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Abstract
Organismal metabolic rates (MRs) are the basis of energy and nutrient fluxes through 
ecosystems. In the marine realm, fishes are some of the most prominent consumers. 
However, their metabolic demand in the wild (field MR [FMR]) is poorly documented, 
because it is challenging to measure directly. Here, we introduce a novel approach to 
estimating the component of FMR associated with voluntary activity (i.e., the field ac-
tive MR [AMRfield]). Our approach combines laboratory-based respirometry, swimming 
speeds, and field-based stereo-video systems to estimate the activity of individuals. 
We exemplify our approach by focusing on six coral reef fish species, for which we 
quantified standard MR and maximum MR (SMR and MMR, respectively) in the labo-
ratory, and body sizes and swimming speeds in the field. Based on the relationships 
between MR, body size, and swimming speeds, we estimate that the activity scope 
(i.e., the ratio between AMRfield and SMR) varies from 1.2 to 3.2 across species and 
body sizes. Furthermore, we illustrate that the scaling exponent for AMRfield varies 
across species and can substantially exceed the widely assumed value of 0.75 for 
SMR. Finally, by scaling organismal AMRfield estimates to the assemblage level, we 
show the potential effect of this variability on community metabolic demand. Our 
approach may improve our ability to estimate elemental fluxes mediated by a critically 
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1  |  INTRODUC TION

Anthropogenic stressors, such as climate change, over-harvesting, 
and pollution, are affecting biological communities at an unprec-
edented rate (Halpern et al.,  2008; Venter et al.,  2016). Scientists 
and policy-makers are becoming increasingly concerned that these 
community impacts will irreversibly alter key ecosystem functions, 
preventing these natural systems from maintaining indispensable 
services to humans (Cardinale et al.,  2012). In this context, tools 
to quantify and monitor ecosystem processes are valuable (Tilman 
et al.,  2014). However, while there is a long-standing tradition in 
measuring ecological processes in mesocosms and controlled in situ 
experiments, the assessment of rates of ecological processes in nat-
ural conditions is still in its infancy (Reich et al., 2012), especially for 
marine ecosystems (Brandl, Rasher, et al., 2019).

In coastal marine ecosystems, fishes represent one of the most 
thoroughly studied, ecologically important, and economically valu-
able group of consumers (Bozec et al., 2004; Tamayo et al., 2018). 
Despite the complexity of measuring the contribution of mobile 
species to ecosystem fluxes (Wilson et al., 2010), several attempts 
have been made to quantify the contributions of fishes to nutrient 
and carbon cycling (Brandl, Rasher, et al., 2019; Villéger et al., 2017). 
These functions are usually quantified at the individual level, which 
can then be scaled up to community levels through an additive 
framework (Allgeier et al.,  2014; Barneche et al.,  2014; Brandl, 
Tornabene, et al., 2019; Morais & Bellwood, 2019). While there are 
inherent limitations to this approach, individual-based modeling cur-
rently represents our best means to quantify ecological processes 
across communities of mobile, aquatic organisms. Nevertheless, the 
accuracy of these approaches inevitably depends on our capacity to 
precisely estimate the physiological requirements and expenditures 
of individuals in their natural environment.

The metabolic rate (MR) of living organisms is an essential deter-
minant of their physiological requirements and therefore represents 
a crucial parameter to estimate the flow of energy and nutrients 
in any ecosystem (Allen et al.,  2005; Brown et al.,  2004). MRs of 
fishes are generally evaluated through two metrics: (i) standard MR 
(SMR) (Fry, 1957; Vinberg, 1960), which corresponds to the MR of 
an inactive and fasting individual (Chabot et al., 2016) and (ii) max-
imum MR (MMR), which corresponds to the aerobic MR of an ani-
mal that is exercising at full capacity (Norin & Clark, 2016). Theory 
predicts that individual MR increases hypoallometric (sub-linearly) 

with body mass according to a power function with a scaling expo-
nent of approximately 0.75 (Brown et al., 2004; Gillooly et al., 2001; 
West et al.,  1997). While laboratory measurements of the SMR 
of resting fishes have both confirmed a scaling exponent close to 
0.75 (Barneche et al., 2014; Clarke & Johnston, 1999) and rejected 
it (Bokma, 2004; Killen et al., 2016), an 0.75 scaling exponent has 
been used to estimate community-level MRs (Cheung et al., 2013; 
Deutsch et al., 2015; Holt & Jørgensen, 2015).

Knowledge of SMR and MMR allows for the calculation of a 
fish's aerobic scope, which is the ratio between MMR and SMR and 
represents the capacity to elevate MR above maintenance to sup-
port energetically demanding tasks such as physical activity and di-
gestion (Clark et al., 2013). Within species, aerobic scope tends to 
increase with body mass regardless of being expressed in absolute 
(MMR minus SMR) or factorial (MMR divided by SMR) values (Halsey 
et al., 2018), as the scaling exponent of MMR is often observed to be 
higher than that of SMR (Glazier, 2005; Killen et al., 2007). Both SMR 
and MMR can be estimated relatively accurately in the laboratory 
through measurements of oxygen uptake rates (Clark et al., 2013; 
Svendsen et al.,  2016). However, animals in the wild rarely reside 
at SMR or exercise maximally. Thus, calculations of energy expen-
ditures in wild fishes are hamstrung by our inability to accurately 
estimate MRs in fishes that pursue their normal, daily activities in 
their natural environment.

The field MR (FMR) represents the average MR of an individual 
in the wild (Chung et al., 2019; Nagy, 2005) and lies somewhere be-
tween SMR and MMR (Nagy, 2005). On average, free-living fishes 
in their natural habitats will only exploit a given proportion of 
their aerobic scope and, in non-sedentary fishes, physical activity 
will be a major component of FMR (Chung et al., 2019). Thus, the 
factorial scope for activity (FSA), which corresponds to the ratio 
between the component of FMR related to physical activity (the 
AMRfield) and the SMR, is a better reflection of energy expenditure 
in the wild than the aerobic scope (Chung et al., 2019), bearing in 
mind that internal homeostatic processes such as digestion and 
reproduction also incur an energetic cost as part of the full FMR. 
In terrestrial vertebrates, where the doubly labeled water tech-
nique has allowed for widespread quantification of FMR (Webster 
& Weathers,  1989), the metabolic scaling exponent of FMR tends 
to be higher than that of SMR (~0.8; Nagy, 2005). While the meta-
bolic scaling exponent of MMR in fishes approximate or exceed 0.8 
as well, the scaling of FMR or AMRfield remains poorly documented 

important group of aquatic animals through a non-destructive, widely applicable 
technique.
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(Norin & Clark, 2016). Understanding how MR scales with body mass 
in the wild is fundamentally important for fisheries (e.g., stock as-
sessments) and predictions of the effects of climate change, as the 
metabolic scaling exponent is an integral part of growth models used 
to forecast the size of fishes at both current and future temperatures 
(Von Bertalanffy, 1957; Cheung et al., 2013; Deutsch et al., 2015; 
Marshall & White, 2019).

Since FMR is challenging to measure for water-breathing animals 
in the aquatic environment (Treberg et al., 2016), it has only been 
estimated for a small number of fishes (e.g., Chung et al., 2019; Cruz-
Font et al., 2016; Lucas et al., 1993; Murchie et al., 2011). These es-
timates are largely derived from biotelemetry approaches that rely 
on accelerometry tags and heart rate measurements calibrated with 
rates of oxygen uptake in the laboratory (Gräns et al., 2009; Treberg 
et al., 2016). A major limitation of biotelemetry is that its application 
is limited to large individuals as it requires surgical attachment or im-
plantation of tags (Gräns et al., 2009). More recently, FMR has been 
estimated from the isotopic composition of carbon in fish otoliths 
(Chung et al.,  2019). However, this approach relies on destructive 
sampling and the generality of the undoubtedly promising results 
are yet to be applied across a broad range of species. Thus, non-
invasive methods to estimate FMR on many co-occurring fish spe-
cies in the field are needed to better understand the contributions 
of fishes to ecosystem functioning.

Here, we propose a new approach to estimating a major com-
ponent of the FMR, the AMRfield. Specifically, we estimated the SMR 
and MMR of six reef fish species using traditional respirometry 
techniques in the laboratory, and then quantified in situ swimming 
speeds of the same species using underwater stereo-video systems. 
This permitted us to derive AMRfield and the FSA on the basis of the 
theoretical relationship between MR and swimming speed, and to 
assess the mass-scaling exponents of AMRfield for each species. By 
combining our results with underwater visual census data of fish size 
and abundance on reefs around Mo′orea, French Polynesia, we also 
estimate assemblage-level SMR and AMRfield. In doing so, we demon-
strate the potential applicability of our approach to tackle questions 
across fields of organismal, community, and ecosystem ecology in 
the marine biome.

2  |  METHODS

2.1  |  Theory

Our approach to quantifying the AMRfield is based on the relationship 
between swimming speed (v) and MR (Binning et al., 2013; Norin & 
Clark, 2016; Torres & Childress, 1983) (Figure 1). We assume that 
MRs vary predictably with swimming speed following a traditional 
power function, which can be adapted to a log10 transformed form 
(Brett, 1964; Korsmeyer et al., 2002):

 

We further assume that (1) the SMR represents the MR of an individual 
when its swimming speed is zero and (2) the MMR represents the oxy-
gen uptake rate of individuals at their maximum swimming speed (vmax; 
Figure 1). The previous equation can thus be rewritten as:

and AMRfield can then be estimated using the average swimming speed 
in the field (vfield):

The FSA is computed by dividing a fish's AMRfield by their SMR. We note 
that the FSA tends to be calculated over a 24 period, which means that 
we have to consider the amount of time spent resting. If a fish is resting 
for a certain amount of hours (t) a day and the MR at resting equals the 
SMR, the FSA can be estimated as follows:

Thus, on the basis of known SMR and MMR estimates along 
with the vmax of individuals, AMRfield of a species can be estimated 
if the average swimming speed in the field (vfield) for specific 
body size is known. For our case study, we estimated SMR and 
MMR using respirometry in the laboratory, obtained vmax through 

(1)MR = a10bv

(2)log10(MR) = log10(a) + bv,

(3)log10(MR) = log10(SMR) +
log10(MMR) − log10(SMR)

vmax
v,

(4)log10
(

AMRfield
)

= log10(SMR) +
log10(MMR) − log10(SMR)

vmax
vfield,

(5)FSA =
(24 − t)AMRfield + tSMR

24SMR
.

F I G U R E  1 Definition of fish metabolic rates along with the 
swimming speed range. SMR is the standard metabolic rate at 
swimming speed (v) zero. AMRfield is field active metabolic rate 
at average swimming speed in the field (vfield). MMR is maximum 
metabolic rate, assumed to be reached at maximum swimming 
speed (vmax)
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empirical data available in the literature, and estimated v using 
stereo-camera video recordings in the field. We then used these 
estimates of AMRfield to estimate the FSA and the metabolic scaling 
exponent for AMRfield. Finally, to evaluate the impact of assessing 
assemblage-level MRs on the basis of a realistic proxy of FMR, 
AMRfield (instead of using the more commonly measured SMR as an 
estimate of minimum energetic requirements), we scaled up our 
estimates at the assemblage level according to visual census data 
of fish sizes and abundances on a coral reef in Mo′orea, French 
Polynesia.

2.2  |  Case study species

We focused on six common reef fish species with varying body 
sizes and shapes, trophic strategies, and behavioral patterns: 
Cephalopholis argus (family Serranidae), a large, fusiform, seden-
tary piscivore; Chaetodon ornatissimus (family Chaetodontidae), 
a small-bodied, laterally compressed, obligate coral feeder; 
Ctenochaetus striatus (family Acanthuridae), a medium-sized, graz-
ing detritivore; Naso lituratus (family Acanthuridae), a large-bodied, 
grazing herbivore feeding on macroalgae; Odonus niger (family 
Balistidae), a large-bodied schooling planktivore; and Zebrasoma 
scopas (family Acanthuridae), a compressed, small-bodied, grazing 
herbivore feeding on filamentous algae. All data were collected 
in Mo′orea, French Polynesia, between March 2018 and February 
2019. For respirometry experiments, individuals were collected in 
the lagoon (depth range 1–6 m) next to Opunohu Bay (17.4928°S, 
149.8555°W) with hand nets and clove oil. Immediately after cap-
ture, the individuals were transported to aquaria in the laboratory 
and started an acclimatization and fasting period of a minimum 
of 48 h. The water temperature of the aquaria was controlled by 
the ambient sea temperature which fluctuated around 28°C for 
the duration of the experiments. All protocols related to the cap-
ture and handling of fish complied with the ethical standards of 
the Centre for Island Research and Environmental Observatory 
(CRIOBE).

2.3  |  Standard and maximum metabolic rates

To quantify SMR and MMR, we conducted intermittent-closed 
respirometry experiments (Clark et al., 2013; Steffensen, 1989) at 
28 ± 0.5°C on a total of 68 individuals across the six study spe-
cies with the sample size per species ranging between four and 
23 individuals. After an acclimation and fasting period of 48 h in 
aquaria, the fish were individually transferred to a water-filled tub 
at 28°C and sequentially chased by the experimenter until visibly 
exhausted to elicit MMR (Norin & Clark,  2016). Once the chas-
ing was concluded, each individual was immediately placed in a 
respirometry chamber submerged in an ambient and temperature-
controlled tank, where they were left for approximately 24 h to 
reach SMR. The intermittent respirometry cycles consisted of a 

measurement (closed) period followed by an open period during 
which the respirometry chambers were flushed with fully aerated 
water from the ambient tank. Based on previous work (Norin & 
Clark, 2016), we considered the oxygen uptake rate (ṀO2) during 
the first closed cycle (directly after transferring the fish) to be re-
flective of the individual's MMR. Depending on fish size, respirom-
etry chambers ranged in volume (including tubes and pumps) from 
0.38 to 4.4 L, and measurement and flush periods lasted between 
2–9 and 3–5 min, respectively. SMR was calculated as the aver-
age of the 10% lowest ṀO2 values measured during the entire 
respirometry trial, after the removal of outliers, while MMR was 
calculated from the slope of the first measurement period (Chabot 
et al., 2016).

2.4  |  Field swimming speeds

We used two underwater stereo-video systems that were placed 
on the seafloor to record fish movements in the wild. Each video 
system consisted of two small action cameras (GoPro Hero5 
Black), mounted 90 cm from each other at an angle of approxi-
mately 6°. This method allows three-dimensional (3D) measure-
ments (Butail & Paley,  2012; Hughes & Kelly,  1996). To analyze 
the recorded videos, we used VidSync, an open-source Mac ap-
plication providing accurate 3D measurements (Neuswanger 
et al.,  2016), which allows for synchronization, calibration, and 
analysis of videos. We recorded calibration videos to correct for 
the nonlinear optical distortion of the images due to camera lenses 
and underwater housings, and to define the 3D coordinate sys-
tem (x, y, z) used throughout the analyses. Errors in length meas-
urements through video analysis increase with distance from the 
cameras (Neuswanger et al.,  2016). Thus, for each underwater 
stereo-video system, we fitted a linear regression model describ-
ing the error in measurements as a function of their distance from 
the nearest camera, which we used to adjust all measurements 
of distances and fish lengths (Figure 1). We recorded 20 station-
ary stereo videos between November 19, 2018 and December 12, 
2018. Videos were recorded at 12–14 m depth on the reef slope at 
the Tiahura long-term monitoring site in Mo′orea (17°29′00.6″S, 
149°54′20.9″W) and at five different time periods: 5:00–7:00, 
8:00–10:00, 11:00–13:00, 14:00–16:00, and 17:00–18:00. Each 
recording lasted for ~1 to 1.5 h. We then took measurements dur-
ing three 10 min sequences with intervals of 10 min that excluded 
the first 2  min to account for the presence of divers. We took 
measurements for all fishes visible in both cameras for 3–5 s dur-
ing the three 10 min sequences. For each individual, fork length 
was measured three times from the videos as the straight-line dis-
tance between the fish's head and its tail fork, and three to five 
consecutive swimming speeds were measured as the distance the 
fish moved over 3–5  s. Final fish lengths and swimming speeds 
were then calculated as the mean of the repeated measurements. 
In total, we recorded lengths and speeds for 634 individuals, with 
sample sizes per species ranging between 64 and 264 individuals.
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2.5  |  Maximum swimming speed

We assumed maximum swimming speeds (vmax) from previous work 
that estimated the swimming speed at which a fish becomes ex-
hausted and stops swimming when it is exposed to regular incre-
mental changes in speed in an experimental flume (Brett,  1964; 
Fulton, 2007). In the original work of Fulton  (2007), the maximum 
swimming speeds of 192 individuals from five fish families and their 
corresponding lengths were measured, and these measurements 
were then used in the present study to relate maximum swimming 
speed with body size and caudal aspect ratio as a proxy for variations 
in swimming ability while accounting for the effect of fish family and 
body shape type. Caudal aspect ratio and body shape values were 
retrieved from Fishbase (Froese & Pauly, 2018).

2.6  |  Data analysis

We quantified AMRfield and FSA by combining multiple regression 
models, that describe the relationships between SMR and MMR 
with body mass, swimming speed (v), and maximum swimming speed 
(vmax; from Fulton, 2007) with body size. First, we used the respirom-
etry data to fit a relationship between either SMR or MMR and body 
mass using a Bayesian hierarchical model, while accounting for the 
co-variation between MMR and SMR. We define the log10 of SMR 
and MMR to be normally distributed with a mean (�) and a standard 
deviation (�) as follows:

 

where i  is the individual, j is the species, k is the type of MR (SMR or 
MMR), a is the global intercept of the regression; aj,k is the effect on 
the intercept for each species and type of MR, b is the global slope of 
log10(weight), and bj,k is the effect on the slope for each species and 
type of MR. We obtained the mean intercept and slope per species by 
summing global- and species-level parameters. We used an informa-
tive normal prior for the global slope exponent (i.e., metabolic scaling 
exponent) with an average of 0.75 and 0.1 as the standard deviation 
(West et al., 1997). For all other parameters, we used weakly informa-
tive priors (Burkner, 2017).

Second, using the data retrieved from the video analyses, we 
fitted a hierarchical Bayesian regression model for estimating fish 
swimming speed as a function of body length. We defined the log10 
transformation of swimming speed to be the student t-distributed 
with degrees of freedom (�), mean (�), and a standard deviation (�). 
The student's t-distribution was applied to build a robust regression, 
as our data includes outliers (Motulsky & Brown, 2006).

 

where v is the swimming speed, i  is the individual, j is the species, a is 
the global intercept of the regression, aj is the effect on the intercept 
for each species, b is the global slope, and bj is the effect on the slope of 
each species. For each species, regression exponents were estimated 
by summing two effects of the model: the global parameter and the 
species-specific effect on the global parameter.

Thirdly, we fitted a similar model to predict maximum swim-
ming speed in function of body length and aspect ratio using data 
extracted from Fulton (2007), including random effects of the inter-
action between family and body shape on the intercept and slope 
of body size.

 

where i  is the individual, j is the interaction of family and body shape, a 
is the global intercept of the regression, aj is the effect on the intercept 
for each family and body shape, b is the global slope, bj is the effect on 
the slope for each family and body shape, and AR is the aspect ratio 
of the tail. Here, we also applied the Student's t-distribution and used 
general uninformative priors. We then used this model to estimate the 
maximum swimming speed of the species included in our study.

2.7  |  FAS, AMRfield, and FSA calculations

We estimated the factorial aerobic scope (FAS), AMRfield, and FSA 
for the full-size range of all model species (per cm). To estimate the 
fish's FAS at each possible length, we first predicted their SMR and 
MMR by estimating their weight using the published length–weight 
relationship accessed through FishBase (Froese et al.,  2014), and 
making predictions based on our model parameters. For each itera-
tion of the prediction, we calculated FAS as FAS = MMR

SMR
 (F. Fry, 1947; 

Killen et al., 2016). Finally, we summarized the FAS for each species 
at all sizes by taking means, standard deviations, and 95% credible 
intervals.

To estimate AMRfield, we needed the SMR, MMR, vmax, and vfield 
(log10

(

AMRfield
)

= log10(SMR) +
log10(MMR) − log10(SMR)

vmax
vfield). For each 

length and species, we estimated vfield, vmax, SMR, and MMR using 
the above-mentioned regression models. To incorporate an estimate 
of uncertainty, we included 1000 iterations for vfield. For vmax, SMR 
and MMR we used the median of the predicted values in this step.

Once we determined AMRfield, we calculated FSA with the follow-
ing equation:

We repeated this for each iteration and then summarized FSA per 
species per size. We assumed that fish rested for 12 h (i.e., sleeping) 
(Marshall, 1972). As such, for all studied species, we assumed that they 
are active during the day and inactive during the night.

(6)log10
(

MRi

)

∼ Normal
(

�i ,�
)

,

(7)�i =
(

a + aj,k
)

+
(

b + bj,k
)

log10
(

weighti
)

,

(8)log10
(

vi
)

∼ Student
(

�,�i ,�
)

,

(9)�i =
(

a + aj
)

+
(

b + bj
)

log10
(

lengthi
)

,

(10)log10
(

maxspeedi
)

∼ Student
(

�,�i ,�
)

,

(11)�i =
(

a + aj
)

+
(

b + bj
)

log10
(

lengthi
)

+ AR,

(12)FSA =
12AMRfield + 12SMR

24SMR
.
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2.8  |  Assemblage-level estimates

In 2016, reef fish communities were assessed across 13 sites on 
the outer fringing reef around Mo′orea using underwater visual 
censuses. During each census, a single diver swam along a 25 m 
transect and counted all fishes within a 2 m wide band. All fishes 
were identified to the species level and their total length was es-
timated to be the nearest 1  cm. Each transect covered an area 
of 50 m2, except Tiahura and Haapiti, which covered an area of 
100 m2 each. At each site, three transects were performed, ex-
cept for Tiahura and Haapiti where four and two transects were 
performed, respectively. We extracted data for our model spe-
cies from this database, which resulted in 802 individuals across 
the six species. Then, we quantified the SMR and AMRfield for each 
individual using the above-mentioned methodology. Finally, we 
calculated the total SMR and AMRfield of the fish assemblage com-
posed of the six species at each site by summing across individual 
estimates.

3  |  RESULTS

3.1  |  Standard and maximum metabolic rates

The regression model predicting MRs (log10 of SMR and MMR) as 
a function of log10 of body mass with varying slopes and intercepts 
per species had a Bayesian R2 of .96 (Table 1; Figure 2). The aver-
age metabolic scaling exponent across species was 0.73 for SMR and 
0.78 for MMR (Table 1). The median species-specific scaling expo-
nents varied between 0.68 and 0.76 for SMR and between 0.77 and 
0.78 for MMR.

3.2  |  Swimming speed

The regression model predicting species-specific swimming speed as 
a function of body size had a median Bayesian R2 of .57 and its resid-
ual variance (�) was 0.37. The average species-specific slope values 
varied between 0.18 and 0.97 (Figure 3, Table S2). At the individual 

scale, the 95% credible interval of swimming speed predictions var-
ied between 28.5 and 32.4 cm s−1 across all species and size classes. 
For maximum swimming speed, our model showed an increase in 
body size and aspect ratio (Table  S3), with a median Bayesian R2 
of .46. We then used this model to estimate maximum swimming 
speeds (Figure 3).

3.3  |  FMR, FAS, and FSA estimations

We estimated AMRfield, FAS, and FSA across the size range of our 
study species as observed in the monitoring dataset from Mo′orea 
in 2016. Across all species and size classes, the average AMRfield es-
timates ranged between 0.001 and 1.013 g O2 d−1 at the individual 
level (Table S4). FAS and FSA estimate range between 2.4 and 7.0, 
and between 1.2 and 3.2, respectively, across species and sizes. The 
scaling exponent of AMRfield was higher than the SMR exponent for 
all species, except for C. striatus (Figure 4a), hence, FSA increased 
with size for all those species (Figure  4b). The scaling exponent 
of AMRfield was considerably higher than the MMR exponents for 
N. lituratus and O. niger.

3.4  |  Assemblage-level predictions

Scaling up SMR and AMRfield to the assemblage level revealed 
major variation in the two estimates of metabolism, with aver-
age SMR (±SD) for this assemblage of six fish species across sites 
(ranging between 0.026 ± 0.009 and 0.325 ± 0.021 g O2 m−2 d−1; 
Figure 5) tending to be about half total AMRfield (ranging betwen 
0.036 ± 0.014 and 0.465 ± 0.07 g O2 m−2 d−1). Spatial variation in 
total SMR and AMRfield reflected patterns in the relative abundance 
of the six study species across sites (Figures 5 and S4). Afareaitu, 
Maatea, Motu Ahi, Taotaha, and Tetaiuo, sites where C. argus and 
O. niger dominated the reef fish assemblage had a total AMRfield 
about twice as high as total SMR. On the contrary, sites domi-
nated by C. striatus (50–95% of the total reef fish abundance) had 
a total AMRfield 1.27–1.41 times higher than total SMR (i.e., Nuarei, 
Pihaena, Temae, and Tiahura).

TA B L E  1 Overview of species-specific slope coefficients (scaling exponents) of the regression of log10-transformed SMR and MMR on the 
function of log10-transformed body mass

Species SMR slope SMR (mass = 1 g) MMR slope MMR (mass = 1 g)

Cephalopholis argus 0.68 (0.57; 0.77) 0.0033 (0.0019; 0.0047) 0.77 (0.69; 0.87) 0.0124 (0.0079; 0.0178)

Chaetodon ornatissimus 0.7 (0.6; 0.78) 0.0038 (0.0029; 0.0047) 0.77 (0.7; 0.85) 0.0091 (0.0069; 0.0117)

Ctenochaetus striatus 0.76 (0.68; 0.83) 0.0042 (0.0031; 0.0056) 0.77 (0.71; 0.84) 0.0103 (0.0078; 0.0137)

Naso lituratus 0.73 (0.57; 0.89) 0.0041 (0.0029; 0.0054) 0.78 (0.68; 0.93) 0.0146 (0.01; 0.0202)

Odonus niger 0.7 (0.58; 0.81) 0.0028 (0.0016; 0.0042) 0.77 (0.68; 0.85) 0.0129 (0.0081; 0.018)

Zebrasoma scopas 0.7 (0.64; 0.76) 0.0038 (0.003; 0.0046) 0.77 (0.72; 0.83) 0.008 (0.0063; 0.01)

Note: The intercept for each species is expressed as the back-transformed value for an individual of 1 g. Values in between brackets represent the 
95% CI.
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4  |  DISCUSSION

FMR is an essential organismal process that mediates consumption 
rates across the food web, thus influencing system-wide fluxes of 
energy and nutrients. By coupling laboratory data on MRs with field 
observations of body size and swimming activity through stereo-
video analysis, we estimated the activity component of FMR (the 
AMRfield). Further, we demonstrate that the FSA of reef fish species 
varies substantially across species, and that the metabolic scaling 
exponent of AMRfield can substantially exceed the canonical value 
of 0.75, which also affects community-level estimates of MR. 
Therefore, our results highlight the potential pitfalls of estimating 
the community-level MR of heterogeneous reef fish assemblages 
based on scaled-up estimates of SMR instead of AMRfield. We suggest 
that the coupling of physiological traits with stereo-video analyses 
provides an opportunity to estimate FMRs of fishes in marine envi-
ronments that allow for visual assessments.

The FSA can be an important parameter to predict the energy 
consumption of fishes in the wild (e.g., Schiettekatte et al., 2020). 

Our estimates of FSA were comparable to previous estimates for 
a small freshwater fish, in which the FSA was obtained through a 
combination of bioenergetic modeling and behavioral observations 
(~1.9; Trudel & Boisclair, 1996). In contrast, several other fish species 
may have a much higher AMRfield as locomotion has been reported 
to increase MR up to fivefold, and up to ninefold in tuna (Thunnus 
albacares) (Brill & Bushnell, 1991; Chabot et al., 2016). However, it 
is still challenging to quantify where AMRfield lies for most species.

The varying estimates of FSA may relate to the swimming speed 
and the aerobic capacity of the studied species (Clark et al., 2013; 
Killen et al., 2016). In our case study, the two fishes with the high-
est FSA were O. niger and C. argus, which appear to exploit about 
45% and 60% of their aerobic scope in their natural environment, re-
spectively. Therefore, C. argus has a high FSA mostly due to its high 
aerobic scope, while O. niger has the highest FSA in our case study 
both because of a high aerobic capacity and because it uses a larger 
proportion of it for swimming. On the other hand, fishes with a lower 
FSA (i.e., C. ornatissimus, C. striatus, and Z. scopas) were quite active, 
relative to their maximum swimming capacities, and exploited more 

F I G U R E  2 Linear regressions between 
log10-transformed metabolic rate 
(g O2 d−1) and weight (g) for the study 
species. Symbols represent empirical 
measurements. Solid and dashed lines 
represent predicted mean standard 
metabolic rate (SMR) and maximum 
metabolic rate (MMR) values, respectively. 
Transparent areas are the 95% credible 
intervals of the fitted values of the 
regression

F I G U R E  3 Linear regressions between 
log10-transformed speed (cm s

−1) and 
length (cm) for the six study species. 
Symbols represent the raw data of 
individuals measured through stereo-
video analysis. Solid lines and shaded 
areas represent the predicted mean 
back-transformed values, and associated 
95% credible interval of swimming speeds. 
The dashed lines represent the predicted 
maximum swimming speeds
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than 50% of their aerobic scope. However, because their aerobic 
scope is low, so is their FSA.

These results corroborate the notion that AMRfield in fishes 
is strongly influenced by ecological traits, such as size, trophic 
level, and habitat use (Brown et al., 2004; Killen et al., 2016; Nash 
et al.,  2015). Larger fishes tend to have a higher aerobic capacity 
than smaller species (Brown et al.,  2004; Killen et al.,  2007), and 
larger sizes in fishes permit the establishment of larger home ranges 
(Nash et al., 2015). Furthermore, predators often have a higher meta-
bolic capacity, compared to herbivores, and pelagic fishes often have 
higher metabolic potential than benthic fishes, as they have high lo-
comotory demands because of their mobility in a 3D environment 
(Killen et al., 2016; Nash et al., 2015). Pairwise comparisons among 
our study species (e.g., the herbivorous Z. scopas vs. the carnivorous 
C. argus or the benthopelagic C. striatus vs. the epipelagic O. niger) 
strongly support an ecological basis for metabolic differentiation.

Beyond interspecific differences, our results suggest that AMRfield 
scales differently with body mass compared to SMR or MMR. The 
SMRs of our study species varied predictably with body mass, in ac-
cordance with the metabolic theory of ecology (Brown et al., 2004), 
with the average slope value approximating the allometric scaling 
exponent of 0.75 often found empirically and predicted theoretically 
by West et al. (1997). In contrast, half of the species (i.e., Z. scopas, 
N. lituratus, and O. niger) had a scaling exponent for AMRfield , that ex-
ceeded 0.75 with 95% credibility. In particular, the FSA for N. litura-
tus, and O. niger was positively correlated with body size, suggesting 

that large individuals consume more oxygen in their natural environ-
ment than previously assumed. For other species, such as C. argus 
and C. striatus, the scaling exponent of AMRfield was similar to that 
of SMR implying a negligible effect of activity on metabolic scaling. 
Importantly, there appears to be a higher interspecific variability 
of the scaling exponent for AMRfield compared to that for SMR and 
MMR. This underlines the importance of both species identity and 
body size when estimating FMR.

Scaling up, community-level SMRs should vary predictively 
with both community composition and intraspecific size structure 
(Allen et al.,  2005; Barneche et al.,  2014). However, failing to ac-
count for the increased variation in scaling exponents of FMR may 
lead to severe underestimates of the contribution of large mobile 
fishes to the total respiration of fish communities. Indeed, compar-
ing our assemblage-level estimates based on SMR with assemblage-
level estimates based on AMRfield reveals the potential pitfalls of 
using SMR to study community-level MRs (e.g., Cheung et al., 2013; 
Deutsch et al., 2015; Holt & Jørgensen, 2015). The ratio between 
community-level AMRfield and SMR is highly variable, thus suggesting 
that universal corrections to convert laboratory-estimated SMR into 
AMRfield are likely unreliable. For example, communities with a similar 
biomass and size structure may be considered as having a similar 
MR when using SMR as a proxy. However, if a community includes 
species that have a much higher metabolic scaling exponent, the role 
of large individuals, and thus the community-level MR may be under-
estimated severely. Thus, it would be important to consider a higher 
variation in metabolic scaling of FMR than previously assumed if we 
want to estimate energy flow in fish communities.

While our approach offers a novel way to estimate the activity 
rate and MR of fishes, it comes with limitations. First, we extrap-
olated maximum swimming speeds for our study species based on 
literature data to reconstruct the relationship between MR and 
swimming speed (Fulton,  2007). Although we accounted for size, 
family, variation in body shapes, and a proxy for swimming ability, 
swimming speed across species within a family and body shape may 
still differ substantially, introducing potential bias to our calculations. 
Further, our method relies on the assumption that MR varies pre-
dictably with swimming speed following a traditional power func-
tion (Brett, 1964; Korsmeyer et al., 2002). While this power function 
has been found to accurately predict MR for multiple species, more 
complex functions may be optimal for others, for example incorpo-
rating a plateau at the highest swimming speeds (Roche et al., 2013). 
Finally, the method we used to define MMR (i.e., the chase method) 
could have introduced additional bias. MMR does not differ between 
post-exercise (e.g., chase) and sustained swimming across multiple 
species (Killen et al., 2017). However, there is alternative evidence 
from coral reef fishes suggesting that they can in fact achieve a 
higher maximum rate of oxygen uptake while swimming compared 
to after a chase (Roche et al.,  2013; Rummer et al.,  2016). Future 
studies could resolve all of the above-mentioned issues by measur-
ing swimming speed and respiration rate simultaneously in the labo-
ratory and our approach can easily be adapted when additional data 
become available.

F I G U R E  4 (a) Fitted scaling exponents for standard metabolic 
rate (SMR), maximum metabolic rate (MMR), and field metabolic 
rate (AMRfield) based on slopes of the log10–log10 relationships 
between the metabolic rates (g O2 d−1) and body mass (g). Lines 
represent the 95% credible interval and dots indicate the average 
values. (b) Predicted average factorial scope for activity (FSA) for 
the six reef fish species across their body size range
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Furthermore, we quantified FSA assuming that fishes' spon-
taneous swimming activity follows strict circadian cycles, with 
all activity occurring diurnally. However, the activity patterns of 
reef fishes are often flexible (Zhdanova & Reebs, 2006). While, in 
principle, all our studied families are diurnally active, some species 
(e.g., Serranidae) can be nocturnally active (Mourier et al., 2016). 
Thus, our assumption can cause potential underestimates of FSA 
in C. argus and other species with more flexible circadian activity 
patterns. Currently, stereo-video recordings are unable to quan-
tify fish swimming speeds at night, as measurements are inaccu-
rate and imprecise in darkness and poor visibility (Neuswanger 
et al., 2016). Infrared lighting in stereo-video recordings could pro-
vide an opportunity to observe nocturnal behavior and movement 
in fishes, but only observations in close proximity are likely to be 
fruitful because of the limited range of infrared light (Bassett & 
Montgomery, 2011).

Finally, while AMRfield represents an improved estimate of energy 
expenditure in the field, it still lacks components such as reproduc-
tion and digestion. Digestion (often expressed as specific dynamic 
action [SDA]) can be a large component of the energy budget of cer-
tain fishes (e.g., ~17% of SMR; Holt & Jørgensen, 2015). SDA can 
be measured in the laboratory, where a fish is given a meal and the 
resulting increase in oxygen consumption is measured for the dura-
tion of the digestion of this meal. SDA relates predictably to both the 
meal size and body mass of a fish (Secor, 2009), but using this rela-
tionship to calculate the SDA of species in natural communities is not 
feasible. It is nearly impossible to track the frequency of meals and 
meal sizes of fishes in the wild, even though some bioenergetic mod-
eling allows for an approximation of daily consumption rates (e.g., 
Schiettekatte et al.,  2020). Further, these experiments are largely 
based on predatory fishes, and do not necessarily represent natural 
feeding behavior as many fishes do not consume and digest a meal 

F I G U R E  5 Field (AMRfield) and standard metabolic rates (SMR) of an assemblage of six reef fish species at 13 sites around Mo′Orea, 
French Polynesia. Dashed lines represent 1.5 times the SMR as a reference. Colored bars display the relative abundances of the reef fish 
species at each site
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fully before eating the next meal. Notably, herbivores, detritivores, 
and planktivores, feed constantly, and their energy expenditure re-
lated to digestion is understudied. Therefore, we stress the need 
for more research on the energy consumption of digestion across 
a wide range of fishes to achieve improved FMR approximations for 
fish communities in the wild.

Despite these limitations, our proposed method may help us un-
derstand some of the variations in AMRfield among reef fishes, which 
is necessary to understand ecosystem-level estimates of elemental 
fluxes. So far, the quantification of AMRfield is limited to laboratory 
techniques that are reliant on destructive sampling (analysis of trace 
elements in otoliths; Chung et al., 2019), or restricted to species that 
are big enough to be tagged with biotelemetry equipment (Brodie 
et al., 2016; Treberg et al., 2016). When combined with respirom-
etry trials, stereo-video offers a non-destructive and non-invasive 
alternative to these techniques that can be applied to all species that 
can be reliably observed using in situ cameras. While the post-hoc 
treatment of the stereo-video outputs demands significant time 
and effort, the development of open-source software to automate 
data collection from the video will greatly strengthen our ability and 
non-destructive approach to quantifying reef fish AMRfield (Bassett & 
Montgomery, 2011; Guénard et al., 2008).
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