
HAL Id: hal-03798500
https://hal.science/hal-03798500

Submitted on 5 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Characterizing Prefetchers using CacheObserver
Guillaume Didier, Clémentine Maurice, Antoine Geimer, Walid J Ghandour

To cite this version:
Guillaume Didier, Clémentine Maurice, Antoine Geimer, Walid J Ghandour. Characterizing Prefetch-
ers using CacheObserver. IEEE 34th International Symposium on Computer Architecture and High
Performance Computing, Nov 2022, Bordeaux, France. �hal-03798500�

https://hal.science/hal-03798500
https://hal.archives-ouvertes.fr


Characterizing Prefetchers using CacheObserver
Guillaume DIDIER

DGA; Univ. Rennes, CNRS, IRISA;
DIENS, École normale supérieure, PSL

Rennes & Paris, France
guillaume.didier@inria.fr

Clémentine MAURICE
Univ. Lille, CNRS, Inria

Lille, France
clementine.maurice@inria.fr

Antoine GEIMER
Univ. Lille, CNRS, Inria

Lille, France
antoine.geimer@inria.fr

Walid J. GHANDOUR
Univ. Lille, CNRS, Inria

Lille, France
ghandour@utexas.edu

Abstract—Hardware prefetchers are mostly undocumented
micro-architectural components of the cache hierarchy, with
performance and security implications. Intel CPUs feature four
named prefetchers whose behaviors are generally unknown. We
build CacheObserver, a generic framework to study prefetchers
on Intel CPUs and the first to use the Flush+Flush primitive,
unlike previous studies using Flush+Reload. We apply this
framework to characterize the L2 Stream prefetcher on the Intel
Whiskey and Coffee Lake micro-architectures and uncover the
behavior of the L2 Stream prefetcher upon the first few accesses
in a page. We also uncover interactions at the L2 level between
the Stream and the Adjacent Cache Line prefetchers.

Index Terms—Hardware prefetchers, reverse-engineering,
clflush, L2 cache, rust, Stream prefetcher, Flush+Flush.

I. INTRODUCTION

Caches are a key component of micro-architectures used
to overcome the “memory wall” between the speed of CPUs
and DRAM main memories. To improve the performance by
reducing the number of cold misses, manufacturers include
prefetchers in their caches. These components predict future
memory accesses and fetch the corresponding data in the
cache ahead of the program requests. These prefetchers give
CPUs manufacturers competitive advantages, hence the sparse
disclosure of their existence and undocumented behavior.

Caches have significant performance implications but sit
below the divide between architecture and micro-architecture.
Hence, Instruction Set Architectures (ISAs) include no way
to determine the caches’ content. Thus this state must be
measured through timing information. Previous studies of the
various prefetchers have been non-systematic, timing memory
accesses to infer the cache state [2], [25], [27]. Yet understand-
ing prefetcher is helpful to improve program performance as
well as to assess micro-architecture security.

However, memory accesses may trigger the prefetcher, and
thus observations may affect the experimental results. Thus,
we set out to build a framework enabling a more systematic
study of such components, using the Flush+Flush primitive to
infer the cache state with minimal interference and apply it
to Intel CPUs. We focus on L2 prefetchers, which are more
complex and less studied than the L1 ones.

This research attempts to answer the following questions:

– (Q1) How can we build a detailed view of prefetch activity?
– (Q2) What is the impact on prefetch activity of using load

instructions for measurements compared with clflush?

– (Q3) How does the Intel L2 Stream prefetcher behave,
especially on the first few accesses in a page?

– (Q4) Do the various prefetchers in Intel CPUs interact?
We make the following contributions:

1) We characterize hardware prefetchers using clflush.
2) We develop CacheObserver, a framework to visualize

prefetches resulting from memory access sequences.
3) We uncover various properties of the L2 Stream

prefetcher on Intel Whiskey and Coffee Lake CPUs.
4) We show that the L2 Stream prefetcher and the L2

Adjacent Cache Line prefetcher interact with each other.
Outline: Section II presents background information and

related work. Section III then describes the CacheObserver
framework and Section IV the setup of the experiments we ran.
Section V presents the experimental results on the L2 Stream
prefetcher and Section VI those on the other L2 prefetcher and
prefetcher interactions. Section VII discusses the advantages
and limitations of our approach while Section VIII sums up
the results and future line of investigations.

II. BACKGROUND AND RELATED WORK

A. Cache hierarchy on modern CPUs

The memory wall refers to the increasing speed difference
between CPUs and DRAM main memory. DRAM access times
in CPU cycles have increased by orders of magnitude in the
last few decades, reaching hundreds of cycles. To compen-
sate this slowdown, caches are used, leveraging the “make
the common case fast” principle [10], [11]. Organized as a
hierarchy of increasingly smaller but faster SRAM memories,
they retain values that have been recently used. They are not
architecturally visible and are part of the micro-architecture.

The CPUs we studied belong to a lineage that starts with
the Sandy Bridge CPUs (2010) and whose latest descendants
are the Comet Lake CPUs (2020) [36]. These CPUs have a 3-
level cache hierarchy. Each core possesses a private first-level
instruction (L1$) and data (L1D) cache and a second-level
private cache (L2), queried after either L1. A shared third-level
cache (L3), structured in slices, then serves as the last-level
cache [3]. The L3 is inclusive of the lower levels of caches in
all CPUs in this lineage from 2010 to 2020. However, newer
micro-architectures deviate from this set-up and introduce non-
inclusive caches in the Skylake-SP server CPUs and Ice Lake
and Rocket Lake client CPUs [13], [14].



TABLE I: Prefetchers disclosed by Intel for Sandy Bridge
CPUs, in [14] Vol. 4 p 2-179.

Bit Intel Description

0 L2 Hardware Prefetcher Disable (R/W)
If 1, disables the L2 hardware prefetcher, which fetches
additional lines of code or data into the L2 cache.

1 L2 Adjacent Cache Line Prefetcher Disable (R/W)
If 1, disables the adjacent cache line prefetcher, which fetches
the cache line that comprises a cache line pair (128 bytes).

2 DCU Hardware Prefetcher Disable (R/W)
If 1, disables the L1 data cache prefetcher, which fetches the
next cache line into L1 data cache.

3 DCU IP Prefetcher Disable (R/W)
If 1, disables the L1 data cache IP prefetcher, which uses se-
quential load history (based on instruction pointer of previous
loads) to determine whether to prefetch additional lines.

A cache hit occurs when a program requires data present
in a cache, such a request is fulfilled significantly faster than
requests for data only found in slower levels of the memory
hierarchy, i.e., slower caches or main memory. The opposite
is called a miss. Misses can be classified according to their
cause. Cold misses occur on the first access to a piece of data.
Other misses (conflict, coherence, capacity) are caused by the
eviction of data that was previously cached [10], [11].

Those caches manipulate data grouped in contiguous blocks
of data called cache lines, usually 64 bytes on the x86
architecture [14] (implemented by the Intel CPUs we studied).
The size of the block helps leverage some amount of spatial
locality: “programs tend to use data close to data they used
recently” [10]. For instance, let’s consider a program sequen-
tially accessing a large buffer of bytes. In this case, the 63
neighboring bytes of a recently used byte are part of the same
line. They are brought into the cache with the first requested
byte, and requests to these bytes then hit the cache.

However, the above example still results in one miss per
64 bytes accessed. Yet, this pattern appears to be quite
predictable; hence the introduction of a mechanism to predict
future accesses or misses and request the data from the main
memory before the program actually requests them.

B. Prefetchers on modern Intel CPUs

Since the Nehalem architecture (2008), Intel CPUs include
four disclosed prefetchers that can be disabled independently
by Model Specific Register (MSR) 420. This MSR is also
documented on Sandy Bridge CPUs and still seems functional
as of Coffee and Whiskey Lake (2018) CPUs. Table I describes
them. Additionally, Appendix E, Section 2.5.4 in [13] gives
more details about Sandy Bridge prefetchers, notably calling
the L2 Hardware Prefetcher a stream prefetcher.

Jouppi [16] introduced stream prefetchers: A streams is a
sequence of accesses to consecutive lines in increasing or de-
creasing order. He later defined prefetching of quasi streaming
patterns where some lines are skipped [17]. Academic papers
published variations of the concept [12], [23], [26], [29]. Some
industry disclosures hint at their implementations [4]–[6], [19],
[28], [30]. Two parameters characterize prefetchers: distance,

i.e., how far from the current line do they fetch, and degree,
i.e., how many lines do they fetch upon a single access [25].

Rohan et al. [25] were the first to study the L2 Stream
prefetcher. Their reverse-engineering on Kaby Lake CPUs
confirmed many of the prefetcher’s properties Intel disclosed
[13]. Precisely, the prefetcher fetches consecutive cache lines
in the positive (increasing addresses) or negative (decreasing
addresses) direction. One may start a stream and trigger
prefetches with an access further away in the same page.
They also estimated the prefetcher tracks up to 16 pages,
consistently with the Intel statement that both a positive and
a negative stream can be tracked per page for a total of 32
streams. They built a covert channel exploiting the prefetcher
state sharing by hyper-threads. Lastly, they showed it does not
cross 4KiB page limits, even with 2MiB huge pages.

Additionally, two studies [2], [27] of the L1 IP-based Stride
prefetcher unveiled security implications of this prefetcher. It
reacts to victim memory accesses and can insert control-flow-
dependent cache hits, enabling side-channel attacks [27]. Its
state sharing among hyper-threads also enables a channel [2].

C. clflush and its use as a cache side-channel primitive

The unprivileged x86 clflush instruction [14] ensures
the latest value of a cache line is written back to memory and
evicted from the whole cache coherence domain. On modern
x86 CPUs, this includes all caches on all the sockets in the
system. It also helps build cache channels on this architecture.

1) Flush+Reload: Load execution time depends on where
a requested line is found in the memory hierarchy and, thus,
leaks whether a line is cached. Using the clflush instruction
to put lines in a known state, the Flush+Reload primitive then
measures load timing [37]. Although both fast and low-noise,
its loads may interfere with the prefetcher and increase the
number of prefetches. For our study, we thus sought a different
measurement primitive that wouldn’t trigger prefetches.

2) Flush+Flush: On Intel CPUs, previous work [3], [9]
showed that clflush execution time depends on the cache
coherence state of the line. Thus, it can check if a line is
cached anywhere in the cache coherence domain with no
memory access. We re-use the calibration method in [3],
increasing the primitive’s reliability.

D. Reverse engineering of other components

1) Memory Hierarchy: Reverse engineering parts of the
Intel cache hierarchy is the foundation upon which reliable
side channels are built [3], [21], [22], [34]. In particular,
several works uncovered the addressing functions of Intel
CPUs’ last-level caches [15], [21], [38]. Pessl et al. [24]
devised two different methods to reverse engineer DRAM
addressing schemes and used these to build cross socket chan-
nels requiring no shared memory. Their insights also improved
Rowhammer attacks on DDR4. Lipp et al. [20] uncovered the
L1D µtag hash function and cache-way predictor in AMD
CPUs from 2011 to 2019 and constructed new cache channels
using these structures between sibling hyper-threads.



Of notable interest is the framework built by Vila et al. to
reverse engineer cache replacement policies in various CPUs.
This work first required them to find reliable methods to
compute eviction sets [35], which were then used by the
main framework [34]. Eviction sets are sets of addresses that,
accessed in a sequence, cause the eviction of a specific cache
line. Green et al. [8] uncovered an undocumented policy in
various ARM CPUs related to cache eviction that hampers
eviction-based cache channels, and Van Schaik et al. [32]
reverse-engineered page-table caches, used to speed up page-
table walks on CPUs from Intel, AMD and ARM.

Additionally, Paccagnella et al. [22] uncovered low-level
details of the ring interconnect of Intel CPUs of the Sandy
bridge lineage and used this to construct a contention side
channel, unlike most micro-architectural channels relying on
persistent state. Recently, Vicarte et al. [33] have uncovered a
data-dependent prefetcher on Apple’s M1 and A14 CPUs and
shown it can be exploited to break kernel ASLR.

2) Branch predictors: Spectre v1 [18] relies on knowledge
of the branch predictor, another micro-architectural component
that has been studied. So does the BranchScope [7] attack,
using the branch direction predictor as the micro-architectural
state that leaks information to the attacking thread.

Uzelac et al. [31] proposed a methodology to reverse-
engineer branch predictors. Bhattacharya et al. [1] recon-
structed the branch direction predictors of Intel CPUs from
Nehalem to Broadwell and showed their consistency with 2-
bit (Nehalem) or 3-bit saturating counters. This insight led to
a side-channel attack on blinded scalar multiplication.

III. THE CACHEOBSERVER FRAMEWORK

To reverse-engineer prefetchers, we want to observe the
state of the cache after a sequence of memory accesses.
The cache state is micro-architectural and cannot be queried
directly; it is usually measured by timing memory loads.
However, such loads may trigger prefetches and interfere with
the experiments [2], [25], [27]. Hence our choice of the Flush+
Flush primitive, which times the clflush instruction.

Our CacheObserver1 framework re-uses our previous code
base2 [3], implementing reliable calibration of Flush+Flush
channels, both are written in Rust. The core of the framework
is the Prober object. It manages a set of pages and runs
sequences of memory accesses called patterns, measuring their
impact on each cache line of the page, designated as p (probe).

A. Prober

Using load instructions, we can only probe one line per
experiment run and must then repeat it 64×, once per offset in
the page. If we assume clflush does not alter the prefetchers
state, a single run of a pattern can give the state of all 64 cache
lines. We thus implement three strategies:

1) FullFlush: This is the most efficient technique that
flushes the whole page(s) after the pattern has been run.

1https://github.com/MIAOUS-group/CacheObserver
2https://github.com/MIAOUS-group/calibration-done-right

1 pub unsafe fn rdtsc_fence() -> u64 {
2 unsafe { core::arch::x86_64::_mm_mfence() };
3 let tsc = unsafe { core::arch::x86_64::_rdtsc() };
4 unsafe { core::arch::x86_64::_mm_mfence() };
5 tsc
6 }
7 pub unsafe fn only_flush(p: *const u8) -> u64 {
8 let t = unsafe { rdtsc_fence() };
9 unsafe { core::arch::x86_64::_mm_clflush(p) };

10 (unsafe { rdtsc_fence() } - t)
11 }
12 pub unsafe fn only_reload(p: *const u8) -> u64 {
13 let t = unsafe { rdtsc_fence() };
14 unsafe { core::ptr::read_volatile(p) };
15 (unsafe { rdtsc_fence() } - t)
16 }

Listing 1: Measurement primitives.

2) SingleFlush: This strategy probes a single address
with clflush after each run of the pattern. 64 iterations
are required to cover the full page.

3) SingleReload: This baseline strategy is similar to
SingleFlush but probes with load instructions. It is
the only strategy usable with loads, as more measurement
loads would interfere with the prefetcher.

The SingleFlush method enables comparison with
SingleReload and the FullFlush methods.

We warm up over 100 iterations and collect data over 1024
iterations. According to Rohan et al. [25] and the Intel manuals
[13], [14], cycling through a sufficient number of pages should
evict any lingering entry and reset the prefetcher state for the
page. We thus select a fresh page from a shuffled queue of 63
and fully flush it before each pattern run to reset the prefetcher.

Modern CPU’s out-of-order execution means extra seri-
alization is needed to ensure the correct measurement of
execution times. Listing 1 presents the measurement code. fn
only_flush is used for SingleFlush and FullFlush,
while fn only_reload is used for SingleReload.

B. Access patterns

We study L2 caches that deal with memory accesses at
cache line granularity. We thus identify accesses as cache line
offsets within a page, from 0 to 63. An access pattern is a
list of such offsets combined with the function used for each
access. This feature is meant to study prefetchers that take into
account the memory accesses’ Instruction Pointers (IP).

Given the size of the pattern space, the following experi-
ments study a restricted subset of all possible patterns.
Experiment 0: No access, plots a 1D graphic, expecting full

misses, which was verified.
Experiment 1: One access, (i), 2D graphic (i, p) of the hit

rate per line in the page, given the one line accessed.
Experiment 2: Exhaustive exploration patterns of 2 accesses,

(i, j). The result is a cube of data indexed by (i, j, p).
Experiments Ak, k ∈ {1, 2, 3, 4, 8}: Sequence of (i, i+k, j).

The result of each experiment is a cube (i, j, p).
Experiments Bk, k ∈ {1, 2, 3, 4, 8}: Sequence of (i, i−k, j).

The result of each experiment is a cube (i, j, p).
Experiments Ck, k ∈ {1, 2, 3, 4, 8}: Sequence of (i, j, j+k).

The result of each experiment is a cube (i, j, p).

https://github.com/MIAOUS-group/CacheObserver
https://github.com/MIAOUS-group/calibration-done-right


Experiments Dk, k ∈ {1, 2, 3, 4, 8}: Sequence of (i, j, j −
k). The result of each experiment is a cube (i, j, p).

Experiments Ek, k ∈ J2, 4K: (i + n × j)n∈[0,k] strides. The
result of each experiment is a cube (i, j, p).

Experiments Fk, k ∈ {−4,−3,−2,−1, 1, 2, 3, 4}:
Sequence of (i, i + k, j, i + 2k). The result of each
experiment is a cube (i, j, p).

All experiments other than 0 and 1 result in cubes (i, j, p)
giving for each pattern f(i, j) the hit rate of each line (probe
p). Cubes cannot be printed, so we derive two kinds of figures:
Total prefetch in page (e.g., fig. 1a): The cube is flattened

into a 2D heatmap that for (i, j) gives the mean number
of prefetches in the page (sum along the third axis).

Slices (e.g., fig. 1b): Heatmap indexed by (j, p) for a set i.
We designed experiments A to F to further study the Stream
prefetcher, using the insights from experiments 1 and 2.
Further patterns could be used to study other prefetchers or
behaviors. Figures 1, 3 and 4 present a selection of our results.
The full data set will be available online.

To understand figures with any prefetcher enabled, one must
first identify the motif of hits from the pattern itself; additional
hits are prefetches. Flattened cubes only give the total number
of prefetches in the page but help choose slices to study.

In figures where the y axis is p (probe), accesses that depend
only on fixed parameters (e.g., i = 15) will cause horizontal
line of hits. Accesses in the access pattern that depend on the
x axis will cause diagonal lines (e.g., access j+1 when the x
axis is j). To clarify this, we go through a pair of slice figures,
with no prefetchers enabled: E4 and D4:
– E4 executes the pattern (i, i+j, i+2j, i+3j, i+4j). Without

prefetches, each run results in 5 hits in the page (or less for
values of j like 0 or 32 where some of the accesses in the
sequence access the same line). Each column of the figure
contains up to 5 points. On the slice with i = 15, fig. 1b the
horizontal line corresponds to the first access, the diagonal
at an offset corresponds to i + j, and further even more
slanted lines of dots corresponds to i+ kj with higher k.

– In D4, slice i = 14, fig. 1c, we observe a horizontal line for
p = 14, and two diagonal lines, one for p = j and one for
p = j−4. They correspond respectively to the first, second,
and third access of the pattern (i, j, j − 4).

With these motifs in mind, we can easily see the prefetch
response to various patterns, answering Q1: Prefetched lines
are any high hit rate lines that are not in the pattern motif.

IV. EXPERIMENTAL SETUP

A. Hardware and software configuration

We use two machines with different micro-architectures:
WKL a Dell Latitude 7400, Intel Core i5-8365U (Whiskey

Lake micro-architecture, 4 physical cores, 8 hyper-
threads), running Fedora 30.

CFL a Dell Precision 3630, Intel Core i9-9900 (Coffee Lake,
8 cores, 16 threads), running Ubuntu 18.04.5 LTS.

Both CPUs are minor refreshes of the Kaby Lake architecture;
however, our results suggest their prefetchers differ slightly.

To stabilize the frequency of the CPUs, we disable turbo-
boost and set the cpupower governor to performance.

B. Control group

To ensure the prefetcher is the cause of our observations,
we run identical experiments with all prefetchers disabled by
MSR 420. As figs. 1a to 1c show, these results exhibit no
cache hit aside the pattern itself, and random noise. Our later
observations are thus solely due to the prefetcher we enable.

V. THE L2 STREAM PREFETCHER

A. Proposed data structure of the prefetcher

We assume this L2 prefetcher ignores offset bits used to
select bytes inside lines and uses physical addresses. We thus
identify cache lines in a page with numbers in J0, 63K.

Our results lead us to propose the structure below, illustrated
in fig. 2, which seems consistent with our observations and to
explain behaviors observed by [25], even though incomplete:
– A table of stream entries, as suggested by [25], tagged by

a page number. Each entry contains the last fetched line
in the page, a direction state, and a prefetcher confidence
state. We have not elucidated the structure of these states.
The last fetched line (L) is the last prefetch candidate or
the last request when lacking such a candidate.

– The prefetch candidate (¶) logic block takes as an input the
miss from the L1 cache and the stream entry for the same
page. It uses the stream direction state and last fetched line
to suggest prefetch candidates and update the stream entry.

– The prefetch confidence (·) logic block computes and
updates the confidence prefetcher for this stream based on
requests made and whether they fit the stream.

– The prefetch arbitration (¸) logic uses the confidence and
candidates from all prefetchers to pick which to issue.

B. Experimental results

While the Whiskey and Coffee Lake CPUs differ in detail,
the same general principles apply. However, the prefetch arbi-
tration in Coffee Lake seems to prefetches more aggressively
than the Whiskey Lake one. This prefetcher fetches from main
memory into L2 and, by inclusivity, L3, or sometimes only L3.
In addition, Whiskey Lake has a smaller L3 cache. Thus, the
L3 size cannot be excluded as a reason for such differences.

1) First access behavior: Prefetch may occur if the first
access in a page is in {0, 1, 62, 63}, i.e., the page’s first or last
two lines, (figs. 1d and 1e). Lines up to line 6 (resp. down
to 57) are then fetched, and the last fetched line is set to 6
(resp. 57). Otherwise, no prefetch occurs on the first access;
the last fetched line is set to the line accessed. On Whiskey
Lake, this also occurs in a minority (10%) of first accesses in
{0, 1, 62, 63} and behaves like first accesses to line 2 or 61.
On Coffee Lake, this prefetch always occurs (fig. 1e).

2) Subsequent accesses prefetch 0 or 2 lines: Subsequent
accesses prefetch 0 or 2 consecutive lines adjacent to the last
fetched line or the current access, as seen in figs. 1, 3 and 4
when only the Stream prefetcher is enabled. Section 3.3 of
[25] claims the prefetch distance is 1 to 4, and the degree is



0 10 20 30 40 50 60
0

10

20

30

40

50

60

i

j

3

6

9

12

15

a: WKL, exp. E4, (i, i + j, . . . , i + 4j)
with no prefetcher: average number of hit
in the page for i and j.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

j

pr
ob

e

0

0.2

0.4

0.6

0.8

1

b: WKL, exp. E4, (i, i + j, . . . , i + 4j)
with no prefetcher: hit rate in each line
in the page for j, with i = 15.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

j

pr
ob

e

0

0.2

0.4

0.6

0.8

1

c: CFL, exp. D4, (i, j, j − 4) with no
prefetcher: hit rate in each line in the page
for j, with i = 14.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

i

pr
ob

e

0

0.2

0.4

0.6

0.8

1

d: WKL, exp. 1, (i) with Stream
prefetcher: hit rate in each line in the page
for i.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

i

pr
ob

e

0

0.2

0.4

0.6

0.8

1

e: CFL, exp. 1, (i) with Stream
prefetcher: hit rate in each line in the page
for i.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

j

pr
ob

e

0

0.2

0.4

0.6

0.8

1

f: WKL, exp. A4, (i, i+4, j), with Stream
prefetcher: hit rate in each line in the page
for j, with i = 30.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

j

pr
ob

e

0

0.2

0.4

0.6

0.8

1

g: CFL, exp. B8, (i, i−8, j), with Stream
prefetcher: hit rate in each line in the page
for j, with i = 62.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

j

pr
ob

e

0

0.2

0.4

0.6

0.8

1

h: WKL, exp. B1, (i, i − 1, j), with
Stream prefetcher: hit rate in each line
in the page for j, with i = 15.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

j

pr
ob

e

0

0.2

0.4

0.6

0.8

1

i: CFL, exp. B8, (i, i−8, j), with Stream
prefetcher: hit rate in each line in the page
for j, with i = 61.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

j

pr
ob

e

0

0.2

0.4

0.6

0.8

1

j: WKL, exp. F2, (i, i+2, j, i+4), with
Stream prefetcher: hit rate in each line in
the page for j, with i = 32.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

j

pr
ob

e

0

0.2

0.4

0.6

0.8

1

k: WKL, exp. C4, (i, j, j + 4), with
Stream prefetcher: hit rate in each line
in the page for j, with i = 62.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

j

pr
ob

e

0

0.2

0.4

0.6

0.8

1

l: WKL, exp. 2, (i, j), with Stream
prefetcher: hit rate in each line in the page
for j, with i = 0.

Fig. 1: Experimental results, see section III-B for description of the various experiments. Different color scales are used to
identify better the various representations (cube summation (blue to red) vs. cube slice (white to red) vs. full experiment (white
to blue)). Unless specified otherwise, the method used is FullFlush.



Unpublis
hed

dra
ft,

by G.D
., C

.M
.

et
al.

.

Not
for

dist
rib

utio
n.

Tag Direction L. F. Line ConfidenceOffsetLinePPNL1 Miss

Prefetch candidate logic
¶

Prefetch confidence logic
·

Prefetch arbitration logic ¸
L2 Adjacent Cache

Line Prefetcher
Prefetch
issued

06 512 1151

Fig. 2: The proposed structure for the Stream prefetcher.

4 to 8. However, we show several prefetches may occur with
their access pattern, (0, 1, 2, 3) in our notation. Their upper
bound arises from prefetches to lines 1 to 6 on the first access,
followed by prefetches to 7 and 8, 9 and 10, and then 11 and
12 on the next 3 accesses. This insight comes from detecting
the precise effect of patterns on the cache and that of their
prefixes to determine what access causes which prefetch.

3) Location of prefetches: Prefetches occur in either a
positive or negative direction as seen in figs. 1f and 1g. Positive
ones fetch max(c, L) + 1, max(c, L) + 2 with c the current
line accessed and L the last fetched line. Negative ones instead
fetch min(c, L)− 1 and min(c, L)− 2. Using min/max helps
when the out-of-order execution shuffles the requests.

4) Stream window and stream reset: This arithmetic is
done modulus 64, and thus prefetch wraps around pages
near page boundaries, as seen in fig. 1h (B1, i = 15), for
j ∈ {0, 1, 62, 63}. This is a safe guess (as long as no finer
access control granularity is introduced), albeit likely useless.

However, accesses more than 31 cache lines away are not
deemed by the prefetcher to be part of the stream and seem to
reset its stream entry. The direction is then updated towards
the positive direction, and two prefetches are issued from the
current address with the updated direction, as seen in figs. 1g,
1i and 1j. For a first access in line 62 or 63, the direction
is a barely negative (fig. 1k shows an extra access is needed
for a positive prefetch), but other experiments result in positive
prefetches even if the previous one was negative and we loaded
a line below the last fetched line. This suggests that only
accesses in a 62-line window around the last fetched line are
deemed to belong to a stream. [29] includes such a window.

5) Prefetch gap: With a clflush-based method, as shown
in figs. 1l and 3a to 3f, we observe a prefetch gap in the area
with j ∈ JL + 23, L + 31K with L the last fetched line. In
this area, no prefetches are issued on Whiskey Lake, whereas
they do occur in a minority of cases on Coffee Lake. This
is one of the main differences between Coffee and Whiskey
Lake regarding the Stream prefetcher.

On Whiskey Lake, fig. 1l (i = 0) shows a superposition of
two modes, a minor mode with a 23–31 gap, consistent with
no first access prefetch, and a majority mode with a 29–37
prefetch gap, consistent with a first access prefetch until 6.

Thus, the gap starts on the 23rd line from the last fetched line,
forward and backward as seen in fig. 1f, and ends on a stream
resetting access outside the window defined above.

However, the same lack of prefetch disappears with
SingleReload, except for L+31 discussed later, as seen in
figs. 3g and 3h. This shows that the prefetch behavior adapts
to the prefetcher’s success rate.

6) Prefetch direction: We have not fully elucidated the
prefetch direction logic, but we observed the following: The
behavior on a first access in lines 0, 1, 62, or 63 are special
cases and set the stream direction directly to positive (0, 1) or
negative (62, 63), as seen in figs. 3i and 3j. Otherwise, there is
a bias toward positive prefetch: an extra access is required to
get a negative prefetch. Accesses outside the stream window
will update the direction towards positive and immediately
issue prefetches, as explained above and seen in figs. 3k and 3l.

Additionally, the prefetcher is reluctant to start a positive
stream for access in lines 56 to 61, and similarly, a negative
one from lines 8 to 2, as shown by figs. 4a and 4b.

7) Prefetch may occur on L2 hits: Looking at fig. 1j (F2,
i = 32), an access to a line already prefetched in L2 triggers
further prefetches. In this instance, the last access of the pattern
is i+4 = 36, and for j ∈ [5, 56], we observe a prefetch on this
access. The figure best interpreted comparing it with fig. 3k
whose pattern is the underlined prefix of F2: (i, i+ 2, j, i+4).

It is worth noting that such an access must still be part of the
aforementioned prefetch window, as shown by fig. 4c, where
j ∈ J40, 61K do not exhibit prefetches on the fourth access.

8) Suppressed prefetches may still update the prefetcher
state: In fig. 4d, when j ∈ J37, 45K, we observe prefetches
for j + 3 and j + 4 without prefetch issued for j + 1 and
j+2. This appears surprising but makes sense in our model if
the arbitration logic suppresses the prefetch but the candidate
(and confidence) logic still updates the stream table, with a
last fetched line of j + 2. The second access 3 lines below is
within the stream window, would increase the confidence, and
thus triggers prefetches from the last fetched line (j+2), even
though a lack of confidence suppressed the j + 1 and j + 2
prefetches. This is why we proposed a split of the prefetch
arbitration logic (¸) in our model.

9) Summary: While some uncertainties remain, we get a far
clearer picture of this prefetcher’s behavior, and our framework
can provide further insights using new patterns.

The Stream prefetcher treats in a special way streams that
first access a page in its first or last two lines. Otherwise,
if confident enough, it prefetches a pair of consecutive lines
starting on the last fetched line or the current line, whichever
is furthest along the direction of the stream. Accesses 32
or more lines away from the last fetched line are treated
differently. Prefetches issued will safely wrap around page
limits, which may issue pointless prefetches but causes no
potentially dangerous prefetches across page limits.

The prefetcher seems to output a confidence metric used
to decide whether to prefetch, but suppressed prefetches may
update the prefetcher state. Lastly, the prefetcher is reluctant



0 10 20 30 40 50 60
0

10

20

30

40

50

60

j

pr
ob

e

0

0.2

0.4

0.6

0.8

1

a: WKL, exp. 2, (i, j), with Stream
prefetcher: hit rate in each line in the page
for j, with i = 8.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

j

pr
ob

e

0

0.2

0.4

0.6

0.8

1

b: WKL, exp. 2, (i, j), with Stream
prefetcher: hit rate in each line in the page
for j, with i = 62.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

j

pr
ob

e

0

0.2

0.4

0.6

0.8

1

c: CFL, exp. 2, (i, j), with Stream
prefetcher: hit rate in each line in the page
for j, with i = 1.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

j

pr
ob

e

0

0.2

0.4

0.6

0.8

1

d: CFL, exp. 2, (i, j), with Stream
prefetcher: hit rate in each line in the page
for j, with i = 8.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

j

pr
ob

e

0

0.2

0.4

0.6

0.8

1

e: CFL, exp. 2, (i, j), with Stream
prefetcher: hit rate in each line in the page
for j, with i = 62.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

j

pr
ob

e

0

0.2

0.4

0.6

0.8

1

f: CFL, exp. 2, (i, j), with Stream
prefetcher: hit rate in each line in the page
for j, with i = 63.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

j

pr
ob

e

0

0.2

0.4

0.6

0.8

1

g: SingleReload WKL, exp. 2, (i, j),
with Stream prefetcher: hit rate in each
line in the page for j, with i = 1.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

j

pr
ob

e

0

0.2

0.4

0.6

0.8

1

h: SingleReload CFL, exp. 2, (i, j),
with Stream prefetcher: hit rate in each
line in the page for j, with i = 1.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

j

pr
ob

e

0

0.2

0.4

0.6

0.8

1

i: WKL, exp. A2, (i, i+2, j), with Stream
prefetcher: hit rate in each line in the page
for j, with i = 62.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

j

pr
ob

e

0

0.2

0.4

0.6

0.8

1

j: WKL, exp. B2, (i, i−2, j), with Stream
prefetcher: hit rate in each line in the page
for j, with i = 1.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

j

pr
ob

e

0

0.2

0.4

0.6

0.8

1

k: WKL, exp. A2, (i, i + 2, j), with
Stream prefetcher: hit rate in each line
in the page for j, with i = 32.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

j

pr
ob

e

0

0.2

0.4

0.6

0.8

1

l: WKL, exp. B2, (i, i−2, j), with Stream
prefetcher: hit rate in each line in the page
for j, with i = 32.

Fig. 3: Experimental results continued from fig. 1. See section III-B for description of the various experiments. Unless specified
otherwise, the method used is FullFlush.



0 10 20 30 40 50 60
0

10

20

30

40

50

60

j

pr
ob

e

0

0.2

0.4

0.6

0.8

1

a: WKL, exp. A2, (i, i + 2, j), with
Stream prefetcher: hit rate in each line
in the page for j, with i = 61.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

j

pr
ob

e

0

0.2

0.4

0.6

0.8

1

b: WKL, exp. B2, (i, i − 2, j), with
Stream prefetcher: hit rate in each line
in the page for j, with i = 2.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

j

pr
ob

e

0

0.2

0.4

0.6

0.8

1

c: WKL, exp. F2, (i, i+2, j, i+4), with
Stream prefetcher: hit rate in each line in
the page for j, with i = 0.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

j

pr
ob

e

0

0.2

0.4

0.6

0.8

1

d: WKL, exp. D3, (i, j, j − 3), with
Stream prefetcher: hit rate in each line
in the page for j, with i = 14.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

i

pr
ob

e

0

0.2

0.4

0.6

0.8

1

e: WKL, exp. 1, (i), with adjacent line
prefetcher: hit rate in each line in the page
for i.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

j

pr
ob

e

0

0.2

0.4

0.6

0.8

1

f: WKL, exp. B1, (i, i− 1, j), with adja-
cent line prefetcher: hit rate in each line
in the page for j, with i = 15.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

j

pr
ob

e

0

0.2

0.4

0.6

0.8

1

g: WKL, exp. 2, (i, j), with both
prefetcher: hit rate in each line in the page
for j, with i = 2.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

j

pr
ob

e

0

0.2

0.4

0.6

0.8

1

h: WKL, exp. 2, (i, j), maximum of the
results for each prefetcher: max hit rate
in each line in the page for j, with i = 2.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

j

pr
ob

e

0

0.2

0.4

0.6

0.8

i: WKL, exp. 2, (i, j), difference between
the two previous figures in hit rate in each
line in the page for j, with i = 2.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

j

pr
ob

e

0

0.2

0.4

0.6

0.8

1

j: SingleFlush CFL, exp. 2, (i, j),
with Stream prefetcher: hit rate in each
line in the page for j, with i = 1.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

j

pr
ob

e

0

0.2

0.4

0.6

0.8

1

k: WKL, exp. C1, (i, j, j + 1), with
Stream prefetcher: hit rate in each line
in the page for j, with i = 14.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

j

pr
ob

e

0

0.2

0.4

0.6

0.8

1

l: WKL, exp. C1, (i, j, j+1), with Stream
prefetcher: hit rate in each line in the page
for j, with i = 15.

Fig. 4: Experimental results continued from fig. 3. See section III-B for description of the various experiments. Unless specified
otherwise, the method used is FullFlush.



0 10 20 30 40 50 60
0

10

20

30

40

50

60

i

j

4

6

8

10

12

14

16

Fig. 5: WKL, exp. D3, (i, j, j − 3) with Stream prefetcher: average
number of hit in the page for i and j.

to start streams too close to the page end. These results
significantly add to the previous work about Q3.

VI. THE L2 ADJACENT CACHE LINE PREFETCHER AND
PREFETCHER INTERACTION

The adjacent cache line prefetcher is the other L2 prefetcher
disclosed by Intel, thought to treat cache lines as 128-byte
pairs, fetching the sibling line upon access to the other.
On a first access in a page, its behavior (fig. 4e) matches
this description. However small differences appear with more
accesses, e.g., in fig. 4f, for j = 13 or 16, the expected
prefetch is missing. Compared with the same figure (1h) with
the Stream prefetcher enabled, the missing prefetch is a line
that the Stream prefetcher would have prefetched.

To check for prefetcher interferences, we first run exper-
iments with both prefetchers enabled. In fig. 4g, it appears
the two prefetchers do not use one another requests as in-
put, which justifies comparing it with the superposition of
individual experiments, shown in fig. 4h. When comparing
the superposition with the experiment with both prefetchers,
differences appear, shown in fig. 4i. In areas where arbitration
suppresses the Stream prefetches, the adjacent cache line is
not prefetched if it coincides with a suppressed prefetch.

The details require further study, but this answers Q4 and
shows that studying prefetchers in isolation is not enough.

VII. DISCUSSION

A. Advantages of using clflush

clflush evicts lines without using them, whereas a load
vindicates the prefetcher in its guess. The latter may increase
the prefetcher confidence and/or the arbitration logic trust in
the prefetcher, akin to tournament branch prefetchers [10],
thereby interfering with measurements.

Our experiments show clear differences between measure-
ments with SingleReload (e.g., fig. 3h) and those with
clflush (figs. 3c and 4j). Using clflush has also allowed

us to detect prefetcher state updates on no observed prefetch.
This is why we proposed the prefetcher arbitration logic (¸)
similar to tournament branch predictors. This also showed that
the distance to the last fetched line impacts this confidence.

In addition, we observe that the FullFlush (fig. 3c) and
SingleFlush (fig. 4j) give the same results, this shows it
is safe to measure the whole page using FullFlush, unlike
SingleReload, limited to one line per execution of the
pattern, which multiplies the number of pattern runs by the
number of lines in the page (×64 on Intel CPUs).

Consequently, we answer Q2 showing that loads interfere
with measures significantly more than clflush. Flush+Flush
is both a faster and a more subtle tool for prefetcher reverse-
engineering than Flush+Reload and provides more insights.

Lastly, regarding general applicability, Flush+Reload works
on all x86 CPUs with an inclusive last-level cache, whereas
Flush+Flush is only known to work on Intel CPUs; its status
on AMD is unknown. However, Flush+Flush works on all
Intel CPUs, including those with non-inclusive caches, thanks
to targetting the coherence protocol.

B. Areas of uncertainty
Our understanding of Intel L2 prefetchers remains partial.
First, the behavior when an access occurs at L + 31

appears unpredictable. Figure 5 shows that along the diagonal
j = i+ 31 the number of prefetches observed is inconsistent.
Furthermore, even with an equal number of prefetches, they
sometimes occur in different places, e.g., in figs. 4k and 4l
(resp. i = 14 and 15), the behavior for L + 31, (45 and 46)
is different, even if they have the same number of prefetches.
However, the pattern behaves consistently over repeated runs.

Secondly, on Whiskey Lake, we have not found the source
of the two modes for first accesses in {0, 1, 62, 63}. 90% of
the time, we see prefetches of lines up to 6 or down to 57,
and the remainder 10% of the time, a behavior consistent with
lines 2 and 61, but we ignore the source of this split.

In addition, the stream direction state machine has not been
determined yet, even if we now know it is biased in favor of
positive streams and that an extra access is necessary to start
negative streams or a first access in the page to line 62 or 63.

Finally, the confidence logic, which arbitrates whether to
actually prefetch the line and between the various prefetchers,
requires simultaneous investigation of both prefetchers.

C. Limitations
CacheObserver is not able to observe L1 prefetches. We

initially thought that the L1 prefetchers might not fetch from
main memory but only from L2 or L3, with a potential solution
being the calibration reloads to determine in which level a
line is cached. However, we recently found out that our use
of fences prevents activation of the L1 prefetcher [13].

Our framework has information about which access causes
which prefetch but has no temporal information on when
prefetches are issued and handled. For instance, this precludes
understanding how exactly 2 or more requests are emitted per
L2 access. For example, those may be emitted in consecutive
cycles, but this is not necessarily the design used.



VIII. CONCLUSION AND FUTURE WORK

We present CacheObserver, leveraging a carefully calibrated
Flush+Flush side channel (based on clflush) to get a
detailed view of the prefetcher activity in reaction to access
patterns. This allowed us to model the L2 Stream prefetcher
and uncover a variety of its behaviors. Our experiments
showed that prefetchers behave differently under clflush
measurements compared to reload measurements used in the
state of the art, which interfere with prefetch activity. In
addition, our technique requires fewer repetitions, as we can
measure a whole page in one go with clflush, compared
to repeated experiments for each line of the page. Finally,
we uncovered interactions between the two L2 prefetchers,
especially when a line is a candidate for both. This framework
could also be used to investigate the memory system reactions
to workload memory traces, which could be valuable to study
performance issues, in particular prefetcher-induced ones.

Further work: A first direction could be load calibration to
distinguish hits from L1, L2, and L3, in addition to removing
the fences that inhibit the L1 prefetcher. This would enable
the study of the L1 prefetchers. A second direction could be
to study the state machine for stream directions to determine
its precise structure and the structures used for prefetcher con-
fidence (·) and arbitration (¸). Lastly, it is unknown whether
AMD CPUs are affected by Flush+Flush, and whether the
ARM v8 DC instructions are constant-time and left available
to user-mode by operating systems. Depending on this, our
method could be generalized to those architectures.

ACKNOWLEDGMENT

This work has been partly funded by the French Direction Générale
de l’Armement, and by the ANR-19-CE39-0007 MIAOUS.

REFERENCES

[1] S. Bhattacharya, C. Maurice, S. Bhasin, and D. Mukhopadhyay, “Branch
prediction attack on blinded scalar multiplication,” IEEE Trans. Com-
puters, 2020.

[2] Y. Chen, L. Pei, and T. E. Carlson, “Leaking control flow information
via the hardware prefetcher,” arXiv:2109.00474, 2021.

[3] G. Didier and C. Maurice, “Calibration done right: Noiseless flush+flush
attacks,” in DIMVA, 2021.

[4] J. Doweck, “Inside intel core microarchitecture,” in IEEE Hot Chips 18
Symposium (HCS), 2006.

[5] ——, “Inside Intel Core microarchitecture and smart memory access,”
Intel, Tech. Rep., 2006.

[6] J. Doweck, W.-F. Kao, A. K.-y. Lu, J. Mandelblat, A. Rahatekar,
L. Rappoport, E. Rotem, A. Yasin, and A. Yoaz, “Inside 6th-generation
intel core: New microarchitecture code-named skylake,” Micro 50, 2017.

[7] D. Evtyushkin, R. Riley, N. B. Abu-Ghazaleh, and D. Ponomarev,
“Branchscope: A new side-channel attack on directional branch pre-
dictor,” in ASPLOS, 2018.

[8] M. Green, L. Rodrigues-Lima, A. Zankl, G. Irazoqui, J. Heyszl, and
T. Eisenbarth, “AutoLock: Why cache attacks on ARM are harder than
you think,” in USENIX Security, 2017.

[9] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+flush: A fast
and stealthy cache attack,” in DIMVA, 2016.

[10] J. L. Hennessy and D. A. Patterson, Computer Architecture - A Quan-
titative Approach, 6th Edition. Morgan Kaufmann, 2019.

[11] M. Hill and A. Smith, “Evaluating associativity in cpu caches,” IEEE
Transactions on Computers, 1989.

[12] I. Hur and C. Lin, “Memory prefetching using adaptive stream detec-
tion,” in MICRO-39, 2006.

[13] Intel 64 and IA-32 Architectures Optimization Ref-
erence Manual, Intel Corporation, 2018. [Online].
Available: https://software.intel.com/sites/default/files/managed/9e/bc/
64-ia-32-architectures-optimization-manual.pdf

[14] Intel 64 and IA-32 Architectures Software Developers Manual, Intel
Corporation, 2021. [Online]. Available: https://www.intel.com/content/
www/us/en/developer/articles/technical/intel-sdm.html

[15] G. Irazoqui, T. Eisenbarth, and B. Sunar, “Systematic reverse engineer-
ing of cache slice selection in intel processors,” in Euromicro Conference
on Digital System Design (DSD), 2015.

[16] N. P. Jouppi, “Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers,” in ISCA
17, 1990.

[17] ——, “WRL-TN-14: Improving direct-mapped cache performance
by the addition of a small fully-associative cache and prefetch
buffers,” DEC Western Research Laboratory, Tech. Rep., 1990.
[Online]. Available: https://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.134.4913

[18] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre attacks: Exploiting speculative execution,” in S&P, 2019.

[19] H. Q. Le, W. J. Starke, J. S. Fields, F. P. O’Connell, D. Q. Nguyen,
B. J. Ronchetti, W. M. Sauer, E. M. Schwarz, and M. T. Vaden, “Ibm
power6 microarchitecture,” IBM Journal of R. and D., 2007.

[20] M. Lipp, V. Hadzic, M. Schwarz, A. Perais, C. Maurice, and D. Gruss,
“Take A way: Exploring the security implications of amd’s cache way
predictors,” in ASIA CCS, 2020.

[21] C. Maurice, N. L. Scouarnec, C. Neumann, O. Heen, and A. Francillon,
“Reverse engineering intel last-level cache complex addressing using
performance counters,” in RAID, 2015.

[22] R. Paccagnella, L. Luo, and C. W. Fletcher, “Lord of the ring(s): Side
channel attacks on the CPU on-chip ring interconnect are practical,” in
30th USENIX Security, 2021.

[23] S. Palacharla and R. E. Kessler, “Evaluating stream buffers as a
secondary cache replacement,” in ISCA 21, 1994.

[24] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “DRAMA:
Exploiting DRAM addressing for Cross-CPU attacks,” in 25th USENIX
Security, 2016.

[25] A. Rohan, B. Panda, and P. Agarwal, “Reverse engineering the stream
prefetcher for profit,” in EuroS&P Workshops, 2020.

[26] T. Sherwood, S. Sair, and B. Calder, “Predictor-directed stream buffers,”
in MICRO 33, 2000.

[27] Y. Shin, H. C. Kim, D. Kwon, J. Jeong, and J. Hur, “Unveiling hardware-
based data prefetcher, a hidden source of information leakage,” in CCS,
2018.

[28] A. Sodani, R. Gramunt, J. Corbal, H.-S. Kim, K. Vinod, S. Chinthamani,
S. Hutsell, R. Agarwal, and Y.-C. Liu, “Knights landing: Second-
generation intel xeon phi product,” Micro 49, 2016.

[29] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt, “Feedback directed
prefetching: Improving the performance and bandwidth-efficiency of
hardware prefetchers,” in HPCA-13, 2007.

[30] J. M. Tendler, J. S. Dodson, J. S. Fields, H. Le, and B. Sinharoy, “Power4
system microarchitecture,” IBM Journal of R. and D., 2002.

[31] V. Uzelac and A. Milenkovic, “Experiment flows and microbenchmarks
for reverse engineering of branch predictor structures,” in ISPASS, 2009.

[32] S. van Schaik, K. Razavi, B. Gras, H. Bos, and C. Giuffrida, “Revanc:
A framework for reverse engineering hardware page table caches,” in
EUROSEC 2017, 2017.

[33] J. R. S. Vicarte, M. Flanders, R. Paccagnella, G. Garrett-Grossman,
A. Morrison, C. W. Fletcher, and D. Kohlbrenner, “Augury: Using data
memory-dependent prefetchers to leak data at rest,” in S&P, 2022.

[34] P. Vila, P. Ganty, M. Guarnieri, and B. Köpf, “Cachequery: learning
replacement policies from hardware caches,” in PLDI, 2020.

[35] P. Vila, B. Köpf, and J. F. Morales, “Theory and practice of finding
eviction sets,” in S&P, 2019.

[36] “Comet Lake - Microarchitectures - Intel - WikiChip,”
WikiChip LLC, 2020, last edited 2020-07-22. [Online]. Avail-
able: https://en.wikichip.org/w/index.php?title=intel/microarchitectures/
comet_lake&oldid=97611

[37] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A high resolution, low
noise, L3 cache side-channel attack,” in USENIX Security, 2014.

[38] Y. Yarom, Q. Ge, F. Liu, R. B. Lee, and G. Heiser, “Mapping the intel
last-level cache,” IACR Cryptol. ePrint Arch., 2015.

https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.134.4913
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.134.4913
https://en.wikichip.org/w/index.php?title=intel/microarchitectures/comet_lake&oldid=97611
https://en.wikichip.org/w/index.php?title=intel/microarchitectures/comet_lake&oldid=97611

	Introduction
	Background and Related Work
	Cache hierarchy on modern CPUs
	Prefetchers on modern Intel CPUs
	asmclflush and its use as a cache side-channel primitive
	Flush+Reload
	Flush+Flush

	Reverse engineering of other components
	Memory Hierarchy
	Branch predictors


	The CacheObserver framework
	Prober
	Access patterns

	Experimental setup
	Hardware and software configuration
	Control group

	The L2 Stream prefetcher
	Proposed data structure of the prefetcher
	Experimental results
	First access behavior
	Subsequent accesses prefetch 0 or 2 lines
	Location of prefetches
	Stream window and stream reset
	Prefetch gap
	Prefetch direction
	Prefetch may occur on L2 hits
	Suppressed prefetches may still update the prefetcher state
	Summary


	The L2 Adjacent Cache line prefetcher and prefetcher interaction
	Discussion
	Advantages of using asmclflush
	Areas of uncertainty
	Limitations

	Conclusion and future work
	References

