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This paper studies a dynamical neural network approach to solve joint chance-constrained distributionally robust optimization problems. We consider that the row vectors of the matrix defining the constraints are independent. The probability distributions of the row vectors are not known in advance and belong to a certain distributional uncertainty set. In our paper, we study two uncertainty sets for the unknown distributions. The main feature of our framework is to propose a neural network-based method to solve distributionally robust joint chance-constrained optimization problems without the use of standard state-of-the-art solving methods. We show the convergence and stability of the proposed neural network. In the numerical Section, we apply the proposed approach to solve a profit maximization problem to show the performances of our approach.

Introduction

Chance constrained programming appears with the increased need to include uncertainty in complex decision-making models. It was introduced for the first time by Charnes & Cooper [START_REF] Charnes | Chance-constrained programming[END_REF]. Since then, chance-constrained optimization has been widely studied, and the range of applications is very large. In this paper, we are interested in solving joint chance-constrained optimization problems.

We study the case where the distribution of the random parameters is unknown, aka distributionally robust optimization. In fact, we may only know partial information about the statistical properties of the stochastic parameters.

El Ghaoui & Lebret [START_REF] Ghaoui | Robust solutions to least-squares problems with uncertain data[END_REF] use second-order cone programming to solve least-squares problems where the stochastic parameters are not known but bounded. Bertsimas & Sim [START_REF] Bertsimas | The price of robustness[END_REF] introduce a less conservative approach to solve linear optimization problems with uncertain data. Bertsimas & Brown [START_REF] Bertsimas | Constructing uncertainty sets for robust linear optimization[END_REF] propose a general scheme for designing uncertainty sets for robust optimization. Wiesemann et al. [START_REF] Wiesemann | Distributionally robust convex optimization[END_REF] propose standardized ambiguity sets for modeling and solving distributionally robust optimization problems. Peng et al. [START_REF] Peng | Games with distributionally robust joint chance constraints[END_REF] study one density-based uncertainty set and four two-moments based uncertainty sets to solve games with distributionally robust joint chance constraints. Cheng et al. [START_REF] Cheng | Distributionally robust stochastic knapsack problem[END_REF] solve a distributionally robust quadratic knapsack problem. Dou & Anitescu [START_REF] Dou | Distributionally robust optimization with correlated data from vector autoregressive processes[END_REF] propose a new ambiguity set tailored to unimodal and seemingly symmetric distributions to deal with distributionally robust chance constraints. Li & Ke [START_REF] Li | Robust assortment optimization using worst-case cvar under the multinomial logit model[END_REF] approximate a distributionally robust chance constraint by the worst-case Conditional Value-at-Risk. Hanasusanto et al. [START_REF] Hanasusanto | K-adaptability in two-stage distributionally robust binary programming[END_REF] approximate two-stage distributionally robust programs with binary recourse decisions. Georghiou et al. [START_REF] Georghiou | A primal-dual lifting scheme for two-stage robust optimization[END_REF] propose a primal-dual lifting scheme for the solution of two-stage robust optimization problems.

Recent papers have considered the use of distributionally robust approaches in transportation network optimization problems [START_REF] Dai | A distributionally robust chance-constrained approach for modeling demand uncertainty in green port-hinterland transportation network optimization[END_REF], multistage distribution system planning [START_REF] Zare | A distributionally robust chance-constrained milp model for multistage distribution system planning with uncertain renewables and loads[END_REF], portfolio optimization problems [START_REF] Fonseca | Robust international portfolio management[END_REF][START_REF] Wang | Distributionally robust optimization with multivariate second-order stochastic dominance constraints with applications in portfolio optimization[END_REF], planning and scheduling [START_REF] Shang | Distributionally robust optimization for planning and scheduling under uncertainty[END_REF], risk measures [START_REF] Postek | Computationally tractable counterparts of distributionally robust constraints on risk measures[END_REF], multimodal demand problems [START_REF] Hanasusanto | Distributionally robust multi-item newsvendor problems with multimodal demand distributions[END_REF], appointment scheduling [START_REF] Zhang | Distributionally robust appointment scheduling with momentbased ambiguity set[END_REF], vehicle routine problems [START_REF] Ghosal | The distributionally robust chance-constrained vehicle routing problem[END_REF] and energy and reserve dispatch [START_REF] Ordoudis | Energy and reserve dispatch with distributionally robust joint chance constraints[END_REF].

This paper proposes a recurrent neural network to solve robust joint chance-constrained problems.

The use of neural networks to solve optimization problems has been actively studied since the 1980s when the idea was firstly introduced by Tank & Hopfield [START_REF] Tank | Simple 'neural' optimization networks: An a/d converter, signal decision circuit, and a linear programming circuit[END_REF]. Xia & Wang [START_REF] Xia | A recurrent neural network for nonlinear convex optimization subject to nonlinear inequality constraints[END_REF] present a recurrent neural network for solving nonlinear convex programming problems subject to nonlinear inequality constraints. Wang [START_REF] Wang | A deterministic annealing neural network for convex programming[END_REF] proposes a deterministic annealing neural network for convex programming.

Nazemi & Omedi [START_REF] Nazemi | An efficient dynamic model for solving the shortest path problem[END_REF] presents a neural network model for solving the shortest path problems.

In this paper, we study two moment-based uncertainty sets and give the deterministic equivalent of the robust initial problem for each set. Based on the partial KKT system of the equivalent deterministic programs, we construct a recurrent system that converges to a partial optimum of the proposed programs. The main contributions of our work are threefold.

(i) On the formulation side, we reformulate the distributionally robust initial problem as a nonlinear biconvex problem for each uncertainty set. Then, we study the optimality conditions for each deterministic program and based on the partial KKT system, we propose a recurrent neural network formulation. To the best of our knowledge, distributionally robust joint chanceconstrained optimization problems have not been reformulated as dynamical neural networks.

(ii) On the theoretical side, we show that every equilibrium point of the dynamical system is a partial KKT point. We also prove the stability and convergence of the neural network.

(iii) On the numerical side, we show that the neural network gives a robust upper bound to the initial problem.

The rest of the paper is organized as follows. In Section 2, we study two uncertainty sets to solve a distributionally robust chance-constrained optimization problem and give the optimality conditions of the obtained deterministic programs. Based on the partial KKT systems introduced in Section 2, we construct in Section 3 a stable recurrent neural network that converges to a partial optimal solution to the initial problem. In Section 4, we introduce a profit maximization problem to evaluate the proposed approach.

Problem statement and optimality conditions

In this paper, we are interested in the optimization problem of the form. min

x∈IR n + sup F0∈D0 E ζ0 T x , (1) 
s.t inf

F ∈D P ζk x ≤ b k , k = 1, ..., K ≥ α. (2) 
where ζ0 ∈ IR n is an uncertain parameter, [ ζ1 , ζ2 , ... ζK ] T is a K ×n set of pairwise independent random vectors in IR n and b ∈ IR K is a deterministic vector. We consider the case where the probability distribution F 0 of ζ0 belongs to a certain uncertainty set D 0 and the probability distributions F k of ζk , k = 1, ..., K are not completely known and belong to D k . Thus, we take the worst-case scenario where constraints (2) are jointly satisfied for all possible distributions in a given distributional uncertainty set D with a given probability level α. Based on the pairwise independence between the vectors ( ζk ) k∈{1,..,K} , we introduce nonnegative auxiliary variables z k , k = 1, ..., K and rewrite the constraint

(2) as                  inf F k ∈D k P ζk x ≤ b k ≥ α z k , k = 1, ..., K K k=1 z k = 1, z k ≥ 0, k = 0, 1, ..., K. (3) 
In the following subsections, we give deterministic equivalents problems for (1)-(2) using two moments based uncertainty sets to define D k , k = 1, ..., K.

We first assume that we know the mean vector µ k and the covariance matrix Σ k of ζT k . We define for every k = 0, 1, ..., K

D 1 k (µ k , Σ k ) =    F k E[ ζT k ] = µ k E[( ζT k -µ k )( ζT k -µ k ) T ] = Σ k   
, where F k is a probability distribution of ζT k .

In this case, we have the following deterministic reformulation for the distributionally robust joint chance constraint 2 in [START_REF] Cheng | Distributionally robust stochastic knapsack problem[END_REF].

                   µ T k x + α z k 1 -α z k ||Σ 1 2 k x||≤ b k , k = 1, ..., K K k=1 z k = 1, z k ≥ 0, k = 1, .., K. (4) 
We then obtain the following deterministic equivalent problem for (1)- [START_REF] Ghaoui | Robust solutions to least-squares problems with uncertain data[END_REF].

min µ T 0 x, (5) 
s.t. µ T k x + α z k 1 -α z k ||Σ 1 2 k x||≤ b k , k = 1, ..., K (6) 
K k=1 z k = 1, x ≥ 0, (7) 
z k ≥ 0, k = 1, .., K. ( 8 
) Lemma 1. The function z → α z 1-α z , with 0 ≤ α ≤ 1 is convex ∀z ≥ 0.
Proof. Let z ≥ 0 and 0 ≤ α ≤ 1, we have

α z 1-α z = exp 1 2 (zlog(α) -log(1 -α z )) .
We have z → α z is a convex function and the function z → log(1 -z) is non-increasing and concave, there follows that

z → log(1 -α z ) is concave. We have then that z → 1 2 (zlog(α) -log(1 -α z )
) is convex as an addition of two convex functions. Furthermore, z → e z is a non-increasing convex function we conclude then

that z → exp 1 2 (zlog(α) -log(1 -α z )) is convex. The conclusion follows.
Corollary 2. Problem ( 5)-( 8) is biconvex.

Now we consider that the mean vector µ k lies in an ellipsoid of size γ k1 ≥ 0 and that the covariance matrix Σ k lies in a positive semidefinite cone. We define for every k = 0, 1, ..., K,

D 2 k (µ k , Σ k ) =    F k (E F k [ ζT k ] -µ k ) T Σ -1 k (E F k [ ζT k ] -µ k ) ≤ γ k1 COV F k ( ζT k ) ⪯ γ k2 Σ k   
, where γ k2 ≥ 0 and COV F k is a covariance operator under probability distribution F k . The deterministic reformulation for the distributionally robust joint chance constraint 2 in this case is given in [START_REF] Peng | Games with distributionally robust joint chance constraints[END_REF] as follows.

                   µ T k x + ( α z k 1 -α z k √ γ k2 + √ γ k1 )||Σ 1 2 k x||≤ b k , k = 1, ..., K K k=1 z k = 1, z k ≥ 0, k = 1, .., K. (9) 
We can formulate the objective function as [START_REF] Liu | Distributionally robust chance constrained geometric optimization[END_REF] min

x∈IR n + µ T 0 x + √ γ 01 ||Σ 1 2 0 x||. (10) 
The constraints set ( 9) is biconvex and the objective function ( 10) is convex.

To study the optimality conditions of the robust joint chance-constrained problem. We write the equivalent deterministic problem for each uncertainty set in a general form as follows.

min f (x), (11) 
s.t. g(x, z) ≤ 0, (12) 
h(z) ≤ 0, (13) 
l(x) ≤ 0, (14) 
where,

f (x) =    µ T 0 x, if D k = D 1 k µ T 0 x + √ γ 01 ||Σ 1 2 0 x||, if D k = D 2 k , h(z) = ( K k=1 z k -1, 1- K k=1 z k , -z 1 , -z 2 , ..., z K ) T , l(x) = -x and g(x, z) =    µ T k x + α z k 1-α z k ||Σ 1 2 k x||-b k , if D k = D 1 k µ T k x + ( α z k 1-α z k √ γ k2 + √ γ k1 )||Σ 1 2 k x||-b k , if D k = D 2 k .
To derive the optimality conditions of problem ( 11)-( 14), we use the partial KKT system defined as follows.

Definition 1. Let U the feasible set of ( 11)-( 14), let (x * , z * ) ∈ U. If there exists β (1) , β (2) , γ, and λ such that

∇ x f (x * ) + β (1) T ∇ x g(x * , z * ) + λ T ∇ x l(x * ) = 0, (15) 
β (1) ≥ 0, β (1) T g(x * , z * ) = 0, λ ≥ 0, λ T l(x * ) = 0, (16) 
β (2) T ∇ z g(x * , z * ) + γ T ∇ z h(z * ) = 0, (17) 
β (2) ≥ 0, β (2) T g(x * , z * ) = 0, γ ≥ 0, γ T h(z * ) = 0, (18) 
then (x * , z * ) is called a partial KKT point of ( 11)-( 14).

The following theorem gives the optimality conditions of problem ( 11)-( 14).

Theorem 3. If ( 15)-( 18) is satisfied with partial Slater constraints qualification at (x * , z * ), then (x * , z * ) is a partial optimum of ( 11)-( 14) if and only if (x * , z * ) is a partial KKT point of ( 11)-( 14).

Furthermore, if β (1) = β (2) then (x * , z * ) is a KKT point of ( 11)-( 14).

Remark 4. The lines of the proof of Theorem 3 are given in [START_REF] Jiang | Partial exactness for the penalty function of biconvex programming[END_REF].

A dynamical neural network

Based on the partial KKT system obtained in the previous Section, we construct a dynamical neural network to solve the robust chance-constrained problem. The following ordinary system drives the constructed neural network.

dx dt = -(∇f (x) + ∇ x g(x, z) T (β + g(x, z)) + + ∇ x l(x) T (λ + l(x)) + ), ( 19 
)
dz dt = -(∇ z g(x, z) T (β + g(x, z)) + + ∇ z h(z) T (γ + h(z)) + ), ( 20 
)
dβ dt = (β + g(x, z)) + -β, (21) 
dγ dt = (γ + h(z)) + -γ, (22) 
dλ dt = (λ + l(x)) + -λ. (23) 
System ( 19)-( 23) can be shortly written as dy dt = Φ(y) where y = (x, z, β, γ, λ) T and

Φ(y) =            -(∇f (x) + ∇ x g(x, z) T (β + g(x, z)) + + ∇ x l(x) T (λ + l(x)) + ) -(∇ z g(x, z) T (β + g(x, z)) + + ∇ z h(z) T (γ + h(z)) + ) (β + g(x, z)) + -β (γ + h(z)) + -γ (λ + l(x)) + -λ            .
A generalized circuit implementation of neural network ( 19)-( 23) is represented in Figure 1. Theorem 5. Let y * = (x * , z * , β * , γ * , λ * ) T an equilibrium point of ( 19)- [START_REF] Xia | A recurrent neural network for nonlinear convex optimization subject to nonlinear inequality constraints[END_REF], then (x * , z * ) is a partial optimum of ( 11)- [START_REF] Fonseca | Robust international portfolio management[END_REF]. If (x * , z * , β * , γ * , λ * ) is feasible for the partial KKT system (15)- [START_REF] Hanasusanto | Distributionally robust multi-item newsvendor problems with multimodal demand distributions[END_REF] with β (1) = β (2) = β then y * = (x * , z * , β * , γ * , λ * ) T is an equilibrium point of ( 19)- [START_REF] Xia | A recurrent neural network for nonlinear convex optimization subject to nonlinear inequality constraints[END_REF].

Proof. Observe that (β + g(x, z)) + -β = 0 ⇔ (β ≥ 0 and g(x, z) ≤ 0), the same observation goes for (γ + h(z)) + -γ and (λ + l(x)) + -λ. Let (x * , z * , β * , γ * , λ * ) T an equilibrium point of ( 19)-( 23), we have then that dx * dt = dy * dt = dβ * dt = dγ * dt = dλ * dt = 0. Therefore, We have dβ * dt = 0 ⇔ (β * ≥ 0 and g(x * , z * ) ≤ 0 and β * T g(x * , z * ) = 0), we obtain then equation ( 16) with β (1) = β of the partial KKT system (15)- [START_REF] Hanasusanto | Distributionally robust multi-item newsvendor problems with multimodal demand distributions[END_REF]. We replace (β + g(x, z)) + by β in [START_REF] Zhang | Distributionally robust appointment scheduling with momentbased ambiguity set[END_REF] to obtain [START_REF] Georghiou | A primal-dual lifting scheme for two-stage robust optimization[END_REF]. We obtain the remaining equations of the KKT system following the same steps.

The converse part of the proof is straightforward.

To prove the stability of the neural network ( 19)- [START_REF] Xia | A recurrent neural network for nonlinear convex optimization subject to nonlinear inequality constraints[END_REF], we first need to introduce the following definition and lemma.

Definition 2. [28]

A mapping F : R n -→ R n is said to be monotonic if

(x -y) T (F (x) -F (y)) ≥ 0, ∀x, y ∈ R n Lemma 6.
[28] A differentiable mapping F : R n -→ R n is monotonic, if and only if the jacobian matrix ∇F (x), ∀x ∈ R n , is positive semidefinite.

Theorem 7. Let (x * , z * ) a partial optimum of ( 11)-( 14), and y * = (x * , z * , β * , γ * , λ * ) T the corresponding partial KKT point. Then a necessary condition for the neural network in ( 19)-( 23) to be stable at y * is that ∇Φ(y) is negative semidefinite.

Proof. We consider the following Lyapunov function.

V (y) = ∥Φ(y)∥ 2 + 1 2 ∥y -y * ∥ 2 (24) 
Notice that dΦ dt = ∇Φ ≤ 0. According to the Lyapunov theory, the neural network in ( 19)-( 23) is stable at y * .

Theorem 8. The Jacobian matrix ∇Φ(y) is negative semidefinite.

Proof. Without loss of generality, We assume that there exists p, q, m ∈ N such that 110 (β + g) + = (β 1 + g 1 (x, z), β 2 + g 2 (x, z), ....., β p + g p (x, z), 0, ...., 0

K-p ), (λ + h) + = (λ 1 + h 1 (z), λ 2 + h 2 (z), ....., λ q + h q (z), 0, ...., 0 2-q ), (γ + l) + = (γ 1 + l 1 (z), γ 2 + l 2 (z), ....., γ m + l m (z), 0, ...., 0 K-m
).

The Jacobian matrix ∇Φ(y) can be written as

∇Φ(y) =            A 1 A 2 A 3 0 0 B 1 B 2 B 3 B 4 B 5 C 1 C 2 C 3 0 0 0 D 2 0 D 4 0 0 E 2 0 0 E 5           
where

A 1 = -(∇ 2 f (x) + p i=1 ((β i + g i )∇ 2 x g p i (x, z)) + ∇ x g p (x, z) T ∇ x g p (x, z)), A 2 = -( p i=1 ((β i + g i )∇ z ∇ x g p i (x, z)) + ∇ z g p (x, z) T ∇ x g p (x, z)), A 3 = -∇ x g(x, z) T , B 1 = -( p i=1 ((β i + g i )∇ x ∇ z g p i (x, z)) + ∇ x g p (x, z) T ∇ z g p (x, z)), B 2 = -( p i=1 ((β i + g i )∇ 2 z g p i (x, z)) + ∇ z g p (x, z) T ∇ z g p (x, z) + q i=1 ((λ i + h)∇ 2 z h q i (z)) + ∇ z h q (z) T ∇ z h q (z)) + m i=1 ((γ i + l)∇ 2 z l m i (z)) + ∇ z l m (z) T ∇ z l m (z)), B 3 = -∇ z g(x, z) T , B 4 = -∇ z h(z) T , B 5 = -∇ z l(x) T , C 1 = ∇ x g(x, z), C 2 = ∇ z g(x, z), C 3 = -S p , D 2 = ∇ z h(z), D 4 = -S q , E 2 = ∇ z l(x), E 5 = -S m ,
where

S p =   O p×p O p×(K-p) O (K-p)×p I (K-p)×(K-p)   , S q =   O q×q O q×(2-q) O (2-q)×q I (2-q)×(2-q)   and S m =   O m×m O m×(K-m) O (K-m)×m I (K-m)×(K-m)   .
We write ∇Φ(y) as,

∇Φ(y) =      A 1 B T 1 B 1 B 2 B -B T S     
, where B =   A 3 0 0

B 3 B 4 B 5   and S =      -S p 0 0 0 -S q 0 0 0 -S m      .
Recall that g is biconvex, f , l and h are convex functions then we have

∇ 2 f , ∇ 2 x g, ∇ 2 z g, ∇ 2 z l and ∇ 2 z h are positive semidefinite. Moreover, it is straightforward that ∇ x g T ∇ x g, ∇ z g T ∇ z g,∇ z h T ∇ z h
and ∇ z l T ∇ z l are positive semidefinite. It follows that A 1 and B 2 are negative semidefinite matrix, and then

  A 1 B T 1 B 1 B 2 
 is negative semidefinite. S is obviously negative semidefinite. We conclude that ∇Φ is negative semidefinite.

Theorem 9. The neural network ( 19)-( 23) converges globally to a KKT point of ( 11)-( 14).

Proof. Let y * an equilibrium point of ( 19)-( 23). We have V (y) ≥ 1 2 ∥y -y * ∥ 2 (defined in ( 24)).

Consequently, there exists a convergent subsequence (y(t k ) k≥0 ) where lim k-→∞ y(t k ) = ŷ and ŷ satisfies dV (y(t)) dt = 0. We define S = {y| dV (y) dt = 0}, by LaSalle's invariance principle [START_REF] Slotine | Applied nonlinear control[END_REF] the neural network converges to the largest invariant set contained in S. Notice that

dy dt = 0 ⇔ dV (y) dt = 0, ( 25 
)
then ŷ is an equilibrium point of ( 19)- [START_REF] Xia | A recurrent neural network for nonlinear convex optimization subject to nonlinear inequality constraints[END_REF]. Now, to show that the neural network converges to ŷ, we introduce a new Lyapunov function defined as follows.

W (y) = ∥Φ(y)∥ 2 + 1 2 ∥y -ŷ∥ 2 . ( 26 
)
Notice that W is continuously differentiable and lim k-→∞ y(t k ) = ŷ and since W (ŷ) = 0, we have lim

t-→∞ W (y(t)) = W (ŷ) = 0. ( 27 
)
There follows from dW (y) dt ≤ 0 that 1 2 ∥y -ŷ∥ 2 ≤ W (y). From [START_REF] Jiang | Partial exactness for the penalty function of biconvex programming[END_REF] we conclude that lim

t-→∞ y(t) = ŷ.
The neural network ( 19)-( 23) is then convergent in the sense of Lyapunov to a KKT point of ( 11)-

.

Numerical experiments

To evaluate the performances of our approach, we solve a standard profit maximization problem.

A manufacturing firm produces n products with N different machines. The times required to manufacture each unit are random variables. The mean vector µ i and the covariance matrix Σ i describing the uncertainty sets of the time required to manufacture one unit of each of the n products and the daily capacity of the N machines are given. The objective of the study is to determine the daily number of units to be manufactured for each product without exceeding the available machining times.

We write our robust joint chance-constrained maximization problem as follows.

max sup

F0∈D0 E c T x , (28) 
s.t. inf

F ∈D P n i=1 t ij x i ≤ b j , j = 1, ..., N ≥ p, (29) 
x ≥ 0, (

where vector c is a random variable and corresponds to the profit per unit for each product, t ij is the time required to manufacture one unit of product i using machine j, b j is the time capacity of machine j, p is a given probability level and D is an uncertainty set for the distribution F of the random variables.

All the algorithms in this Section are implemented in Python. We run our algorithms on Intel(R)

Core(TM) i7-10610U CPU @ 1.80GHz. The random instances are generated with numpy.random, and we solve the ODE systems with solve ivp of scipy.integrate. The deterministic equivalent programs are solved with the package gekko and the gradients and partial derivatives are computed with autograd.grad and autograd.jacobian.

We solve problem ( 28)-( 30) for different values of n and N with the proposed neural network ( In order to compare the performances of our approach with the literature existing methods, we use the tangent approximation to solve ( 28)-(30) using ten tangent points [START_REF] Cheng | Distributionally robust stochastic knapsack problem[END_REF] . Table 1 recapitulates the obtained results for different values of p. The first column gives the value of p, the second and third columns give the objective value and the CPU time in seconds obtained with the neural network when the uncertainty set D = D 1 (µ, Σ), respectively. Columns four and five represent the objective value and the CPU time in seconds for the tangent approximation, respectively. Column six computes the gap between the objective values of the two approaches (GAP = Tangent approximation -NN Tangent approximation ). Table 2 represents the same results when D = D 2 (µ, Σ). We observe that the neural network converges for the different levels of probability and that the gap with the lower bound given by the tangent approximation remains very tight, i.e., it does not exceed 2.7%.

To evaluate the robustness of the proposed neural network for the two uncertainty sets D 1 and D 2 , we additionally solve problem (28)-(30) when the random variables follow uniform and normal distributions and p = 0.95. We compare the solution of our proposed distributionally robust approach with the solution of the stochastic programming approach. We generate 100 instances for (t ij ) 1≤I≤n,1≤j≤N using the mean vectors and the covariance matrix when the true distribution of the stochastic variables is one of the five following distributions: uniform distribution, normal distribution, log-normal distribution, logistic distribution and Gamma distribution. We calculate the number of times when the constraints were violated over the 100 generated scenarios for each stochastic and robust solutions. Table 3 recapitulates the obtained results, where column one gives the true distribution, columns two, three, four and five give the number of violated scenarios for the solution obtained using the uniform approach, the normal approach, the first robust approach and the second robust 170 approach, respectively. The relative expected profit is computed relatively to the value achieved by the solution of the stochastic program with uniform distribution.

We observe that the distributionally robust approaches are more conservative compared to the stochastic approaches. We invest between 4.3% and 12.2% of the expected profit in order to ensure the joint constraint. In fact, the average numbers of violated scenarios for the robust approaches 175 are 0 while the numbers of violated scenarios for the stochastic solutions are significant, i.e., when Gamma is the true distribution of the random variables the average number of the violated scenarios are 24 and 9 for the uniform and the normal solutions, respectively. Now in order to evaluate the performances of our approach, we solve problem ( 28 We observe that the neural network has a significant CPU time compared to the tangent approximation since the tangent approximation uses very powerful convex solvers. Thereby, developing faster ODE solvers might decrease significantly the total CPU time. Notice that our approach does not replace the existing convex approximations but gives some promising results and opens the way for a new vision of the joint probabilistic problems.

Conclusion

This paper studies a distributionally robust joint constrained optimization problem for two different moments based uncertainty sets. We transform the initial stochastic problems into biconvex deterministic equivalent problems. We then study the optimality conditions of the obtained problems by introducing the partial KKT system. We use our approach to solve the problem of profit maximization in the numerical Section. We evaluate the performances of the robust solutions by comparing them to the state-of-the-art solving methods. We show that the neurodynamic approach gives better and more robust solutions. We note that the performances of our approach can be significantly increased with the development of new ODE solvers mainly based on machine learning techniques.
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 1 Figure 1: The implementation of the neural network (19)-[START_REF] Xia | A recurrent neural network for nonlinear convex optimization subject to nonlinear inequality constraints[END_REF] 

  ∇y dy dt = ∇Φ(y)Φ(y), we have then dV (y(t)) dt = ( dΦ dt ) T Φ + Φ T dΦ dt + (y -y * ) T dy dt = 105 Φ T (∇Φ(y) T + ∇Φ(y))Φ + (y -y * ) T Φ(y). Since, ∇Φ is negative semidefinite we have Φ T (∇Φ(y) T + ∇Φ(y))Φ ≤ 0 and (y -y * ) T Φ(y) = (y -y * ) T (Φ(y) -Φ(y * )) ≤ 0 by Lemma 6. There follows that dV (y) dt

  . The values of µ j and c are uniformly generated in [12.0, 14.0], the components of the matrix Σ j are uniformly drawn in the interval [1.0, 3.0] and we generate the values of b j uniformly in [50.0, 60.0], γ k1 = 5 and γ k2 = 5. We first solve problem (28)-(30) for N=7 machines and n = 10 products.

Table 1 :

 1 Results for different values of α

	p	NN for D 1 (µ, Σ)	Tangent approximation	GAP
		Obj value CPU Time	Obj value CPU Time	
	0.95	26.77	2.29	27.09	0.19	1.1%
	0.9	32.96	5.55	33.30	0.11	1.0%
	0.85	32.68	4.62	33.20	0.22	1.5%
	0.8	37.86	6.33	38.22	0.17	0.9%
	p	NN for D 2 (µ, Σ)	Tangent approximation	GAP
		Obj value CPU Time	Obj value CPU Time	
	0.95	15.85	1.17	16.22	0.18	2.2%
	0.9	20.31	0.82	20.73	0.19	2.0%
	0.85	21.22	3.45	21.83	0.14	2.7%
	0.8	25.48	0.60	25.84	0.17	1.3%

Table 2 :

 2 Results for different values of α

Table 3 :

 3 Number of violated scenarios for the stochastic and the robust solutions numbers of machines N and products n. Tables4 and 5represent the obtained results. We observe that neural networks converge and that the gap increases as the problem size increases but does not exceed 6.8%. Gaps for D 2 (µ, Σ) are more significant than those for D 1 (µ, Σ). In fact, D 2 gives less information about the stochastic parameters than D 1 , and thus it has to be more conservative to ensure the robustness of the solutions.

	N n	NN for D 1 (µ, Σ)	Tangent approximation	GAP
			Obj value CPU Time	Obj value CPU Time	
	5	10	32.50	18.58	33.18	0.90	2.0%
	10 15	35.53	73.09	36.54	12.10	2.7%
	10 20	32.33	198.61	33.76	13.06	4.2%
	15 25	33.44	506.62	35.22	29.64	5.0%

Table 4 :

 4 Results for different values of n and N

	N n	NN for D 2 (µ, Σ)	Tangent approximation	GAP
			Obj value CPU Time	Obj value CPU Time	
	5	10	26.27	3.47	26.78	1.07	1.9%
	10 15	26.11	22.10	26.95	6.24	3.9%
	10 20	24.82	152.38	26.08	16.97	4.8%
	15 25	26.53	288.46	28.49	38.74	6.8%

Table 5 :

 5 Results for different values of n and N