
HAL Id: hal-03798342
https://hal.science/hal-03798342

Submitted on 5 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CPU Port Contention Without SMT
Thomas Rokicki, Clémentine Maurice, Michael Schwarz

To cite this version:
Thomas Rokicki, Clémentine Maurice, Michael Schwarz. CPU Port Contention Without SMT. 27th
European Symposium on Research in Computer Security (ESORICS 2022), Sep 2022, Copenhagen,
Denmark. pp.209-228, �10.1007/978-3-031-17143-7_11�. �hal-03798342�

https://hal.science/hal-03798342
https://hal.archives-ouvertes.fr

CPU Port Contention Without SMT

Thomas Rokicki1[0000−0002−7041−4300], Clémentine Maurice2[0000−0002−8896−9494],
and Michael Schwarz3[0000−0001−6744−3410]

1 Univ Rennes, CNRS, IRISA
2 Univ Lille, CNRS, Inria

3 CISPA Helmholtz Center for Information Security

Abstract. CPU port contention has been used in the last years as
a stateless side channel to perform side-channel attacks and transient
execution attacks. One drawback of this channel is that it heavily relies
on simultaneous multi-threading, which can be absent from some CPUs
or simply disabled by the OS.
In this paper, we present sequential port contention, which does not
require SMT. It exploits sub-optimal scheduling to execution ports for
instruction-level parallelization. As a result, specifically-crafted instruc-
tion sequences on a single thread suffer from an increased latency. We
show that sequential port contention can be exploited from web browsers
in WebAssembly. We present an automated framework to search for
instruction sequences leading to sequential port contention for specific
CPU generations, which we evaluated on 50 different CPUs. An attacker
can use these sequences from the browser to determine the CPU genera-
tion within 12 s with a 95 % accuracy. This fingerprint is highly stable
and resistant to system noise, and we show that mitigations are either
expensive or only probabilistic.

Keywords: Side channels · CPU port contention · Browsers · Finger-
printing.

1 Introduction

Microarchitectural attacks exploit side effects of the CPU’s internal implementa-
tion. These attacks have been shown to leak sensitive data even in the absence
of software vulnerabilities. Many of these attacks exploit a microarchitectural
state that depends on a secret value. A thoroughly studied state is the cache
state, i.e., if data resides in the cache or the main memory. This state can be
observed using timing measurements when accessing data, as done in, e.g., cache
attacks such as Flush+Reload [56]. Such stateful channels have the advantage
that attacker and victim do not have to run in parallel. Recently, there were
also advances in the exploitation of stateless channels. In such channels, the
microarchitectural state change does not persist and can only be observed while
the victim is running. As attacks using stateless channels require the attacker and
victim to run in parallel while sharing the same hardware resources, they typically
rely on simultaneous multi-threading (SMT), also known as hyper-threading

2 T. Rokicki et al.

on Intel CPUs. An example of such a channel is port contention [3], where an
attacker observes the latency of executed instructions caused by a victim on the
hyper-thread that blocks resources necessary to execute the instructions.

The majority of microarchitectural attacks are initially shown in native code.
Browsers specifically modified for prototyping microarchitectural attacks [39,11]
can help port such attacks step-by-step to the browser, ultimately enabling these
attacks from unmodified browsers. The number of such attacks that can be
mounted in the browser is steadily increasing [39] even though the sandboxed
environment in browsers prevents access to low-level functionality used in mi-
croarchitectural attacks, such as high-resolution timers [46,39] or control over the
CPU-core placement [11,40]. Despite all these challenges, stateful channels [34,20]
and stateless channels [40] have been exploited in browsers.

In this paper, we introduce a new stateless channel that can be exploited in
the browser as well. We introduce sequential port contention, a novel form of
contention on the CPU execution ports. With sequential port contention, we
show that port contention [5,40] does not necessarily require SMT. Instead of
exploiting thread-level parallelism, we exploit instruction-level parallelism. We
exploit the limited look-ahead window of the instruction scheduler that results
in sub-optimal scheduling–and, as a result, increased latency due to sub-optimal
instruction-level parallelism–for specific instruction sequences on a single CPU
core. We show that such sequences work in native code but also work reliably
in WebAssembly. Our side channel works in unmodified off-the-shelf browsers,
including the privacy-focused browsers Tor and Brave.

We present an automated framework to search for instructions sequences
leading to sequential port contention in the browser. The framework supports
Intel and AMD CPUs and works in WebAssembly. Our evaluation on 26 CPUs
spanning 13 CPU generations discovers at least 36 instruction sequences causing
sequential port contention.

In a case study, we demonstrate that the framework discovers sequences that
allow distinguishing CPU generations. We use the results from our framework to
automatically build a k-NN classifier that reliably detects the CPU generation
based only on timing measurements. As we use a differential measuring approach
based on sequential port contention, our results are independent of the overall
CPU performance, i.e., the CPU frequency and workload on other CPU cores
do not impact our classification. We evaluate our classifier in the browser on 50
CPUs1. From within Chrome and Firefox, we classify the CPU generation with a
very high accuracy of 95 % within, on average, 12 s.

Due to the robustness of our approach, we show that our side channel is
hard to mitigate and is highly resistant to system noise. Moreover, proposals for
preventing (hardware) fingerprinting [9,8,7] are ineffective, as we only require
coarse-grained timing measurements. The CPU does not change often, and
mitigations against this type of attack are difficult, granting the fingerprint a
high stability over time. We show that our fingerprint is stable on all major

1 Sources and evaluation data are available on https://github.com/MIAOUS-group/
port-contention-without-smt.

https://github.com/MIAOUS-group/port-contention-without-smt
https://github.com/MIAOUS-group/port-contention-without-smt

CPU Port Contention Without SMT 3

releases of Chrome and Firefox in a year and, therefore could be used to link less
stable fingerprints [26,53].

Hence, we stress that this new side channel is a real privacy risk, as it can
be used to track users based on their CPU. Moreover, we show that sequential
port contention is also possible in a virtualized environment but stops working
in emulated environments. These results also indicate that the side channel is
valuable for malware as an anti-emulation measure.
Our key contributions are:
– We introduce a CPU-port-contention primitive that relies on instruction-level

parallelism instead of SMT and build a framework to automatically find
WebAssembly instructions creating such sequential port contention.

– We use this primitive to fingerprint the CPU generation in WebAssembly in
web browsers without any browser API.

– We evaluate our new fingerprinting method on 50 CPUs from 12 generations
with an accuracy of 95 % with a runtime of only 12 s.

– We discuss that the fingerprint is highly stable over major releases of browsers,
is robust against system noise, and mitigations are difficult.

2 Background

2.1 CPU Port Contention

Simultaneous multithreading (SMT) allows parallelization by sharing the re-
sources of one physical core across two or more logical cores. Intel’s SMT imple-
mentation is called Hyper-Threading (HT). Typically, a pair of logical cores in
the same physical core shares L1 and L2 caches, a branch prediction unit, and
the execution engine, among other components.

Instructions are fetched from memory by the pipeline, which in a second
step decomposes each instruction into smaller, atomic operations, called micro-
operations or µops. The µops are then distributed to the execution engine by the
scheduler through multiple CPU execution ports belonging to the execution units.
Each execution unit is specialized to process precise types of instructions, e.g.,
arithmetic µops are distributed to port 0, 1, 5, or 6 (noted P0156). Abel et al. [1]
have documented the port usage of instructions for various Intel CPU generations.
The port usage can differ from one generation to another for the same instruction.

Since the execution engine is shared across two logical cores, two threads
on the same physical core can create contention on this resource by executing
instructions issued to the same port. Port contention has been used in side-channel
attacks [3] and transient execution attacks [5]. Rokicki et al. [40] showed that
this side channel is exploitable from web browsers using WebAssembly.

2.2 WebAssembly

WebAssembly [54] is a binary instruction format for a stack-based virtual machine.
It is designed to be deployed on the web, on the client or server sides. It is a

4 T. Rokicki et al.

portable compilation target from other languages, such as C, C++ or Rust,
with the purpose of bringing native-like performance to the browser. Client-side
WebAssembly is designed to run inside the JavaScript sandbox [18], hence it
is heavily restricted for security purposes: among others, it cannot use native
instructions or have access to arbitrary memory addresses. WebAssembly is built
around a stack machine in a format resembling native assembly. WebAssembly
offers more than 200 specified instructions [17], including SIMD operations.
Although originally a binary language, it supports a human-readable text format,
allowing reading and modifying compiled WebAssembly code at a low level.

2.3 Browser Fingerprinting

Browser fingerprinting is a stateless technique collecting data from the browser
or machine configuration, usually from dedicated APIs [29]. It aims to construct
a unique identifier, called a browser fingerprint, without storing any cookie.
JavaScript APIs and HTTP headers give information such as the User Agent,
screen resolution, and time zone, which, alone, are perfectly harmless and even
help enhance user experience on websites. However, the combination of these
attributes is often unique, and can therefore be used for either tracking or as
another factor of authentication [27].

To be useful, a fingerprint should have the following properties. Uniqueness : a
fingerprint should be able to uniquely identify users. This is obtained by collecting
multiple attributes, rather than from a single unique attribute. Stability : any
change in an attribute value changes the fingerprint and therefore breaks user
identification. However, relying on software fingerprinting means that attributes
are constantly changing (e.g., the browser version in the User Agent). Vastel et al.
[53] showed that it is possible to link two fingerprints that are slightly different
from each other through heuristics. Therefore, for a single attribute, uniqueness
is less important than stability to link fingerprints.

3 Threat Model

Sequential port contention, as most microarchitectural attacks, requires code
execution on the victim machine. We assume that the attacker either has native
unprivileged code execution (native side channel) or can run WebAssembly in
the victim’s browser (browser-based side channel). The attacker does not rely on
software vulnerabilities, does not require any permissions that have to be granted
by the victim, or any particular setup such as SMT or a specific core assignment.
We assume that the victim spends at least 15 s on the attacker’s website, based
on the average time of 20 s users dwell on an unknown website [32].

4 Port Contention Without SMT

Port contention, as described by Aldaya et al. [3], requires SMT. Both the attacker
and the victim need to run on the same physical core for the attack to work, as

CPU Port Contention Without SMT 5

instr1 instr1 instr1 instr2 instr2 instr2

Port

contention

Port

contention

(a) Grouped. Instructions are executed
in batch, creating port contention and
reducing parallelism. This results in a
slower execution time.

instr1 instr1 instr1instr2 instr2 instr2

Parallelized

execution

Parallelized

execution

Parallelized

execution

(b) Interleaved. Instructions are exe-
cuted alternatively, allowing them to
be executed at the same time, resulting
in a faster execution time.

Fig. 1: Illustration of the differences in execution time based on the order of
instructions, with a look-ahead window of size 1.

CPU ports are on-core resources. This prerequisite represents a challenge in some
settings, as some systems do not have SMT or disable it [21], and it may become
increasingly hard to fulfill as countermeasures to SMT attacks are being explored
[52,51]. It also has severe implications in a web setting, where the attacker script,
situated inside the JavaScript sandbox, cannot know nor control which core it
is running on. In this section, we show port contention without requiring SMT,
both in a native setting and in a browser sandbox.

4.1 Main Idea

The main idea of sequential port contention is to exploit the limited look-ahead
window of the µop scheduler, leading to contention for well-chosen instruction
pairs (instr1, instr2). Both instructions use different execution ports on the
CPU. If the instructions are grouped, i.e., if the instruction stream consists of n
instructions instr1, followed by n instructions instr2, with n larger than the
look-ahead window of the scheduler, parallelization is not possible (cf. Figure 1(a)).
The scheduler cannot detect that some instructions later in the instruction stream
could already be executed in parallel. However, if interleaved in an instruction
stream of 2n instructions, they can be executed in parallel (cf. Figure 1(b)). As
a result, the overall execution time of an instruction stream of the same length
depends on the order of the two repeated instructions instr1 and instr2 if
these instructions do not use the same ports.

Similar to port contention with SMT [3], the contending instructions instr1
and instr2 depend on the underlying microarchitecture. However, as this in-
formation is publicly available [1], sequential port contention is applicable to a
wide range of microarchitectures. We show sequential port contention in native
environments (Section 4.2) and demonstrate that it is also exploitable from
off-the-shelf unmodified browsers (Section 4.3).

6 T. Rokicki et al.

Listing 1.1: Grouped. Always
creates contention.

1 grouped :
2 l fence
3 rdtsc # Timestamp
4 l fence
5 . r e p t $n # F i r s t loop
6 i n s t r 1 %reg , %reg
7 . endr
8 . r e p t $n # Second loop
9 i n s t r 2 %reg , %reg

10 . endr
11 l fence # Timestamp
12 rdtsc

Listing 1.2: Interleaved. Creates contention
if the two instructions share a CPU port.

13 i n t e r l e a v ed :
14 l fence
15 rdtsc # Timestamp
16 l fence
17
18 . r e p t $n # S ing l e loop
19 i n s t r 1 %reg , %reg
20 i n s t r 2 %reg , %reg
21 . endr
22
23 l fence # Timestamp
24 rdtsc

4.2 Native Environment

Proof of Concept Our proof of concept of sequential port contention is based
on two experiments, illustrated in Listings 1.1 and 1.2. In these experiments, we
evaluate two native x86 instructions, instr1 and instr2.

The first experiment is a control experiment, grouped, which is composed
of two loops, each calling an instruction n times. As the decomposition of
instructions in µops is deterministic, the various calls to the same instructions
have the same port usage. This means that during loop 1 (respectively loop 2),
instr1 (respectively instr2) always creates contention on its ports. The second
experiment, interleaved is composed of a single loop with the same number of
iterations. Instead of calling the same instructions in a row, it alternatively calls
instr1 and instr2. If instr1 and instr2 emit µops to the same port, it creates
contention, resulting in a slower overall execution time. However, if they do not
emit µops on the same port, the execution is parallelized due to instruction-level
parallelization, resulting in a faster execution time.

By computing ρ = time(grouped)
time(interleaved) , we know if interleaved creates contention.

If ρ ≈ 1, both experiments have a similar execution time, i.e., the instructions
share at least one port. If ρ > 1, interleaved has a shorter execution time than
grouped, i.e., the instructions do not share a common port.

Experiments We run this experiment on an Intel i5-8365U (Whiskey Lake),
with TurboBoost enabled and without fixing the CPU frequency. First, we run
it with instr1 = crc32, which emits a single µop on execution port 1 (P1),
and instr2 = aesdec, which emits a single µop on execution port 0 (P0). Both
instructions have the same throughput and latency.

Figure 2 illustrates the results of this experiment when we vary the number
of loop iterations n. Figure 2(a) shows how the grouped execution time is sys-
tematically higher than the interleaved one. The gap between the two curves
increases with the number of loops. Figure 2(b) shows that ρ quickly converges
to 1.8 at n = 1000. It then remains constant when increasing the number of loop
iterations. The inflection point situated around n = 64 is caused by the size of the

CPU Port Contention Without SMT 7

100 101 102 103 104 105
0

1

2

3

4
·106

Loop interations nE
x
ec

u
ti

o
n

ti
m

e
(C

y
cl

es
)

grouped

interleaved

(a) Execution time of the experiments depending on the number of loop iterations n.

100 101 102 103 104 105

1

1.5

2

Loop iterations n

R
a
ti

o
ρ

(b) Ratio ρ depending on the number of loop iterations n.

Fig. 2: Sequential port contention experiments for instructions (crc32, aesdec).

100 101 102 103 104 105
0.8
0.9

1
1.1
1.2

Loop iterations n

R
a
ti

o
ρ

Fig. 3: Ratio ρ for (crc32, popcnt) depending on the loop iterations n.

look-ahead window of the scheduler. When instructions from both loops fit inside
this window, the scheduler can rearrange instructions to execute them in the
most optimized order, prioritizing parallelism and thus reducing port contention.
When an mfence is added between the two loops (Lines 7-8 of Listing 1.1), this
inflection point disappears, and the curve raises smoothly to 1.8.

We run the same experiment with instr1 = crc32 and instr2 = popcnt.
Both instructions emit a single P1 µop, and have the same throughput and
latency. Figure 3 shows that ρ stays constant around 1. That is expected, as the
contention is always the same on P1, independently of instruction order.

4.3 Web Browsers

Challenges Porting these experiments to a browser sandbox introduces new
challenges. First, neither JavaScript nor WebAssembly provides high-resolution

8 T. Rokicki et al.

Listing 1.3: Grouped in Web-
Assembly. Always creates con-
tention.

25 (module
26 (func $grouped
27 (param $p type) (r e s u l t type)
28 (l o c a l . get $p)
29 (type . i n s t r 1)
30 . . . # Repeat $n
31 (type . i n s t r 1)
32 (type . i n s t r 2)
33 . . . # Repeat $n
34 (type . i n s t r 2)
35)
36 (export ”grouped” (func $grouped))
37)

Listing 1.4: Interleaved in Web-
Assembly. Creates contention if the
two instructions share a CPU port.

38 (module
39 (func $ i n t e r l e av ed
40 (param $p type) (r e s u l t type)
41 (l o c a l . get $p)
42 (type . i n s t r 1)
43 (type . i n s t r 2)
44 . . . # Repeat $n
45 (type . i n s t r 1)
46 (type . i n s t r 2)
47)
48 (export ” i n t e r l e a v ed ” (func $ i n t e r l e av ed))
49)

100 101 102 103 104 105 106
0.8

1

1.2

1.4

Loop iterations n

R
a
ti

o
ρ

Fig. 4: Ratio ρ for the WebAssembly instructions (i64.popcnt, i64.or) depend-
ing on the number of loop iterations n.

timers. This comes from an effort from browser vendors to prevent timing attacks.
However, it is still possible to create high-resolution auxiliary timers [46,39]. For
all experiments in this section, we use a timer based on SharedArrayBuffer,
defined by Schwarz et al. [46]. It uses a constant increment of a shared integer
as a time unit and offers a resolution of 20 ns. However, this timer is still not
as accurate as native cycle-accurate timers. Second, both JavaScript and Web-
Assembly are high-level languages, running inside a sandbox. There is no access
to native instructions or arbitrary virtual addresses. Moreover, WebAssembly
instructions are an abstraction of native instructions and thus do not directly map
to execution ports. As WebAssembly is aimed at being portable, the translation
of WebAssembly to native code depends on the browser’s WebAssembly compiler
and the targeted CPU. We can, however, empirically determine the port usage
of these instructions for a system [40].

Proof of Concept Similar to native experiments, the sequential port contention
in WebAssembly is composed of two different functions. Listing 1.3 shows the code
for the grouped experiment, which results in a slow execution time as instructions
are delayed by contention. Listing 1.4 shows the interleaved experiment. A low
execution time indicates that the experiments were not slowed down by contention,
whereas a high execution time means both instructions share at least one port.

CPU Port Contention Without SMT 9

Experiments We run this experiment on the same Intel i5-8365U CPU, with
instr1 = i64.popcnt and instr2 = i64.or. Figure 4 illustrates how ρ also
increases with the number of loops. On both Chrome 101 and Firefox 99, ρ
stabilizes around 1.1 starting from n = 100 000 loop iterations. This ratio is
significantly lower than the native one. This stems from lower precision timers,
as well as the stack structure of WebAssembly, where we need to add a value to
the stack between instructions. Running the same experiment with instr1 =
i64.popcnt and instr2 = i64.ctz, ρ remains constant around 1 when varying
the number of loops. We devise a framework to isolate pairs of instructions that
exhibit sequential contention in Section 5.2.

Privacy-oriented browsers are also vulnerable to sequential port contention.
With 100 000 loop iterations in Brave 1.38, we obtain ρ = 1.1. In Tor Browser
11.0.11, SharedArrayBuffer is disabled by default to prevent timing attacks.
However, we can still reproduce sequential port contention with the lower-
resolution timer performance.now() by increasing the number of loop iterations
n to 100 000 000. In that case, we obtain ρ = 1.2, but each experiment takes up
to 1 sec, i.e., 1000 times more than for other browsers.

5 Fingerprinting CPU Generations

In this section, we show how sequential port contention can be used to determine
the CPU generation of the victim, even from inside the JavaScript sandbox.

5.1 Core Idea

The port usage of native instructions varies across generations of microarchitecture.
As the number of execution units and CPU ports vary, the same instruction
can emit P1 µops on a given generation and P0 on another generation. For
instance, VPBROADCASTD emits one µop on P5 on both Haswell and Whiskey Lake
microarchitectures, and AESDEC emits one µop on P1 on Haswell and one µop on
P5 on Whiskey Lake. We computed ρ on an Intel i5-8365U (Whiskey Lake) and
an Intel i3-4160T (Haswell). The frequency of these CPUs can vary. However, the
base frequency does not impact our experiment as we compute a ratio. We found
ρWhiskeyLake = 1 and ρHaswell = 1.8. This correlates with the documented port
usage. Indeed, on Whiskey Lake, both instructions emit a µop on P5. Thus, both
experiments are slowed down by contention. On Haswell, the two instructions do
not share a common port. Thus, the interleaved experiment is not slowed down
by port contention, resulting in a faster execution time and a ratio ρ > 1.

In summary, by finding pairs of instructions that create contention for some
generations but not others, we can detect on which CPU generation the code is
executed. As sequential contention is visible from a browser (cf. Section 4.3), we
also aim to discover pairs of WebAssembly instructions that exhibit sequential
port contention to fingerprint the CPU generation from a web page.

10 T. Rokicki et al.

5.2 Framework

The port usage of the CPU-independent WebAssembly instructions cannot be
determined from the WebAssembly source code. Thus, we build a framework
based on PC-Detector [40] to automatically evaluate 458 pairs of WebAssembly
instructions for contention on a specific CPU generation. Due to the nature of
WebAssembly, it is highly portable and can be executed on any microarchitecture.
This framework aims at isolating instruction pairs that can act as distinguishers.
Such distinguishers have two major properties: 1) they exhibit different contention
for different generations, and 2) they always exhibit the same contention for
different CPUs of the same generation. The second property is essential, as other
sources of contention that do not depend on the generation could yield false
results. Changes in the microarchitecture, e.g., floating-point units, inside a CPU
generation can cause changes in behaviors, thus preventing stable fingerprinting.

Using this framework, we collect the best distinguishers to create traces for
each generation. To fingerprint generations, we create a k-NN-based classifier
and train it with results from the framework. It represents traces as points in
an l-dimensional space, where l is the length of the trace, i.e., the number of
distinguishers. Given a distance for each unknown execution trace, the classifier
computes the k-nearest traces from our training dataset. A trace is classified in
the most frequent class, i.e., CPU generation, in the k-nearest-neighbors.

To collect evaluation traces for the two sequential port contention experiments,
we use a simple web page (https://fp-cpu-gen.github.io/fp-cpu-gen). It works on
the latest versions of Firefox and Chrome, on Linux, macOS and Windows.

5.3 Evaluation

This section presents the results of our classifier and the different parameters
used. Our classifier presents a 95 % accuracy in a real-world threat model (cf.
Section 3): a user visits a malicious website for a few seconds.

The training set is composed of 26 different CPUs spanning 13 different
generations. It is composed of both AMD and Intel CPUs, including server and
standard desktop CPUs. Table 1 in Appendix A presents the training set. The
test set is composed of a subset of traces from the training set. It contains 13
different CPUs. The evaluation set is composed of traces from our website. These
traces come from an uncontrolled environment since the web script cannot control
or quantify the system noise. It contains 50 CPUs from 12 different generations.

Training and Testing We train our model using data from our training set.
The CPUs used in our training set are not balanced in terms of CPU generations,
some being more represented than others. We therefore include the same number
of traces for each generation to compensate this. Our framework finds 36 pairs of
instructions acting as distinguishers between the CPU generations. We use the
traces from these distinguishers to train our k-NN classifier. Our model shows a
96 % accuracy on the test set, using k = 5 neighbors and majority voting.

https://fp-cpu-gen.github.io/fp-cpu-gen

CPU Port Contention Without SMT 11

Casca
de Lake/Skylake

Coffee/
W

hisk
ey/Comet

Lake

Hasw
ell

and Broadwell

Ivy and Sandy Brid
ge

Tiger
Lake

Zen

Cascade Lake/Skylake

Coffee/Whiskey/Comet Lake

Haswell and Broadwell

Ivy and Sandy Bridge

Tiger Lake

Zen

1 0 0 0 0 0

0.056 0.94 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0.17 0 0 0.83 0

0 0 0 0 0 1

Predicted label

T
ru

e
la

b
el

0

0.2

0.4

0.6

0.8

1

Fig. 5: Confusion matrix for the evaluation of the k-NN classifier with grouped
generations, k = 5 and majority voting on 10 traces.

Accuracy Figure 5 illustrates the results of our classifier on the evaluation set.
It has a balanced accuracy of 95 %. We use k = 5 as the number of neighbors.
We gather 10 traces and classify each one independently. The class for the
experiment is determined using majority voting on the 10 classified traces. Due
to the lack of microarchitectural changes between closely-related generations,
some generations have the same assignment of execution ports for all instructions.
As a consequence, some generations are indistinguishable using sequential port
contention. We grouped such generations in the classes of our classifier. This
includes the Bridge (Ivy Bridge, Sandy Bridge), Well (Haswell, Broadwell),
Skylake (Skylake, Cascade Lake), and Coffee-Lake group (Coffee Lake, Whiskey
Lake, Comet Lake). AMD CPUs are distinguishable from Intel ones, but the
generations are grouped in the Zen group (Zen 1, Zen 2, and Zen 3).

Execution Time The total execution time is composed of the offline and the
online execution time. The one-time offline execution time is composed of the
framework execution time and k-NN training time. On average, testing all pairs
of instructions in the framework takes 4 h, with a standard deviation of 1 hour
and 7 minutes. Training the k-NN model takes 5 s on an i5-8365U. The online
execution time is composed of the data collection time, i.e., the time taken on
the website to gather the 10 traces, plus the prediction time, i.e., the execution
time of predicting the class of the trace. The data collection time is the most
critical factor, as it represents the duration the victim has to remain on the web
page. The client sends the traces to the server that then computes the prediction,
so the victim can then close the web page. Data collection takes 12 s on average,
with a standard deviation of 6 s. The data collection time is faster on average on
Google Chrome (10 s) compared to Firefox (13 s). On both browsers, the data
collection time is in the range of the average visit time on a website [32]. The

12 T. Rokicki et al.

prediction time is on average of 40 ms for 10 traces on an i5-8365U, which is
negligible compared to the data collection time.

Impact of Majority Voting System noise can decrease the accuracy of a
single trace. In particular, the first traces gathered when launching the script are
the most prone to these misclassifications. On our evaluation set, the first trace
for each experiment has a 30 % chance of being mispredicted, the second 12 %,
and then the misclassification rate goes down with repetitions to 6 %. There
are multiple reasons, including the power saving policy of the system, where by
default, the CPU does not use its maximum frequency to save energy, and cold
caches. The first traces act as a “warm-up” of the CPU, before reaching maximum
frequency. To compensate for this phenomenon, we implement majority voting.
With majority voting, we gather data on v traces and classify the experiment
based on the most common classification of these traces. This improves accuracy
at the cost of a higher execution time. Without majority voting, our evaluation
set shows an accuracy of 70 % with a data collection time of 5 s. With v = 5, the
accuracy increases to 86 % and a data collection time of 9 s on average. Starting
from v = 10, the accuracy peaks at 95 % with a data collection time of 12 s.

Impact of the Number of Neighbors The number of neighbors k is a signif-
icant factor in the classifier’s efficiency. A small number renders the classification
vulnerable to noise, as a single noisy trace in the training set can lead to mispre-
dicting many evaluation traces. A higher number tends to increase the impact of
densely grouped traces, as well as increase the computation costs.

For instance, when using k = 1 on the evaluation dataset, the classifier
accuracy is reduced to 85 %. We found that k = 5 grants a higher accuracy for
our testing and evaluation sets. Higher values of k tend to yield a lower accuracy.
This comes from the similarity of traces between closely-related generation groups,
e.g., Skylake and Coffee-Lake groups.

Time Stability Time stability is an essential feature, as hardware is seldomly
changed by users, compared to software that has regular updates. We evaluate
the stability of the classifier on an Intel i5-8365U on each major version of Firefox
and Chrome covering about a year. The generation is correctly classified from
Chrome 91 (released in May 2021) to 101 and Firefox 89 (released in June 2021)
to 100. Prior versions did not support WebAssembly SIMD instructions, which
are part of the distinguishers in our traces. Our CPU-generation fingerprints
have been stable for a year. This represents a high time stability for a browser
fingerprint compared to ever-changing browser APIs and other hardware-based
approaches, such as DrawnApart [26], where the fingerprint may change with
browsers’ major releases, resulting in a median tracking time of 28 days.

Impact of Noise on Classification As the attacker resides inside a sandbox,
they cannot know nor control noise created by other processes or tabs. Such noise

CPU Port Contention Without SMT 13

could deteriorate the performance of our classifier by creating wrong results in
the data collection process. We run the data collection process in the website on
Firefox 100 and Chrome 101 on a quadcore i5-8365U, while artificially creating
noise with the stress command. The stress threads create noise, disturbing
either the sequential port contention or the clock thread. Fewer noise sources, i.e.,
stress -c {1..4}, result in 93 % accuracy. That is because the OS’s scheduler
balances the workload, and the attack physical core is not affected by the noise.
A higher count of stress threads, i.e., 5 to 8, still yields an accuracy of 75 %.

6 Discussion

In this section, we discuss the practical use of CPU generation fingerprinting (Sec-
tion 6.1), its limitations (Section 6.2), the effects of virtualization and emulation
(Section 6.3) as well as possible mitigations (Section 6.4).

6.1 Practical Use of CPU-Generation Fingerprinting

The CPU-generation attribute does not have a high uniqueness, as even with a
bigger training set, there are a limited number of CPU generations. The relevant
feature here is its stability. We envision using this new fingerprinting attribute in
combination with existing attributes. Its stability can be used as a linking factor
to better link fingerprints to enhance tracking time [53] or use fingerprinting as a
second authentication factor [27]. Hardware-based fingerprinting attributes are
ideal candidates, as hardware is updated less often than software, and software
updates usually lead to changes in fingerprints. However, even robust hardware-
based methods can break with browser internal changes [26]. We have shown
that our method is robust to major version changes of browsers over a year.

6.2 Limitations

For CPU generations with major changes, sequential port contention is a highly
reliable method to fingerprint the CPU generation. Such changes are found on
Intel CPUs between the Bridge (e.g., Sandy Bridge, Ivy Bridge), the Well (e.g.,
Haswell, Broadwell), and the Lake (e.g., Skylake, Coffee Lake, Whiskey Lake,
Comet Lake) microarchitectures. However, starting with the successful Lake
microarchitecture, changes between new versions are smaller, making it harder to
detect the specific microarchitecture. For example, Coffee Lake, Whiskey Lake,
and Comet Lake are based on the nearly identical designs of the execution units.
Only Ice Lake introduced changes again, specifically with an additional store
unit [55] which subsequently led to changes in the port assignment for several
instructions. Hence, the detection of the CPU generation cannot differentiate
names for essentially the same generation.

Due to lack of access, some generations are not included in the training
set, e.g., Nehalem or Ice Lake. Thus, they cannot be correctly predicted by our
proof-of-concept model and are not included in the evaluation set. This could be

14 T. Rokicki et al.

easily corrected by extending our study and running the framework on a larger
range of CPUs. CPUs with significant microarchitectural changes are potentially
highly identifiable, e.g., Ice Lake with its addition of new store units.

6.3 Virtualization and Emulation

Sequential port contention is not limited to bare-metal code execution but also
works from inside virtual machines if the guest is virtualized and not emulated.

Virtualization As all involved instructions are unprivileged and not emulated
by the hypervisor, there is no difference in the execution stream to a bare-metal
execution. Hence, the measured effects are also the same. Moreover, as only a
single CPU core is required, the scheduler of the hypervisor does not affect the
contention. We verify on Ubuntu 20.04 (kernel 5.13) with QEMU KVM 4.2.1
that we measure the same effect of sequential port contention within a virtual
machine (Ubuntu 20.04, kernel 5.4).

Emulation Sequential port contention requires that the specifically-crafted
instruction stream is executed without modifications on the CPU. For emulation,
this is not the case if instructions are interpreted or translated just in time
with potential additional instructions in the instruction stream. For example,
when running the guest operating system (Ubuntu 20.04, kernel 5.4) in QEMU
4.2.1 with full system emulation (TCG), we are unable to measure the effect of
sequential port contention. In this setup, the instruction stream with and without
contention have the same execution time.

Based on this observation, sequential port contention can detect emulation,
e.g., if the code is analyzed via a malware-analysis emulator [25,6]. Hence,
sequential port contention provides malware with another trick to detect such
environments. As discussed in Section 6.4, mitigating sequential port contention
is difficult. Likewise, sequential port contention is likely infeasible to emulate,
making it difficult to prevent malware from detecting the presence of an emulator.

6.4 Mitigation

Sequential port contention does not require any operating-system interface or
particular setup, such as SMT (cf. Section 3). Hence, this side channel cannot be
prevented on the operating-system level but potentially on the browser level. As
previous work on microarchitectural attack detection [19,35,22,47], we show that
this side channel can also be detected using hardware performance counters.

Browser Mitigation Existing browser mitigations against side-channel attacks
are only effective against sequential port contention if they block access to timing
sources [24,33,45] or entirely prevent the execution of active content [13,37].
However, while effective, these methods also impact the usability of all websites.

CPU Port Contention Without SMT 15

100 200 300 400 500 600
0

50

100 JetStream Idle SPC

Time [s]

R
a
ti

o
[%

]

Fig. 6: Ratio of backend-bound to misprediction-bound execution when unning
the JetStream JavaScript and WebAssembly benchmark (left), nothing (middle),
and our website for generating the browser fingerprint (right) in Firefox 100.0.2.

The browser can interleave the generated instruction stream with memory
fences, effectively preventing out-of-order execution. Theoretically, to fully miti-
gate the side channel, a browser has to emit a memory fence after every assembly
instruction. However, this leads to unacceptable performance penalties, as it
effectively prevents out-of-order execution while additionally adding the overhead
of the fence (multiple cycles) after every instruction. A trade-off between the
number of inserted fences and signal strength might be feasible, though. We leave
an evaluation to future work.

Alternatively, the browser can reorder the instruction stream while keeping
its functionality. Such reordering can be part of existing compiler optimizations,
such as loop optimizations. Software-diversification approaches have also been
shown as mitigation against side-channel attacks [10,36]. As the code required for
sequential port contention requires precise control over the instruction sequence,
any diversification likely breaks the side channel. We leave the evaluation of
software-diversification methods applied by the browser to future work.

Detection via Performance Counters To detect sequential port contention,
we propose a metric based on the topdown bottleneck decomposition [58]. Pre-
vious work focused mostly on cache-based performance counters for detecting
microarchitectural attacks [19,35,22,47]. However, for sequential port contention,
the cache activity is indistinguishable from typical workloads. The bottleneck
exploited in sequential port contention is the execution unit in the backend.
As the instruction stream is entirely linear, we use the ratio of backend-bound
execution divided by misprediction-bound execution. Hence, the more often the
bottleneck is in the backend, combined with next to no mispredictions, the higher
the likelihood that the monitored snippet uses sequential port contention.

Figure 6 shows the evaluation of this metric in Firefox while running the
JetStream JavaScript and WebAssembly benchmark (left), nothing (middle),
and our website for generating the browser fingerprint (right). Our tests do not
show any workload where this metric is as high as for sequential port contention,
allowing detection of this side channel using a simple threshold (dashed line).

16 T. Rokicki et al.

7 Related Work

7.1 SMT Side-Channel Attacks

Aldaya et al. [3] introduced the first SMT side-channel attack based on port
contention. Their native implementation allowed inferring private keys from
OpenSSL’s TLS. Bhattacharyya et al. [5] exploited port contention to create a
covert channel in a speculative execution attack. Other on-core resources can
be targeted by SMT side-channel attacks: the Translation Lookaside Buffer [15],
L1 data cache [57], L1 way predictor [31], or the µop-cache [38]. In a more
systematized approach, ABSynthe [14] is a black-box framework to automatically
detect on-core contention sources. The contention source is not documented by
the framework, but is leveraged in a side-channel attack to recover EdDSA keys.

7.2 Side-Channel Attacks in Browsers

With the Prime+Probe cache attack in JavaScript, Oren et al. [34] proposed the
first microarchitectural side-channel attack in the browser. Cache occupancy was
also used to monitor opened websites in the browser [48]. DRAM has also been
targeted to reproduce Rowhammer [20] or create a covert channel [46] in the
browser. Gras et al. [16] demonstrated that an attacker in the JavaScript sandbox
can reverse ASLR and de-randomize virtual addresses. Microarchitectural side-
channels also let an attacker track user’s browsing history through Floating-Point
Units [4]. Transient execution attacks have also been shown in the browser,
including Spectre [23], ZombieLoad [11], and RIDL [43].

7.3 Browser Fingerprinting

The first attempt to use fingerprints to de-anonymize web clients was introduced
by Eckersley [12]. Laperdrix et al. [28] presented an overview of existing browser
fingerprinting techniques and applications. Most fingerprints rely on software
attributes, such as HTTP headers and user agents [12], Canvas API [50,2],
or browser extensions [49,41,30]. Hardware features have also been used to
create fingerprints. Sanchez-Rola et al. [42] demonstrated how imperfections in
computer internal clocks can be used to fingerprint unique machines. JavaScript
template attacks [44] were applied to fingerprinting, retrieving the instruction-set
architecture, and used memory allocator from the JavaScript sandbox. Laor et al.
[26] identified devices based on unique properties in the GPU stack.

8 Conclusion

We introduced sequential port contention, a new side channel based on port
contention that does not require SMT. We proposed a WebAssembly framework to
automatically determine instruction sequences creating sequential port contention.
We demonstrated that an attacker can exploit sequential port contention to

CPU Port Contention Without SMT 17

determine the CPU generation of a victim from the browser within 12 s. This
information is highly stable, and the attack works correctly even under heavy
system noise. This new side-channel is privacy threatening, as it is hard to
mitigate and can be used for improving the stability of fingerprints.

Acknowledgments This work benefited from the support of the project ANR-
19-CE39-0007 MIAOUS of the French National Research Agency (ANR), and
ANR-21-CE39-0019/Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) 491039149 FACADES.

References

1. Abel, A., Reineke, J.: uops.info: Characterizing latency, throughput, and port usage
of instructions on intel microarchitectures. In: ASPLOS (2019)

2. Acar, G., Eubank, C., Englehardt, S., Juárez, M., Narayanan, A., Dı́az, C.: The
web never forgets: Persistent tracking mechanisms in the wild. In: CCS (2014)

3. Aldaya, A.C., Brumley, B.B., ul Hassan, S., Garćıa, C.P., Tuveri, N.: Port contention
for fun and profit. In: S&P (2019)

4. Andrysco, M., Kohlbrenner, D., Mowery, K., Jhala, R., Lerner, S., Shacham, H.:
On subnormal floating point and abnormal timing. In: S&P (2015)

5. Bhattacharyya, A., Sandulescu, A., Neugschwandtner, M., Sorniotti, A., Falsafi, B.,
Payer, M., Kurmus, A.: Smotherspectre: Exploiting speculative execution through
port contention. In: CCS (2019)

6. Brengel, M., Backes, M., Rossow, C.: Detecting hardware-assisted virtualization.
In: DIMVA (2016)

7. Bugzilla: Check crossoriginisolated for all nsrfpservice::reducetimeprecision* callers.
https://bugzilla.mozilla.org/show bug.cgi?id=1586761, accessed: 2022-05-20

8. contributors, M.: Cross-origin-embedder-policy. https://developer.mozilla.org/
en-US/docs/Web/HTTP/Headers/Cross-Origin-Embedder-Policy, accessed: 2021-
19-11

9. contributors, M.: Cross-origin-opener-policy. https://developer.mozilla.org/en-US/
docs/Web/HTTP/Headers/Cross-Origin-Opener-Policy, accessed: 2021-19-11

10. Crane, S., Homescu, A., Brunthaler, S., Larsen, P., Franz, M.: Thwarting cache
side-channel attacks through dynamic software diversity. In: NDSS (2015)

11. Easdon, C., Schwarz, M., Schwarzl, M., Gruss, D.: Rapid prototyping for microar-
chitectural attacks. In: USENIX Security Symposium (2022)

12. Eckersley, P.: How unique is your web browser? In: Privacy Enhancing Technologies
(2010)

13. Giorgio Maone: NoScript - JavaScript/Java/Flash blocker for a safer Firefox expe-
rience! (July 2017), https://noscript.net

14. Gras, B., Giuffrida, C., Kurth, M., Bos, H., Razavi, K.: Absynthe: Automatic
blackbox side-channel synthesis on commodity microarchitectures. In: NDSS (2020)

15. Gras, B., Razavi, K., Bos, H., Giuffrida, C.: Translation leak-aside buffer: Defeating
cache side-channel protections with TLB attacks. In: USENIX (2018)

16. Gras, B., Razavi, K., Bosman, E., Bos, H., Giuffrida, C.: Aslr on the line: Practical
cache attacks on the mmu. In: NDSS (2017)

17. Group, W.C.: Index of instructions webassembly 2.0. https://webassembly.github.
io/spec/core/appendix/index-instructions.html, accessed: 2022-05-20

https://bugzilla.mozilla.org/show_bug.cgi?id=1586761
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Embedder-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Embedder-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Opener-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Opener-Policy
https://noscript.net
https://webassembly.github.io/spec/core/appendix/index-instructions.html
https://webassembly.github.io/spec/core/appendix/index-instructions.html

18 T. Rokicki et al.

18. Group, W.C.: Security - webassembly. https://webassembly.org/docs/security/,
accessed: 2022-05-20

19. Gruss, D., Maurice, C., Wagner, K., Mangard, S.: Flush+Flush: A Fast and Stealthy
Cache Attack. In: DIMVA (2016)

20. Gruss, D., Maurice, C., Mangard, S.: Rowhammer. js: A remote software-induced
fault attack in javascript. In: DIMVA (2016)

21. Hat, R.: Disabling smt to prevent cpu security issues using the web con-
sole. https://access.redhat.com/documentation/en-us/red-hat-enterprise-linux/8/
topic/f1d65124-781b-4543-a51a-d2bf9fa794ac, accessed: 2022-05-10

22. Irazoqui, G., Eisenbarth, T., Sunar, B.: Mascat: Preventing microarchitectural
attacks before distribution. In: CODASPY (2018)

23. Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W., Hamburg, M.,
Lipp, M., Mangard, S., Prescher, T., et al.: Spectre attacks: Exploiting speculative
execution. In: S&P (2019)

24. Kohlbrenner, D., Shacham, H.: Trusted browsers for uncertain times. In: USENIX
Security Symposium (2016)

25. Kruegel, C.: Full system emulation: Achieving successful automated dynamic anal-
ysis of evasive malware. In: BlackHat USA (2014)

26. Laor, T., Mehanna, N., Durey, A., Dyadyuk, V., Laperdrix, P., Maurice, C.,
Yossi Oren, R.R., Rudametkin, W., Yarom, Y.: DrawnApart: A Device Identi-
fication Technique based on Remote GPU Fingerprinting. In: NDSS (2022)

27. Laperdrix, P., Avoine, G., Baudry, B., Nikiforakis, N.: Morellian analysis for
browsers: Making web authentication stronger with canvas fingerprinting. In:
DIMVA (2019)

28. Laperdrix, P., Bielova, N., Baudry, B., Avoine, G.: Browser fingerprinting: A survey.
ACM Trans. Web 14(2), 8:1–8:33 (2020)

29. Laperdrix, P., Rudametkin, W., Baudry, B.: Beauty and the beast: Diverting
modern web browsers to build unique browser fingerprints. In: S&P (2016)

30. Laperdrix, P., Starov, O., Chen, Q., Kapravelos, A., Nikiforakis, N.: Fingerprinting
in style: Detecting browser extensions via injected style sheets. In: USENIX Security
Symposium (2021)

31. Lipp, M., Hadžić, V., Schwarz, M., Perais, A., Maurice, C., Gruss, D.: Take a Way:
Exploring the Security Implications of AMD’s Cache Way Predictors. In: AsiaCCS
(2020)

32. Liu, C., White, R.W., Dumais, S.T.: Understanding web browsing behaviors through
weibull analysis of dwell time. In: SIGIR (2010)

33. Mao, J., Chen, Y., Shi, F., Jia, Y., Liang, Z.: Toward Exposing Timing-Based
Probing Attacks in Web Applications. In: International Conference on Wireless
Algorithms, Systems, and Applications (2016)

34. Oren, Y., Kemerlis, V.P., Sethumadhavan, S., Keromytis, A.D.: The spy in the
sandbox: Practical cache attacks in javascript and their implications. In: CCS (2015)

35. Payer, M.: HexPADS: a platform to detect “stealth” attacks. In: ESSoS (2016)
36. Rane, A., Lin, C., Tiwari, M.: Raccoon: Closing digital {Side-Channels} through

obfuscated execution. In: USENIX Security Symposium (2015)
37. Raymond Hill: uBlock Origin - An efficient blocker for Chromium and Firefox. Fast

and lean. (July 2017), https://github.com/gorhill/uBlock
38. Ren, X., Moody, L., Taram, M., Jordan, M., Tullsen, D.M., Venkat, A.: I see dead

µops: Leaking secrets via intel/amd micro-op caches. In: ISCA (2021)
39. Rokicki, T., Maurice, C., Laperdrix, P.: Sok: In search of lost time: A review of

javascript timers in browsers. In: EuroS&P (2021)

https://webassembly.org/docs/security/
https://access.redhat.com/documentation/en-us/red-hat-enterprise-linux/8/topic/f1d65124-781b-4543-a51a-d2bf9fa794ac
https://access.redhat.com/documentation/en-us/red-hat-enterprise-linux/8/topic/f1d65124-781b-4543-a51a-d2bf9fa794ac
https://github.com/gorhill/uBlock

CPU Port Contention Without SMT 19

40. Rokicki, T., Maurice, C., Botvinnik, M., Oren, Y.: Port contention goes portable:
Port contention side channels in web browsers. In: ASIACCS (2022)

41. Sánchez-Rola, I., Santos, I., Balzarotti, D.: Extension breakdown: Security analysis
of browsers extension resources control policies. In: USENIX Security Symposium
(2017)

42. Sánchez-Rola, I., Santos, I., Balzarotti, D.: Clock around the clock: Time-based
device fingerprinting. In: CCS (2018)

43. van Schaik, S., Milburn, A., Österlund, S., Frigo, P., Maisuradze, G., Razavi, K.,
Bos, H., Giuffrida, C.: RIDL: rogue in-flight data load. In: S&P (2019)

44. Schwarz, M., Lackner, F., Gruss, D.: Javascript template attacks: Automatically
inferring host information for targeted exploits. In: NDSS (2019)

45. Schwarz, M., Lipp, M., Gruss, D.: JavaScript Zero: Real JavaScript and Zero
Side-Channel Attacks. In: NDSS (2018)

46. Schwarz, M., Maurice, C., Gruss, D., Mangard, S.: Fantastic timers and where to
find them: High-resolution microarchitectural attacks in javascript. In: International
Conference on Financial Cryptography and Data Security (2017)

47. Schwarzl, M., Borrello, P., Kogler, A., Varda, K., Schuster, T., Gruss, D., Schwarz,
M.: Dynamic process isolation. arXiv:2110.04751 (2021)

48. Shusterman, A., Kang, L., Haskal, Y., Meltser, Y., Mittal, P., Oren, Y., Yarom, Y.:
Robust website fingerprinting through the cache occupancy channel. In: USENIX
Security Symposium (2019)

49. Starov, O., Laperdrix, P., Kapravelos, A., Nikiforakis, N.: Unnecessarily identifiable:
Quantifying the fingerprintability of browser extensions due to bloat. In: WWW
(2019)

50. Stone, P.: Pixel perfect timing attacks with HTML5 (2013)
51. Taram, M., Ren, X., Venkat, A., Tullsen, D.: Secsmt: Securing SMT processors

against contention-based covert channels. In: USENIX Security Symposium (2022)
52. Townley, D., Ponomarev, D.: SMT-COP: defeating side-channel attacks on execution

units in SMT processors. In: PACT (2019)
53. Vastel, A., Laperdrix, P., Rudametkin, W., Rouvoy, R.: FP-STALKER: tracking

browser fingerprint evolutions. In: S&P (2018)
54. W3C: Webassembly. https://webassembly.org/, accessed: 2022-05-20
55. WikiChip: Sunny cove - microarchitectures - intel - wikichip. https://en.wikichip.

org/wiki/intel/microarchitectures/sunny cove, accessed: 2022-05-20
56. Yarom, Y., Falkner, K.: FLUSH+RELOAD: A high resolution, low noise, L3 cache

side-channel attack. In: USENIX Security Symposium (2014)
57. Yarom, Y., Genkin, D., Heninger, N.: Cachebleed: A timing attack on openssl

constant time RSA. In: CHES (2016)
58. Yasin, A.: A top-down method for performance analysis and counters architecture. In:

IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS) (2014)

A Training set

https://webassembly.org/
https://en.wikichip.org/wiki/intel/microarchitectures/sunny_cove
https://en.wikichip.org/wiki/intel/microarchitectures/sunny_cove

20 T. Rokicki et al.

Table 1: CPUs used in our training set

CPU Vendor Generation

Xeon X5670 Intel Westmere
Xeon E5-2620 Intel Sandy Bridge
Xeon E5-2630 Intel Sandy Bridge
Xeon E5-2630L Intel Sandy Bridge
Xeon E5-2650 0 Intel Sandy Bridge
Xeon E5-2660 0 Intel Sandy Bridge
Core i5-2520M Intel Sandy Bridge
Xeon E5-2660 v2 Intel Ivy Bridge
Xeon E5-2630 v3 Intel Haswell
Core i3-4160T Intel Haswell
Xeon E5-2620 v4 Intel Broadwell
Xeon E5-2630 v4 Intel Broadwell
Xeon E5-2680 v4 Intel Broadwell
Core i3-5010U Intel Broadwell
Xeon Gold 6126 Intel Skylake
Xeon Gold 6130 Intel Skylake
Core i9-9980HK Intel Coffee Lake
Core i5-8365U Intel Whiskey Lake
Xeon Gold 5218 Intel Cascade Lake SP
Xeon Gold 5220 Intel Cascade Lake SP
Core i7-10510U Intel Comet Lake
Core i7-10710U Intel Comet Lake
Core i5-1135G7 Intel Tiger Lake
EPYC 7301 AMD Zen
Ryzen 5 2500U AMD Zen
Ryzen 9 5900HX AMD Zen 3

	CPU Port Contention Without SMT

