N

N
N

HAL

open science

A Tool For Generating Model Transformations
By-example In Multi-agent Systems

Ivan Garcia-Magarino, Sylvain Rougemaille, Rubén Fuentes-Fernandez,

Frédéric Migeon, Marie-Pierre Gleizes

» To cite this version:

Ivan Garcia-Magarino, Sylvain Rougemaille, Rubén Fuentes-Fernandez, Frédéric Migeon, Marie-Pierre
Gleizes. A Tool For Generating Model Transformations By-example In Multi-agent Systems. Interna-
tional Conference on Practical Applications of Agents and Multiagent Systems (PAAMS 2009), Apr
2009, Salamanca, Spain. pp.70-79. hal-03798551

HAL Id: hal-03798551
https://hal.science/hal-03798551
Submitted on 5 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03798551
https://hal.archives-ouvertes.fr

A Tool for Generating Model Transformations
By-Example in Multi-Agent Systems

Ivin Garcia-Magarifio', Sylvain Rougemaille?, Rubén Fuentes Fernandez!,
Frédéric Migeon?, Marie-Pierre Gleizes?, and Jorge Gémez-Sanz'

' D. Software Engineering and Artificial intelligence
Facultad de Informatica - Univesidad Complutense Madrid, Spain
{ivan_gmg, ruben}@fdi.ucm.es, jjgomez@sip.ucm.es
2 TInstitut de Recherche en Informatique de Toulouse
SMAC Research Group
Université de Toulouse, France
firstname.name@irit. fr

Abstract. Many Multi-Agent Systems (MAS) methodologies incorporate a model-driven ap-
proach. Model Driven Engineering is based on three main ideas: models are the “first-class citi-
zens”, meta-models define modelling languages that are used to specify models and models are
transformed during the development. However, model transformation is still a challenging issue
in MAS. At first, MAS designers are not necessarily familiar with existing model transformation
languages or tools. Secondly, existing tools for creating model transformations do not satisfy the
necessities of agent-oriented software engineering, since they focused on coding with little sup-
port for developers. This paper proposes a tool for the creation of model transformations that is
based on the generation of model transformations by-example. This tool overcomes the limita-
tions of other similar tools in the sense that it can generate many-to-many transformation rules.
The tool application is exemplified with two MAS methodologies, INGENIAS and ADELFE.

1 Introduction

Developing Multi-Agent Systems (MAS) in the scope of modern information systems
is a demanding activity. MAS are usually related to distributed applications in chang-
ing environments, where knowledge is partial and there are requirements of a flexi-
ble behaviour. Different proposals have been made to alleviate the designer’s work,
mainly through methodologies and their support tools. This work gathers the experi-
ence of two different research groups that developed the agent-oriented methodologies
INGENIAS [10] and ADELFE [1]. These two methodologies use Model Driven Engi-
neering (MDE) principles to carry out the development process. One of the backbones
of these approaches are model transformations which allow the automation of tasks
and code generation. ADELFE proposes model-to-model transformations to integrate
several modelling languages and separate concerns into different models [15]. INGE-
NIAS also raises the need of model-to-model transformations for designer assistance
and model refinement.

The specification of these transformations is still a critical point since only MDE
specialists are able to do it. In this paper, we propose a further step in the application of
MBDE in the scope of MAS development. Model Transformation By Example (MTBE)

proposes to generate model-to-model transformations from representative source and
target models so that, transformation specification task would no more be assigned to
specialists. However, existing tools adopting this approach do not satisfy yet the require-
ments of model transformations in MAS. The work presented here describes a tool for
the creation of model transformations based on MTBE. It overcomes the limitations of
other similar tools since it can generate many-to-many transformation rules.

This paper introduces some practical uses of MTBE for model refactoring purpose,
firstly in the scope of INGENIAS, for which was originally design the MTBE tool, and
secondly to the ADELFE methodology. The INGENIAS methodology [11] is devoted
to the development of multi-agent systems, it was based on the use of meta-modelling
techniques. It covers the whole development cycle, from analysis to implementation
and provides tool support with the INGENIAS Development Kit (IDK) [5], which fol-
lows the principles of Model-Driven Development. INGENIAS and the IDK have been
applied successfully in several areas; for instance, in surveillance [12], mobile tourist
guide [9] and social simulation [8]. ADELFE" [1] is an agent-oriented methodology for
designing Adaptive Multi-Agent System (AMAS) [4]. It proposes specific modelling
languages such as AMAS-ML (AMAS Modelling Language) and integrates a model-
driven implementation phase based on model transformations [14].

From the experience acquired during the definition of these two methodologies, we
can state that MDE are specially appropriate to increase the productivity of MAS devel-
opment. MTBE and the proposed tool can strengthen the whole development process,
because it provides means for MAS designers to define their own model transformations.

The paper focuses on the application of MTBE in the scope of MAS. The next sec-
tion depicts the principles and steps of the model transformations generation process.
Section 2 introduces the interests of the proposed MTBE tool as well as its implemen-
tation. Section 4 presents two practical model refinement applications of MTBE, these
examples are taken from both INGENIAS and ADELFE methodologies. In Section 5
we present some other works that deal with MTBE as well as MAS methodologies that
could take advantage from it. Finally, the last section presents the conclusions we can
draw from these experiments and proposes some specific further issues that have to be
coped with in the application of MDE to MAS development.

2 Principles of Model Transformation by Example

As a recent initiative, Model transformation By-Example (MTBE) [16] is defined as
the automatic generation of transformations from source and target model pairs. The
common steps of MTBE are the following:

1. Manual set-up of prototype mapping models. The transformation designer assem-
bles an initial set of interrelated source and target model pairs.

2. Automated derivation of rules. Based upon the available prototype mapping mod-
els, the transformation framework should synthesise (see Figure 1(a)) the set of
model transformation rules. These rules must correctly transform (see Figure 1(b))
at least the prototypical source models into their target equivalents.

! ADELFE is a French acronym for "Atelier de Développement de Logiciels 2 Fonctionnalité
Emergente".

_Model A (instance of MmIN) Model B (instance of Mm OUT]

Model IN- 1 Model OUT - 1

@?

Metamodel IN Transformation
odel IN - 2
Metamodel OUT odel OUT - 2

Model IN - 1 Model rulet ;... > I:l
T pech > rule2: ..
I \ é‘;r;(r:rl-:u Model OUT - N
(MTBE) TUleN: ...
Model IN-N
Model IN- N r C:l)—-—‘
For

(a) The mput@ and outputs of MTBE (b) The Behavior of the Generated Transfor-
mation

For
Rule 1

Fig. 1. Description of the Model Transformation By-Example (MTBE)

3. Manual refinement of rules. The transformation designer can refine the rules manu-
ally at any time. However, MTBE recommends these modifications to be included
in the pairs of models, so the alterations are not overwritten the next time the trans-
formation is generated.

4. Automated execution of transformation rules. The transformation designer vali-
dates the correctness of the synthesised rules by executing them on additional
source-target model pairs as test cases.

The MTBE approach avoids the hard-coding of transformations, which frequently hin-
ders the principles of MDE. MTBE follows MDE principles because its main products
are models and transformations. In addition, transformation designers in MTBE do not
need to learn a new model transformation language; instead they only use the concepts
of the source and target modelling languages.

3 Tool for Model Transformation by Example in MAS

Existing MTBE algorithms and tools [18, 16, 17] are only able to generate one-to-
one transformations. For this reason, Grasia research group has defined an algorithm
for MTBE that overcomes this limitation. This algorithm can generate many-to-many
transformation rules. The input patterns of the many-to-many rules are simulated with
constraints. The elements of the output pattern are defined directly with the transfor-
mation language and the connection among these elements are recursively defined by
the algorithm. In addition, it can create the appropriate mapping of attributes so the
generated transformation propagates the information from the source to the target. This
matching-control mechanism relies on the use of identifiers in the source model that
are referred in the target model. A prototype tool (see Figure 2) implements this algo-
rithm for generating ATL (Atlas Transformation Language) transformations [7] from
INGENIAS model, this tool is called MTGenerator.

The tool provides an interface (GUI) in which the user can select the input and out-
put meta-models of the transformation. The user must define the meta-models with the
ECore language and select the corresponding location paths in the top-left area of the

Transformation Generator:

METAMODELS & MODEL EXAMPLES
IMzjwes fgenerator/. fmetamodel /MM . ecare| Browse §§ IN:fime-Eclipsespplication/p/az -goals. spekification| Browse
OUT:|ws/genarator). /rmetamodel /MM ecore| Browse OUTirme-Eclipseapplication/p/b2-goals. specification| Browse
TRANSFORMATION FILE Number of Pairs: 2
GEN: rator,f..;uutput—atl,fazb—generated.all“ Erowse |: Add

Cenerating the transformation ...
End Transformation Ceneration
GENERATED TRANSFORMATION (ATL)

[

-- Eulel
rule Eulel {
rorm

MDD

cin:hh Al Unitiates{ true and
cin.inizource. multiplicity=1 and
cin.inizource.isinteractionUnit. ic ="ILA" and
cin.iniTarget-=selactit]
1. multiplicity=2 and
t.itRole.id="R1%. notEmpty) and
MMAIRale allinstances)- » select{e|
e.ld="E1% notEmptyd and
‘ MM AlInteractionUnit. allinstances(->seleciie| I 0
4 [l r

Generate | Clear |

[4]

Fig. 2. Model-Transformation Generator Tool

GUI. The user can add the pairs of model with the top-right area of the generator tool, by
selecting the corresponding location paths and adding them. After the automatic gener-
ation, the tool shows some logs in the Logs text area, confirming that the generation has
finished successfully. The generated model transformation is shown in the bottom text
area of Figure 2. In this manner, the user can examine the generated transformation. In
brief, the presented MTGenerator tool automatically generates a model transformation.
Even if the user wants to manually improve the generated transformation, the tool saves
time for the user because it provides a generated transformation as a basis for the final
model transformation.

4 Application of MTBE in MAS

MAS meta-models usually involves concepts semantically rich that have to be speci-
fied in terms of several meta-classes. Models conforming to MAS meta-models contain
many instances of these meta-classes, as a consequence, their refinement or translation
involve complex patterns of modelling elements. Therefore, MAS model driven devel-
opment can profit considerably of many-to-many model transformation generation.
Furthermore, MAS meta-models used to be less stable than others, the concepts
they define are still evolving as no consensus has been reached in the agent com-
munity. This implies that models need to be updated each time their meta-models
undergo modifications. MTBE can help this upgrading task for models which meta-
models have been modified. Source models are the models to upgrade, thus the only
task left is the description of target models. The evolution of MAS concepts implies
that this upgrade process is potentially more frequent in MAS methodologies. MTBE

constitutes a powerful means to reduce this upgrade time, as it allows MAS designers
to generate the required transformations without having to assimilate transformation
languages.

One application of MTBE in MAS is the automation of repetitive mandatory tasks
which are often related to phase transition in the development process, as for instance
the translation of requirements models in the beginning of ADELFE analysis phase.
MTBE can also be used to improve the quality of models by defining specific automatic
refactoring that prevent designers from potential mistakes. As MTBE helps designers to
define their own transformations, they could embody easily their pragmatic knowledge
of the application domain and improve the process. The following sections presents two
examples of MTBE practical uses in the INGENIAS and ADELFE methodologies.

4.1 MTBE in INGENIAS

In INGENIAS, the MTBE is applied to create model transformations for assisting the
designers in the creation of the model specification. There are several processes for
modelling a whole MAS with INGENIAS. Most of the processes start with the defi-
nition of the use cases. For this reason, this paper presents the generation of a model
transformation that creates the definition of roles from the specification of the use cases.
In INGENIAS, the use case diagrams usually include roles and goals, which must be
linked afterwards for defining the roles. In addition, at least, an agent must be created
for playing each role. In this example we propose to automatically create the role and
agent definitions with a model transformations.

In particular, Figure 3 shows the pairs of models, from which the model transforma-
tion was generated. In the first pair, for each role in the source model, the target model

Legend GoalX GoalX.id
Use Case «UseCasePursues»
«GTPursues»
|% UseCaseX
Agent RoleX.id
O «ParticipatesinUseCase» I:]
|
Goal RoleX «WFPlays»
RoleX.id.substring(l,RoleX.id.size{-1).concat(A")
Role

Fig. 3. Model transformations for generating the Specification of Roles. Each square represent a
model example for MTBE. Each pair of models is related with an arrow and a number, in which
the source and target models are respectively situated at the left and right sides of the arrow.

contains the role and an agent playing this role. The identifier of the role is copied
whereas the identifier of the agent is an alteration of the role identifier. The expression
of the agent identifier in the target model is defined according to the matching-control
mechanism provided by our tool (see Section 2). In the second pair, the source model
contains a goal connected to a role through a use case. The target model has the same
goal that is directly linked with the role. In this manner, the model transformation link
roles with the goals according to the existent use cases.

As one can observe, this example needs to transform patterns of several modelling
elements; thus, one-to-one transformation rules do not satisfy the requirements of this
transformation.

4.2 MTBE Use in ADELFE

One task of the ADELFE methodology design phase is the specification of agent in-
teractions (direct communication between agents). The UML 2.0 sequence diagram is
used to achieve this task. A model-to-model transformation has been specified to trans-
late UML sequences of messages into AMAS-ML Cooperative Interaction Protocols.
However, once the protocols are integrated to the AMAS-ML model messages emitting
and reception have to be declared in the agents involved in these protocols. This ex-
ample proposes to assist the designer by automating this process. The model-to-model
transformation is created applying the MTBE principles (see Section 2).

Figure 4 shows the way the MTBE is specified via a meta-object notation (instances
of AMAS-ML meta-classes). The source example model is figured on the left hand
side. It presents a message (m1) that is owned by a protocol (protocoll) and sent by the
agentl to the agent2. On the right hand side the figure presents the wished result of the
transformation. The idea is to add a communication action (cAm1I) to the agentl action

aéentZ:Aéent '

2 agent2:Agent
= perception

[perceptions:PerceptionModule '

agent1:Agent ' <

L 4

action

agent1:Agent ' | 1

N

actions:ActionModule i
from 'y
communicationActions communicationPerception
| cAm1:CommunicationAction | cPm1:CommunicationPerception

|name =m1.name.concat('Action’) I name = m1.name.concat('Perception’)
messages 3

| protocol1:CooperativelnteractionProrocol '

message message
L 3| ml:Message

protocol1:CooperativelnteractionProrocol I

Fig. 4. Model refactoring example in ADELFE using MTBE : creating communication action and
perception in respective modules for each message specified in AMAS-ML interaction protocols

module (actions) and the respective communication perception (cPml) to the agent2
perception module (perceptions). Both the created communication action and percep-
tion are related to the m/ message (cAml.message and cPml.message) in conformance
to the AMAS-ML meta-model. Furthermore, each numbered arrows represents a trans-
formation rule. As a matter of fact, the result of the generation will be separated in three
different parts (ATL rules). One (arrow number I) to add the action module (actions)
to the source agent (agentl), another (number 2) to do the same with the perception
module (perceptions) of the target agent (agent2) and a last one (number 3) to integrate
the communication action (cAml) and perception (cPml) to their respective modules
and links them to the message (m1).

Although this process could be achieve by AMAS designers, we advocate that their
productivity should be improved by a transformation that abstains them to perform
these quite repetitive actions. Considering the set of protocols and messages that are
usually defined in AMAS-ML models, the automation of this process could save a pre-
cious time during the design phase. In addition, this transformation could strengthen
the design phase by avoiding errors while treating each messages from each protocols
by hand.

5 Related Work

First of all, there are other MTBE tools. For instance, Wimmer et al.[18] present an-
other MTBE tool which uses the same model transformation language: ATL. However,
Wimmer et al. generate simple ATL rules that transforms only one isolated element
into another one. Moreover, Varro and Balogh[16, 17] use inductive logic program-
ming to derive the transformation rules with a MTBE approach. An innovation of this
work is the learning of negative constraints from negative examples. A negative exam-
ples is a context of elements for which a rule do not have to be applied. In addition, this
work carries what Varro and Balogh call connective analysis. In the connective analysis,
the references among modelling elements are analysed. However this analysis is only
successfully executed in the rule outputs. Their approach only generates one-to-one
rules.

The great advantage of the work presented here over Wimmer’s, Varro and Balogh’s
is the generation of many-to-many rules, by means of OCL constraints within the input
side of the rules. In other words, the rules generated by the tool presented in Section 2
allow one to transform patterns of modelling elements into other patterns of modelling
elements.

The most relevant features of the existing tools and the one we have presented are
compared in Table 5

Besides INGENIAS and ADELFE, there are other MAS methodologies that use re-
finement model transformations such as Tropos2 [3]. It is associated with a design
tool called TAOMA4E (Tool for visual Agent Oriented Modelling for the Eclipse plat-
form) [2]. TAOMA4E uses a specific modelling language and introduces a model driven
approach. Perini et al. [13] presents the different types of transformation which were

2 http://www. troposproject.org/

Table 1. Comparison of existent MTBE tools with the presented tool

Features of MTBE Varro and|Wimmer et|{Our Tech-
Balogh al nique
Mapping of attributes yes yes yes
Propagation of links yes yes yes
Negative Examples yes no no
Generation of Constraints no yes yes
Explicit Allocation of Target Elements yes no yes
Limit number of input elements of rules 1 1 no-limit
Limit number of output elements of rules 1 1 no-limit

implemented in Tropos (model refinement and translation of preliminary UML2.0 mod-
els). In the same scope, MDAD (Model Driven Agent Development) applies MDE prin-
ciples for the development of MAS [6]. It defines UML based meta-models (profile),
covering aspects such as the domain, the agents and the organisation. In MDAD the
preliminary abstract model is transformed into a platform specific model conforming to
the INteractive Agent Framework (INAF) meta-model.

The Tropos and MDAD approaches as well as all MAS methodologies using mod-
els, can benefit from the presented MTBE tool. The MTGenerator tool (see section 2)
provides means to assist MAS designers in defining many-to-many model transforma-
tion rules with an user friendly GUI. This kind of transformations is especially useful
in MAS development.

6 Conclusions and Future Work

This paper presents a tool based on the MTBE principles. This tool can generate model
transformations that satisfy the fundamental requirements in the scope of MAS. MTBE
facilitates the task of the MAS designers and reduces design time by providing transfor-
mations generation. Moreover, MTBE speeds up the transformation specification as the
process just consists of defining two models and using the tool to generate the transfor-
mation that relates them. MTBE brings a real improvement specially considering refin-
ing transformations (same source and target meta-models). MAS designers can easily
defines new refactoring or refinement transformations as they are used to manipulate the
concepts from both source and target models (they are MAS concepts). For the exper-
imentation, this work includes two examples from two agent oriented methodologies:
INGENIAS and ADELFE.

This particular aspect can be exploited to enhance development processes. Each tran-
sition from task to task or from phase to phase that needs specific treatments could be
automated. Designers practical knowledge can be embodied into transformations that
they are able to define thanks to MTBE. We foresee to automate most of the the INGE-
NIAS and ADELFE process workflow definition with the help of the presented MTBE
tool.

Future work with the generator tool includes that the user can define model-to-model
transformations for a wider range of meta-models. Another future direction is to apply

the presented tool for exogenous model-to-model transformations (different source and
target meta-models). Finally, the use of negative examples can be incorporated in the
tool to facilitate the expression of complex constraints over source model elements.

References

1.

10.

11.

12.

13.

14.

15.

Bernon, C., Camps, V., Gleizes, M.P., Picard, G.: Engineering Adaptive Multi-Agent Sys-
tems: The ADELFE Methodology. In: Henderson-Sellers, B., Giorgini, P. (eds.) Agent-
Oriented Methodologies, pp. 172-202. Idea Group Pub., NY (2005)

Bertolini, D., Delpero, L., Mylopoulos, J., Novikau, A., Orler, A., Penserini, L., Perini, A.,
Susi, A., Tomasi, B.: A tropos model-driven development environment. In: Boudjlida, N.,
Cheng, D., Guelfi, N. (eds.) CAiSE Forum. CEUR Workshop Proceedings, vol. 231. CEUR-
WS.org. (2006)

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An agent-
oriented software development methodology. Autonomous Agents and Multi-Agent Sys-
tems 8(3), 203-236 (2004)

Capera, D., Georgé, J.P., Gleizes, M.P., Glize, P.: The AMAS Theory for Complex Problem
Solving Based on Self-organizing Cooperative Agents. In: TAPOCS 2003 at WETICE 2003,
Linz, Austria. IEEE CS, Los Alamitos (2003)

Gomez-Sanz, J.J., Fuentes, R., Pavén, J., Garcia-Magarifio, I.: INGENIAS development kit:
a visual multi-agent system development environment. In: AAMAS (Demos), pp. 1675—
1676. IFAAMAS (2008)

Jarraya, T., Guessoum, Z.: Towards a model driven process for multi-agent system. In:
Burkhard, H.-D., Lindemann, G., Verbrugge, R., Varga, L.Z. (eds.) CEEMAS 2007. LNCS,
vol. 4696, pp. 256-265. Springer, Heidelberg (2007)

Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.) MoDELS 2005.
LNCS, vol. 3844, pp. 128-138. Springer, Heidelberg (2006)

Pavon, J., Arroyo, M., Hassan, S., Sansores, C.: Agent-based modelling and simulation for
the analysis of social patterns. Pattern Recognition Letters 29(8), 1039-1048 (2008)

Pavon, J., Corchado, J., Gomez-Sanz, J., Ossa, L.: Mobile Tourist Guide Services with Soft-
ware Agents. LNCS, pp. 322-330. Springer, Heidelberg (2004)

Pavon, J., Gomez-Sanz, J.: Agent Oriented Software Engineering with INGENIAS. In:
Maiik, V., Miiller, J.P., Péchoucek, M. (eds.) CEEMAS 2003. LNCS, vol. 2691, pp. 394—
403. Springer, Heidelberg (2003)

Pavon, J., Gémez-Sanz, J., Fuentes, R.: Model Driven Development of Multi-Agent Sys-
tems. In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 284-298.
Springer, Heidelberg (2006)

Pavon, J., Gomez-Sanz, J.J., Fernandez-Caballero, A., Valencia-Jiménez, J.J.: Development
of intelligent multisensor surveillance systems with agents. Robotics and Autonomous Sys-
tems 55(12), 892-903 (2007)

Perini, A., Susi, A.: Automating model transformations in agent-oriented modelling. In:
Miiller, J.P., Zambonelli, F. (eds.) AOSE 2005. LNCS, vol. 3950, pp. 167-178. Springer,
Heidelberg (2006)

Rougemaille, S., Arcangeli, J.P., Gleizes, M.P., Migeon, F.: ADELFE Design, AMAS-
ML in Action. In: International Workshop on Engineering Societies in the Agents
World (ESAW), Saint-Etienne, mai 2008, pp. 213-224. Springer, Heidelberg (2008),
http://www.springerlink.com/

Rougemaille, S., Migeon, F., Maurel, C., Gleizes, M.P.: Conception d’applications adapta-
tives basées sur I’IDM (Accepted). In: Artikis, A., O’Hare, G.M.P., Stathis, K., Vouros, G.
(eds.) ESAW 2007. LNCS, vol. 4995, pp. 318-332. Springer, Heidelberg (2008)

16.

17.

18.

Varro, D.: Model transformation by example. In: Nierstrasz, O., Whittle, J., Harel, D., Reg-
gio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 410-424. Springer, Heidelberg (2006)
Varr6, D., Balogh, Z.: Automating model transformation by example using inductive logic
programming. In: Proceedings of the 2007 ACM symposium on Applied computing, pp.
978-984 (2007)

Wimmer, M., Strommer, M., Kargl, H., Kramler, G.: Towards Model Transformation By-
Example. In: Proceedings of the 40th Annual Hawaii International Conference on System
Sciences, vol. 40(10), p. 4770 (2007)

