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Asymptotic behaviors of a kinetic approach to the collective
dynamics of a rock-paper-scissors binary game

Hugo Martin ∗

October 6, 2022

Abstract

This article studies the kinetic dynamics of the rock-paper-scissors binary game in a
measure setting given by a non local and non linear integrodifferential equation. After proving
the wellposedness of the equation, we provide a precise description of the asymptotic behavior
in large time. To do so we adopt a duality approach, which is well suited both as a first step
to construct a measure solution by mean of semigroups and to obtain an explicit expression
of the asymptotic measure. Even thought the equation is non linear, this measure depends
linearly on the initial condition. This result is completed by a decay in total variation norm,
which happens to be subgeometric due to the nonlinearity of the equation. This relies on an
unusual use of a confining condition that is needed to apply a Harris-type theorem, taken
from a recent paper [2] that also provides a way to compute explicitly the constants involved
in the aforementioned decay in norm.

Keywords: kinetic equations, binary games, measure solutions, nonlinearity, long-time behav-
ior, explicit limit, subgeometric convergence rate.

MSC 2010: Primary: 45K05, 35B40, 35R06; Secondary: 91A05

1 Introduction

In a recent article [6], Pouradier Duteil and Salvarani introduced a kinetic equation to describe
a large population of agents that interact by mean of random encounters and wealth exchange.
Transcient pairs are formed with probability η, then if both of the agents are rich enough (in
a sense to be clarified below), they play a game of rock-paper-scissors, and based on the result
possibly exchange money. If the outcome of the game is a draw, then the transcient pair is
unmade without change in the players’ wealth. Otherwise, the winner receives a fixed quantity
h > 0 from the other player. The payoff matrix of player 1 for this zero-sum rock-paper-scissors
game is given by

R P S( )R 0 h −h
P −h 0 h
S h −h 0

Standard results from game theory state that the optimal strategy is in this case a mixed strategy
and a Nash equilibrium, that is selecting at random and uniformly one of the three moves [9].
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The population of players, structured in wealth, is described by a distribution function u = u(t, y)
defined on R2

+. Given a subset A ⊂ R+, the integral∫
A
u(t, y)dy

represents the number of individuals whose wealth belongs to A. Denoting uin the initial wealth
distribution, this model reads

∂tu(t, y) =
η

3

∫ ∞
h

u(t, y′)dy′
[
u(t, y − h)1[2h,∞)(y) + u(t, y + h)1[0,∞)(y)− 2u(t, y)1[h,∞)(y)

]
u(0, y) = uin(y), ∀ y > 0.

(1)
The intensity of the exchange between players is proportional to the integral∫ ∞

h
u(t, y′)dy′

which makes this equation non linear. This term comes from the rule that forbids debts, implying
that players involved in a transcient pair only play the game if they own at least h.
The authors of the aforementionned article provided (among other results) wellposedness of this
equation in a L1 setting as well as its behavior as h vanishes under the diffusive scalling t← t/h2.
The large time asymptotics when h remains fixed was yet to be investigated: so is the purpose of
the present paper. Our goal is to provide a precise asymptotic behavior to this equation, drawing
inspiration from the methodology developped in [7] for a critical case of the growth-fragentation
equation. In this article, the authors worked in a measure framework and adopted a combination
of semigroup and duality approach. They obtained both an uniform exponential decay using the
results from [8] and a formula for the invariant probability measure, that was explicit in term
of direct and adjoint eigenvector of the growth-fragmentation equation (see [4] for a rich survey
as well as very general assumptions ensuring the existence of such functions for this equation).
This equation is non local yet linear, unlike the one studied in the present article which is both
non local and non linear. Such feature can arguably be considered as the hallmark of the lost of
exponential relaxation toward a stationary solution, that is indeed verified in the present case, see
Theorem 1 below. Taking advantage of the particular expression of Equation (1), an appropriate
time rescaling enables to use results from the recent paper [2] from Cañizo and Mischler.
The remaining of the paper is organized as follows. In the next section, we introduce the
framework that is required to solve Equation (1) in the sense of measures and state our main
result. Our methodoloy relies on a duality approach, so Section 3 is devoted to the study of
the adjoint equation. In Section 4, we build on previous results to construct a measure solution
to Equation (1). Section 5 contains a precise description of the asymptotic behavior of the
solution. These results are illustrated by numerical simulations in Setion 6. Finally in Section 7,
we propose some possible continuations of this paper.

2 Preliminaries and the main result

We start by recalling briefly the notions from measure theory that we need to establish our
results. For a more complete introduction on this field, we refer the reader to [12] in which the
focus is on the total variation norm, and the recent book [5] for a rich exposition on measure
solutions to PDEs, in particular using the topology of the flat norm or dual bounded Lipschitz
norm.
We endow R+ = [0,+∞) with its standard topology and the associated Borel σ−algebra B(R+).
Throughout the paper, we shall consider discrete subsets of R+ and unions of such sets, so for a
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subset Ω ⊂ R+, we denote byM(Ω) the space of real-valued Radon measures with Hahn-Jordan
decomposition µ = µ+ − µ− on Ω such that

‖µ‖ :=

∫
Ω

d|µ| <∞

where |µ| = µ++µ− is the total variation measure of µ. To obtain the desired asymptotic results,
we shall work in spaces of weighted measures. For a measurable (weight) function V : Ω→ [1,∞),
we denote byMV (Ω) the subspace of finite signed measures µ on Ω such that

‖µ‖V =

∫
Ω
V d|µ| <∞,

and simply ‖ · ‖ whenever V ≡ 1.
Now we denote BV (Ω) the space of Borel functions f : Ω→ R+ such that

‖f‖BV (Ω) := sup
y∈Ω

|f(y)|
V (y)

<∞.

If a function f ∈ BV (Ω) is also continuous, we denote f ∈ CV (Ω). In the case V ≡ 1, we simply
write ‖ · ‖∞ for this norm, and more generally omit the index V . For every µ ∈MV (Ω), one can
define a linear form on BV (Ω) through the duality bracket

f 7→ 〈µ, f〉 :=

∫
Ω
fdµ.

With a slight abuse of notation, for a measurable set A, we will write µ(A) instead of 〈µ,1A〉.
The norm ‖ · ‖V can be expressed as

‖µ‖V = sup
‖f‖BV (Ω)61

〈µ, f〉.

Now we define a weaker norm on the space of measures. First, for a function f continuous on Ω,
we define

|f |Lip := sup
y 6=z

|f(y)− f(z)|
|y − z|

.

Then we can define the Lipschitz bounded norm

‖f‖BL(V ) := ‖f‖BV (Ω) + |f |Lip.

The dual bounded Lipschitz norm is thus defined as

‖µ‖BL∗(V ) := sup

{∫
Ω
fdµ : f ∈ C(Ω), ‖f‖BL(V ) 6 1

}
with C(Ω) denoting the set of continuous functions on Ω. Since the supremum is taken on a
smaller set, it is clear that for any measure µ, one has ‖µ‖BL∗(V ) 6 ‖µ‖V . In particular, one has
‖δy − δz‖ = 2 if y 6= z but ‖δy − δz‖BL∗(1) = min(1, |y − z|), so (M(Ω), ‖ · ‖BL∗) enjoys better
topological properties that (M(Ω), ‖ · ‖TV ).
It remains to define a notion of measure solutions to Equation(1). We choose an equation of the
"mild" type, in the sense that it relies on an integration in time. Let us give our motivation for
this choice. Assume that u(t, y) ∈ C1(R+; L1(R+)) satisfies (1) in the classical sense. Integrating
this equation multiplied by f ∈ B(R+), we obtain∫ ∞

0
f(y)u(t, y)dy =

∫ ∞
0

f(y)uin(y)dy

+

∫ t

0

∫ ∞
0

η

3

(∫ ∞
h

u(z, s)dz

)
[f(y + h) + f(y − h)− 2f(y)]1[h,∞)(y)u(s, y)dy ds.
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In order to state the equivalent of this equation for a general signed measure, we define the
operator A on B(R+) by

Af : y 7→ [f(y + h) + f(y − h)− 2f(y)]1[h,∞)(y).

Definition 1. A family (µt)t>0 ⊂M(R+) with initial condition µin is called a measure solution
to Equation (1) if for all f ∈ B(R+) one has

〈µt, f〉 = 〈µin, f〉+

∫ t

0

〈
µs,

η

3
µs([h,∞))Af

〉
ds. (2)

We introduce now another slight abuse of notation. For a measurable set A ⊂ R+ and a
positive real number a, we denote

A+ a := {y ∈ R+ : ∃x ∈ A, y = x+ a} .

Finally, we are ready to state the main result of this paper, which is about the wellposedness of
Equation (1) in the measure setting, as well as the asymptotic bahaviour of the solution, when
the exchange parameter h remains fixed.

Theorem 1. For any initial condition µin ∈ M(R+), there exists a unique measure solution
(µt)t>0 to Equation (1) in the sense of Definition 1, a projection operator Ph defined onM(R+)
and constants C, λ > 0 independant of η and µin([h,∞)) such that

∀t > 0,
∥∥µt − µinPh

∥∥ 6
C(

1 + ηµin([h,∞))
3 t

)λ ∥∥µin − µinPh
∥∥ . (3)

The constants C and λ can be computed explicitely, and the measure µinPh is given explicitely
in terms of the initial condition µin and the exchange parameter h:

• suppµinPh ⊂ [0, h)

• for all measurable set A ⊂ [0, h)

µinPh(A) =

∞∑
k=0

µin (A+ kh) .

Remark. A particular feature of Equation (1) is the conservation of the population and total
wealth. Indeed, a formal integration against the measures dy and ydy over [0,∞) leads to the
balance laws

d

dt

∫ ∞
0

u(t, y)dy =
d

dt

∫ ∞
0

yu(t, y)dy = 0.

In the language of measures, this translates by µt(R+) = µin(R+) and 〈µt, Id〉 = 〈µin, Id〉 with
Id the identity function, provided µin as a finite first moment. If (µt)t>0 is a measure solution,
then the first equality is satisfied by definition, since 1R+ lies in B(R+). If in addition 〈µin, Id〉
is finite, one can define the formula (2) on test functions f ∈ B1+Id(R+), i.e. functions that are
Borel and satisfy

sup
y∈Ω

|f(y)|
1 + y

<∞.

The function Id lies in this set and satisfies Af = 0. Thus the equality 〈µt, Id〉 = 〈µin, Id〉 is
satisfied, meaning that the total wealth is conserved at any finite time t.

Now, we make a statement about the behavior of the ‘asymptotic in time’ measure µinPh
when h vanishes.
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Theorem 2. Denoting P0 the linear operator acting on measures defined by µP := µ(R+)δ0,
one has

~Ph − P0~BL∗ 6 h

with ~·~BL∗ the operator norm on (M(R+), ‖ · ‖BL∗) defined by

~P~BL∗ := sup
‖µ‖BL∗61

‖µP‖BL∗
‖µ‖BL∗

.

3 Dual equation and right semigroup

This section is devoted to the study of the wellposedness of a family of equations that are related
to the adjoint equation. Assume (µt)t>0 is the unique solution to (2). Then, the (backward)
adjoint equation is given by

∂

∂t
f(t, s, y) =

η

3
µt([h,∞))Af(t, s, y)

=
η

3
µt([h,∞)) [f(t, s, y + h) + f(t, s, y − h)− 2f(t, s, y)]1[h,∞)(y), (4)

with (t, s, y) ∈ R3
+ and s 6 t, supplemented with the terminal condition f(t, t, y) = f0(y). The

second argument s is included to account for the inhomogeneity in the time evolution, since the
solution of (4) depends on the values of t 7→ µt([h,∞)). Due to the indicator function 1[h,∞),
a solution f to Equation (4) satisfies f(t, s, y) = f0(y) for all y ∈ [0, h) and 0 6 s 6 t. On the
interval [h,∞), we solve a mild version of this equation, that is obviously more complicated than
on [0, h). All in all, we search for a function f that satisfies

f(t, s, y) =f0(y)e−
2η
3
1[h,∞)(y)

∫ t
s µσ([h,∞))dσ

+
η

3
1[h,∞)(y)

∫ t

s
µσ([h,∞))e−

2η
3

∫ t
σ µτ ([h,∞))dτ [f(σ, s, y + h) + f(σ, s, y − h)]dσ

(5)

for all y > 0. In this form, this equation depends on the solution (µt)t>0 of the direct problem, so
we introduce related equations by replacing µ•([h,∞)) by a generic non negative and continuous
b function. The equation we study is then

f(t, s, y) =f0(y)e−
2η
3
1[h,∞)(y)

∫ t
s b(σ)dσ

+
η

3
1[h,∞)(y)

∫ t

s
b(σ)e−

2η
3

∫ t
σ b(τ)dτ [f(σ, s, y + h) + f(σ, s, y − h)]dσ. (6)

In this section, we will solve Equation (6) for a fixed function b. The wellposedness of this
problem, as well as useful properties, are collected in the next proposition. First, we introduce
some notations. For Ω̃ ⊂ R2

+ and Ω ⊂ R+, we denote C
(

Ω̃,B(Ω)
)
the set of functions f that

are defined and continuous on Ω̃ such that for all (t, s) ∈ Ω̃, the function f(t, s, ·) lies in B(Ω).
Similarly, we define a subset of the previous one, denoted C1

(
Ω̃,B(Ω)

)
made of the functions

such that ∂tf and ∂sf lie in C
(

Ω̃,B(Ω)
)
. For x ∈ [0, h) we define

Cx := {x+ kh, k ∈ N} .

Since players can only gain or loose h after each game, they shall remain in the same ‘class of
wealth’ at all time, depending on their initial wealth only. Such classes are precisely these sets
Cx for x ∈ [0, h). Since any f ∈ B(R+) can be written as

f =
∑

x∈[0,h)

f|Cx

it is enough to prove properties on B(Ω× Cx), which we do for the next result.
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Proposition 3. For all f0 ∈ B(Cx) and function b continuous, positive and non increasing, there
exists a unique solution fb to Equation (6) in C(R2

+,B(Cx)) ∩ C1([0, T ]2,B(Cx)) for any T > 0.
Additionally

for all (t, s) ∈ R2
+ and x ∈ [0, h), ‖fb(t, s, ·)‖B(Cx) 6 ‖f0‖B(Cx);

if f0 > 0 then for all t > s > 0, fb(t, s, ·) > 0;

if f0 = 1Cx , then fb(t, s, ·) = 1Cx for all (t, s) ∈ R2
+,

if b is non increasing, then for all (t, s) ∈ R2
+ and x ∈ [0, h),

‖fb(t, s, ·)‖C1
x
6
(
‖f0‖B(Cx) + 2b(0)‖Af0‖B(Cx)

)
and fb lies in C1(R2

+,B(Cx)), with

‖f‖C1
x

:= ‖f‖B(Cx) + ‖∂tf‖B(Cx) + ‖∂sf‖B(Cx).

Proof. Fix b ∈ C(R+) with the aforementionned properties and T > 0. Let Γ be the operator
defined on B([0, T ]2 × Cx)

Γf(t, s, y) =f0(y)e−
2η
3
1[h,∞)(y)

∫ t
s b(σ)dσ

+
η

3
1[h,∞)(y)

∫ t

s
b(σ)e−

2η
3

∫ t
σ b(τ)dτ [f(σ, s, y + h) + f(σ, s, y − h)]dσ,

with (t, s, y) ∈ [0, T ]2 × Cx, T > 0 and f0 ∈ B(Cx). Considere functions

f, g ∈
{
ϕ ∈ B([0, T ]2 × Cx), ∀s ∈ [0, T ], ϕ(s, s, ·) = f0

}
.

We easily show that

sup
(t,s)∈[0,T ]2

‖Γf(t, s, ·)− Γg(t, s, ·)‖B(Cx) 6
2η

3
‖b‖∞T sup

(t,s)∈[0,T ]2
‖f(t, s, ·)− g(t, s, ·)‖B(Cx)

so for T < 3‖b‖∞
2η , the operator Γ is a contraction and thus has a single fixed point on [0, T ].

To prove the claim on the boundedness of the solution, we prove that the closed ball of radius
‖f0‖B(Cx) is invariant under Γ. One has Γf(t, s, x) = f0(x), so

sup
(t,s)∈[0,T ]2

|Γf(t, s, x)| 6 ‖f0‖B(Cx).

Now for y > x, we compute

|Γf(t, s, y)| 6 ‖f0‖B(Cx)e
− 2η

3

∫ t
s b(s)ds +

2η

3

∫ t

s
b(σ)e−

2η
3

∫ t
σ b(τ)dτ‖f(σ, s, ·)‖B(Cx)dσ

so

sup
(t,s)∈[0,T ]2

‖f(t, s, ·)‖B(Cx) 6 ‖f0‖B(Cx) =⇒ sup
(t,s)∈[0,T ]2

‖Γf(t, s, ·)‖B(Cx) 6 ‖f0‖B(Cx),

thus the claim is proved. As a consequence, one can iterate the fixed point procedure on time
intervals of length T ad nauseam, to finally obtain a unique global solution defined on R3

+.
If f0 is nonnegative, the operator Γ preserves the closed cone of Borel functions defined on
{(t, s, y) ∈ R2

+ × Cx, s 6 t}, so the fixed point fb satisfies fb(t, s, ·) > 0 for all t > s > 0. In
addition, if f0 = 1Cx , we easily obtain by computations that 1Cx is the fixed point.
Then, we prove that the time derivative of the aforementioned solution f lies in C1([0, T ]2,B(Cx))
for any T > 0. Let f, g ∈

{
ϕ ∈ C1([0, T ]2,B(Cx)), ∀s ∈ [0, T ], ϕ(s, s, ·) = f0

}
. This set is
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Γ−invariant if f0 lies in B(Cx). For t, s > 0 and y > h we compute the derivative in the
first variable and obtain after integrating by parts

∂tΓf(t, s, y) = b(t)Af0(y)1[h,∞)(y)e−
2η
3

∫ t
s b(σ)dσ

+
η

3
b(t)1[h,∞)(y)

∫ t

s
e−

2η
3

∫ t
s b(σ)dσ [∂tf(σ, s, y + h) + ∂tf(σ, s, y − h)] dσ. (7)

The derivation with respect to the second variable provides

∂sΓf(t, s, y) = −b(s)Af0(y)1[h,∞)(y)e−
2η
3

∫ t
s b(σ)dσ

+
η

3
1[h,∞)(y)

∫ t

s
b(σ)e−

2η
3

∫ t
s b(σ)dσ [∂sf(σ, s, y + h) + ∂sf(σ, s, y − h)] dσ.

Finally, we obtain

sup
(t,s)∈[0,T ]2

‖Γf(t, s, ·)− Γg(t, s, ·)‖C1 6
2η

3
‖b‖∞T sup

(t,s)∈[0,T ]2
‖f(t, s, ·)− g(t, s, ·)‖C1

so Γ is also a contraction in C1
(
[0, T ]2;B(Cx)

)
provided T < 3‖b‖∞

2η . Iterating this result, we
obtain that the solution is continuously differentiable in the two first variables on [0, T ] for any
T > 0.
In the case the function b is non increasing, we can bound b(t) in (7) from above by b(σ) inside
the integral for all σ ∈ [s, t] and obtain, taking the supremum norm

|∂tΓf(t, s, y)| 6 b(t)‖Af0‖B(Cx)e
− 2η

3

∫ t
s b(σ)dσ +

2η

3

∫ t

s
b(σ)e−

2η
3

∫ t
σ b(τ)dτ‖∂tf(σ, s, ·)‖B(Cx)dσ

and a similar formula holds for the derivative in the variable s. Then we obtain

|Γf(t, s, y)|+ |∂tΓf(t, s, y)|+ |∂sΓf(t, s, y)|

6
(
‖f0‖B(Cx) + (b(t) + b(s))‖Af0‖B(Cx)

)
e−

2η
3

∫ t
s b(s)ds +

2η

3

∫ t

s
b(σ)e−

2η
3

∫ t
σ b(τ)dτ‖f(σ, s, ·)‖C1dσ

so

sup
(t,s)∈[0,T ]2

‖f(t, s, ·)‖C1 6
(
‖f0‖B(Cx) + 2b(0)‖Af0‖B(Cx)

)
=⇒ sup

(t,s)∈[0,T ]2
‖Γf(t, s, ·)‖C1 6

(
‖f0‖B(Cx) + 2b(0)‖Af0‖B(Cx)

)
and we conclude as before.

We now express the solution constructed in the previous proposition as a semigroup acting
on an initial distribution. To this extent, we define M (b)

s,t f0(y) = fb(s, t, y) for all (s, t, y) ∈
[0, T ]2 × R+ and T > 0, where fb is the unique fixed point of Γ with initial condition f0 and
associated to function b.

Corollary 4. For any continuous function b : R+ 7→ R bounded in supremum norm and f ∈
B(R+), the function (s, t, x) 7→M

(b)
s,t f(x) lies in C (R+;B(R+))∩C1

(
[0, T ]2;B(R+)

)
for all T > 0.

The family
(
M

(b)
s,t

)
06s6t

is a nonhomogeneous semigroup, i.e. satisfies

∀t > τ > s > 0, M (b)
s,s f = f, and M

(b)
s,t f = M

(b)
τ,tM

(b)
s,τ f.

In addition, it satisfies

∀t > s > 0, ∂tMs,tf = b(t)AM (b)
s,t f = b(t)M

(b)
s,tAf and ∂sM

(b)
s,t f = −b(s)AM (b)

s,t f.

It is a positive and conservative contraction on Cx for all x ∈ [0, h), i.e for all t > s > 0,
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f > 0⇒M
(b)
s,t f > 0,

M
(b)
s,t 1Cx = 1Cx ,∥∥∥M (b)
s,t f

∥∥∥
B(Cx)

6 ‖f‖B(Cx).

Proof. To prove the semigroup property M
(b)
s,t = M

(b)
s,τM

(b)
τ,t , we first prove the commutation

properties. They are trivially true on [0, h), and thus we focus on the interval [h,∞). For
f ∈ B(R+), we compute the derivative in t of (s, t, y) 7→M

(b)
s,t f(y)

∂tM
(b)
s,t f(y) = −2η

3
b(t)M

(b)
s,t f(y) +

η

3
b(t)

[
M

(b)
s,t f(y + h) +M

(b)
s,t f(y − h)

]
= b(t)AM (b)

s,t f(y).

The derivative in s ofMs,tf satisfies Equation (6) on [s, T ) for all s ∈ [0, T ) with initial condition
−b(s)Af , and thus

∂sMs,tf = −b(s)AMs,tf.

Now we prove the desired commutation for an initial condition of the form 1{x+kh} with x ∈ [0, h)
and k ∈ N, and the result for a general initial distribution is deduced from the linearity and
continuity of these operators. For k > 2, one has

A1{x+kh}(y) = 1{x+kh}(y + h) + 1{x+kh}(y − h)− 21{x+kh}(y)

= 1{x+(k−1)h}(y) + 1{x+(k+1)h}(y)− 21{x+kh}(y),

so we compute

M
(b)
s,tA1{x+kh}(y) = M

(b)
s,t 1{x+(k−1)h}(y) +M

(b)
s,t 1{x+(k+1)h}(y)− 2M

(b)
s,t 1{x+kh}(y)

AM (b)
s,t 1{x+kh}(y) = M

(b)
s,t 1{x+kh}(y + h) +M

(b)
s,t 1{x+kh}(y − h)− 2M

(b)
s,t 1{x+kh}(y)

and so it is enough to show that

M
(b)
s,t 1{x+(k−1)h}(y) +M

(b)
s,t 1{x+(k+1)h}(y) = M

(b)
s,t 1{x+kh}(y + h) +M

(b)
s,t 1{x+kh}(y − h).

To do so, we define u(s, t, y) = M
(b)
s,t 1{x+kh}(y + h) + M

(b)
s,t 1{x+kh}(y − h), and this function

satisfies

u(s, t, y) =
(
1{x+kh}(y + h) + 1{x+kh}(y − h)

)
e−

2η
3

∫ t
s b(σ)dσ

+
η

3

∫ t

s
b(σ)e−

2η
3

∫ t
σ b(τ)dτ

[
Ms,σ1{x+kh}(y + 2h) + 21{x+kh}(y) + 1{x+kh}(y − 2h)

]
dσ

=
(
1{x+(k−1)h} + 1{x+(k+1)h}

)
(y)e−

2η
3

∫ t
s b(σ)dσ

+
η

3

∫ t

s
b(σ)e−

2η
3

∫ t
σ b(τ)dτ [u(s, σ, y + h) + u(s, σ, y − h)]dσ

so u is the fixed point of Γ with initial condition 1{x+(k−1)h} + 1{x+(k+1)h}, so the claimed is
proved for k > 2. The case k = 1 can be proved in a similar fashion, and the case k = 0 is trivial.
Now to prove the semigroup property, we define g(τ) = M

(b)
s,τM

(b)
τ,t f for τ ∈ [s, t] and prove that

it is actually constant. Using the properties already proved, we can compute its derivative and
obtain

g′(τ) = b(τ) (AMs,τ −Ms,τA)Mτ,tf = 0.

The positivity, contraction and conservation properties follow immediately from Proposition 3.
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4 Wellposedness

In this section, we take advantage of the duality approach from section 3 to prove the wellposed-
ness of Equation (2). We provide the measure solution by constructing a left action semigroup
onM(Ω) for Ω ⊂ R+, and thus heavily rely on the results of Section 3. For 0 6 s 6 t, a positive
measure µ on Ω and any Borel set A ⊂ Ω, we define

µM
(b)
s,t (A) :=

∫
Ω
M

(b)
s,t 1Adµ

and will show that this construction provides the unique measure solution of Equation (1) in the
sense of Definition 1. First, we show that this defines a positive measure.

Lemma 5. Let b be a continuous function, bounded in supremum norm. For all positive measure
µ on R+ and t > s > 0, the set function µM (b)

s,t lies inM(R+). Additionnaly, for any f ∈ B(Ω),
one has

〈µM (b)
s,t , f〉 = 〈µ,M (b)

s,t f〉. (8)

A detailed proof for a similar result is given in [7] for weigthed measures and can be adapted
to the present case. Yet we provide the main elements of the proof.

Proof. From (6), the properties of the semigroup M (b)
s,t and the monotone convergence theorem,

we can easily show that for all increasing sequences (fn)n∈N ⊂ B(R+) that converge pointwise
to f ∈ B(R+), one has for all x > 0 and t > 0

lim
n→∞

Ms,tfn(x) = Ms,tf(x).

This ensures that if (An)n∈N is a countable sequence of disjoint Borel sets in Ω, one has

µMs,t

( ∞⊔
k=0

Ak

)
=
∞∑
k=0

µMs,t(Ak)

for all µ ∈ M+(Ω). The remaining two axioms for a positive measure come from the positivity
of the semigroup and the uniqueness of the solution of Equation (6). By definition of µM (b)

s,t , the
identity (µM

(b)
s,t )f = µ(M

(b)
s,t f) is clearly true for any simple function f . Since any nonnegative

measurable function is the increasing pointwise limit of simple functions, it is also valid in [0,∞]
for any nonnegative f ∈ B(Ω). Decomposing f ∈ B(Ω) as f = f+ − f−, the linearity of the
semigroup ensures that the equality (µM

(b)
s,t )f = µ(M

(b)
s,t f) is true for all f ∈ B(Ω).

For t > s > 0 we extend the definition of µ 7→
(
µM

(b)
s,t

)
t>s>0

toM(R+) by setting

µM
(b)
s,t := µ+M

(b)
s,t − µ−M

(b)
s,t ,

and this extension clearly preserves the identity 〈µM (b)
s,t , f〉 = 〈µ,M (b)

s,t f〉.

Proposition 6. For any continuous function b : R+ 7→ R bounded in supremum norm and
f ∈ B(R+), there exists at least a family of Radon measures (µ

(b)
t )t>0 with initial condition µ

satisfying

µ
(b)
t f = µf +

∫ t

0
〈µ(b)
s , (b(s)Af)〉ds.
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Proof. For f ∈ B(R+) and t > 0, we write

M
(b)
0,t f = f +

∫ t

0
∂σM

(b)
0,sfds = f +

∫ t

0
b(σ)M

(b)
0,sAfdσ.

Integrating against µ, interverting integrals, using (8) and taking the obtained identity at s = 0,
we obtain

〈µM (b)
0,t , f〉 = 〈µ, f〉+

∫ t

0
〈µM (b)

0,s , b(s)Af〉ds.

so the family t 7→ µM
(b)
0,t satisfies the desired relation.

Theorem 7. There exists a unique solution (µt)t>0 to Equation (1) in the sense of Definition 1.
Additionally, denoting µin the initial measure, one has

‖(µ)‖[0,T ] 6 ‖µin‖,

µin > 0 ⇒ ∀t > 0, µt > 0.

Proof. We work in the space C([0, T ];M(R+)), which is a Banach space when endowed with the
norm

‖(µ)‖[0,T ] := sup
t∈[0,T ]

‖µt‖.

Let Π : C([0, T ];M(R+))→ C([0, T ];M(R+)) defined by

Π : (µ) 7→ (µinM
(µ•([h,∞)))
0,t )t>0

with µin the initial condition in Equation (2). We will show that this operator is a contraction.
First, simple computations using Corollary 4 lead to

‖ (Π(µ)) ‖[0,T ] 6 ‖µin‖,

so the operator Π stabilizes the ball of radius ‖µin‖TV , and a fixed point would lie in this ball.
In addition, it is enough to work with families of measures lying in this ball. Let (µ1) and (µ2)
be such families. For f ∈ B(R+) and t > 0, the following inequality holds∣∣(Π(µ1)t −Π(µ2)t

)
f
∣∣ 6 ‖µin‖

∣∣∣(M (µ1
•([h,∞)))

0,t −M (µ2
•([h,∞)))

0,t

)
f
∣∣∣ .

We compute∣∣∣(M (µ1
•([h,∞)))

0,t −M (µ2
•([h,∞)))

0,t

)
f
∣∣∣ 6 ‖f‖∞ ∣∣∣(e−

2η
3

∫ t
0 µ

1
s([h,∞))ds − e−

2η
3

∫ t
0 µ

2
s([h,∞))(s)ds

)∣∣∣
+

2η

3
‖f‖∞

(∫ t

0

∣∣(µ1
s − µ2

s)([h,∞))
∣∣ e− 2η

3

∫ t
s µ

1
σ([h,∞))dσds

+

∫ t

0

∣∣∣µ2
s([h,∞))

(
e−

2η
3

∫ t
s µ

1
σ([h,∞))dσ − e−

2η
3

∫ t
s µ

2
σ([h,∞))dσ

)∣∣∣ds)
6

2η

3
‖f‖∞e

2η
3
‖µin‖T

(
2 +

2η

3
‖µin‖T

2

)
T‖(µ1)− (µ2)‖[0,T ]

from which we deduce

‖
(
Π(µ1)

)
−
(
Π(µ2)

)
‖[0,T ] 6

2η

3
e

2η
3
‖µin‖T

(
2 +

η

3
‖µin‖T

)
T‖(µ1)− (µ2)‖[0,T ]

so Π is a contraction on C([0, T ];M(R+)) for a final time T small enough.Due to the stabilization
of the ball of radius ‖µin‖, one can iterate the fixed point on [T, 2T ], [2T, 3T ]... changing the
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initial condition each time. Finally, we obtain a unique fixed point of Π, globally defined, denoted
(µt)t>0. This fixed point satisfies, for all f ∈ B(R+),

〈µt, f〉 = 〈µin,M
(µ•([h,∞)))
0,t f〉 = 〈µin, f +

∫ t

0
µs([h,∞))M

(µ•([h,∞)))
0,s

η

3
Afds〉

= 〈µin, f〉+

∫ t

0
〈µinM

(µ•([h,∞)))
0,s , µs([h,∞))

η

3
Af〉ds

and hence is a measure solution in the sense of Definition 1. From now on, we simply denote
µt = µinM0,t. To prove the uniqueness of the solution, let (ν) be another measure solution with
initial condition µin, thus satisfying

〈νt, f〉 = 〈µin, f〉+

∫ t

0
〈νs, νs([h,∞))

η

3
(Af) ds〉.

Now we compute

|(µt − νt)f | 6
∫ t

0

∣∣∣〈µs − νs, µs([h,∞))
η

3
(Af)〉

∣∣∣ ds+

∫ t

0

∣∣∣〈νs, (µs([h,∞))− νs([h,∞)))
η

3
Af〉

∣∣∣ds
6

4η

3
‖µin‖‖f‖∞

∫ t

0
‖µs − νs‖ds

and we conclude using Grönwall’s lemma. Finally, to prove that for a nonnegative initial measure
µ, the measure solution at time t is also nonnegative, we write, for f > 0

〈µMs,t, f〉 = 〈µ,Ms,tf〉 > 0

by positivity of Ms,t on B(R+).

5 Asymptotic behaviors

In the first subsection, we use a time rescaling to reduce the study of the asymptotic behavior of
the nonlinear problem to one of a linear equation. In the second subsection, we study how the
limit obtained, that depends heavily on h, behaves when this parameter vanishes.

5.1 Large time asymptotics

In this section, we only consider non negative initial measures such that µin([h,∞)) > 0, other-
wise for all t > 0, one has

‖µt − µinPh‖ = 0

and the inequality (3) is automatically statisfied. Let us recall that (µt)t>0 denotes the unique
measure solution to Equation (1). There exists a unique solution to Equation (5) with b =
µ•([h,∞)), simply denoted f . In order to obtain the asymptotic behavior in time of the measure
solution, we introduce a rescaling in time of the (mild) dual equation, that is linear. Denote

f̃(t, y) := f(ψ(t), 0, y)

with ψ so that ψ(0) = 0 and f̃ is solution of

∂

∂t
f̃(t, y) =

[
f̃(t, y + h) + f̃(t, y − h)− 2f̃(t, y)

]
1[h,∞)(y), (9)

i.e. ψ satisfies
ψ′(t)

η

3
µψ(t)([h,∞)) = 1.

11



Denoting

θ(t) =
η

3

∫ t

0
µs([h,∞))ds

one has
d

dt
θ(ψ(t)) = 1.

Since we take µin non negative, by virtue of Lemma 3 and Corollary 4, θ is increasing, and thus
invertible. Taking ψ = θ−1 provides the desired rescaling.
Proposition 3 with b(s) = 3

η for all s > 0 ensures that there exists a unique solution to (9).
Denoting f0 the initial condition, this solution can be expressed by mean of a (homoeneous in
time) semigroup (Nt)t>0, i.e. f̃(t, ·) = Ntf0. Due to te rescaling relation, one hasM (µ•([h,∞))

0,t f0 =
Nθ(t)f0, thus one can deduce the asymptotic behavior of (µt)t>0 = (µM0,t)t>0 from that of
(µNt)t>0. Taking advantage of its time homogeneity, one can apply Harris-type results, extracted
from [2]. To that extent, let us introduce some vocabulary.
A stochastic operator is a linear operator N :M(Ω)→M(Ω) that preserves mass and positivity.
A stochastic semigroup on M(Ω) is a family (Nt)t∈[0,∞) of stochastic operators Nt : M(Ω) →
M(Ω) such that N0 = Id and NtNs = Nt+s for all s, t > 0. Finally, (Nt)t∈[0,∞) is a stochastic
semigroup onMV (Ω) if it is a stochastic semigroup onM(Ω) and satisfies a growth estimate

‖µNt‖V 6 CV eωV t‖µ‖V (10)

for all µ ∈ MV (Ω) and all t > 0, and for some constants CV > 1, ωV > 0. We may now state
the theorem that we shall use to obtain the asymptotic behavior of the semigroup (Nt)t∈[0,∞).

Theorem 8 (5.2 from [2]). Let V : Ω→ [1,∞) be a measurable (weight) function and let (Nt)t>0

be a stochastic semigroup onMV (Ω). Assume that

1. the semigroup (Nt)t>0 satisfies the semigroup Lyapunov condition: there exists constants
σ, b > 0 such that for all t > 0 and all µ ∈MV (Ω)

‖µNt‖V 6 e−σt‖µ‖V +
b

σ
(1− e−σt)‖µ‖;

2. for some T > 0, NT satisfies the local coupling condition: there exists 0 < γH < 1 and
A > 0 with b/A < σ such that

(y, z ∈ Ω, V (y) + V (z) 6 A) =⇒ ‖(δy − δz)NT ‖TV 6 2γH .

Then the semigroup has an invariant probability measure µ∗ ∈ MV (Ω) which is unique within
measures ofMV (Ω) with total mass 1, and there exist λ,C > 0 such that

‖µNt‖V 6 Ce−λt‖µ‖V

for all µ ∈MV (Ω) such that µ(Ω) = 0.

Now we obtain an exponential decay for (Nt)t>0 acting on meausures defined on a given class
of wealth Cx.

Proposition 9. Fix x ∈ [0, h) and define the weight function V on Cx by V (y) = 2 − e−α(x)y

with α(x) = 2 log 2
2x+h . Consider the action of (Nt)t>0 to MV (Cx) and BV (Cx). Then there exists

λ,C > 0 independant of x and a unique invariant probability measure µ∗x such that

‖µNt − µ∗x‖V 6 Ce−λt‖µ− µ∗x‖V .
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Proof. First note for all y > h, one has V (y − h) + V (y + h) 6 2V (y). Since 1 6 V (y) 6 2, we
readily obtain that (Nt)t>0 is well-defined onMV (Cx). In addition, we compute for y > h

NtV (y) = V (y)e−2t +

∫ t

0
e−2(t−s)

[
V (y + h)

NsV (y + h)

V (y + h)
+ V (y − h)

NsV (y − h)

V (y − h)

]
ds

6 V (y)e−2t

[
1 +

∫ t

0
2e2s‖NsV ‖V ds

]
and deduce from it and Gronwall’s Lemma that for all t > 0, one has ‖NtV ‖V 6 1. It is then
straightforward to obtain that (Nt)t>0 is a stochastic semigroup on MV (Cx) with CV = 1 and
ωV = 0. Now we prove that it satisfies a Lyapunov condition. Let µ ∈MV (Cx) and f ∈ BV (Cx).
For any σ > 0, we easily obtain that AV +σV 6 2σ, so A(V −2) 6 −σ(V −2) and by positivity of
the semigroup ∂tNt(V −2) 6 −σNt(V −2), so in turn Nt(V −2) 6 e−σt(V −2) using Gronwall’s
Lemma. This inequality provides

NtV 6 e−σtV + 2(1− e−σt)

that leads to the Lyapunov condition

‖µNt‖V 6 e−σt‖µ‖V + 2(1− e−σt)‖µ‖.

We now turn to the local coupling condition. We can set A = 3 and consider the set of elements
y, z of Cx such that V (y)+V (z) 6 3. Let us explain how we chose this particular weight function,
and to that extent temporarily consider a general V (y) = 2 − e−αy defined on Cx. We rewrite
y = x+k1h and z = x+k2h, and without loss of generality take k1 6 k2. The previous condition
is thus equivalent to e−αk1h + e−αk2h > eαx. Now we tune α so that the aformentionned set only
contains the pairs (x, x) and (x, x+ h), corresponding to the conditions

2 > eαx, 1 + e−αh > eαx and 2e−αh < eαx.

When x > 0, the first and third conditions lead to log 2
x+h < α 6 log 2

x . Taking α as the harmonic
mean of these two bounds, i.e.

α(x) =
2 log 2

2x+ h
,

fulfills these conditions, as well as the second one. In the case x = 0, only the third is not
automatically fulfilled, and it is equivalent to

α >
log 2

h

so the previous values also works. In this setting, in order to obtain the desired inequality, it is
enough to study the total variation norm of (δx − δx+h)Nt = δx − δx+hNt. Let f ∈ B(Cx). One
has

Ntf(x+ h) =
1− e−2t

2
f(x) + f(x+ h)e−2t +

∫ t

0
e−2(t−s)Nsf(x+ 2h)ds

so

‖(δx − δx+h)Nt‖ 6 2
1 + e−2t

2

which gives a local coupling condition. To conclude, we note that the constants λ and C are
explicitely given in term of the constants that appear in the two hypoteses of Theorem 8. In our
case σ is any positive real number, b = 2σ and A = 3 so are independant of x.

We now prove a dual version of the exponential decay of (Nt)t>0, seen as an operator acting
on BV (Cx) and identify the limit.
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Proposition 10. Fix x ∈ [0, h) and define the weight function V on Cx by V (y) = 2 − e−α(x)y

with α(x) = 2 log 2
2x+h . Then there exists λ,C > 0 such that

‖Ntf − f(x)1Cx‖BV (Cx) 6 Ce−λt‖f − f(x)1Cx‖BV (Cx)

for all f ∈ BV (Cx).

Proof. Let k ∈ N. One has A1{x}(x + kh) = 1{x+h}(x + kh), so for all t > 0 and k > 1,
∂tNt1{x}(x+ kh) = Nt1{x+h}(x+ kh) > 0. Since Nt1Cx = 1Cx , the positivity of Nt implies that
Nt1{x}(x + kh) converges to lk 6 1 for all k ∈ N. In particular, l0 = 1, and the limit function
satisfies

0 ≡ A

( ∞∑
k=0

lk1{x+kh}

)
=
∞∑
k=0

lkA1{x+kh} =
∞∑
k=1

(lk+1 + lk−1 − 2lk)1{x+kh},

so lk = 1 for all k ∈ N, and finally Nt1{x} −→ 1Cx as t → ∞ for any starting time s > 0. Now
for any f > 0 such that f(x+ kh) 6 1 for all k ∈ N, one has the inequalities

1{x} 6 f 6 1Cx ,

and since Nt is a positive and conservative operator on B(Cx) for all t > , we obtain that for
any such f , Ntf converges pointwise toward 1Cx . By linearity, for any nonnegative f such that
f(x + kh) 6 f(x) for all k ∈ N, the function Ntf converges pointwise toward f(x)1Cx . Finally,
for any f ∈ BV (Cx), we modify the usual decomposition to obtain

f = f+ − f− = (f+ + ‖f‖BV (Cx)1{x})− (f− + ‖f‖BV (Cx)1{x}),

and deduce that Ntf converges pointwise toward (f+(x) + ‖f‖∞)1Cx − (f−(x) + ‖f‖∞)1Cx , that
is f(x)1Cx .
Now taking the dual version of the inequality from Proposition 9 applied on µ−µ∗x with µ(Cx) = 1
provides

‖Ntf − 〈µ∗x, f〉‖BV (Cx) 6 Ce−λt‖f − 〈µ∗x, f〉‖BV (Cx)

and it remains to identify the invariant measure. From this inequality and the pointwise conver-
gence, we obtain that 〈µ∗x, f〉 = f(x) for all f ∈ BV (Cx), i.e. µ∗x = δx.

Of note, the idea to decompose a function f as such on Cx is inspired by the framework
developped in [10] and previous related articles, in a first attempt to apply those results to the
present problem.
We are now ready to provide a result on exponential decay for the semigroup (Nt)t>0 acting on
M(Cx).

Proposition 11. Let V (y) = 2− e−α̃(y)y with α̃(y) := 2 log 2
2mod(y,h)+h . Then there exists constants

λ,C > 0 and a projector operator Ph acting onMV (R+) such that

‖µNt − µPh‖V 6 Ce−λt‖µ− µPh‖V

for all µ ∈MV (R+) with Ph as stated in Theorem 1.

Proof. We define the projection operator Ph by

Ph :

 B(R+)→ B(R+)

f 7→
∑

x∈[0,h) f(x)1Cx
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Using the fact that any f ∈ BV (R+) can be written as

f =
∑

x∈[0,h)

f|Cx ,

we compute

‖Ntf − Phf‖BV (R+) = sup
x∈[0,h)

‖Ntf|Cx − Phf|Cx‖BV (Cx)

6 sup
x∈[0,h)

Ce−λt‖f|Cx − Phf|Cx‖BV (Cx)

6 Ce−λt‖f − Phf‖BV (R+).

The decay in weighted total variation norm is proved by taking the dual estimate of this last
inequality. It remains to make explicit the action of Ph on measures. It is clear that on the
space of function, it repeats the pattern of f on [0, h) on each interval [kh, (k + 1)h). The Riesz
representation theorem states that for every measure µ ∈ M(R+), one can define a measure
denoted µPh such that for all f ∈ B(R+) one has 〈µPh, f〉 = 〈µ,Phf〉. Now for any measurable
set A ⊂ [h,∞), the definition of the operator Ph provides

(µPh)(A) = 〈µ,Ph(1A)〉 = 0

so suppµPh ⊂ [0, h) for any measure µ. In contrast, for a measurable set A ∈ [0, h), let us first
recall that we denote

A+ kh = {y ∈ R+ : ∃x ∈ A, y = x+ kh} .

Then one has

µPh(A) =

〈
µ,

∑
x∈[0,h)

1A(x)1Cx

〉
=

〈
µ,
∑
x∈A

1Cx

〉
=

〈
µ,
∞∑
k=0

1A+kh

〉
=
∞∑
k=0

µ (A+ kh)

and the claim on Ph is proved.

We are now ready to prove the main result of this paper.

Proof of Theorem 1. Since µt = µM0,t = µNθ(t), Proposition 11 states that

‖µt − µinPh‖V 6 Ce−λθ(t)‖µin − µinPh‖V .

Using the estimate

µt([h,∞)) >
µin([h,∞))

1 + µin([h,∞))η
3 t

,

provided in [6, Proposition 3], we obtain that

θ(t) > log

(
1 +

ηµin([h,∞))

3
t

)
and then easily reach the claimed statement.

We shall now give the limit µPh on some examples. Any measure having a density of the forme
1[kh,(k+1)h) with respect to the Lebesgue measure on R+ has the same limit in large time 1[0,h).
Now let considere α > 0 and an exponential distribution µ with parameter α, namely a measure
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with density f(y) = αe−αy with respect to the Lesbesgue measure. Then for 0 6 a < b < h, we
compute

µPh([a, b)) =

∞∑
k=0

∫ b+kh

a+kh
λe−αydy

=

∞∑
k=0

(
e−α(a+kh) − e−α(b+kh)

)
=

e−αa − e−αb

1− e−αh

and thus for all f ∈ B(R+), one has

〈µPh, f〉 =
µ
(
f|[0,h)

)
µ([0, h))

,

that is to say that µPh is an exponential distribution truncated on [0, h).

Remark. It is worth noticing that we cannot expect a convergence in the space M1+Id(R+).
Indeed, considere the space of Borel functions on R+ that satisfy

sup
y∈R+

|f(y)|
1 + y

<∞.

Computing formally the total wealth at the limit in time 〈µPh, Id〉 for a nonnegative measure
µ ∈M1+Id(R+), we obtain

〈µ,PhId〉 =
∞∑
k=0

∫ (k+1)h

kh
(y − kh)dµ(y) = 〈µ, Id〉 − h

∞∑
k=0

kµ([kh, (k + 1)h))

so if µ([h,∞)) > 0, the total wealth in large time is strictly smaller than the total wealth at any
finite time. This loss of wealth forbids a convergence in the space of measure with weight 1 + Id.
However, we can provide an interpretation to this equality. The term

h
∞∑
k=0

kµ([kh, (k + 1)h))

corresponds to the wealth lost by players who reach an absorbing state (i.e. wealth smaller than
h) and is kept by the infinitely small proportion of the population who are infinitely rich.

5.2 Behavior of the asymptotic measure when the exchange parameter h
vanishes

In [6], the authors studied the behavior as h vanishes of Equation (1) under the diffusive scaling.
Here, we give a short result on what happens when h vanishes, once the limit in large time is
taken.

Proposition 12. Denoting P0 the function defined on M(R+) by µP0 = µ(R+)δ0, one has

~Ph − P0~BL∗ 6 h.

Proof. Let f ∈ C1(R+) with ‖f‖BL(V ) 6 1. The function y 7→ Phf(y)− f(0) is h−periodic so

|Phf − P0f | 6 ‖f‖BL(V )|x− 0| 6 h.

We deduce that for µ ∈ BL∗(V ) one has ‖µPh − µP0‖BL∗(V ) 6 h‖µ‖BL∗(V ) and the proof is
easily completed from here.
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Figure 1: The discontinuous weight function V . The dots represent the points on which V is left
continuous only, i.e. the multiples of h.

Of note, the rate h is not optimal. Indeed, continuating our previous examples, we obtain
for dµ(x) = αe−αxdx that

‖µPh − µP0‖BL∗(V ) 6
α

1− e−αh
h2

2
∼h→0

h

2
,

which is independant of the parameter λ. For dµ(x) = 1[0,h), we obtain a quadratic decay

‖µPh − µP0‖BL∗(V ) 6
h2

2
.

6 Numerical illustrations

In this section, we take advantage of the cases in which the limit is easily written to study the
rate of convergence. In all our examples, we take h = 0.5. We used a first order finite differences
schemeto discretize the PDE, and the Simpson quadrature method to compute µt([h,∞)) at
each step. The particular form of Equation (1) enables to increase the time step as µt([h,∞))
vanishes in time. The weight function is depicted on Figure 1.

6.1 Parameters λ and C

Following the lines of [2], we give exact values for the parameters λ and C. In this paper, the
authors obtain an exponential decay for a semigroup (Nt)t>0 by applying Harris’ theorem to the
operator NT , i.e. at a certain time T > 0. The constants are then given by

C(T ) :=
CV eωV T

γ

1 + β

β
, λ(T ) := − log γ

T
> 0,

with CV and ωV from (10) and β and λ obtained as follows. First, β is the unique positive root
of

Kβ2 +

(
γH − γL −K

(
1− 1

A

))
β + γH − 1 = 0,
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with γL and K given by the Lyapunov condition and A and γH by the local coupling condition.
In turn, we can obtain

γ = max

{
γH + βK, 1− β

1 + β
(1− γL −K/A)

}
and then can compute the coefficients C and λ.
In our case, recall first that we have CV = 1 and ωV = 0. The other constants are

γL(T ) = e−σT

K(T ) = 2(1− e−σT )

γH(T ) = 1+e−2T

2

A = 3

with σ > 0 and T > 0 to be fixed. The choice σ = 2 makes the computations dramatically easier,
and leads to

β =

√
265− 11

24
' 0.21995, γ(T ) = 1−B

(
1− e−2T

)
with B := β

3(1+β) and finally

λ(T ) = −
log
(
1−B

(
1− e−2T

))
T

.

We easily see that the function γ is decreasing, and fortunately so is λ. To see it, we first compute
its derivative

λ′(T ) =
1

T 2

[
2BT e−2T

1−B (1− e−2T )
+ log

(
1−B

(
1− e−2T

))]
so λ′(T ) 6 0 is equivalent to

2BT e−2T

1−B (1− e−2T )
6 − log

(
1−B

(
1− e−2T

))
.

Since − log(1−X) > X for any X 6 1, it is enough to prove that

2BT e−2T

1−B (1− e−2T )
6 B

(
1− e−2T

)
,

which is equivalent to

g1(T ) := (1 + 2T )(1− e−2T )−B(1− e−2T )2 − 2T > 0.

One can show that g′1(T ) > 0 is equivalent to T > B(1− e−2T ). Now we set g2(T ) := T −B(1−
e−2T ). On the one hand, one has g1(0) = g2(0) = 0, and on the other

g′2(T ) > 0 ⇐⇒ T >
log 2B

2

which is true. Thus, g2(T ) > 0 for all T > 0, and in turn g1(T ) > 0 for all T > 0, so finally
T 7→ λ(T ) is decreasing.
In fine, one can take the infimum on T for C(T ) and the supremum for λ(T ) to obtain

C :=
1 + β

β
=

√
265 + 13√
265− 11

' 5.5465, λ :=
2

3C
' 0.1202.
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Figure 2: Loglog plot of the decay of the terms in both sides of (3) for square functions as initial
distributions. The simulations were stopped when the quantity ‖µt − µPh‖V reached 5% of its
initial value. Stars: weighted norm of the difference between µt and µPh. Lines: decay rate
times the initial difference in weighted norm. Blue: µin = 21[0.5,1). Red: µin = 21[2,2.5). Yellow:
µin = 21[4.5,5).

6.2 Square functions

The first and simpler case is square functions. We considere three cases with the same asymp-
totic measure, in order to compare their decay to this measure. More precisely, we take initial
(probability) measures with density respectively

1. 1
h1[h,2h) = 21[0.5,1)

2. 1
h1[4h,5h) = 21[2,2.5)

3. 1
h1[8h,9h) = 21[4.5,5)

with respect to the Lebesgue measure. In each case, one has µin([h,∞)) = 1, so the decay rate
in the right hand side of (3) is equal. The very small difference that can be seen between the
lines on Figure 2 is explained by the sligth difference in ‖µ− µPh‖V coming from the fact that
the weight function V is not constant.

6.3 Exponential probability distribution

The next case is exponential probability distribution, namely initial measures with density with
respect to the Lebesgue measure of the form x 7→ αe−αx. We will take α = 0.25, 1 and 4. One
has µin([h,∞)) = 1− e−αh, and thus unlike the previous case of square functions we considere,
this quantity depends on the initial measure. This fact is illustrated on Figure 3 on which the
lines are distinct (to be compared to the ones on Figure 2).

7 Conclusion and further works

In this work, we investigated the wellposedness and long-time behavior of a mean-field model
proposed in [6]. It describes a large population of players that meet, make transcient pairs and
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Figure 3: Loglog plot of the decay of the terms in both sides of (3) for exponential initial
distributions. The simulations were stopped when the quantity ‖µt − µPh‖V reached 5% of its
initial value. Stars: weighted norm of the difference between µt and µPh. Lines: decay rate
times the initial difference in weighted norm. Blue: α = 4. Red: α = 1. Yellow: α = 0.25.

then possibly exchange money, depending on the result of a rock-paper-scissors game in which
both players select their strategies uniformly at random. The resulting equation is a non local
integrodifferential equation that is non linear and solved in a measure setting by mean of duality,
after solving the adjoint equation and express its solution as a semigroup acting on an initial
condition is the space of functions. Taking advantage of this duality approach, we could provide
a precise description of the asymptotic behavior of the solution, that has a subgeometric decay
rate with coefficients explicitely computed.
A possible continuation of this paper would be to obtain optimal constants for the decay rate.
Indeed, the choice σ = 2 cancelled most of the dependance in T in the coefficients appearing in
the computations of the constants C and λ. Figures 2 and 3 suggest that there is room for im-
provement. Other approaches to improve these constants could be finding a better lower bound
for µt([h,∞)) or improving the constants in the local coupling condition.
One might also go further in the transposition in the measure setting of the results from [6].
Indeed, it seems unclear at the moment how the diffusive scalling introduced in the aforemen-
tionned article would interact with the definition of measure solution we adopted in the present
paper. In addition, the asymptotic behavior of the resulting equation would enable to know if
the diagram depicted on Figure 4 is ‘commutative’. Such theoretical work con benefit from its
numerical counterpart. Indeed, providing an asymptotic preserving scheme (in h) that is also
able to capture the dynamics in large time would be alone an interesting challenge, ans in turn
give clues about the expected theoretical behavior to expect.
Another way to pursue this work might be to propose and study variants on the present model.
First, one might obviously change the rules to exchange money once the transcient pairs are
formed. The classical matching pennies game for instance would almost not modify the equa-
tion, leading to a mere change of a 3 into a 2 in the decay rate. A more interesting situation
would result from such a zero-sum game in which the optimal strategy is not a uniform mixed
strategy. One may also change the meeting and pair-making rules, for example imposing that
a player can only initiate a game with another player that has a similar wealth, in the spirit of
bounded confidence in opinion formation models [3, 11].
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(µt)t>0 µ0Ph

? µ0(R+)δ0

t→∞

diffusive scaling h→0 h→0

t→∞

Figure 4: (Commutative?) Diagram of the involved asymptotic behaviors. The top and right
arrows are the subject of the present paper in the measure setting, while the left arrow was
studied in [6] in a L1 setting.

The ‘concentration’ effect in large time was already noted in [6]. An interesting goal might be to
add an extra term in the PDE in order to avoid it. This could be done by mean of a transport
term, that might be negative for the wealthiest players (i.e. taxes) and positive for the poorest
(i.e.. social welfare). Such modification in the model would appeal for a dramatic change in
the proofs, since we crucially used the fact that players remain in the same ’class of wealth’
at any time. It seems likely that the asymptotic measure would be supported on a set larger
than [0, h). Particular choices of the ‘taxes and welfare parameters’ might possibly lead to a
dynamical equilibrium, in the spirit of [1, 7].
Finally, a classical yet necessary complementary work would be to derive the mean-field equation
from an agent based model. We might expect from such a model a dynamic similar to the one
happeing in gambler’s ruin type situation, except in this case a single player would own most of
the money. This feature does not occure in the mean-field equation, and it would be interesting
to understand where precisely it becomes impossible as the number of agents goes to infinity.
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