the modelling of organisations that are able to self-organise in order
to reach their goals in a changing environment. To deliver on this aim, we com-
bine Tropos4AS, an extension of TROPOS for adaptive systems, with concepts,
guidelines and modelling steps from the ADELFE methodology, which provides
a bottom-up approach for engineering collaborative multi-agent societies with an
emergent behaviour.

The resulting MAS has self-adaptation properties, having agents that are able
to change their behaviour according to changes in the environment, and having
organisations that adapt themselves to changing needs. The approach is illustrated
by modelling a collaborative multi-agent system for conference management.

1 Introduction

Nowadays, networked systems require decentralized and flexible configurations, which 
are able to support mediated services (e.g. flight booking systems) as well as peer-to-
peer business/social relationships (e.g. eBay, social networking). Such software sys-
tems need to exhibit an increasing level of self-adaptivity, at the system or component 
level, in order to operate efficiently in a dynamically changing environment. Engineer-
ing such decentralized, self-adapting networked systems poses challenging issues for 
the software engineering methodologies research.

Autonomous software agents have been largely studied for their property to exhibit 
self-adaptive behaviours at different levels. At the level of the individual agent, the agent 
has ability to perceive the surrounding environment, to interpret collected information



and to reason on it. This enables it to decide which behaviour to adopt in a context-aware
manner. At the level of global (multi-agent) system, agent cooperation mechanisms can
give raise dynamically to an emergent behaviour of the system.

Agent-Oriented Software Engineering methodologies propose methods and tech-
niques to build this type of systems, but typically they tend to focus on a specific level
of self-adaptivity. So, for instance the TROPOS methodology [3], and its extension for
self-adaptivity Tropos4AS [13], focus on building software agents that behave in a goal-
directed way and are able to dynamically switch from a behaviour to another one to
avoid failure in achieving their own goals or to better meet quality requirements. On
the other side, ADELFE [2] is an agent-oriented methodology tailored to engineer self-
adaptive multi-agent societies by cooperative agents based on the AMAS theory [1].
ADELFE enables with a bottom-up approach to define the nominal and cooperative
behaviour of the agents which leads to self-organisation and system’s self-adaptation.

We study here how to engineer agent systems which can adapt autonomously to a
changing environment. This system should exhibit a self-adaptive behaviour of single
agents as well as a self-organising behaviour of the agent society.

In this paper, we investigate benefits from extending the Tropos4AS agent modelling
framework with ADELFE modelling activities, along two main lines: 1) extending the
Tropos4AS modelling language meta-model by including concepts from the ADELFE
meta-model; and 2) revisiting the Tropos4AS design process by including ADELFE
activities. For illustration, the process is applied to a conference management system
example, giving a first evidence for its benefits.

The paper is organised as follows: in Section 2, the two methodologies TROPOS with
the Tropos4AS extension, and ADELFE are briefly recalled and compared. Section 3
describes the Tropos4AS extension at the level of the meta-model and at the level of
the design process. Section 4 illustrates the application of the resulting design approach
to the conference management system example and discusses main findings from this
experience. Related work is presented in Section 5, conclusions and future work in
Section 6.

2 Methodological Background

2.1 Tropos and Tropos4AS: Goal-Oriented Modelling

The agent-oriented software engineering methodology TROPOS [3] adopts ideas from
the MAS paradigm and from i*, an organizational modelling framework for require-
ments analysis, founded on the ’mentalistic’ notions of actor, goal, softgoal, task, re-
source, and social dependency between actors. The TROPOS modelling language is used
along the whole development process: in Early Requirements Analysis (ER) the human
organisational settings in which the system will be used are analysed; in Late Require-
ments Analysis (LR) the system-to-be is introduced and its requirements are modelled in
terms of dependencies between stakeholders and the system itself; in Architectural De-
sign (AD) the system actor is decomposed into components (sub-system actors), each
having responsibility for the achievement of a part of the system’s goals; in Detailed
Design (DD) the system components and their interactions are further specified. The



Fig. 1. The Tropos4AS metamodel, showing the composition of an agent (simplified view of the
goal model)

modelling process follows a top-down approach, refining the global goals, which were
delegated from the stakeholders to the system-to-be.

For the aim of this work, we give more details on the LR and AD phases. At the end
of the LR phase, the system’s requirements are modelled by delegation of goals and
tasks from the stakeholders and users in the organisation, to the system, itself modelled
as an actor. The delegated goals are then organised in the system’s goal model, decom-
posed into more concrete goals and possibly operationalised by plans. Subsequently, as
key step in AD, the system actor is decomposed into sub-actors, which will become the
software agents at the implementation (in Fig. 1). This decomposition is usually done
by distributing system functionalities to single subactors and gathering similar func-
tionalities. Different architectural patterns can be applied to it, e.g. [4]. As next step,
the single sub-agents’ goal models are detailed, by goal analysis, decomposition and
delegation.

Tropos4AS [13] extends TROPOS goal models to enable the description of systems
that shall be able to adapt to environmental changes. Tropos4AS introduces modelling
of an actor’s perceived environment and of possible failures that can be identified and
prevented by recovery activities. Moreover, goals can be annotated to define the run-
time goal achievement behaviour, with various goal types and conditions related to the
environment, for goal creation, achievement and failure. The resulting design model is
mapped into implementation language constructs to derive a code skeleton.

Fig. 1 shows details from the Tropos4AS metamodel, illustrating the composition of
a single Tropos4AS agent, an actor identified as sub-system actor at TROPOS detailed
design.



2.2 ADELFE: Cooperative Agents

ADELFE1 is an agent-oriented methodology for designing Adaptive Multi-Agent Sys-
tem (AMAS) [1]. MAS developed according to ADELFE provide an emergent global
function [10]. It is qualified as emergent because it is not coded inside the agent. To
obtain this emergent behaviour, the AMAS theory [5] propones to design agents with
the ability to autonomously and locally modify their interactions in order to react to
changes in their environment. This system is self-organising and is able to adapt to its
environment. According to the AMAS principles, interactions between agents depend
on their local view and on their ability to ”cooperate” with each other. Every internal
part of the system (agent) pursues an individual objective and interacts with agents it
knows by respecting cooperative techniques which lead to avoid or to remove Non Co-
operative Situations (NCS) like conflict, concurrence etc. Facing a NCS, a cooperative
agent acts to come back to a cooperative state and permanently adapts itself to unpre-
dictable situations while learning on others.

The ADELFE methodology covers the phases of usual software design from the
requirements to the implementation, with the addition of specific activities to support
the design of adaptive multi-agent systems.

The modelling process follows a bottom-up approach, defining the cooperation rules
and activities of the single agents, leading to an emergent behaviour of the system.

In the analysis phase, ADELFE gives guidelines to decide if the application is
adapted to an implementation following the AMAS principles. Furthermore, it pro-
vides guidance to identify cooperative agents among all the entities defined during the
final requirements. Concerning the design phase, three activities are added. The first
concerns the relationships between agents. The second is about the agent design. In this
activity, the cooperation failures are defined. Third, a fast prototyping activity helps to
build and verify the agent behaviour. Moreover, the implementation phase uses Model-
Driven Engineering principles to produce code skeletons for the MAY2 middleware.

The design phase is based on a AMAS metamodel characterising as precisely as pos-
sible the concepts involved in the AMAS principles and mandatory for ADELFE such
as Perceptions, Actions, Aptitudes, Cooperations Rules, Non Cooperative Situations,
Representations, Skills, etc. Figure 2 shows that a cooperative agent is defined with a
PerceptionModule, a DecisionModule and an ActionModule. Decision is implemented
with Rules tha trigger an action or a skill. These rules describe either standard behavior
(with StandardRules) or cooperation (with CooperativeRule) according to NonCooper-
ativeSituation type.

2.3 Comparing the Two Methodologies

Up to now, in this section we described two AOSE methodologies founding on very
different principles and having a different scope. While ADELFE is tailored to decen-
tralised, adaptive complex systems and follows a bottom-up approach to eventually

1 ADELFE is a French acronym for ”Atelier de Dveloppement de Logiciels Fonctionnalit Emer-
gente”, see http://www.irit.fr/ADELFE

2 http://www.irit.fr/MAY



Fig. 2. Portion of the ADELFE metamodel concerning the cooperative agent

reach the global goal of the system in an emergent way through agent cooperation, TRO-
POS claims to be a general methodology, where the system goals elicited by analysing
the organisational settings, through steps of refinement and decomposition lead to pro-
gram components implementable in software agents.

Albeit in both methodologies, agents are a metaphor for an autonomous entity with
own goals and abilities, trying to achieve their local goals, the process of obtaining the
single agent’s goals presents conceptual differences: ADELFE agents are identified and
their behaviour specified, analysing the domain entities, their role in the system and the
relationships between them. They create a complex organisation by having at run-time
a high number of instances for each agent type. The global goal of the system, which
the stakeholders want to obtain from the software system, is modelled in use cases, but
this global goal is not coded by the single agents and can only be observed, emerging
from the collective behaviour.

The TROPOS development process starts with requirements elicitation and analysis,
to capture the objectives of the stakeholders. The MAS architecture is then obtained by
analysing the organisational settings with the goals and tasks delegated to the system,
decomposing them and delegating their satisfaction to single roles or agents, following
general engineering rules to achieve low coupling and high correlation between the
tasks to be achieved by a single agent.

Next, the structure and abilities of the single agents have to be defined. In ADELFE,
a central role is given to agent interaction and coordination, specifying behaviour rules
and associated activities both for the agent’s nominal behaviour (i.e. the ordinary be-
haviour exhibited by the agent in a working situation without problems and failures)
and its cooperative behaviour (Especially focusing on how to react to collaboration
problems). Moreover, the agent’s belief (representation) of the outside world, and its
sensors and actuators are defined.

TROPOS agents are characterised both by the goals delegated from the stakehold-
ers, and the dependencies to other agents; the nominal behaviour is defined by its goal
model, which includes plans to perform and resources to provide, to achieve goals.



By the Tropos4AS extensions, the goal runtime behaviour can be further specified,
defining goal types and conditions on to the environment perceived by the agent. Ex-
ceptional behaviour can be defined by modelling possible failures, causing errors, and
recovery activities.

Finally, In the design phase, in both TROPOS and ADELFE, further details on the
implementation can be given by UML2.0 diagrams.

3 Modelling of Self-organising MAS

Tropos4AS follows a top-down approach from the system to the single agents and their
behaviour, and achieves traceability by decomposition and delegation of goals through
the design phases.

TROPOS requirements modelling is prominent for it’s ability to capture the organi-
sational settings where the system to develop will be integrated and the dependencies
and responsibilities of the agents in the system and the actors playing different roles in
the organisation.

However, TROPOS, as well as Tropos4AS, lack of support for agent organisations,
i.e. for modelling the dynamics of collaboration between software agent instances in a
multi-agent organisation where each modelled agent has various instances, which can
also be dynamically added and removed.

The ADELFE methodology was created specifically for the development of such
agent organisations. However, it adopts a bottom-up approach, to achieve the system’s
goal in an emergent way; the relationship between global goal and single agent’s be-
haviour is not modelled and the global goal can only be observed from action and
interaction of the parts.

Integrating ideas and modelling steps from ADELFE we enrich Tropos4AS for the
modelling of agent organisations.

A bottom-up addition of ADELFE cooperation rules (which fit well into the actual
concept of failure modelling) will give to the run-time agent instances the knowledge
for selection of and cooperation with their peers, and thus achieve an emergent self-
organising behaviour to adapt to a changing environment.

3.1 Metamodel Extension

Here, we investigate how to extend the Tropos4AS meta-model with concepts taken
from the ADELFE meta-model, and revise the Tropos4AS design process including
steps that belong to the ADELFE approach.

To improve modelling the interplay of an agent with the entities and actors inside
and outside the software system under development, we explicitly add the concept of
agent’s knowledge about itself and about its environment.

ADELFE provides modelling of the agent’s knowledge by characteristics (facts the
agent is sure about), representations of the environment as perceived through sensors, and
the agent’s skills (Fig. 2). We integrate characteristics and representations (corresponding
to the agent’s belief) in the extended model. Information captured by Skills, Aptitudes,
the agents Actions and its nominal behaviour, encoded in Rules, is mainly covered by the
TROPOS goal model, a main component of the Tropos4AS metamodel (Fig. 1).



Fig. 3. Metamodel for adaptive, cooperative agents, which extends the TROPOS4AS meta-model
with ADELFE concepts (simplified view of the goal model)

Understanding the interplay between the agent and its environment is of major im-
portance to understand and model a system’s self-adaptivity. To model the agent’s en-
vironment we integrate ideas from the Agents and Artifacts approach [15]. Artifacts
represent the non-intentional entities (ADELFE passive entities), in- and outside the
boundary of the system to develop. They provide an interface to the external world, to
the users and also to other agents, through social artifacts such as a whiteboard or a
communication channel.

The extended metamodel is shown in Fig. 3 and defines an agent in the system (rep-
resented as a TROPOS system actor) with its components: goal model, knowledge (the
“belief base”), the system and the external environment.

Regarding the aim of this paper, the most important step from ADELFE, integrated
in the methodology, will be the elicitation of non-cooperative situations and modelling
of the discovered so-called cooperation rules. We enhance Tropos4AS failure modelling
by allowing to specify failure recovery with rules (class Failure recovery rule in Fig. 3).
Cooperation rules are considered s specialization of failure recovery rules, with a well
defined scope. Such failure recovery rules are composed by conditions to the agent’s
knowledge (on itself and its environment) and by recovery activities composed by rep-
resent a goal model fragment — a single TROPOS Plan (which corresponds to an
ADELFE Action) or a more complex goal model.

3.2 Modelling Steps

We adapt the TROPOS modelling process to modelling of the newly introduced con-
cepts. The proposed modelling steps are placed after the TROPOS Early (LR) and Late



Requirements (LR) phases, described in [17]. As result of the LR phase, the require-
ments are modelled in terms of strategic dependencies between stakeholders, such as
users and other external actors, to the software system, which is also modelled as an ac-
tor. The system actor has its own goals, plans, resources which are derived along these
dependencies. This model is given as input to the following modelling steps.

Step 1. With the LR model in input (an example in Fig. 4), define the system from
the ADELFE viewpoint (ADELFE activity 12): identify passive and active enti-
ties in- and outside the system to develop, and identify from the active entities
the autonomous agents participating in the collective task. Output: an AMAS-ML
System-Environment diagram (Fig. 5).

Step 2. In the TROPOS AD phase, guide the decomposition of the system actor iden-
tified in the LR diagram, into sub-actors (the agents in the system), according to
the agents identified in the AMAS-ML system-environment diagram. The TROPOS
system will include agents participating to this global task and agents achieving non-
collective goals delegated by some stakeholder, or that have to supervise the collec-
tive task. The actors participating in self-organisation are highlighted (Fig. 6).

Step 3. With the TROPOS model resulting from Step 2 in input, detail the high-level
nominal behaviour of the single agents in the system by defining their goal and
plan dependencies, and detailing their goal models by TROPOS goal analysis, until
finding the plans to achieve the goals. The environment perceived by the agent
is modelled considering the passive entities identified in the previous step, and the
resources modelled in Tropos LR. From the dependencies and interactions between
entities, the perception and action functionalities of the artifacts in the environment
can be identified. Beliefs describe the agent’s perception of these artifacts. This step
is no more detailed here as it is not central to self-organisation.

Step 4. With the Tropos4AS model of Step 3 in input, which includes the dependen-
cies between agents, focus on the collective task and define the necessary inter-
actions, following ADELFE activity 13. Give special attention to failures that can
arise from perturbations in the interaction between agents (which are cooperative
by definition). The exceptional behaviour of each agent is now detailed by identi-
fying non-cooperative situations that can arise. It is captured by conditions on the
agent’s knowledge together with the recovery activities to execute (an example in
Table 1). These rules guide the single agent’s self-organising behaviour, with activ-
ities that can be categorised in three groups: change of the own behaviour (tuning),
change of partnership (reorganisation), and creation/deletion of agents (evolution).

Next, following the Tropos4AS process, the goal model built in step 3 can be detailed,
adding conditions, goal types and relationships, to define a more detailed nominal be-
haviour, and modelling possible failures not ascribed to collaboration. Modelling can
continue with TROPOS Detailed Design (DD), detailing plans (capability level) and
low-level interactions by UML diagrams [17], obtaining models that can be directly
used as input for the implementation phase. For example, following a mapping as
in [12], goal models can be mapped to Jadex agent code, artifacts to Java classes and
failure conditions, including cooperation rules, to goal conditions.



4 Application to an Example

The design process is shown on a conference management system (CMS) example, de-
scribed in [6], a case study used several times for agent systems developed with different
agent-oriented software engineering methodologies [7].

A conference management system involves several stakeholders and has to satisfy
users playing various roles, such as authors, reviewers, program committee members and
the publisher. In the submission phase, authors need to be supported, and subsequently,
R4P suitable reviewers have to be found for each paper, distributing the workload evenly.
For this, each paper is described by KP keywords providing its main expertise area. Each
reviewer describes its expertise fields with KR keywords and should review at most P4R
papers.

Reviews have to be collected and evaluated to decide about acceptance or rejection
of each submission, and finally the authors have to be notified, and the corrected camera
ready papers collected and formatted. The prepared proceedings have then to be handed
out to the publisher for printing. Fig. 4 shows the corresponding TROPOS LR diagram.

We want to obtain a system composed by agents associated to each physical entity
or role that has the need of autonomous decision and interaction, e.g. one for each
paper, reviewer, etc. These agents are not “personal agents” acting selfish for the benefit
of their relative stakeholder, but agents belonging to the system that are trusted and
cooperative.

Interesting phases from the point of view of self-organisation between agents (which
will then result in a system-mediated collaboration between physical actors or entities)
are the assignment of papers to reviewers, the collection of reviews and the decision
of paper acceptance. We focus on the scenarios involving the reviewers. The reviewing
process can possibly also be exposed to different kinds of unwanted perturbations. For
example, unavailable reviewers, an unbalanced amount of papers in a particular area
with a small number of competent reviewers, or withdrawn for any reason. Despite
these eventualities could, in this small example, also be handled deterministically, they
give a good example to show how a robust system should self-adapting, to meet its

Fig. 4. TROPOS Late Requirements (LR) analysis: Definition of the system’s objectives. Notice,
that dependencies between actors entail a flow of information in the opposite direction.



objectives. We now show the modelling process, going through the steps defined in
Section 3.2.

4.1 Architecture

Following Step 1, we analyse the diagram in output of the TROPOS LR phase (Fig. 4).
We identify 7 active and 2 passive entities. The active entities participating in the sys-
tem’s collective task are the paper and reviewer agents, representing the single
submitted papers and the reviewers (Fig. 5).

We give to the PC chair agent – an agent in TROPOS, and an active entity in ADELFE
(but not one participating to the collective task) – the charge to observe the society and
to decide when a stable and optimal state is reached, in which all papers are assigned to
reviewers. It will also be able to advise reviewer agents to relax some constraints (e.g.,
allocation of more than P4R papers per reviewer).

Fig. 5. Adelfe system-environment diagram showing the participating entities and the cooperative
agents, inside the system boundary, related to the review assignment scenario

Guided by the agents and active entities identified in Fig. 5, following Step 2 we
decompose the CMS system in (Fig.4) into four sub-actors: paper agent and
reviewer agent, which take part in the collective task of paper-review assignment,
will be associated to the single physical papers and reviewers. The program chair
agent and the proceedings agent get their goals delegated from the physical ac-
tors playing the respective role in the organisation where the system is deployed and
have thus also to be part of the software system (Fig. 6).

4.2 Detailed Design

In Step 3, the goals delegated from the stakeholders to the system are refined in the goal
models of each sub-actor. Goals are decomposed until they can be operationalised by
plans. Also, new dependencies between the different sub-actors arise (Fig. 7).

Tropos4AS provides the means for capturing the nominal goal achievement be-
haviour, defining when a goal will be activated, achieved, or dropped, capturing its



Fig. 6. TROPOS diagram of the multi-agent architecture

Fig. 7. Details form the goal models of the sub-actors paper and reviewer. Key in Fig. 6.

representation of the environment and linking its execution to environmental changes.
For example, the goal get approp review is created after R4P reviewers were as-
signed to a paper; achieved when R4P reviews are collected; and failed if a review is
missing at the deadline.

Individual goals/objectives of agents. In order to give a detailed view, we limit to the
scenario of paper assignment to reviewers. Without a centralised distribution of papers
to reviewers, the relative agents have to find a relevant allocation between papers and
reviewers by self-organising to achieve an optimal distribution of papers and a timely
collection of appropriate reviews, being robust for possible perturbations.

In Step 4, from the TROPOS model in output of step 3, we refer the local goals and
the interactions (goal, task and resource dependencies) of the agents participating in



the collective task, whose details will now be further modelled following the ADELFE
process.

In order for any paper to meet reviewers, we design the system environment as a big
room (a grid in practice) where reviewers can stand on at most one square. Paper agents
can move on it to find matching reviewers. This approach was already experimented
for a dynamic time-tabling elaboration with good results [18]. Furthermore, we define
the notion of criticality of the paper agent, which is a criteria to know which one
is under greatest number of constraints. It describes its difficulty to find a reviewer; it
corresponds to the number of reviewers who have been met but are not relevant.

Nominal behaviour. Reviewer agents are placed on the grid and don’t move. Paper
agents are initially placed randomly on the grid and move in order to find reviewers and
store their place under some constraints such as a reviewer cannot accept a paper if he
is also author of the paper. Each paper agent remembers last N reviewer agents that it
met, where it met them and what are the keywords associated to each.

Cooperative behaviour. The behaviour for the cooperation between the agent instances
at run-time is defined by defining the agent’s reaction to situations that are recognised
to be “non-cooperative”. This behaviour is expressed by collaboration rules containing
activating conditions and associated recovery activities. Table 1 contains possible non-
cooperative situations, and the collaboration rules, composed by a state and conditions,
and the recovery activity to perform.

Take the example of the paper agent (Non-cooperative situation PaperNCS3 in
Table 1): If a paper finds a reviewer that fits to its keywords but is already associated to
P4R papers, the less critical of them is asked to find a new reviewer (reviewer conflict).

Table 1. Description of main NCS for Paper-agents and Reviewer-agents. They will be modelled
by cooperation rules.

Name State Description Conditions Recov. Activities
PaperNCS1 Exploration A paper is getting closer to a re-

viewer already busy with another
paper

Searching
reviewer

Move in a differ-
ent direction to find
another reviewer

PaperNCS2 Exploration Two reviewers are perceived One of them is
already busy

Move towards the
reviewer that is
free

PaperNCS3 Reviewer
conflict

A paper found a reviewer that is
already associated to P4R papers

Reviewer asso-
ciated to P4R
papers

Ask the less critical
paper to search for
another reviewer

PaperNCS4 Highly
Critical

Paper agent is very critical and ad-
equacy with reviewer is not null
(but < KP)

High criticality
and 0 < ade-
quacy < KP

Association with
reviewer is con-
cluded

RevNCS1 No Match-
ing

Matching keywords with an arriv-
ing paper is not obtained

Not enough
matching key-
words

Reviewer gives
links to relevant
neighbour agents

RevNCS2 Search
Promotion

Reviewer agent promotes ”mu-
tual search” by asking paper agent
what reviewers were already met

No match-
ing keywords
between the two

Remember paper
agent’s reviewers
met.



So, if a paper agent is very critical and adequacy (keywords matching) is not null, the
association with the reviewer must be established. At the reviewers side, when a paper
agent arrives, adequacy is computed. If matching is not obtained, the reviewer gives hints
for other reviewers in its neighbourhood which could have enough matching keywords.

To conclude self-organisation at a point that a suitable configuration is achieved, the
(single instance) PC chair agent observes the papers, which expose their criticality
and their state, ranging from satisfied to unsatisfied.

4.3 Discussion

The resulting design can be compared with a standard TROPOS, Prometheus and O-
MaSE design of the CMS, as published in [7]. Despite it is divided into different agents,
the TROPOS architecture achieved by a top-down decomposition of the system to sub-
systems is centralised and not a MAS of collaborating agents, as specified also in the re-
quirements. For the same example, also the Prometheus methodology provides a similar
solution, while O-MaSE gives a MAS architecture similar to ours, with personal agents
to support the stakeholders, but centralised review assignment and paper selection.

If the system to develop is adapted to an AMAS approach (as verified in the first
steps of ADELFE), such as this example, the proposed combined approach promotes
the development of decentralised, distributed MAS for problem solving, and gives the
possibility to deal with self-organisation of the collaboration links between agent in-
stances, at a class (agent or role) level, which is not clearly representable in TROPOS.

The application of this approach combining the two modelling paradigms and meta-
models is therefore restricted to a particular subset of systems, but provides higher
expressivity; modelling also gains from the detailed guidelines available in ADELFE to
identify system entities and agents and to define inter-agent cooperation.

However, there are different drawbacks. The emergent behaviour coming from the
bottom-up approach to self-organisation, performed by modelling the single reactions
to non-cooperative situations, can be validated only by empirical study, which is out of
scope of this paper. Thus, the link between this bottom-up approach and the objective of
the system is still not straight-forward. Still, we think that by combination with the top-
down TROPOS goal analysis and decomposition, we are able to shrink the gap between
global system goals and cooperation rules.

A verification of such systems, particularly a verification of the emergent behaviour
arising from cooperation rules, can only be achieved by testing. The approach proposed
by Nguyen et al [14] derives testing goals from TROPOS goals and generates test sce-
narios by an automated, evolutionary technique.

5 Related Work

Currently, the works on methodologies focusing on self-organisation in multi-agent sys-
tems tends to increase. Tom de Wolf and Tom Holvoet have proposed a full lifecycle
methodology customising the Unified Process [19]. At the requirement analysis phase,
identification of macroscopic properties which must be shown by the running system is
added to the classical steps. Then, the design phase is customised with two steps: one



for deciding whether or not it is relevant to use a self-organising system and the other for
exploiting existing practices and experiments. At the verification and testing phase, an
empirical approach based on iterative development feedback is proposed. This method
does not provide tools in order to choose existing approach to code self-organisation.
The interesting and original part of this method is that it focuses on the system
validation.

In [4] the authors present a case study of a decentralised multi-agent system for
ambient intelligent scenarios, motivating the need of novel organizational structures of
agents that result more flexible than traditional ones, e.g. broker and matchmaker, in
order to deal with context changes. The architectural design phase has been conducted
by the TROPOS modelling language in order to include the social surroundings needed
to better characterize MAS architectural requirements. The resulting structure, Implicit
Organisation, includes the self-organising property for the reassignment of the mediator
role, i.e., the architectural requirement of disintermediation. Nevertheless, [4] does not
detail the agent coordination level.

Gerhenson [11] proposes a domain-independent methodology for designing and
controlling self-organizing systems. This iterative and incremental methodology
includes several steps: Representation, Modelling, Simulation, Application and Eval-
uation, which are interrelated. The main point of this method is that the distributed
control is also specified in order to always influence (by reducing friction and promot-
ing synergy) the system and ensuring it will produce the desired behaviour. The work
is more a philosophical work aiming at understanding these complex systems but also
at designing them.

Another example of framework for engineering self-adaptive and self-organising
systems is MetaSelf [8] which takes into account the design and the run-time levels.
At the analysis phase, the requirements related to the properties of the components of
the studied systems, the rules (local and global) that guide their behaviour and how the
process development has to be carried out are identified. Depending on these properties,
the relevant self-* architectural patterns and adaptation mechanisms are selected during
the design phase. During the implementation phase, the run-time infrastructure, com-
ponents, policies and metadata are developed. These frameworks rely on established
general principles that fit any kind of self-* system but some guides for developers are
missing.

Gardelli [9] presents an approach to engineer self-organising MAS from the early de-
sign phases. The architectural pattern adopted is based on the Agents and Artefacts meta-
model. Designing a self-organising MAS consists in embedding the self-organisation
mechanisms in environmental agents and properly designing their interactions with the
artefacts of the environment. The design approach comprises three-steps. Modelling first
provides an abstract model of the system in which user agents, artefacts and environ-
mental agents are characterised. The second step uses stochastic simulation to study the
system dynamics through statistical analysis of results, considering that proper parame-
ters are provided for artefacts and agents. The last step consists in tuning them until the
desired dynamics appears. This proposal is mainly a guide for early-designing systems
based on self-organising patterns that already exist such as natural ones.



6 Conclusion and Future Work

To promote the development of a decentralized, collaborative MAS, this work pro-
poses to enhance the goal-driven AOSE methodology TROPOS with concepts and mod-
elling steps from ADELFE methodology. The synergy of both software engineering
methodologies allows the characterisation of a decentralised MAS by the definition
of intra-agent coordination properties and enhances the expressivity of the TROPOS
modelling language. The designer is now guided along a top-down goal-oriented mod-
elling process analysing the intentions of the system’s stakeholders, which is enhanced
with specific design steps devoted to the bottom-up specification of agent coordination.
The resulting agents are able to rearrange their cooperations, leading the MAS to opti-
mise the achievement of its current organisational goal, bringing forth global emergent
behaviour.

Traceability of requirements through the design phases until the definition of the
agents behaviour is improved, reducing the conceptual gap by maintaining the concept
of goal until detailed design and –if a BDI platform is used for the implementation, e.g.
by a mapping as in [16]– even until run-time. This traceability is important especially
if requirements change during system development and maintenance.

Future work concerns detailing the complete modelling process, leading to a goal-
oriented methodology where the requirements analysis for adaptive systems can be
conducted both at agent level and at organisation level. Besides, we want to further
investigate on the benefits of including TROPOS goal modelling steps in the ADELFE
methodology in order to improve the traceability of requirements through the design
phases.

References

1. Bernon, C., Camps, V., Gleizes, M.-P., Picard, G.: Engineering Adaptive Multi-Agent Sys-
tems: The ADELFE Methodology. In: Henderson-Sellers, B., Giorgini, P. (eds.) Agent-
Oriented Methodologies, pp. 172–202. Idea Group, NY (2005)

2. Bernon, C., Gleizes, M., Peyruqueou, S., Picard, G.: ADELFE: A Methodology for Adaptive
Multi-agent Systems Engineering. In: Petta, P., Tolksdorf, R., Zambonelli, F. (eds.) ESAW
2002. LNCS (LNAI), vol. 2577, pp. 156–169. Springer, Heidelberg (2003)

3. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: Tropos: An Agent-
Oriented Software Development Methodology. Autonomous Agents and Multi-Agent Sys-
tems 8(3), 203–236 (2004)

4. Bresciani, P., Penserini, L., Busetta, P., Kuflik, T.: Agent Patterns for Ambient Intelligence.
In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER 2004. LNCS, vol. 3288, pp.
682–695. Springer, Heidelberg (2004)
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