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Abstract

This paper deals with the modeling of devices based on magnetoelectric
composite materials. These heterogeneous structures are made of ferromag-
netic and ferroelectric materials, the mechanical coupling of which allows
obtaining magneto-electric effects exceeding by several orders of magnitude
the response of single-phase components. A coupling of the Finite Element
Method (FEM) and the Boundary Element Method (BEM) is used to model
the behavior of magnetic effects, while classical FEM formulations are used
for the electrical and mechanical problems. This coupling of numerical meth-
ods allows to avoid considering a free space domain around the active domain,
and thus to use a single mesh for the magnetic, mechanical and electrical
problems. This results in a consequent reduction of the number of unknowns,
which is accompanied by shorter computation times compared to a pure FEM
approach. The global algebraic system is solved by a block Gauss-Seidel type
solver, which allows a good convergence of the multiphysics.

Keywords:
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1. Introduction

Energy conversion in electrical transducers or actuators is based on elec-
tromagnetic interactions, which link the electromotive force to temporal vari-
ations of the magnetic flux density. However, these phenomena are some-
times difficult to exploit, especially for small devices submitted to very low



frequency fields. The use of active composite structures, in particular, mag-
netoelectric (ME) composite structure can help address this issue [1].

The ME coupling consists in the existence of an electric polarization in-
duced by a magnetization or, conversely, of a magnetization induced by an
electric polarization. Materials with such properties have opened up pos-
sibilities of new applications in various fields, such as magnetic field sen-
sors [2], tunable radio-frequency magnetic filters [3|, antennas [4], gyrators
[5], energy harvesters [6], memory devices based on the principle of electric
writing-magnetic reading [7, 8|, biology and medicine [9]. This interaction
emerges as a material property and does not follow directly from Maxwell’s
equations. Past research has been conducted in order to obtain single-phase
materials that simultaneously exhibit coupled magnetic and electrical fer-
roic orders, also known as multiferroics. Unfortunately, despite many efforts
and with few exceptions [10], the majority of single-phase multiferroic ma-
terials are made of complex oxides that exhibit very low coefficients and
mainly at low temperatures [11, 12]. It has been shown that ordinary mag-
netic and electrical susceptibilities provide an upper bound on the coeffi-
cient for single-phase magnetoelectric materials [13]. This disadvantage has
been successfully overcome by the fabrication of magnetoelectric composites
which consist of coupled magneto-mechanical and electro-mechanical phases
[14, 15], the resulting heterogeneous materials show large ME coefficients.
The aim of such composites is to generate the intended magnetoelectric effect
as a deformation-induced product property [16], property that their individ-
ual constituents do not have. In the direct ME effect an applied magnetic
field causes a deformation of the magneto-mechanical coupled phase which
is transmitted to the electro-mechanical coupled phase. As a result, a strain-
induced polarization modulation in the electric phase is obtained. While in
the inverse effect, an applied electric field causes a deformation of the electro-
mechanical phase which is then transmitted to the magneto-mechanical phase
(reverse effect). This results in strain-induced magnetization modulation.

The behavior, performance and effective properties of magnetoelectric
composites depend on the material composition of each phase, the bonds be-
tween the different phases, their morphology and the electrical resistance of
the composite. The electro-mechanical coupled phases can be composed of
ferroelectric (FE) materials (BaTiOs, PbTiO3, Pb(Zr,Ti)TiO3) or piezoelec-
tric materials (PE) ((1-x)Pb(Mgl/3Nb2/3)O;3_,PbTiO3 (PMN-PT), PZT),



while the magneto-mechanical coupled phases can be made of ferrimagnetic
(FI) (CoFeqOy4, NiFeyOy) or ferromagnetic (FM) materials (CoFeB, FeGa).
These heterostructures can be either multiferroic (and also magnetoelectric),
comprising FE/FM materials, or magnetoelectric but not multiferroic, i.e.,
having only one ferroic order, often with PE/FM materials. Particulate
composites formed from a microscale mixture of FE and FI materials show
magnetoelectric coefficient values between 1 and 500 mV cm™! Oe™! at low
frequencies [17], while larger values are obtained at mechanical resonance [18].
In comparison, laminated composites composed of the same ferroelectric and
ferrimagnetic materials show magnetoelectric coefficient values that are an
order of magnitude higher. The highest magnetoelectric coupling coefficients
(> 5V Cm™! Oe™') are obtained by layered heterogeneous structures whose
magneto-mechanical phase is composed of either a giant magnetostriction
alloy (Terfenol-D: Th;_,Dy,Fey) [19] or an amorphous alloy with high mag-
netic permeability and piezomagnetic coefficients (Metglass: Fe-based alloys)
[20]. For the manufacture of laminated composites based on ceramics and
alloys, co-sintering and bonding are the most popular methods.

The complex behavior of the magnetoelectric composite materials de-
scribed above involves not only the definition of appropriate material models,
but also the formulation and solution of fully coupled boundary-value prob-
lems, especially for the development of technological applications. Several
approaches including analytical methods, semi-analytical methods and nu-
merical methods have been applied to the prediction of the overall material
properties and to the investigation of the coupling behavior of the magneto-
electric materials.

Analytical approaches based on Green’s functions have been proposed for
example by Nan et al. [21, 22, 23], Pan [24], Wang and Shen [25]. Elastody-
namics methods combining the equation of motion of continuous media with
mechanical and electrical boundary conditions have also been proposed, for
example by Harshé et al. [26], Avellaneda and Harshé [27], Wu et al. [28],
Muchenik and Barbero [29]. In the previous approach, the response of ME
materials was studied assuming linear behaviors for the ferroelectric and fer-
romagnetic phases. These models have shown how the volume fractions of
each phase, the connectivity [30], as well as the piezoelectric, piezomagnetic
and elastic properties participate in the ME coupling. The nonlinear response
and stress dependence of the ME composite are addressed, for example, by



Wang and Zhou [31], Lin et al. [32], Burdin et al. [33], Shi et al. [34]
who considered the nonlinear anhysteretic behavior and the effect of stress
in the constitutive relationships of the ferromagnetic phase. It results from
these approaches a way to improve the ME coefficients and the frequency-
multiplying behavior of laminated composites via magnetic bias field and
pre-stress. The interfaces between ferroelectric and ferromagnetic phases,
which are not perfect and usually corresponds to a layer of epoxy glue, are
accounted for by means of an interface coupling factor [35, 31]. Taking these
interface effects into consideration allows for better prediction of the coupling
behavior of ME composites.

Approaches based on the method of equivalent electrical circuits have also
been proposed [36, 37]. They use an extension of Mason’s model which al-
lows to establish an equivalent electrical circuit of the ME composites, whose
equivalent electrical parameters are established via a coupled equation of mo-
tion and the integration of the piezoelectric and magnetostrictive behavior
laws. More specifically, these methods can be used to investigate the volt-
age ME coefficient for different modes in static or dynamic regimes and the
electrical resistance load effect on the resonant ME coupling.

To describe and predict the behavior and effective properties of ME com-
posites considering the microstructures and anisotropies of the materials,
various micromechanical analyses have been developed. Such analytical or
semi-analytical solutions are for example based on the homogenization and
self-consistent models [38, 39, 40, 41, 42], Mori-Tanaka mean field theory
[43, 44], variational asymptotic approach [45, 46] or Eshelby’s equivalent in-
clusion approach [47, 48].

All the previously described methods allow to study ME composites with
trivial geometries such as composites with perfect ellipsoidal inclusions, per-
fect laminated structures or composites involving simple boundary value
problems. Despite being computationally expensive, numerical tools are not
restricted to specific topologies. Simulation based on FEM have been con-
ducted for example, by Buchanan [49] and Galopin et al. [50] to study the
multilayer and multiphase ME composites response, and by Lee et al. [51],
Avakian et al. [52] and Zhang et al. [53] in order to determine the effective
properties of linear and non-linear multiphase ME composites. Nevertheless,
a classical FE approach can become unsuitable for modeling ME devices with
several disadvantages.



One disadvantage is related to the stray magnetic fields from the sources
and ME composites. For simple geometries, these stray fields are linked
to the geometry and proportional to the magnetization level. They can be
accounted for by demagnetizing coefficients. This is no longer possible for
more complex geometries or source configurations and the treatment of an
open boundary problem is required. Due to the decrease of the field away
from the sources, an intuitive approach is to consider a sufficiently large
but finite free space domain to respect the conditions of field cancellation at
infinity. Methods for treating open boundary problems have been developed
including those involving infinite elements [54, 55] but they still require the
presence of a free space domain which may lead to a huge mesh.

A second disadvantage of FEM is related to specific applications where
the sources of the magnetic fields commonly known as inductors are located
far from the active materials. An even larger free space domain containing
both the field sources and the ME composite is needed. The free space
domain can then be much larger than that associated with active materials.
On the other hand, for problems with a huge free space domain compared to
the active structure, the FEM leads to problems of accuracy and convergence
[56].

These problems can be avoided by coupling FEM with the BEM. This
coupling of numerical methods is particularly well adapted to the numerical
resolution of open boundary electromagnetic problems. For linear problems
involving homogeneous materials embedded in free space, only the boundaries
of the material domain needs to be discretized. The FEM-BEM approach
also allows dealing with the nonlinear behavior of materials [57]. This pa-
per proposes the development of a FEM-BEM coupling for the modeling of
the electro-magneto-mechanically problem involving ME composites. This
approach is particularly interesting since only the active domains associated
with the materials need to be discretized and the free space domain is prop-
erly accounted for. In addition, a single discretization can be used for the
full coupled problem.

The outline of the paper is as follows: in section 2, after introducing the
full set of continuous governing equations and behavioral laws, we develop
the weak and discrete forms associated with the presented coupling strategy.
In section 3, we present the implemented iterative algorithm used for solving



the multiphysics problem. In section 4, the chosen application and some
results of its modeling will be presented.

2. Theoretical framework of magnetoelectric coupling

In this section, the FEM-BEM coupling used to address the open bound-
ary magnetoelectric problem is described. First, the multiphysics problem
is introduced and the electro-mechanical and magneto-mechanical behavior
laws are defined. The weak and discrete formulations as well as the cou-
pling between the FEM and the BEM are finally detailed. To facilitate the
reading of the following sections, the basic magnetic, electric and mechanical
quantities are summarized in Table 1.

Symbol Description SI-unit
Uu Mechanical displacement m

f Body forces N

S Linear strain -

T Cauchy stress Pa

© Electric scalar potential \Y

Qs Electric surface charge density Cm™2
E Electric field Vm!
D Electric displacement Cm™2
Ored Magnetic reduced scalar potential A

J Electric current density Am™2
H Magnetic field Am™!
B Magnetic flux density T

Table 1: Magnetic, electric and mechanical fields and their SI-Units.

2.1. Electro-magneto-mechanical problem description

We consider a domain Q € R? (d = 2,3) with Q = Qy U Q. U Q,,
where €, €, and €),,, represent the free space, the magnetostrictive and
the piezoelectric domains, respectively. The magnetostrictive and the piezo-
electric domains are assumed at rest and contained in the free space €2y with
a constant dielectric permittivity ¢y and a constant magnetic permeability
1o The bond at the interface between the magnetostrictive and piezoelectric
bodies is assumed to be perfect.



Considering fields of low frequency to static fields, the set of equations
governing electromagnetic phenomena are given by Maxwell’s equations in
the frame of electrostatics and magnetostatics,

V.-B=0 Vxe(, (1)
VxH=J, Vxe, (2)
V.-D=0 VxeQ, (3)
VXxE=0 VxeQ, (4)

where the electric current density Js is taken as the input of the problem
and considered null inside the active material and V- and V X, respectively,
the divergence and the rotational operators with respect to @. To this set of
equation, the balance of linear momentum is added to describe the mechan-
ical equilibrium also in quasi-static fields by neglecting inertia effects:

V.- T+f=0 Vxel,, (5)

where the body force f is also taken null inside the active material.

The boundary 0€,, of the mechanical domain (2, = Q,. U (2, is parti-
tioned as 9Q,, = 90 U INL, with 9Q% N oNL, = 0, and the conditions for
the displacements u® and the surface tractions f are given by:

u=u’ Vaec i, (6)

T -n=f" vaxeco (7)

In (7), n denotes the outward unit normal vector to the surface 9€2. Similarly,
the boundary 0f), of the electrical domain 2, is partitioned such that 02, =

09 U 9N and 992 N 9N? = @, with the conditions for the electric potential
" and the surface charge density Q,:

0= Va €N, (8)

D -n=-Q, Vxecol (9)

In a pure FEM approach, the magnetic domain contains the active ma-
terials and the free space domain €y with Q = €, Uy and ,, = Q, UL,

the magnetic subdomain associated with the active materials. Its bound-
ary 0§29 would be the boundary of the air region partitioned such that



0Q = 00 U INY and 008 U 00 = (), with the conditions for the mag-
netic flux density ¢, and the magnetic field:

B-n=-&, Vxc o (10)
Hxn=0 Yxcoh (11)

o0

Vo

00! o0t

(a) Electrical domain (b) Mechanical domain

o,

(¢) Magnetic domain

Figure 1: Representation of the study domains of the electro-magneto-mechanical problem
by the FEM.

In all generality, mixed boundary conditions can be applied on 0€)y. How-
ever in practice, a normal magnetic field equal to zero is often imposed. In
FEM, €}y is supposed to approach the open infinite free space domain sur-
rounding the physical device so clearly, for the FEM approach to be accurate
for the magnetic problem, a large enough domain 2y must be considered.
Pure FEM formulations of the magnetoelectric effect can be found in [58]
[59]. The FEM-BEM coupling does not need such approximations and the
decay of magnetic fields is properly taken into account without the need of
explicitly considering a free space domain.



2.2. Behavioral laws

Linear behavior laws are considered for both the electro-mechanical and
the magneto-mechanical phases. Although the magneto-mechanical behavior
is strongly non-linear, it is possible to describe it using a linearized piezo-
magnetic behavior law [60] obtained by considering a magneto-mechanical
polarization state composed by a polarizing magnetic field and a mechanical
prestress and by working under conditions which respects small variations
around this state. An analogous approach was applied to the linear piezo-
electric behavior in [61].

Assuming the existence of a thermodynamic potential, it follows that the
behavioral relations depend on the choice of state variables. In this con-
text, despite the heterogeneous nature of the considered structures, both the
piezoelectric and piezomagnetic relations can be derived from the potential

(12)7

1 1 1
Hme(E,H,S):§S:CE’H:S—§E-sS-E—§H-pS-H

H'mech Hdiel Hmagn (12)
—FE-e:S—H-q:585,
" —

Hpiel Hpimg

where the different terms of (12) are the purely mechanical (H™"), the
purely dielectric (H%¢), the purely magnetic (H™"), the piezoelectric (HP*!)
and the piezomagnetic (HP"™) energies. In (12), C, €, u, e and q represent
the fourth-order elasticity tensor, the second-order permittivity tensor, the
second-order permeability tensor, the third-order piezoelectric tensor and the
third-order piezomagnetic tensor, respectively. There are derived from the
potential function H™* as:

C = O2gH™, € = OopH™, p = Oypg H™.
e = O2pH™, q = P H™,

The behavior relations of the linear electro-magneto-mechanical coupling
are then defined by:

(13)



T=-%E-'q-H+CP .8, (14)
D=c. E+e:S, (15)
B=up% H+q:8S, (16)

where ‘(o) denotes the transpose operator. In (14)-(16), the piezoelectric
tensor e is taken null in the piezomagnetic phase and the piezomagnetic
tensor q is taken equal to zero in the piezoelectric phase. The extrinsic nature
of the strain-induced magnetoelectric effect considered here is highlighted by
the absence of an eventual explicit magnetoelectric coefficient a linking the
electric and magnetic fields in equations (15) and (16).

2.3. Choice of resolution variables

2.3.1. Variable of the mechanical problem

The deformations brought into play by the active materials considered
are relatively low. Under the small deformation hypothesis, the linear strain
tensor is defined by:

S — sym (V) = ; (Vu+'Vu), (17)

where V denotes the gradient operator with respect to & and w is the me-
chanical displacement vector field. As S will spontaneously appear in the
weak form of the mechanical problem, we chose the mechanical displacement
as the solving variable of the mechanical problem.

2.3.2. Variable of the electrical problem
From (4) in the quasistatic regime, the electric field derives from a scalar
potential ¢,

E=-Vo. (18)

The computation of the electric field via the scalar electric potential ¢
is a standard procedure in electrostatics. It involves a state variable, the
electric voltage, with a physical meaning and that can be directly imposed
as a boundary condition.

10



2.3.83. Variable of the magnetic problem

In an approach equivalent to a Helmholtz decomposition, the magnetic
field H can be decomposed into two fields (19): Hp, the field created by
the electric current density Js and H,.q the magnetic field created by the
magnetized matter:

H = Hy + H,q. (19)

Assuming that all electric currents are external to the active materials, it
follows that:

V x Ho = J,. (20)
From (19)-(20) together with (2), we get:

V X Hred =0. (21>

Therefore, there exists a reduced scalar field ¢,.4 such that:

Hred = _V¢red> (22)

with ¢,.q the magnetic reduced scalar potential. This potential is the inde-
pendent variable of the magnetic problem. There are some clear advantages
to the use of ¢,.q as a resolution variable than a vector potential: it leads
to shape functions which are nodal/scalar quantities and their gradients are
easier to compute and integrate than vector shape functions and their curl.
This choice of resolution variable can however lead to cancellation errors
for problems with high magnetic permeability. This is not the case for the
considered magnetostrictive and piezoelectric materials [62].

2.4. Weak formulations of the electro-magneto-mechanical problem

From the mechanical and electromagnetic governing equations (1)-(5)
and the behavioral laws (14)-(16) three sub-problems arise: an electrical,
a mechanical and a magnetic problem which will be developed separately.
Boundary value problems associated with the electrical and mechanical sub-
problems are solved using the FE method while the open-boundary value
problem associated with the magnetic sub-problem is solved using FEM-
BEM. In the following subsections, weak formulations of the electrical and
mechanical coupled sub-problems are briefly recalled and the weak formula-
tion of the magnetic problem is given in details.

11



2.4.1. Weak form of the mechanical problem

Considering the coupled behavior law (14), the decomposition of the mag-
netic field (19) and an appropriate virtual mechanical displacement vector
field du, which fulfills the homogeneous condition du = 0 on 92 , the weak
formulation of the balance of linear momentum (5) is given by:

find w such that:

/5S:C:SdQ—/ 6S:te-EdQ—/ 85 :q - Hyeq d9

Qum Qpe Qpm

(23)

:/ 65:“q-H0dQ+/ 6u~fdQ+/ su- fT 409, Vou,
Qom O o0t

where, by definition, §S(x) = sym (Vdu(x)).

2.4.2. Weak form of the electrical problem

Though a FEM-BEM approach could be used for the electric problem
with the surface term that accounts for the leaks of the displacement field,
for our particular application, this coupling can be avoided for two reasons.
Firstly, piezoelectric materials have high electric permittivity which allow
them to canalize the displacement field inside the material domain, leading
to low values of the stray field. Secondly, the piezoelectric material is in
contact with two electrodes which act as equipotential surface regions, each
one fixing the potential in a surface region of the piezoelectric material. The
boundary of the active material can then be partitioned, without much loss of
accuracy, into fixed potential regions and regions with no leaks, thus making
the problem well posed for a FEM approach.

Considering the coupled behavior law (15) and an appropriate virtual
electric scalar potential field d¢, which fulfills the homogeneous condition
dp = 0 on 9Q¢, the FEM weak formulation of the Maxwell-Gauss law (3)
reads:

find ¢ such that:

/ 6E-sS-EdQ+/ SE-e:SdY= [ 6p DydoQ, Yo,  (24)
O Qpe o0

with 0F = —Vp. As a reminder, the electric charge density is zero in the
piezoelectric material and therefore does not appear in the formulation (24).

12



2.4.3. Weak form of the magnetic problem

To establish the FEM-BEM weak formulation of the magnetic problem,
the magnetic domain € is subdivided into an open exterior {2y and an inte-
rior €2, domains (Figure 2). The interface between the two magnetic sub-
domains, boundary of the active material, is denoted by 0€2,,.

Figure 2: Sub-domains of the magnetic problem based on a FEM-BEM formulation. The
FEM is associated with the bounded domain Q,, = Q. U, and the BEM with the
exterior infinite domain Qpg)s corresponding to an infinite free space. The FEM and
BEM are coupled on the common boundary 0€2,,. This boundary can be fictitious but
will coincide here with the boundary of magnetizable bodies €2, in the open domain
QpeMm.

2.4.3.1. Magnetic formulation inside the active material

To obtain a magnetic formulation inside the active domain €2,,, we consider
the Maxwell-Thomson equation (1) weighted by an appropriate virtual mag-
netic scalar potential field d¢ and integrated by part on the domain €,,:

/ Vo - B d,, — / 56 B, dO,, =0 V6o, (25)
Qm 0Qm

13



where B, = B - n with n the unitary normal vector perpendicular to the
elementary surface dof2,,. Let’s now replace B by the behavioral law (16)
and H by the decomposition (19). This results in the weak formulation of
the Gauss-Thomson law (1) in the domain §2,,:

find (¢req, Bn) such that:

/Q V6 1S -V de—/Q V5¢-q;5d9m+/ 56 B, O,
m pm 0Qm

(26)

- /Q Voo pS - Hy dS, Voo,

In a classical FEM approach, a sufficiently large free space domain is

considered in order to neglect the surface term B,. A FEM-BEM coupling

can take into account leakage fields and thus not have to explicitly consider
a free space region.

2.4.3.2.  Magnetic formulation in the free space domain

Let’s consider the Maxwell-Thomson equation (1). In the free space domain
)y the permeability is uniform, linear and taken equal to the vacuum perme-
ability. In this case, the outer magnetic reduced scalar potential fulfills the
Laplace equation [63]:

A¢reqg = 0. (27)

Green’s third identity can then be applied to ¢,.q on a closed surface 0f)
contained within the free space domain 2:

1 o oG a¢red
§¢T6d — /89 gbred aindaQ - G

|G =5, (28)

with G the Green’s kernel fundamental solution of the Laplace equation
defined as:

1
G(r) = Tor (3D), (29)
and
0 re
gnd = Vreq - 0. (30)



In order to couple fields at the interface 0f2,, between the active material
and the free space domain, it is preferable to introduce the quantity B, in
the strong formulation. Indeed, in the free space domain, this quantity is
given by:

a¢red
B, = Hy -n)— , 1
Ho (( 0 ") on ) (31)
which is equivalent to:
6 re B'Vl
Ored _ gy (32)

an On — %7
with Hy,, = Hy - n. Introducing this last relation into the previous strong
formulation (28) we get:

1 oG B
Sha= | & 0 Hy, — 22 ) do.
2¢red 50 an ¢7"6d da /69 G ( On Lo > da (33)

Rearranging the terms, the strong formulation of the magnetic problem in
the free space domain becomes:

oG

1 B
S o0 —doS) = H Q0. 4
2¢red+/€meuoda +/89¢mdanda /aQG ondd (34)

As B,, and ¢,.q are considered continuous across 0f2,,, the weak formula-
tion in the free space domain can then be obtained by projecting (34) onto
an appropriate virtual magnetic scalar potential field d¢g associated with a
closed surface 0€) corresponding here to the external surface 0€2,, of the ac-
tive material domain:

Find (¢red, Bn) such that :

B
/ 560 | 6,28 a00,.000, + [ 660 [ B0 av0,d00,,
O JoQ,  On

1
_ / 560 = brog dOS,, = / 5o / G Hy, d09,,d0%,, V5.
0m 2 QO
Neglecting surface currents on 0f,,, the interface conditions for the mag-

netic fields along 02, read:

15



[Hxn]agm:(), (36)
[B-n ]an =0, (37)

where [®]5q denotes the jump across the surface 0€2,,,. Taking ¢,.q continuous
across OS2, ensures (36). The continuity of the normal magnetic induction
field across 0€2,,, translated by (37), allows us to couple both magnetic for-
mulations (26) and (35) which concludes the FEM-BEM coupling.

2.4.3.3.  Computation of the source field

In a pure FEM approach, the source field is obtained in a pre-resolution on
a mesh containing the entire computational domain. For problems with a
large free space, this resolution increases the overall computational cost of
the multiphysics problem. With the FEM-BEM coupling, the computation
of the source field is performed by the use of the Biot & Savart law (38)
which involves the integration of VG.

H,y — /VG x J, dS). (38)

Hence, there will be no need to consider a free space domain to compute
the source field. In addition, from a numerical resolution point of view, the
computational cost of the source field at the Gauss points of the mesh of
the active material will be independent of the distance between the field
source and the active material domain, which could mean a huge difference
in computation times.

2.5. Discrete formulations of the electro-magneto-mechanical problem

The following FEM-BEM formulations will be derived in vector-matrix
notation, which results in a closed efficient description of the implementation.
To do so, all vectors and matrices will be signified with an underline as e.
In addition, for the Cauchy stress tensor and the linear strain tensor we will
used Voigt’s notation:

T = t(Tn, Th,T33, T2, Tos, T13) and § = t(Sn, 522, 533, 2512, 25237 2513) .
(39)

16



The domain €2 is discretized into a number ng,,, of finite elements re-
Nelem

sulting in a discrete counterpart such that: Q ~ Q" = U Q., where (o)"

indicates the approximated domain and {2, a finite element The fields as
well as their virtual counterparts are approximated element-wise by means
of,

Npode

{u ou"} = > Nf{u du }:Nz {a°,0u’}, (40)

Nnode

{50} =3 NL{@' 00"} = N2 {7,690} (41)
I=1

{o" 00"} = ZN¢{ 60} = N: {§.00°}, (42)

where @/, »' and ng denote, respectively, the discrete nodal displacement,
the discrete nodal electrlc potential and the discrete nodal magnetic potential
at node I, and u®, ¢°, Q are the associated element vectors of unknowns. In

the same way, &I, 5(70 , M) , ou’ , (Lo and 5£ denote the respective discrete
virtual counterparts. NI, Né and N q{ are shape functions associated with the
node I and IN¢ the corresponding matrix of shape functions. n,.4. defines
the number of nodes per element. In this framework, the mechanical strain,
electrical and magnetic fields as well as their respective virtual counterparts
are approximated by:

(08} = Sn{woa} s a}) W

Npode

{E"OE"} = Y BL{¢ 60"} =B, {@", ¢}, (44)
I=1

(H" H") = ”j’feeg{aﬂa@f} — B {660}, (45)
=1

with B!, Bfo, B, BE, B, and Bf, the node-wise and element-wise B-matrices
containing the Cartesian derivatives of the shape functions involved in the
discrete form of (17), (18) and (22).
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2.5.1. Discrete form of the mechanical problem
The substitution of the approximations (40)—(45) in the weak form (23)
of the mechanical problem yields the following discrete form:

n,
elem t— e

> u'd [ B CBL a0 @+ [ B e B A ¢
e=1 e Qe o

k¢ k¢
“uu “up (46)

+/§26ththng6 q?)e—/QEtBthH(,the —0 vou'

Eid) &fneca
2.5.2. Discrete form of the electrical problem
In the same way, the substitution of approximations in the weak form
(24) of the electrical problem yields its discrete representation:

Nelem — e —~ e

>, 60 ) [ B B, A0 ¢ - [ BLe B do, @ —0 V'

=1  |I% o {2 o
L L

(47)

2.5.3. Discrete form of the magnetic problem

The reduced magnetic scalar potential and the linear strain vector in the
weak formulation (26) are discretized using (42) and (43). For the boundary
term, from the discrete point of view it is the set composed by the restriction

to the facets belonging to Q" of the elements used for the discretization of
Qn,

The interpolation of the reduced magnetic scalar potential is thus realized
by the N¢ shape functions associated to the restriction to the boundary of
the N4 shape functions of the elements of Q". Similarly for the normal
component B, of the magnetic induction field, which, given the continuity
condition, is interpolated by 0-order shape functions No.
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n
elem t— e

> 5 /‘Bg u B dO, &~ /etIB%ngB%Z d0, @

e e
L kg,

o
Nelem

trpe h tN@f EXref Xyef N e _ §4¢

—QIB%(“L H," dQ. +Zl o Mo Ny dofe By =0 Vo4,

e ef (=

ﬂmag E;;fjn

(48)
with n/,,,, the number of facet elements belonging to dQ". The discretization
of the BEM weak form (35) from the BEM formulation is performed with
the same shape functions restricted to the boundary 9Q":

elem
S 5 /GQ ‘N /(er 0C K1 400 do — f/ Ny N doo ¢

o1 on
ki
t_A ey G ef e
/ ﬂo/ 2N 400 doQ) B,
O m [0
ke
[ 'Ry [ GHY Ao doo Y =0 Vég”
oN OQm, -
haﬂm ef

shom

(49)

Contrary to the discrete formulations (46)—(48) where local interaction

between elements translates into sparse matrices, the discretisation (49) of

the BEM formulation results into full matrices due to the double integration
on all surface elements.
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3. Iterative multiphysics resolution of the block matrix assembly

A standard assembly procedure of the element matrix k¢ and the element
right-hand side shy is applied to (46)—(49) to generate the global matrix and
right-hand side:

Nelem Nelem
K,= | k: and Sh, = |J shs, (50)
e=1 e=1
Nelem
where |J is an appropriate assembly operators. The two magnetic equa-
e=1

tions are treated as block and the fully coupled problem is made of a 3 x 3
block of matrices representing the magnetic, the mechanical and the electrical
problems. The resulting assembled matrix system is presented in equation
(51) where single-physics matrices are in represented in color, sparse matrices
are represented in light colors whereas full matrices are represented in dark
colors.

0

~ o,

K, K, K 0 Qfd Shim
B, Shom

0 Ky, K¢ 0 | = (51)

@ &m@ca

K ud 0 Kuu Kucp _
f &elec

0 K., | K,

This overall matrix system is not easy to solve using a single solver.
Indeed, the full system is not symmetric and is made of both sparse (FEM)
and full (BEM) matrices. While direct solvers are adapted for solving sparse
matrix systems, iterative solvers are better suited for solving full systems.
Additionally, there is a large scaling difference between coupling coefficients
of the matrix K,. Indeed, elements of the stiffness matrix are computed
using coefficients of the stiffness tensor of the order of 10-100 GPa, whereas
the electric permittivity and magnetic permeability used to generate the
electric and magnetic blocks are of the order of 107 F/m and 107% H/m,
respectively. This difference in coupling coefficients translates into a big
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difference of eigenvalues of the global matrix K,, and therefore in a poor
conditioning number of this matrix.

To overcome these problems we implemented a block Gauss-Seidel scheme
where the resolution of the global coupled system is treated as the resolution
of a set of sub-problems [64] [65]. As the global matrix of each sub-system
is a diagonal block of the global matrix, they are equivalent to mono-physic
problems. The coupling is then introduced via the second hand term. The
sub-system to be solved is given by equation (52):

(K] {27} = {Shi} - Z K| {zj} - Z; Kl {zj}  (52)
i+

where [K ;] relates to mono-physic matrices, [K;;] to coupling matrices and
{2} to the solution at step n-+1 of the block Gauss-Seidel algorithm of the
sub-system 7. To solve each subsystem, a dedicated solver is used depending
on the nature of the sub-problem to be solved. MUMPS direct solvers [66] are
used for the FE sub-problems associated with sparse matrices, with the LU
decomposition performed once and for all at the beginning of the iterative
resolution. The single-physics iterations for these problems will therefore
be fast. The magnetic problem is associated with full matrix blocks and
more delicate to solve. Direct solvers are prohibitive in terms of computing
time and iterative solvers such as GMRES are therefore preferred. The use
of a block preconditioner such as the incomplete LU (ILU) preconditioner
with a shift of the diagonal for the FE block and the Jacobi preconditioner
possibly combined with the matrix compression for the BEM block allows
to accelerate the convergence rate. If a non-linear law p(H) is considered,
then a Newton-Raphson type solver for the magnetic problem can be easily
integrated in the global resolution loop.

4. Validations and Results

4.1. Validation of the purely magnetic formulation

Firstly, we validated the magnetostatic formulation considering a mag-
netic sphere of radius of 1 mm. The analytical solution for the magnetization
of a sphere of uniform relative permeability 1, under an uniform exciting field
H,, is uniform and given by [67]:
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Figure 3: Relative error of the average magnetic field H as a function of the number of
DoFs of the discretized problem.

3 Hy
fr +2
Taking p, = 10 and Hy = 50 kAm™! along the z-axis, the resulting

magnetic field is also oriented along the z-direction, uniform and equal to
H =12.5 kAm~!. Figure 3 shows the relative error,

He:pact = (5?))

|HTEMBEN | gy
Frel = Hemact (54>
between the average of the L? norm of the FEM-BEM solution || H"*BEM||
and the analytical solution H... as a function of the degrees of freedom
(DoFs). With a mesh of 219,014 degrees of freedom (DoFs) we obtained an
average field of 12,499 Am~! clearly showing that the FEM-BEM magneto-
static formulation is very accurate.

4.2. Validation of the magneto-mechanical coupling

To validate the magneto-mechanical formulation, we considered an un-
constrained magnetostrictive sphere with a constant permeability p, under
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a uniform magnetic field and neglect the magnetic forces. Once again, the
analytical magnetic field is given by (53). Defining the relative magnetic per-
meability y, as the ratio between H and B (i.e., u, = B/(p0H)), we obtain
the following system of equations used to obtain the analytical solution:

T=C:S—q-H=0, (55)

(200 +1°) H +q: S = 3u H. (56)

Using material parameters of Table 2 and coupling tensor structure from
[68], we compare analytical results to results of FEM-BEM with increasingly
finely meshed spheres and obtained the curves of Figure 4. The magnetic
and mechanic problems were solved using GMRES which can handle sin-
gular systems resulting from the imposition of the Neumann conditions on
the entire boundary of the mechanical problem. The tolerance of the me-
chanical solver was set to be 10~7 which is sufficient given that the averaged
discrete solution shows a relative error with respect to the analytical solu-
tion greater than 107°. All the multiphysics resolutions took 6 iterations to
get a convergence of the block Gauss-Seidel algorithm inferior to 1076 for
each single-physics solution and 8 iterations to get a tolerance of 1071°, and
this despite the tolerance of the discretized mechanical problem being 10~7.
Figure 5 shows the relative error of the magnetic and mechanical problems
as the function of the iteration number of the block Gauss-Seidel algorithm
for the case of of the most finely meshed sphere. At each block Gauss-Seidel
iteration, the magnetic problem was solved first followed by the mechanical
problem.

4.3. Simplified analytical solution

To validate the fully coupled problem, we consider a composite structure
made of a piezoelectric layer poled along the z-direction sandwiched between
two electrodes, a reference electrode at potential 0 V' and a floating one that
carries the charges and outputs the voltage resulting from the deformation
of the piezoelectric layer. On top and on bottom of the piezoelectric phase,
two layers of magnetostrictive materials poled along the x-direction drive the
deformation of the piezoelectric layer. The diagram of the geometry used in
the 3D simulations is given in Figure 6.

The system works as follows : the source field Hg produces the elongation
of the magnetostrictive phase which transmits the mechanical deformation
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Figure 4: Relative error of the average of H, S11 and Ss3 as function of the number of
degrees of freedom of the discretized problem.

Parameter Value
Young modulus (GPa) | 100
Poisson coefficient 0.3

13 (NA™Tm™1) -30

q33 (N AL m’l) 200

q2a (NA7Tm™1) 60

@15 (NA7ITm™1) 150

Hy (A m™) 50 - 103
Hor 10

Table 2: Material paramaters used for the modeling of the piezomagnetic sphere.

Parameter | H (kA m™!) | S, S99 Sss
Value 12.110 9.810-107° | 9.810-107% | 2.640 - 10~°

Table 3: Values of the magnetic field and of the components of the strain obtained from
the analytical solution.
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Figure 5: Convergence of magnetic (o) and mechanical (x) solutions versus iteration num-
ber of the block Gauss-Seidel algorithm.

to the piezoelectric phase thanks to the bonding between these two phases
and the poling direction of the piezoelectric phase. A voltage then appears
on the floating electrodes.

We compare FEM-BEM results to an analytical solution obtained with
the same asumptions as in [69] but with a different set of state variables, i.e.
the same strain in the piezoelectric and piezomagnetic phases, zero strain
along the z-axis, zero electric field along the z-direction inside the piezoelec-
tric phase and zero current between electrodes, which corresponds to relations
(57).

T = =T,

T35 = =T,
ﬁ - fl? (57)
52 = 9%,

Vout = —d E3,
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magnetostrictive material

piezoelectric material electrodes

Figure 6: Diagram of the composite structure (3 x 6 x 14 mm)

where d = 1mm is the thickness of the piezoelectric layer, and v = 1/3 the
volume fraction of the piezoelectric layer. We will solve this set of equations
together with the previously discussed but rewritten behavioral laws:

Th = CHiSh + C3S5, — e Bs,
T3 = C1Ez nt CzEzsgz — e31 B3,
D3 = e3157, + e3155, + €33 F3,

Ty = C1iSTT + Cy59; — ha My,
T3y = C13571 + C5y595 — haoHy,
By = h1157] + h12S95 + pn HY"

where the superscript o refers to the value of fields inside the magnetostric-

tive phase and ¢ inside the piezoelectric phase. The solution to these equa-
tions is:

q12 + Q11
dess (CH+~CH + CH+~+CE) + 262

Vout = €31

H, (59)

In order to compare this analytical solution to our simulations, we con-
sidered isotropic materials and the same mechanical properties for both the
piezoelectric and magnetostrictive materials. We also didn’t take into ac-
count demagnetizing fields, i.e H; = Hy which we took from 100 Am~! to
100 kAm~"', while not exact, this is an acceptable approximation for mate-
rials with low relative permeability.
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Figure 7: Output voltage of the magnetoelectric composite versus source field. (x) corre-
sponds to the analytical solution and (o) to the simulation results.

For simulations to be closer to the conditions of the analytical solution,
we assume all the coefficients in the piezoelectric and piezomagnetic tensors
to be null except of those appearing in equation (59), the coefficients used
are presented in Table 4. Although close to the coefficients of PZT-5A and
Terfenol-D, these coefficients are not expected to be accurate but to allow
us to roughly validate our formulation. The slope of the curve in Figure 7
represents the DC magnetoelectric coefficient, or the output voltage divided
by the exciting magnetic field, its value is presented in Table 5. For the
analytic case, it is given by:

Vout q12 + q11

a= =e
Hy  dess(CH ++CE + CH 4+ 4CE) + 2¢2,

(60)

Because of demagnetizing fields, the total field inside the magnetoelectric
is lower than the source field (. > 1). So, in theory, supposing H; = H,
overestimates the value of the output voltage and supposing equal strain in
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Parameter Value
Young modulus (GPa) 70.3
Poisson coefficient 0.345
ez (C m™2) -5

g (N A7t m™1) 200
g2 (N At m™1) -30
relative 33 (piezoelectric layer) 1800
relative e33 (piezomagnetic layer) | 1

i, (piezoelectric layer) 5

i, (piezomagnetic layer) 9.3

Table 4: Coefficients used for the comparison between simulation and the analytical solu-
tion

Analytical solution | 2.3397e-04 Vin/A
Simulation 2.2530e-04 Vm/A

Table 5: Comparison of magnetoelectric coefficients between simulation and analytical
solution

both piezoelectric and piezomagnetic phases also overestimates the output
voltage. Indeed, in the simulations it is the magnetic field which drives the
deformation of the piezoelectric phase. Also, the 3D nature of the simulation
(and therefore of the strain) versus the 2D strain hypothesis of the analytical
formula also means that the output voltage of the fully modelled magneto-
electric should be lower than the analytical formula. A factor contributing
to the high value of the output voltage of the magnetoelectric with respect
to the analytical solution is edge effects due to perfect corners in our geome-
try and linear material laws in our simulation. Otherwise, we see very good
agreement between both solutions. The magnetic, electric and mechanical
solutions resulting from FEM-BEM simulations are presented in Figure 8,
we see the deformation of the magnetostrictive phase, the deformation of the
piezoelectric phase and the electric field appearing between the electrodes.
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Figure 8: Three-dimensional multiphysics solutions, uH

(T), B (Vm™), ¢ (V

5. ME composite in an inhomogeneous field - Results

Finally we study the magnetoelectric composite structure shown in Fig-
ure 9 and fed by a volume inductor with coefficients from [68]. The coil was
purposely placed in such a way that the source field seen by the composite
has no symmetries and cannot be approximated by a uniform field. The con-
sidered inductor has the following dimensions: a height of 2 mm, an inner
radius of 7 mm and an outer radius of 9 mm. The total current flowing
though the inductor was set to 100 A. The magnetostrictive phase is consid-
ered non-linear magnetic with the relative permeability at the origin equal
100 and a saturation value of 17T. We use MUMPS to solve the mechanical
and the electrical problems. We also use a Newton-Raphson scheme with
a tolerance of 10710 for the nonlinear magnetic problem, with GMRES for
solving the resulting linearized system at each nonlinear iteration. The con-
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Figure 9: The studied device is made of a coil conductor around the previously described
composite structure.

vergence of the magnetic problem was always achieved after two iterations
of the Newton-Raphson. The stopping criteria of the Gauss-Seidel loop was
set to relative 10719 difference between successive solutions. Within each
Gauss-Seidel iteration, the magnetic problem was solved first followed by the
mechanical and the electrical problems. The convergence rate of individual
single-physics problems is presented in Figure 10.

In Figure 10, from the 1% to the 4" iterations, we observe different con-
vergence rates and beyond the 4, the rate of convergence is the same for all
the single-physics problems. After 15 iterations, the relative convergence of
10719 is achieved. In this particular test, the output voltage of the magneto-
electric is of —0.277V.

6. Conclusion

In this paper, we proposed a FEM-BEM coupling strategy for the descrip-
tion of 3D magnetoelectric effects in composite structures. This coupling of
numerical method allowed us only not to explicitly consider a free space do-
main, and thus to use a single mesh for the three subproblems. We validated
our magnetostatic and magneto-mechanical formulation against analytical
solutions, and we compared the results of our full coupled problem against a
rough analytical solution with good agreement. We also tested the presented
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Figure 10: Convergence of magnetic (o), mechanical (x) and electric (+) solutions vs
iteration number of the block Gauss-Seidel algorithm.

full formulation of the magnetoelectric composite structure on a three layer
device driven by a coil, with a non-linear material law for the magnetostrictive
material and explored the performance of the block Gauss-Seidel algorithm
for solving multiphysics problems in the previously described situation.
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