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Abstract
We introduce the concepts of the components’ second-order productivities in cooperative
games with transferable utility (TU games) with a coalition structure (CS games) and of the
components’ second-order payoffs for one-point solutions for CS games as generalizations
of the players’ second-order productivities in TU games and of the players’ second-order
payoffs for one-point solutions for TU games (Casajus in Discrete Appl Math 304:212–219,
2021). The players’ second-order productivities are conceptualized as second-order marginal
contributions, that is, how one player affects another player’s marginal contributions to coali-
tions containing neither of them by entering these coalitions. The players’ second-order
payoffs are conceptualized as the effect of one player leaving the game on the payoff of
another player. Analogously, the components’ second-order productivities are conceptual-
ized as their second-order productivities in the game between components; the components’
second-order payoffs are conceptualized as their second-order payoffs in the game between
components. We show that the Owen value is the unique efficient one-point solution for CS
games that reflects the players’ and the components’ second-order productivities in terms of
their second-order payoffs.
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1 Introduction

A cooperative game with transferable utility for a finite player set (TU game or simply game)
is given by a coalition function that assigns a worth to any coalition (subset of the player
set), where the empty coalition obtains zero. (One-point) solutions for TU games assign a
payoff to any player in any TU game. The Shapley value (Shapley, 1953) probably is the
most eminent one-point solution concept for TU games. And its characterization by Young
(1985) probably is its most important one.

Young (1985) characterizes the Shapley value by three properties of solutions: efficiency,
symmetry, and marginality or strong monotonicity. Efficiency: the players’ payoffs sum
up to the worth generated by the grand coalition. Symmetry: equally productive1 players
obtain the same payoff. Marginality: a player’s payoff only depends on her own productivity.
Strong monotonicity: whenever a player’s productivity in a game weakly increases so does
her payoff. Note that strong monotonicity implies marginality. This result indicates that the
Shapley value is the efficient solution that reflects the players’ productivities by their payoffs.

The organization of players into groups canbemodelled by coalition structures—partitions
of the player set. Games enriched with a coalition structure are addressed as CS games and
the corresponding solutions as CS solutions. Owen (1977) generalizes of the Shapley value
into an efficient CS solution where the components of the coalition structure are treated like
players.2 Khmelnitskaya and Yanovskaya (2007) provide a characterization of the Owen
value that breathes the spirit of Young’s (1985) characterization of the Shapley value.3

This characterization uses four properties: efficiency, marginality, symmetry within compo-
nents, and symmetry across components. Symmetry across components: components that
are equally productive in the game between components obtain the same sum of payoffs of
their members.

Recently, Casajus (2021) suggests a second-order version of Young’s (1985) character-
ization of the Shapley value. This characterization is based on the notions of the players’
second-order productivities and second-order payoffs. A player’s second-order productivity
with respect to another player reflects how the former affects the latter player’s marginal
contribution to coalitions containing neither of them by entering these coalitions; a player’s
second-order payoff with respect to another player reflects how the former affects the lat-
ter player’s payoff by leaving the game. The Shapley value is the unique efficient solution
the reflects the players’ second-order productivities in terms of their second-order payoffs.
More precisely, it is the unique solution that satisfies efficiency and second-order versions of
symmetry and marginality. Second-order symmetry: players who are equally second-order
productive with respect to a third player obtain the same second-order payoff with respect
to this third player. Second-order marginality: a player’s second-order payoff with respect to
another player only depends on her own second-order productivity with respect to this other
player.

In this paper, we suggest a second-order version of Khmelnitskaya and Yanovskaya’s
(2007) characterization of the Owen value. In particular, we show that the Owen value is

1 In this paper, a player’s productivity in a game refers to her influence on the generation of worth as expressed
by her marginal contributions to coalitions not containing her, that is, the differences between the worth
generated after she entered such a coalition and the worth generated before she entered.
2 Alternative efficient CS solutions have been suggested by Kamijo (2009) and Alonso-Meijide et al. (2014) ,
for example. Alternative non-efficient CS solutions have been suggested by Aumann and Drèze (1974) , Owen
(1982) , and Alonso-Meijide and Fiestras-Janeiro (2002) , for example.
3 Alternative characterizations of the Owen value have been suggested by Owen (1977) himself, Hart and
Kurz (1983) , Calvo et al. (1996) , Hamiache (2001) , Albizuri (2008) , and Casajus (2010) , for example.
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the unique CS solution that satisfies efficiency, second-order marginality, and second-order
versions of symmetry within components and symmetry across components (Theorem 10).
Second-order symmetry within components is just the restriction of second-order symmetry
to players within the same component. Second-order symmetry across components: compo-
nents that are equally second-order productive in the game between components obtain the
same sum of second-order payoffs of their members. This result is partly based on three facts.
Second-order marginality implies marginality (Proposition 6). Efficiency and second-order
symmetry within components imply symmetry within components (Proposition 7 ). Effi-
ciency and second-order symmetry across components imply symmetry across components
(Proposition 9).

The remainder of this paper is organized as follows. In Section 2, we provide basic
definitions and notation. In Section 3, we survey the characterizations of the Shapley value by
Young (1985) and by Casajus (2021) . In Section 4, we first survey the characterization of the
Owen value by Khmelnitskaya and Yanovskaya (2007) . Then, we provide our second-order
approach to the Owen value. Some remarks conclude the paper.

2 Basic definitions and notation

Let the universe of players U be a countably infinite set, and letN denote the set of all finite
subsets of U. The cardinalities of S, T , N ∈ N are denoted by s, t, and n, respectively. A
(finite TU) game for the player set N ∈ N is given by a coalition function v : 2N → R,
v (∅) = 0, where 2N denotes the power set of N . Subsets of N are called coalitions; v (S)

is called the worth of coalition S. The set of all games for N is denoted by V (N ); the set of
all games is denoted by V := ⋃

N∈N V (N ) .

For N ∈ N , T ⊆ N , and v ∈ V (N ), the subgame v|T ∈ V (T ) is given by v|T (S) =
v (S) for all S ⊆ T ; for i ∈ N and S ⊆ N , we occasionally write v−i and v−S instead
of v|N\{i} and v|N\S, respectively. For N ∈ N , v,w ∈ V (N ) , and α ∈ R, the coalition
functions v + w ∈ V (N ) and α · v ∈ V (N ) are given by (v + w) (S) = v (S) + w (S)

and (α · v) (S) = α · v (S) for all S ⊆ N . For T ⊆ N , T �= ∅, the game uN
T ∈ V given

by uN
T (S) = 1 if T ⊆ S and uN

T (S) = 0 otherwise is called a unanimity game. Any
v ∈ V (N ) , N ∈ N can be uniquely represented by unanimity games. In particular, we have

v =
∑

T⊆N :T �=∅
λT (v) · uN

T , (1)

where the coefficients λT (v) are known as the Harsanyi dividends (Harsanyi, 1959) and
can be determined recursively by

λT (v) := v (T ) −
∑

S�T :S �=∅
λS (v) . (2)

Players i, j ∈ N are called symmetric in v ∈ V (N ) if v (S ∪ {i}) − v (S) = v (S ∪ { j}) −
v (S) for all S ⊆ N \ {i, j} .

A rank order of N ∈ N is a bijection ρ : N → {1, 2, . . . , |N |} with the interpretation
that i is the ρ (i)th player in ρ; the set of rank orders of N is denoted by R (N ) . The set
of players before i in ρ is denoted by Bi (ρ) := {� ∈ N : ρ (�) < ρ (i)} . The marginal
contribution of i in ρ and v ∈ V (N ) is denoted by

MCv
i (ρ) := v (Bi (ρ) ∪ {i}) − v (Bi (ρ)) . (3)
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A solution for V is an operator that assigns to any N ∈ N , v ∈ V (N ) , and i ∈ N a
payoff ϕi (v) . The Shapley value (Shapley, 1953) for V, Sh, is given by

Shi (v) :=
∑

T⊆N :i∈T

λT (v)

t
=

∑

S⊆N\{i}

v (S ∪ {i}) − v (S)

n · (n−1
s

) =
∑

ρ∈R

1

|R (N )| · MCv
i (ρ) (4)

for all N ∈ N , v ∈ V (N ) , and i ∈ N .

For N ∈ N , let P (N ) denote the set of all partitions (coalition structures) of N ; the
component of player i ∈ N in P ∈ P (N ) is denoted by P (i) . For N ∈ N , P ∈ P (N ) ,

T ⊆ N and i ∈ N , let P (T ) ⊆ P be given by P (T ) := {P ∈ P | T ∩ P �= ∅}, let
P|T ∈ P (T ) be given by P|T := {T ∩ P | P ∈ P (T )} , let P−T ∈ P (N \ T ) be given by
P−T := P|N\T , and let P−i ∈ P (N \ {i}) be given by P−i := P−{i}.

A CS game for N ∈ N is a pair (v,P), where v ∈ V (N ) and P ∈ P (N ) . Let VP (N )

denote the set of all CS games for N and let VP := ∪N∈NVP (N ) denote the set of all
CS games.

A (CS) solution for VP is an operator ϕ that assigns to any N ∈ N , i ∈ N , and (v,P) ∈
VP (N ) a payoff ϕi (v,P) ; for P ∈ P, we set ϕP (v,P) = ∑

i∈P ϕi (v,P) . For N ∈ N
and P ∈ P (N ) , the set of all rank orders that respect P is denoted by

R (N ,P) := {ρ ∈ R (N ) | for all P ∈ P and i, j ∈ P : |ρ (i) − ρ ( j)| < |P|} ,

that is, in any such rank order, the players from any component follow each other without
players from other components between them. TheOwen value (Owen, 1977) for VP, Ow,
is the CS solution given by

Owi (v,P) :=
∑

T⊆N :i∈T

λT (v)

|P (i) ∩ T | · |P (T )| (5a)

=
∑

C⊆P\{P(i)}

∑

S⊆P(i)\{i}

v

(

S ∪ {i} ∪
⋃

C∈C
C

)

− v

(

S ∪
⋃

C∈C
C

)

|P (i)| · (|P(i)|−1
s

) · |P| ·
(|P| − 1

|C|
) (5b)

=
∑

ρ∈R(N ,P)

1

|R| · MCv
i (ρ) (5c)

for all N ∈ N , i ∈ N , and (v,P) ∈ VP (N ) .

Fix an injection ı : N → U, N 	→ ıN for N ∈ N . For any N ∈ N , P ∈ P (N ) , and
v ∈ V (N ) , set [P] := {ıP | P ∈ P} and let vP ∈ V ([P]) be given by

vP ([C]) := v

(
⋃

C∈C
C

)

for all C ⊆ P. (6)

The TU game vP is called the game between components or intermediate game for the
CS game (v,P). For N ∈ N , (v,P) ∈ VP (N ), and P ∈ P, we have

OwP (v,P) = ShıP (vP ) . (7)
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3 The Shapley value4

The marginal contributions of a player i ∈ N , N ∈ N in the game v ∈ V (N ) given as

v (S ∪ {i}) − v (S) , S ⊆ N \ {i} (8)

indicate her (individual) productivity or contribution to the generation of worth in the game v.

The right-hand formula of the Shapley value in (4) indicates that the players’ Shapley value
payoffs reflects their productivities in games as expressedby their ownmarginal contributions.
Young (1985) shows that the Shapley value is the unique efficient such solution.
Efficiency, E. For all N ∈ N and v ∈ V (N ) , we have

∑
�∈N ϕ� (v) = v (N ) .

Symmetry, S. For all N ∈ N , v ∈ V (N ) , and i, j ∈ N such that i and j are symmetric in
v, we have ϕi (v) = ϕ j (v) .

Marginality, M. For all N ∈ N , v,w ∈ V (N ) , and i ∈ N such that v (S ∪ {i}) − v (S) =
w (S ∪ {i}) − w (S) for all S ⊆ N \ {i} , we have ϕi (v) = ϕi (w).

Theorem 1 (Young 1985) The Shapley value is the unique solution for V that satisfies effi-
ciency (E), symmetry (S), and marginality (M).5

Symmetry and marginality can be paraphrased as follows. Symmetry: players who are
equally productive in a game should obtain the same payoff. Marginality: a player who is
equally productive in two games should obtain the same payoff in these games. Therefore, a
solution that is intended to reflect the players’ productivities should satisfy these properties.

Later on, Casajus (2021) introduces the notions of the players’ second-order productivities
and second-order payoffs. Second-order productivities are conceptualized as second-order
marginal contributions: the second-order marginal contributions of player i ∈ N , N ∈ N
with respect to player j ∈ N \ {i} in a game v ∈ V (N ) are given as

[v (S ∪ {i, j}) − v (S ∪ {i})] − [v (S ∪ { j}) − v (S)] , S ⊆ N \ {i, j} . (9)

These describe how player i affects the productivity of player j .6 The second-order payoff
of player i ∈ N , N ∈ N with respect to player j ∈ N \ {i} in a game v ∈ V (N ) is given by

ϕ j (v) − ϕ j (v−i ) .

It describes how player i affects the payoff of player j .7

Based on these notions, Casajus (2021) motivates natural second-order versions of sym-
metry and marginality. For all N ∈ N , v ∈ V (N ) , and i, j, k ∈ N , i �= j �= k �= j, players
i and j are called second-order symmetric with respect to player k if

[v (T ∪ {i, k}) − v (T ∪ {i})] − [v (T ∪ {k}) − v (T )]

= [v (T ∪ { j, k}) − v (T ∪ { j})] − [v (T ∪ {k}) − v (T )]

for all T ⊆ N \ {i, j, k} .

4 This section partly follows Casajus (2021).
5 Originally, Young (1985) invokes anonymity (called symmetry by him) instead of symmetry (in our par-
lance). Although anonymity is stronger than symmetry, it is well-known and easy to check that anonymity can
be replaced with symmetry in his characterization. Moreover, his characterization works on fixed player sets.
6 The second-order marginal contributions of player i to player j in the game v equal player j’s contributions
to player i . Often, these are referred to as the second-order derivative of v with respect to i and j .
7 Casajus and Huettner (2018, Definition 9) introduce second-order (and higher-order) payoffs as second-
order (and higher-order) contributions.
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Second-order symmetry, 2S. For all N ∈ N , v ∈ V (N ) and i, j, k ∈ N , i �= j �= k �= j
such that players i and j are second-order symmetric with respect to player k, we have

ϕk (v) − ϕk (v−i ) = ϕk (v) − ϕk
(
v− j

)
.

Second-order marginality, 2M. For all N ∈ N , v, w ∈ V (N ) and i, j ∈ N , i �= j such
that

[v (T ∪ {i, j}) − v (T ∪ {i})] − [v (T ∪ { j}) − v (T )]

= [w (T ∪ {i, j}) − w (T ∪ {i})] − [w (T ∪ { j}) − w (T )]

for all T ⊆ N \ {i, j} , we have

ϕ j (v) − ϕ j (v−i ) = ϕ j (w) − ϕ j (w−i ) .

Second-order symmetry and second-order marginality can be paraphrased as follows.
Second-order symmetry: players who are equally second-order productive with respect to a
third player in a game should be assigned the same second-order payoff with respect to the
latter. Second-order marginality: a player who is equally second-productive with respect to a
another player in two games should be assigned the same second-order payoff with respect to
the latter in these games. Therefore, it seems to be plausible that a solution the second-order
payoffs of which are intended to reflect the players’ second-order productivities satisfies
these properties.

It turns out that the Shapley value reflects the players’ second-order productivities in
terms of their second-order payoffs in the same vein as it reflects the players’ (first-order)
productivities in terms of their (first-order) payoffs.

Theorem 2 (Casajus, 2021) The Shapley value is the unique solution for V that satisfies
efficiency (E), second-order symmetry (2S), and second-order marginality (2M).

The proof of this theorem uses the fact that second-order marginality implies marginality,
the proof of which is rather short.

Proposition 3 (Casajus, 2021) If a solution for V satisfies second-order marginality (2M),
then it satisfies marginality (M).

Nevertheless, the proof of Theorem 2 is much more involved than the proof of Theorem 1
due to use of second-order symmetry instead of symmetry.

On the one hand, second-order symmetry does not imply symmetry (Casajus, 2021,
Remark 3). On the other hand, the counterexamples in Casajus (2021, Remark 3) fail effi-
ciency. As our first result, we show that the proof of Theorem 2 can be simplified substantially
by providing a rather short proof that efficiency and second-order symmetry imply symmetry.

Proposition 4 If a solution for V satisfies second-order symmetry (2S) and efficiency (E),
then it satisfies symmetry (S).

Proof Let the solution ϕ satisfy 2S and E. For |N | = 1, nothing is to show. Let now |N | > 1.
Let (*) i, j ∈ N , i �= j, N ∈ N be symmetric in v ∈ V (N ) . Fix h ∈ U \ N , set
M := N ∪ {h} , and let w ∈ V (M) be given by

w =
∑

T⊆N :T �=∅
λT (v) · uM

T

+
∑

T⊆N\{i, j}

[
λT∪{i} (v) · uM

T∪{h} + λT∪{i, j} (v) · uM
T∪{i,h} + λT∪{i, j} (v) · uM

T∪{ j,h}
]
,
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that is, a player h is added to v such that (**) i and j remain symmetric in w, (***) h is
symmetric to both i and j in w, and (****) w−h = v.

Since i and j are symmetric in w, they are second-order symmetric with respect to any
k ∈ M \ {i, j} in w. Hence, we have

ϕk (w−i )
2S= ϕk

(
w− j

)
for all k ∈ M \ {i, j} . (10)

Now, we obtain

ϕ j (w−i )
E= w−i (M \ {i}) −

∑

k∈N\{i, j}
ϕk (w−i )

(**),(10)= w− j (M \ { j}) −
∑

k∈N\{i, j}
ϕk

(
w− j

)

E= ϕi
(
w− j

)
.

In view of (***), we analogously obtain

ϕ j (w−h) = ϕh
(
w− j

)
and ϕi (w−h) = ϕh (w−i ) . (11)

Finally, we have

ϕi (v)
(∗∗∗∗)= ϕi (w−h)

(11)= ϕh (w−i )
(10)= ϕh

(
w− j

) (11)= ϕ j (w−h)
(∗∗∗∗)= ϕ j (v) ,

which concludes the proof. ��

4 The Owen value

In this section, we first survey the characterization of the Owen value by Khmelnitskaya and
Yanovskaya (2007) . Then, we provide a second-order version of this characterization similar
to the second-order characterization of the Shapley value by Casajus (2021) as surveyed in
Section 3.

4.1 The (first-order) characterization by Khmelnitskaya andYanovskaya (2007)

Khmelnitskaya and Yanovskaya (2007) generalize the characterization of the Shapley value
due to Young (1985) . This characterization indicates that the Owen value is the unique
efficient CS solution that reflects both the players’ and the components’ (first-order) produc-
tivities in terms of their (first-order) payoffs.8

Efficiency, E. For all N ∈ N and (v,P) ∈ VP (N ) , we have
∑

�∈N ϕ� (v,P) = v (N ) .

Marginality, M. For all N ∈ N , (v,P) , (w,P) ∈ VP (N ) , and i ∈ N such that
v (S ∪ {i})−v (S) = w (S ∪ {i})−w (S) for all S ⊆ N \{i} ,we have ϕi (v,P) = ϕi (w,P).
Symmetry within components, SwC. For all N ∈ N , (v,P) ∈ VP (N ) , P ∈ P , and
i, j ∈ P such that i and j are symmetric in v, we have ϕi (v) = ϕ j (v) .

8 Recently, Hu (2021, Theorem 3.2) kind of rediscovered this characterization. Instead of marginality, he
uses coalitional strategic equivalence (Chun, 1989) . Nowadays, however, it is well understood that coalitional
strategic equivalence is equivalent to marginality (see, for example, Casajus, 2011, Footnote 3). Coalitional
strategic equivalence: For all N ∈ N , T ⊆ N , T �= ∅, i ∈ N \ T , ξ ∈ R, and v ∈ V (N ) , we have

ϕi (v) = ϕi

(
v + ξ · uNT

)
.
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For all N ∈ N and (v,P) ∈ VP (N ) , the components P, Q ∈ P are called symmetric in
(v,P) , if

v

(

P ∪
⋃

C∈C
C

)

− v

(
⋃

C∈C
C

)

= v

(

Q ∪
⋃

C∈C
C

)

− v

(
⋃

C∈C
C

)

for all C ⊆ P \ {P, Q} , that is, if and only if the representatives of P and Q are symmetric
in the intermediate game vP .

Symmetry across components, SaC. For all N ∈ N , (v,P) ∈ VP (N ), and P, Q ∈ P such
that P and Q are symmetric in (v,P) , we have ϕP (v,P) = ϕQ (v,P) .

Efficiency and marginality are just the CS versions of the properties for (TU) solutions
with the same name and with the same interpretation. Symmetry within components is a
natural relaxation of symmetry within the CS framework. Symmetry across components
treats the components as players: equally productive components should obtain the same
payoff as expressed by the sum of their members’ payoffs. Moreover, both symmetry within
components and symmetry across component can be viewed as generalizations of symmetry.
Whereas the former is equivalent to symmetry for the trivial coalition structure {N } , the
latter is so for the atomistic coalition structure {{i} | i ∈ N } .

Theorem 5 (Khmelnitskaya andYanovskaya, 2007) TheOwen value is the uniqueCS solution
for VP that satisfies efficiency (E) symmetry within components (SwC), symmetry across
components (SaC), and marginality (M).

4.2 A second-order characterization

In this subsection, we simultaneously translate the second-order characterization of the Shap-
ley value to CS solutions and the (first-order) characterization of the Owen value to the
second-order framework.
Second-order marginality, 2M. For all N ∈ N , (v,P) , (w,P) ∈ VP (N ) , and i, j ∈ N ,

i �= j such that

[v (T ∪ {i, j}) − v (T ∪ {i})] − [v (T ∪ { j}) − v (T )]

= [w (T ∪ {i, j}) − w (T ∪ {i})] − [w (T ∪ { j}) − w (T )]

for all T ⊆ N \ {i, j} , we have

ϕ j (v,P) − ϕ j (v−i ,P−i ) = ϕ j (w,P) − ϕ j (w−i ,P−i ) .

In essence, this property is just a restatement of second-order marginality for TU games,
where the coalition structure is fixed but can be ignored otherwise. Therefore, the proof of
Proposition 3 runs through smoothly within the framework of CS games and we obtain

Proposition 6 If a solution for VP satisfies second-order marginality (2M), then it satisfies
marginality (M).

Second-order symmetry within components, 2SwC. For all N ∈ N , (v,P) ∈ VP (N ) ,

P ∈ P, i, j ∈ P, and k ∈ N \ P such that i and j are second-order symmetric with respect
to k in v, we have

ϕk (v,P) − ϕk (v−i ,P−i ) = ϕk (v,P) − ϕk
(
v− j ,P− j

)
.

This property restricts second-order symmetry for TU games to players within the same
component. Yet, the coalition structure can be ignored regarding the third player to whom
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the second-order marginal contributions and the second-order payoffs are related. The proof
of Proposition 4 essentially runs through smoothly with second-order symmetry within com-
ponents instead of symmetry within components and symmetry within components instead
of symmetry: one just has to put player h into the component containing players i and j .
Hence, we obtain

Proposition 7 If a solution for V satisfies strong second-order symmetry within components
(2SwC) and efficiency (E), then it satisfies symmetry within components (SwC).

In order to obtain a second-order version of symmetry across components, we first provide
the notion of second-order symmetry of components. For all N ∈ N , (v,P) ∈ VP (N ) , and
A, B,C ∈ P pairwise different, components A and B are called second-order symmetric
with respect to component C in (v,P) if

[

v

(

C ∪ A ∪
⋃

D∈D
D

)

− v

(

A ∪
⋃

D∈D
D

)]

−
[

v

(

C ∪
⋃

D∈D
D

)

− v

(
⋃

D∈D
D

)]

=
[

v

(

C ∪ B ∪
⋃

D∈D
D

)

− v

(

B ∪
⋃

D∈D
D

)]

−
[

v

(

C ∪
⋃

D∈D
D

)

− v

(
⋃

D∈D
D

)]

for all D ⊆ P \ {A, B,C} .

Remark 8 Note that the components A and B are second-order symmetric with respect to
component C in (v,P) if and only if their representatives ı A and ıB are second-order sym-
metric with respect to the representative ıC of component C in the intermediate game vP .

Second-order symmetric components are equally second-order productive with respect to
a third component. Therefore, if a CS solution is intended to reflect the components’ second-
order productivities in terms of their second-order payoffs, it seems to be plausible that the
second-order payoffs of second-order symmetric components are the same.
Second-order symmetry across components, 2SaC. For all N ∈ N , (v,P) ∈ VP (N ) ,

and A, B,C ∈ P pairwise different such that A and B are second-order symmetric with
respect to C in v, we have

ϕC (v,P) − ϕC (v−A,P−A) = ϕC (v,P) − ϕC (v−B ,P−B) .

Using the general idea of the proof of Proposition 4 one shows that second-order symmetry
across components and efficiency imply symmetry across components.

Proposition 9 If a solution for VP satisfies second-order symmetry across components
(2SaC) and efficiency (E), then it satisfies symmetry across components (SaC).

Proof Let the CS solution ϕ satisfy 2SaC and E. If |P| = 1, then nothing is to show. Let now
N ∈ N and (v,P) ∈ VP (N ) be such that |P| > 1. Moreover, let (*) P, Q ∈ P, P �= Q be
symmetric in v. Fix h ∈ U \ N , set M := N ∪ {h} and Q := P ∪ {{h}} , and let w ∈ V (M)
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be given by

w =
∑

T⊆N :T �=∅
λT (v) · uM

T

+
∑

T⊆N\(P∪Q)

∑

S⊆P:S �=∅
λT∪S (v) · uM

T∪{h}

+
∑

T⊆N\(P∪Q)

∑

S⊆P∪Q:S∩P �=∅,S∩Q �=∅
λT∪{i, j} (v) · uM

T∪(S\Q)∪{h}

+
∑

T⊆N\(P∪Q)

∑

S⊆P∪Q:S∩P �=∅,S∩Q �=∅
λT∪{i, j} (v) · uM

T∪(S\P)∪{h},

that is, {h} is added to (v,P) such that (**) P and Q remain symmetric in (w,Q) , (***) {h}
is symmetric to both P and Q in w, and (****)

(
w−{h},Q−{h}

) = (v,P) .

Since P and Q are symmetric in (w,Q), they are second-order symmetric with respect
to any R ∈ Q \ {P, Q} in (w,Q) . Hence, we have

ϕR (w−P ,Q−P )
2SaC= ϕR

(
w−Q,Q−Q

)
for all R ∈ Q \ {P, Q} . (12)

Now, we obtain

ϕQ (w−P ,Q−P )
E= w−P (M \ P) −

∑

R∈Q\{P,Q}
ϕR (w−P ,Q−P )

(**),(12)= w−Q (M \ Q) −
∑

R∈Q\{P,Q}
ϕR

(
w−Q

)

E= ϕP
(
w−Q,Q−Q

)
.

In view of (***), we analogously obtain

ϕQ
(
w−{h},Q−{h}

) = ϕ{h}
(
w−Q,Q−Q

)
(13)

and
ϕP

(
w−{h},Q−{h}

) = ϕ{h} (w−P ,Q−P ) . (14)

Finally, we have

ϕP (v,P)
(****)= ϕP

(
w−h,Q−{h}

)

(14)= ϕ{h} (w−P ,Q−P )

(12)= ϕ{h}
(
w−Q,Q−Q

)

(13)= ϕQ
(
w−{h},Q−{h}

) (****)= ϕQ (v,P) ,

which concludes the proof. ��
Propositions 6, 7, and 9, allow us to “transfer” Theorem 5 to the second-order framework.

We obtain

Theorem 10 The Owen value is the unique CS solution for VP that satisfies efficiency (E),
second-order marginality (2M), second-order symmetry within components (2SwC), and
second-order symmetry across components (2SaC).
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Proof It is well-known that the Owen value satisfies E. Straightforward but tedious calcu-
lations using (5b) show the following formulas for the second-order Owen value payoffs
in terms of second-order marginal contributions. Let N ∈ N , i, k ∈ N , i �= k, and
(v,P) ∈ V (N ) . If k ∈ P (i) , then

Owk (v,P) − Owk (v−i ,P−i )

=
∑

C⊆P\{P(k)}

∑

S⊆P(i)\{i,k}

⎡

⎢
⎢
⎢
⎢
⎢
⎣

v

(

S ∪ {i, k} ∪
⋃

C∈C
C

)

− v

(

S ∪ {i} ∪
⋃

C∈C
C

)

|P (k)| · (|P(k)|−1
s+1

) · |P| ·
(|P| − 1

|C|
) . . .

−
v

(

S ∪ {k} ∪
⋃

C∈C
C

)

− v

(

S ∪
⋃

C∈C
C

)

|P (k)| · (|P(k)|−1
s+1

) · |P| ·
(|P| − 1

|C|
)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (15)

If k ∈ N \ P (i) , then

Owk (v,P) − Owk (v−i ,P−i )

=
∑

C⊆P\{P(k),P(i)}

∑

S⊆P(k)\{k}

⎡

⎢
⎢
⎢
⎢
⎢
⎣

v

(

S ∪ {k} ∪ P (i) ∪
⋃

C∈C
C

)

− v

(

S ∪ P (i) ∪
⋃

C∈C
C

)

|P (k)| · (|P(k)|−1
s

) · |P| ·
(|P| − 1

|C| + 1

) . . .

−
v

(

S ∪ {k} ∪ (P (i) \ {i}) ∪
⋃

C∈C
C

)

− v

(

S ∪ (P (i) \ {i}) ∪
⋃

C∈C
C

)

|P (k)| · (|P(k)|−1
s

) · |P| ·
(|P| − 1

|C| + 1

)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (16)

From (15) and (16) it is immediate that the Owen value satisfies 2M and 2SwC. By Remark
?? and in view of the well-known fact that the Owen values satisfies IG, it also satisfies 2SaC.

Let the CS solution ϕ satisfy E, 2M, 2SwC, and 2SaC. By Propositions 6, 7, and 9, the
CS solution ϕ satisfiesM, SwC, and SaC. By Theorem 5, we have ϕ = Ow. ��

Remark 11 The characterization in Theorem 10 is non-redundant for |N | > 1. The zero
CS solution, Z, given by Zi (v,P) := 0 for all N ∈ N , (v,P) ∈ VP (N ) , and i ∈ N
satisfies all properties but efficiency. The component egalitarian CS solution, CE, given by

CEi (v,P) := v (N )

|P (i)| · |P|
for all N ∈ N , (v,P) ∈ VP (N ) , and i ∈ N satisfies all properties but marginality. Fix a
bijection � : U → N. For any N ∈ N and P ∈ P (N ) , let

R (N ,P, �)

:= {ρ ∈ R (N ,P) | for all P ∈ P and i, j ∈ P : ρ (i) > ρ ( j) if and only if � (i) > � ( j)} .
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The �-Owen value, Ow�, given by

Ow�

i (v,P) :=
∑

ρ∈R(N ,P,�)

MCv
i (ρ)

for all N ∈ N , (v,P) ∈ VP (N ) , and i ∈ N satisfies all properties but second-order sym-
metry within components. The Shapley value for CS games ignoring the coalition structure
satisfies all properties but second-order symmetry across components.

5 Concluding remarks

In this paper, we suggest a characterization of the Owen value indicating that the latter
is the unique efficient CS solution that reflects the players’ and components’ second-order
productivities in terms of their second-order payoffs. The natural question now arises whether
this may hold true for higher-order productivities and higher-order payoffs. In view of the
results of Casajus (2020, Appendix A), the Owen value should satisfy the corresponding
higher-order properties, whereas not being the unique efficient CS solution to do so.

Winter (1989) generalizes the Owen value to games enriched with a level structure,
that is, a finite sequence of coalition structures becoming successively finer. Khmelnitskaya
and Yanovskaya (2007, Theorem 2) indicate how their characterization can be extended to
this level structure value. We leave it to the reader to provide the obvious extension of our
characterization of the Owen value to that level structure value.

Owen (1982) suggests an extension of the Banzhaf value (Banzhaf, 1965; Owen, 1975)
to games with a coalition structure. It remains an open question which properties in place of
efficiency in Theorem 10 would yield a characterization of the Banzhaf value for games with
a coalition structure.9
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