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Abstract

This paper studies a dynamical neural network approach to solve joint chance-constrained distri-

butionally robust optimization problems. We consider that the row vectors of the matrix defining

the constraints are independent. The probability distributions of the row vectors are not known in

advance and belong to a certain distributional uncertainty set. In our paper, we study two uncer-

tainty sets for the unknown distributions. The main feature of our framework is to propose a neural

network-based method to solve distributionally robust joint chance-constrained optimization prob-

lems without the use of standard state-of-the-art solving methods. We show the convergence and

stability of the proposed neural network. In the numerical Section, we apply the proposed approach

to solve a profit maximization problem to show the performances of our approach.

Keywords: Dynamical neural network, Distributionally robust optimization, Joint chance

constraints, Lyapunov Theory, Ordinary differential equations.
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1. Introduction

Chance constrained programming appears with the increased need to include uncertainty in com-

plex decision-making models. It was introduced for the first time by Charnes & Cooper [1]. Since

then, chance-constrained optimization has been widely studied, and the range of applications is very

large. In this paper, we are interested in solving joint chance-constrained optimization problems.5

We study the case where the distribution of the random parameters is unknown, aka distributionally

robust optimization. In fact, we may only know partial information about the statistical properties

of the stochastic parameters.

El Ghaoui & Lebret [2] use second-order cone programming to solve least-squares problems where

the stochastic parameters are not known but bounded. Bertsimas & Sim [3] introduce a less conser-10

vative approach to solve linear optimization problems with uncertain data. Bertsimas & Brown [4]

propose a general scheme for designing uncertainty sets for robust optimization. Wiesemann et al.

[5] propose standardized ambiguity sets for modeling and solving distributionally robust optimiza-

tion problems. Peng et al. [6] study one density-based uncertainty set and four two-moments based
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uncertainty sets to solve games with distributionally robust joint chance constraints. Cheng et al. [7]15

solve a distributionally robust quadratic knapsack problem. Dou & Anitescu [8] propose a new am-

biguity set tailored to unimodal and seemingly symmetric distributions to deal with distributionally

robust chance constraints. Li & Ke [9] approximate a distributionally robust chance constraint by the

worst-case Conditional Value-at-Risk. Hanasusanto et al. [10] approximate two-stage distributionally

robust programs with binary recourse decisions. Georghiou et al. [11] propose a primal-dual lifting20

scheme for the solution of two-stage robust optimization problems.

Recent papers have considered the use of distributionally robust approaches in transportation net-

work optimization problems [12], multistage distribution system planning [13], portfolio optimization

problems [14, 15], planning and scheduling [16], risk measures [17], multimodal demand problems

[18], appointment scheduling [19], vehicle routine problems [20] and energy and reserve dispatch [21].25

This paper proposes a recurrent neural network to solve robust joint chance-constrained problems.

The use of neural networks to solve optimization problems has been actively studied since the 1980s

when the idea was firstly introduced by Tank & Hopfield [22]. Xia & Wang [23] present a recurrent

neural network for solving nonlinear convex programming problems subject to nonlinear inequality

constraints. Wang [24] proposes a deterministic annealing neural network for convex programming.30

Nazemi & Omedi [25] presents a neural network model for solving the shortest path problems.

In this paper, we study two moment-based uncertainty sets and give the deterministic equivalent

of the robust initial problem for each set. Based on the partial KKT system of the equivalent

deterministic programs, we construct a recurrent system that converges to a partial optimum of the

proposed programs. The main contributions of our work are threefold.35

(i) On the formulation side, we reformulate the distributionally robust initial problem as a non-

linear biconvex problem for each uncertainty set. Then, we study the optimality conditions

for each deterministic program and based on the partial KKT system, we propose a recurrent

neural network formulation. To the best of our knowledge, distributionally robust joint chance-

constrained optimization problems have not been reformulated as dynamical neural networks.40

(ii) On the theoretical side, we show that every equilibrium point of the dynamical system is a

partial KKT point. We also prove the stability and convergence of the neural network.

(iii) On the numerical side, we show that the neural network gives a robust upper bound to the

initial problem.

The rest of the paper is organized as follows. In Section 2, we study two uncertainty sets to solve45

a distributionally robust chance-constrained optimization problem and give the optimality conditions

of the obtained deterministic programs. Based on the partial KKT systems introduced in Section

2, we construct in Section 3 a stable recurrent neural network that converges to a partial optimal

solution to the initial problem. In Section 4, we introduce a profit maximization problem to evaluate

the proposed approach.50
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2. Problem statement and optimality conditions

In this paper, we are interested in the optimization problem of the form.

min
x∈IRn

+

sup
F0∈D0

E
[
ζ̃0

T
x
]
, (1)

s.t inf
F∈D

P
(
ζ̃kx ≤ bk, k = 1, ...,K

)
≥ α. (2)

where ζ̃0 ∈ IRn is an uncertain parameter, [ζ̃1, ζ̃2, ...ζ̃K ]T is aK×n set of pairwise independent random

vectors in IRn and b ∈ IRK is a deterministic vector. We consider the case where the probability

distribution F0 of ζ̃0 belongs to a certain uncertainty set D0 and the probability distributions Fk of ζ̃k,

k = 1, ...,K are not completely known and belong to Dk. Thus, we take the worst-case scenario where

constraints (2) are jointly satisfied for all possible distributions in a given distributional uncertainty

set D with a given probability level α. Based on the pairwise independence between the vectors

(ζ̃k)k∈{1,..,K}, we introduce nonnegative auxiliary variables zk, k = 1, ...,K and rewrite the constraint

(2) as 

inf
Fk∈Dk

P
(
ζ̃kx ≤ bk

)
≥ αzk , k = 1, ...,K

K∑
k=1

zk = 1,

zk ≥ 0, k = 0, 1, ...,K.

(3)

In the following subsections, we give deterministic equivalents problems for (1)-(2) using two

moments based uncertainty sets to define Dk, k = 1, ...,K.

We first assume that we know the mean vector µk and the covariance matrix Σk of ζ̃Tk . We define

for every k = 0, 1, ...,K55

D1
k(µk,Σk) =

Fk

∣∣∣∣∣∣ E[ζ̃Tk ] = µk

E[(ζ̃Tk − µk)(ζ̃
T
k − µk)

T ] = Σk

, where Fk is a probability distribution of ζ̃Tk .

In this case, we have the following deterministic reformulation for the distributionally robust joint

chance constraint 2 in [7]. 

µT
k x+

√
αzk

1− αzk
||Σ

1
2

k x||≤ bk, k = 1, ...,K

K∑
k=1

zk = 1,

zk ≥ 0, k = 1, ..,K.

(4)

We then obtain the following deterministic equivalent problem for (1)-(2).

min µT
0 x, (5)

s.t. µT
k x+

√
αzk

1− αzk
||Σ

1
2

k x||≤ bk, k = 1, ...,K (6)

K∑
k=1

zk = 1, x ≥ 0, (7)

zk ≥ 0, k = 1, ..,K. (8)
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Lemma 1. The function z 7→
√

αz

1−αz , with 0 ≤ α ≤ 1 is convex ∀z ≥ 0.60

Proof. Let z ≥ 0 and 0 ≤ α ≤ 1, we have
√

αz

1−αz = exp
{

1
2 (zlog(α)− log(1− αz))

}
. We have z 7→ αz

is a convex function and the function z 7→ log(1− z) is non-increasing and concave, there follows that

z 7→ log(1−αz) is concave. We have then that z 7→ 1
2 (zlog(α)− log(1−αz)) is convex as an addition

of two convex functions. Furthermore, z 7→ ez is a non-increasing convex function we conclude then

that z 7→ exp
{

1
2 (zlog(α)− log(1− αz))

}
is convex. The conclusion follows.65

Corollary 2. Problem (5)-(8) is biconvex.

Now we consider that the mean vector µk lies in an ellipsoid of size γk1 ≥ 0 and that the

covariance matrix Σk lies in a positive semidefinite cone. We define for every k = 0, 1, ...,K,

D2
k(µk,Σk) =

Fk

∣∣∣∣∣∣ (EFk
[ζ̃Tk ]− µk)

TΣ−1
k (EFk

[ζ̃Tk ]− µk) ≤ γk1

COVFk
(ζ̃Tk ) ⪯ γk2Σk

, where γk2 ≥ 0 and COVFk
is

a covariance operator under probability distribution Fk. The deterministic reformulation for the

distributionally robust joint chance constraint 2 in this case is given in [6] as follows.

µT
k x+ (

√
αzk

1− αzk

√
γk2 +

√
γk1)||Σ

1
2

k x||≤ bk, k = 1, ...,K

K∑
k=1

zk = 1,

zk ≥ 0, k = 1, ..,K.

(9)

We can formulate the objective function as [26]

min
x∈IRn

+

µT
0 x+

√
γ01||Σ

1
2
0 x||. (10)

The constraints set (9) is biconvex and the objective function (10) is convex.

To study the optimality conditions of the robust joint chance-constrained problem. We write the

equivalent deterministic problem for each uncertainty set in a general form as follows.

min f(x), (11)

s.t. g(x, z) ≤ 0, (12)

h(z) ≤ 0, (13)

l(x) ≤ 0, (14)

where, f(x) =

 µT
0 x, if Dk = D1

k

µT
0 x+

√
γ01||Σ

1
2
0 x||, if Dk = D2

k

, h(z) = (
K∑

k=1

zk−1, 1−
K∑

k=1

zk,−z1,−z2, ..., zK)T ,

l(x) = −x and g(x, z) =

 µT
k x+

√
αzk

1−αzk
||Σ

1
2

k x||−bk, if Dk = D1
k

µT
k x+ (

√
αzk

1−αzk

√
γk2 +

√
γk1)||Σ

1
2

k x||−bk, if Dk = D2
k

.

To derive the optimality conditions of problem (11)-(14), we use the partial KKT system defined as70

follows.
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Definition 1. Let U the feasible set of (11)-(14), let (x∗, z∗) ∈ U . If there exists β(1), β(2), γ, and λ

such that

∇xf(x
∗) + β(1)T∇xg(x

∗, z∗) + λT∇xl(x
∗) = 0, (15)

β(1) ≥ 0, β(1)T g(x∗, z∗) = 0, λ ≥ 0, λT l(x∗) = 0, (16)

β(2)T∇zg(x
∗, z∗) + γT∇zh(z

∗) = 0, (17)

β(2) ≥ 0, β(2)T g(x∗, z∗) = 0, γ ≥ 0, γTh(z∗) = 0, (18)

then (x∗, z∗) is called a partial KKT point of (11)-(14).

The following theorem gives the optimality conditions of problem (11)-(14).

Theorem 3. If (15)-(18) is satisfied with partial Slater constraints qualification at (x∗, z∗), then

(x∗, z∗) is a partial optimum of (11)-(14) if and only if (x∗, z∗) is a partial KKT point of (11)-(14).75

Furthermore, if β(1) = β(2) then (x∗, z∗) is a KKT point of (11)-(14).

Remark 4. The lines of the proof of Theorem 3 are given in [27].

3. A dynamical neural network

Based on the partial KKT system obtained in the previous Section, we construct a dynamical

neural network to solve the robust chance-constrained problem. The following ordinary system drives80

the constructed neural network.

dx

dt
= −(∇f(x) +∇xg(x, z)

T (β + g(x, z))+ +∇xl(x)
T (λ+ l(x))+), (19)

dz

dt
= −(∇zg(x, z)

T (β + g(x, z))+ +∇zh(z)
T (γ + h(z))+), (20)

dβ

dt
= (β + g(x, z))+ − β, (21)

dγ

dt
= (γ + h(z))+ − γ, (22)

dλ

dt
= (λ+ l(x))+ − λ. (23)

System (19)-(23) can be shortly written as dy
dt = Φ(y) where y = (x, z, β, γ, λ)T and

Φ(y) =



−(∇f(x) +∇xg(x, z)
T (β + g(x, z))+ +∇xl(x)

T (λ+ l(x))+)

−(∇zg(x, z)
T (β + g(x, z))+ +∇zh(z)

T (γ + h(z))+)

(β + g(x, z))+ − β

(γ + h(z))+ − γ

(λ+ l(x))+ − λ


.

A generalized circuit implementation of neural network (19)-(23) is represented in Figure 1.85
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Figure 1: The implementation of the neural network (19)-(23)

Theorem 5. Let y∗ = (x∗, z∗, β∗, γ∗, λ∗)T an equilibrium point of (19)-(23), then (x∗, z∗) is a

partial optimum of (11)-(14). If (x∗, z∗, β∗, γ∗, λ∗) is feasible for the partial KKT system (15)-(18)

with β(1) = β(2) = β then y∗ = (x∗, z∗, β∗, γ∗, λ∗)T is an equilibrium point of (19)-(23).

Proof. Observe that (β+ g(x, z))+ − β = 0 ⇔ (β ≥ 0 and g(x, z) ≤ 0), the same observation goes for

(γ + h(z))+ − γ and (λ + l(x))+ − λ. Let (x∗, z∗, β∗, γ∗, λ∗)T an equilibrium point of (19)-(23), we90

have then that dx∗

dt = dy∗

dt = dβ∗

dt = dγ∗

dt = dλ∗

dt = 0.

Therefore, We have dβ∗

dt = 0 ⇔ (β∗ ≥ 0 and g(x∗, z∗) ≤ 0 and β∗T g(x∗, z∗) = 0), we obtain then

equation (16) with β(1) = β of the partial KKT system (15)-(18). We replace (β + g(x, z))+ by β in

(19) to obtain (11). We obtain the remaining equations of the KKT system following the same steps.

The converse part of the proof is straightforward.95

To prove the stability of the neural network (19)-(23), we first need to introduce the following

definition and lemma.

Definition 2. [28] A mapping F : Rn −→ Rn is said to be monotonic if

(x− y)T (F (x)− F (y)) ≥ 0, ∀x, y ∈ Rn

Lemma 6. [28] A differentiable mapping F : Rn −→ Rn is monotonic, if and only if the jacobian100

matrix ∇F (x), ∀x ∈ Rn, is positive semidefinite.
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Theorem 7. Let (x∗, z∗) a partial optimum of (11)-(14), and y∗ = (x∗, z∗, β∗, γ∗, λ∗)T the corre-

sponding partial KKT point. Then a necessary condition for the neural network in (19)-(23) to be

stable at y∗ is that ∇Φ(y) is negative semidefinite.

Proof. We consider the following Lyapunov function.

V (y) = ∥Φ(y)∥2 + 1

2
∥y − y∗∥2 (24)

Notice that dΦ
dt = ∇Φ

∇y
dy
dt = ∇Φ(y)Φ(y), we have then dV (y(t))

dt = (dΦdt )
TΦ + ΦT dΦ

dt + (y − y∗)T dy
dt =105

ΦT (∇Φ(y)T +∇Φ(y))Φ + (y − y∗)TΦ(y). Since, ∇Φ is negative semidefinite we have ΦT (∇Φ(y)T +

∇Φ(y))Φ ≤ 0 and (y − y∗)TΦ(y) = (y − y∗)T (Φ(y) − Φ(y∗)) ≤ 0 by Lemma 6. There follows that

dV (y)
dt ≤ 0. According to the Lyapunov theory, the neural network in (19)-(23) is stable at y∗.

Theorem 8. The Jacobian matrix ∇Φ(y) is negative semidefinite.

Proof. Without loss of generality, We assume that there exists p, q,m ∈ N such that110

(β + g)+ = (β1 + g1(x, z), β2 + g2(x, z), ....., βp + gp(x, z), 0, ...., 0︸ ︷︷ ︸
K−p

),

(λ+ h)+ = (λ1 + h1(z), λ2 + h2(z), ....., λq + hq(z), 0, ...., 0︸ ︷︷ ︸
2−q

),

(γ + l)+ = (γ1 + l1(z), γ2 + l2(z), ....., γm + lm(z), 0, ...., 0︸ ︷︷ ︸
K−m

).

The Jacobian matrix ∇Φ(y) can be written as ∇Φ(y) =



A1 A2 A3 0 0

B1 B2 B3 B4 B5

C1 C2 C3 0 0

0 D2 0 D4 0

0 E2 0 0 E5


where

A1 = −(∇2f(x) +

p∑
i=1

((βi + gi)∇2
xg

p
i (x, z)) +∇xg

p(x, z)
T∇xg

p(x, z)),

A2 = −(

p∑
i=1

((βi + gi)∇z∇xg
p
i (x, z)) +∇zg

p(x, z)
T∇xg

p(x, z)),

A3 = −∇xg(x, z)
T ,

B1 = −(

p∑
i=1

((βi + gi)∇x∇zg
p
i (x, z)) +∇xg

p(x, z)
T∇zg

p(x, z)),

B2 =−(

p∑
i=1

((βi+gi)∇2
zg

p
i (x, z))+∇zg

p(x, z)
T∇zg

p(x, z)+

q∑
i=1

((λi+h)∇2
zh

q
i (z))+∇zh

q(z)
T∇zh

q(z))

+

m∑
i=1

((γi + l)∇2
zl

m
i (z)) +∇zl

m(z)
T∇zl

m(z)),

B3 = −∇zg(x, z)
T , B4 = −∇zh(z)

T , B5 = −∇zl(x)
T , C1 = ∇xg(x, z), C2 = ∇zg(x, z),

C3 = −Sp, D2 = ∇zh(z), D4 = −Sq, E2 = ∇zl(x), E5 = −Sm,
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where Sp =

 Op×p Op×(K−p)

O(K−p)×p I(K−p)×(K−p)

, Sq =

 Oq×q Oq×(2−q)

O(2−q)×q I(2−q)×(2−q)

115

and Sm =

 Om×m Om×(K−m)

O(K−m)×m I(K−m)×(K−m)

.
We write ∇Φ(y) as,

∇Φ(y) =


A1 BT

1

B1 B2

B

−BT S

, where B =

A3 0 0

B3 B4 B5

 and S =


−Sp 0 0

0 −Sq 0

0 0 −Sm

.
Recall that g is biconvex, f , l and h are convex functions then we have ∇2f , ∇2

xg, ∇2
zg, ∇2

zl and

∇2
zh are positive semidefinite. Moreover, it is straightforward that ∇xg

T∇xg, ∇zg
T∇zg,∇zh

T∇zh120

and ∇zl
T∇zl are positive semidefinite. It follows that A1 and B2 are negative semidefinite matrix,

and then

A1 BT
1

B1 B2

 is negative semidefinite. S is obviously negative semidefinite. We conclude that

∇Φ is negative semidefinite.

Theorem 9. The neural network (19)-(23) converges globally to a KKT point of (11)-(14).

Proof. Let y∗ an equilibrium point of (19)-(23). We have V (y) ≥ 1
2 ∥y − y∗∥2 (defined in (24)).

Consequently, there exists a convergent subsequence (y(tk)k≥0) where limk−→∞y(tk) = ŷ and ŷ

satisfies dV (y(t))
dt = 0. We define S = {y|dV (y)

dt = 0}, by LaSalle’s invariance principle [29] the neural

network converges to the largest invariant set contained in S. Notice that

dy

dt
= 0 ⇔ dV (y)

dt
= 0, (25)

then ŷ is an equilibrium point of (19)-(23).125

Now, to show that the neural network converges to ŷ, we introduce a new Lyapunov function

defined as follows.

W (y) = ∥Φ(y)∥2 + 1

2
∥y − ŷ∥2 . (26)

Notice that W is continuously differentiable and limk−→∞y(tk) = ŷ and since W (ŷ) = 0, we have

lim
t−→∞

W (y(t)) = W (ŷ) = 0. (27)

There follows from dW (y)
dt ≤ 0 that 1

2 ∥y − ŷ∥2 ≤ W (y). From (27) we conclude that lim
t−→∞

y(t) = ŷ.

The neural network (19)-(23) is then convergent in the sense of Lyapunov to a KKT point of (11)-

(14).

4. Numerical experiments

To evaluate the performances of our approach, we solve a standard profit maximization problem.130

A manufacturing firm produces n products with N different machines. The times required to manu-

facture each unit are random variables. The mean vector µi and the covariance matrix Σi describing

the uncertainty sets of the time required to manufacture one unit of each of the n products and the

daily capacity of the N machines are given. The objective of the study is to determine the daily

8



number of units to be manufactured for each product without exceeding the available machining135

times.

We write our robust joint chance-constrained maximization problem as follows.

max sup
F0∈D0

E
[
cTx

]
, (28)

s.t. inf
F∈D

P

(
n∑

i=1

tijxi ≤ bj , j = 1, ...,N

)
≥ p, (29)

x ≥ 0, (30)

where vector c is a random variable and corresponds to the profit per unit for each product, tij is

the time required to manufacture one unit of product i using machine j, bj is the time capacity of

machine j, p is a given probability level and D is an uncertainty set for the distribution F of the

random variables.140

All the algorithms in this Section are implemented in Python. We run our algorithms on Intel(R)

Core(TM) i7-10610U CPU @ 1.80GHz. The random instances are generated with numpy.random, and

we solve the ODE systems with solve ivp of scipy.integrate. The deterministic equivalent programs

are solved with the package gekko and the gradients and partial derivatives are computed with

autograd.grad and autograd.jacobian.145

We solve problem (28)-(30) for different values of n and N with the proposed neural network (19)-

(23). The values of µj and c are uniformly generated in [12.0, 14.0], the components of the matrix Σj

are uniformly drawn in the interval [1.0, 3.0] and we generate the values of bj uniformly in [50.0, 60.0],

γk1 = 5 and γk2 = 5. We first solve problem (28)-(30) for N=7 machines and n = 10 products.

In order to compare the performances of our approach with the literature existing methods, we use150

the tangent approximation to solve (28)-(30) using ten tangent points [7] . Table 1 recapitulates the

obtained results for different values of p. The first column gives the value of p, the second and third

columns give the objective value and the CPU time in seconds obtained with the neural network when

the uncertainty set D = D1(µ,Σ), respectively. Columns four and five represent the objective value

and the CPU time in seconds for the tangent approximation, respectively. Column six computes155

the gap between the objective values of the two approaches (GAP =
Tangent approximation - NN

Tangent approximation ).

Table 2 represents the same results when D = D2(µ,Σ). We observe that the neural network converges

for the different levels of probability and that the gap with the lower bound given by the tangent

approximation remains very tight, i.e., it does not exceed 2.7%.

To evaluate the robustness of the proposed neural network for the two uncertainty sets D1 and160

D2, we additionally solve problem (28)-(30) when the random variables follow uniform and normal

distributions and p = 0.95. We compare the solution of our proposed distributionally robust ap-

proach with the solution of the stochastic programming approach. We generate 100 instances for

(tij)1≤I≤n,1≤j≤N using the mean vectors and the covariance matrix when the true distribution of the

stochastic variables is one of the five following distributions: uniform distribution, normal distribu-165

tion, log-normal distribution, logistic distribution and Gamma distribution. We calculate the number

of times when the constraints were violated over the 100 generated scenarios for each stochastic and

9



p NN for D1(µ,Σ) Tangent approximation GAP

Obj value CPU Time Obj value CPU Time

0.95 26.77 2.29 27.09 0.19 1.1%

0.9 32.96 5.55 33.30 0.11 1.0%

0.85 32.68 4.62 33.20 0.22 1.5%

0.8 37.86 6.33 38.22 0.17 0.9%

Table 1: Results for different values of α

p NN for D2(µ,Σ) Tangent approximation GAP

Obj value CPU Time Obj value CPU Time

0.95 15.85 1.17 16.22 0.18 2.2%

0.9 20.31 0.82 20.73 0.19 2.0%

0.85 21.22 3.45 21.83 0.14 2.7%

0.8 25.48 0.60 25.84 0.17 1.3%

Table 2: Results for different values of α

robust solutions. Table 3 recapitulates the obtained results, where column one gives the true distribu-

tion, columns two, three, four and five give the number of violated scenarios for the solution obtained

using the uniform approach, the normal approach, the first robust approach and the second robust170

approach, respectively. The relative expected profit is computed relatively to the value achieved by

the solution of the stochastic program with uniform distribution.

We observe that the distributionally robust approaches are more conservative compared to the

stochastic approaches. We invest between 4.3% and 12.2% of the expected profit in order to ensure

the joint constraint. In fact, the average numbers of violated scenarios for the robust approaches175

are 0 while the numbers of violated scenarios for the stochastic solutions are significant, i.e., when

Gamma is the true distribution of the random variables the average number of the violated scenarios

are 24 and 9 for the uniform and the normal solutions, respectively.

Now in order to evaluate the performances of our approach, we solve problem (28)-(30) for different

Stochastic solutions Robust solutions

Uniform Normal D1(µ,Σ) D2(µ,Σ)

Relative expected profit -0% -0.5% -4.3% -12.2%

Number Uniform distribution 2 0 0 0

of Normal distribution 8 5 0 0

violated Log-normal distribution 15 6 0 0

scenarios Logistic distribution 23 5 0 0

Gamma distribution 24 9 0 0

Table 3: Number of violated scenarios for the stochastic and the robust solutions

10



numbers of machines N and products n. Tables 4 and 5 represent the obtained results. We observe

that neural networks converge and that the gap increases as the problem size increases but does not180

exceed 6.8%. Gaps for D2(µ,Σ) are more significant than those for D1(µ,Σ). In fact, D2 gives less

information about the stochastic parameters than D1, and thus it has to be more conservative to

ensure the robustness of the solutions.

N n NN for D1(µ,Σ) Tangent approximation GAP

Obj value CPU Time Obj value CPU Time

5 10 32.50 18.58 33.18 0.90 2.0%

10 15 35.53 73.09 36.54 12.10 2.7%

10 20 32.33 198.61 33.76 13.06 4.2%

15 25 33.44 506.62 35.22 29.64 5.0%

Table 4: Results for different values of n and N

N n NN for D2(µ,Σ) Tangent approximation GAP

Obj value CPU Time Obj value CPU Time

5 10 26.27 3.47 26.78 1.07 1.9%

10 15 26.11 22.10 26.95 6.24 3.9%

10 20 24.82 152.38 26.08 16.97 4.8%

15 25 26.53 288.46 28.49 38.74 6.8%

Table 5: Results for different values of n and N

We observe that the neural network has a significant CPU time compared to the tangent ap-

proximation since the tangent approximation uses very powerful convex solvers. Thereby, developing185

faster ODE solvers might decrease significantly the total CPU time. Notice that our approach does

not replace the existing convex approximations but gives some promising results and opens the way

for a new vision of the joint probabilistic problems.

5. Conclusion

This paper studies a distributionally robust joint constrained optimization problem for two dif-190

ferent moments based uncertainty sets. We transform the initial stochastic problems into biconvex

deterministic equivalent problems. We then study the optimality conditions of the obtained prob-

lems by introducing the partial KKT system. We use our approach to solve the problem of profit

maximization in the numerical Section. We evaluate the performances of the robust solutions by com-

paring them to the state-of-the-art solving methods. We show that the neurodynamic approach gives195

better and more robust solutions. We note that the performances of our approach can be significantly

increased with the development of new ODE solvers mainly based on machine learning techniques.
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