Max Pinheiro
email: max.pinheiro-jr@univ-amu.fr

Pavlo O Dral
email: dral@xmu.edu.cn

Kernel Methods

Keywords: machine learning, kernel methods, kernel ridge regression, Gaussian processes, kernel principal component analysis

published or not. The documents may come

[H1 Introduction]

Kernel methods correspond to a learning paradigm that goes beyond simple linear approximations to model or extract patterns from data. These methods have become very popular in the early stages of machine learning development but still remain a powerful technique to solve complex problems in many different data-driven research domains, including modern applications of machine learning (ML) in quantum chemistry. [START_REF] Dral | Quantum Chemistry in the Age of Machine Learning[END_REF][START_REF] Deringer | Gaussian Process Regression for Materials and Molecules[END_REF] In fact, there are plenty of real-world ML applications where the data is represented by complex objects such as graphs, text, or images. In such situations, linear models may not be welldefined, or they may simply provide very poor model predictions. The power of kernel methods arises from the fact that they provide a rigorous mathematical framework to extend linear statistical learning techniques to model non-linear dependencies in high-dimensional and complicated data [START_REF] Hofmann | Kernel methods in machine learning[END_REF][START_REF] Müller | An introduction to kernelbased learning algorithms[END_REF]. The central idea behind kernel methods consists of formally defining a way to measure the similarity between pairs of data points and then using this metric as a transformation to unfold the nonlinearities of the original data space [START_REF] Mercer | XVI. Functions of positive and negative type, and their connection the theory of integral equations[END_REF][START_REF] Balcan | On a theory of learning with similarity functions[END_REF]. In other words, such a transformation has the benefit of representing the data into some highdimensional space where the data might be described in terms of simple linear functions.

In principle, kernel-based algorithms and neural networks can be derived from a linear (regression) model, despite the conceptual differences in their formulations and in the way they describe the nonlinearities in the data. While in the former, the nonlinearities are treated at the level of data representation via kernel transformation, neural networks use nonlinear activation functions in the training process that may also include learnable parameters [START_REF] Apicella | A survey on modern trainable activation functions[END_REF] (see Chapter 8 Neural networks). Nevertheless, it has been shown that a deep neural network can be mathematically equivalent to a kernel regressor under certain conditions [START_REF] Domingos | Every Model Learned by Gradient Descent Is Approximately a Kernel Machine[END_REF][START_REF] Lee | Deep Neural Networks as Gaussian Processes[END_REF]. These connections have motivated the development of new methods that aim at combining the functional flexibility of kernel methods with the structural properties of deep neural network architectures, giving rise to the field of deep kernel learning [START_REF] Wilson | Deep Kernel Learning[END_REF].

Several different algorithms in both supervised and unsupervised learning domains admit a kernelized formulation [START_REF] Mika | Fisher discriminant analysis with kernels[END_REF] (Figure 1) as long as they satisfy certain mathematical constraints that will be explained in more detail in the following sections. Essentially, the key mathematical ingredient to enable the kernelization is that the cost function of the learning algorithm can be expressed in terms of dot products on the input variables; then, applying a non-linear transformation on these variables that preserves the dot product structure of the original algorithm, one can replace the expensive computation of dot products in feature space by the evaluation of a kernel function. In supervised learning, the extension of linear algorithms to include kernel transformation has been developed for both categorical data (classification) and for predicting continuous variables (regression), with support vector machines [START_REF] Cortes | Support-vector networks[END_REF][START_REF] Cristianini | An Introduction to Support Vector Machines and Other Kernel-based Learning Methods[END_REF] being one of the most prominent examples. For regression problems, the Kernel Ridge Regression and Gaussian Process Regression (both covered in Methods section) deserve special attention as the most successful use cases of kernel methods in chemistry. In unsupervised learning, the kernel representation of the input data has proven helpful in a variety of (linear) algorithms designed for pattern recognition and data compression. For example, the standard Principal Component Analysis (PCA) algorithm can be made nonlinear by introducing a kernel transformation prior to data projection in low dimensional space, leading to the kernel PCA method. Similarly, the limitation of the Kmeans algorithm in splitting the data space into clusters using only linear boundaries can be surpassed by its kernelized version, namely kernel K-means. This later is closely related to the Spectral Clustering algorithm, which introduces an eigenvector decomposition of the kernel matrix [START_REF] Dhillon | Kernel K-Means: Spectral Clustering and Normalized Cuts[END_REF]. Both unsupervised learning methods, KPCA and Kernel K-Means, will be discussed in detail in the Methods section. In the next section, we will see the mathematical foundations of kernel methods starting from an intuitive notion of kernel matrix and its relationship with the concept of similarity. Then, we will show how kernel methods permeate several different types of ML algorithms, going from supervised to unsupervised learning applications, illustrated by motivating examples from chemistry.

[H1 Methods]

This section first introduces basic ideas about kernel methods in a chemically intuitive way.

Then, it will discuss the formal mathematical definition of the learning problem, followed by the theoretical and practical aspects of machine learning models.

[H2 Kernel methods explained for chemists]

From a mathematical viewpoint, in the core of kernel theory lies a fundamental concept from linear algebra, which is the dot-product. As an intuitive example of this concept, let us consider the definition of the dot-product ⟨𝑎, 𝑏⟩ = 𝑎 • 𝑏 between two vectors 𝑎 and 𝑏 in Euclidean space. In this case, one can make use of a simple geometric interpretation where the dot-product is related to the cosine of the angle 𝜃 between the vectors scaled by the vector lengths, 𝑎 • 𝑏 = ‖𝑎‖‖𝑏‖cos𝜃, with ‖⋯ ‖ denoting the vector length. Owing to the properties of the cosine function, three important relationships can be derived from dot-products in vector space: (i) two parallel vectors have the maximum cosine value (cos 𝜃 = 1) such that the longer each of the vectors is, the larger is their dot-product; (ii) the opposite holds when the vectors are anti-parallel (cos 𝜃 = -1); (iii) finally, if the vectors are orthogonal, then cos 𝜃 = 0 and their dot-product is always zero and independent from the length of any of the two vectors. As we can see, the cosine function offers an intuitive measure of the similarity in a vector space; similarity is a critical concept permeating applications of kernel methods. Calculation of similarity is not restricted to the cosine function as many other functions such as exponential or Gaussian functions are widely used. Before we dive into the mathematical formalism of kernels, let us first get some intuition about the importance of similarity by considering an oversimplified example from chemistry. Suppose you are given a small dataset as shown in Figure 2a, composed of a few molecules numerically described by only three features: the total number of atoms, the number of carbons, and the number of hydrogens, which can be used as input to some ML model. Prior to the model training, you are asked to determine which molecules in this particular dataset are most similar. Starting with a simple visual inspection of the data points in the 3D space (see Figure 2b), one can deduce that the H 2 O and NH 3 molecules have a high similarity since the vectors describing them are almost parallel. In contrast, these two molecules appear much less similar to the CO 2 molecule. To turn this qualitative description into numerical terms, let us calculate a similarity score for each pair of molecules in the dataset by using the cosine of the angle denoted by the respective feature vectors, which is essentially the same as calculating the dot-product between those vectors normalized by the product of their norms (cos 𝜃 = 𝐚 • 𝐛/(‖𝐚‖‖𝐛‖)). By doing so, we can arrange all elements calculated for each pair of data points into a similarity matrix as shown in Figure 2c. This is our first example of a kernel matrix using the cosine similarity kernel function (also simply called kernel) 𝑘(𝐚, 𝐛) = cos 𝜃. This example also introduces important concept of the feature space: our input (often confusingly called features) to ML is given as vectors 𝑎 and 𝑏, which can be considered vectors in input space, while these vectors are transformed into the vectors in the so-called "feature space", in our case by simple normalization (𝐜 = 𝐚/‖𝐚‖ and 𝐝 = 𝐛/‖𝐛‖). The kernel is then mathematically defined as the dot-product of vectors in the feature space, i.e., 𝐜 • 𝐝 = cos 𝜃, not in input space. Despite the limited feature representation chosen for the molecules in the dataset, this kernel matrix provides a new representation to the data that enables a straightforward answer to our initial question of what molecules are more similar.

From the example discussed above, one can draw some important observations regarding the properties of the kernel matrix, which we will see later are general for kernels that satisfy certain mathematical constraints. First of all, the kernel matrix in Figure 1c has a square shape with size given by the number of samples in the original dataset (n = 6 molecules, in our example). This means that the matrix size is independent of the number of features in the input space, which is just a consequence of the fact that the dot-product between two feature vectors will always return a single number no matter the size of the vectors. Finally, we see that the kernel matrix (Figure 2c) is symmetric, which follows from the commutative property of dot products (𝐚 • 𝐛 = 𝐛 • 𝐚 = ‖𝐚‖‖𝐛‖ cos 𝜃). Formally, the kernel matrix is a way to represent the data based on pairwise comparisons. At this point, it would be natural to ask how the idea of kernel representation can be used in machine learning (ML) algorithms. To answer this question, let us go back to our small molecules dataset, but now considering that one specific chemical property, for example, the total dipole moment, is provided as a target quantity (𝑦) for each molecule (Figure 3). Then, given a new molecule, formaldehyde (CH 2 O), the task is to predict its total dipole moment.

Intuitively, one possible naive guess could be to calculate the similarity of the query molecule with all the other molecules in the original data and then return the dipole of the molecule having the highest similarity as the prediction. This rough estimation could be improved if we express the prediction as a linear combination of all molecules represented in the kernel space (see Figure 3) rather than considering only the most similar one. In this case, the learning task would be to find the optimal set of coefficients, 𝛂, in the linear expansion of the kernel components. As we will see later, the 𝛂 coefficients can be written in a closed-form in terms of the y values of the training data. Therefore, the larger the similarity between the query molecule and a given training point-as measured by the kernel evaluation 𝑘(𝐚, 𝐛)-the larger the influence of the corresponding training label 𝑦 ! to the model prediction. In our example, there are only six 𝛂 coefficients to be determined, corresponding to the number of molecules in the training data. Clearly, the number of trainable parameters 𝛂 grows with the number of samples in the training set. In other words, kernel-based models become more complex with an increasing amount of data. Because of this characteristic, kernel methods belong to a class of ML algorithms called nonparametric models. In contrast, parametric models such as neural networks use a bounded or fixed set of parameters (independent of the number of training examples) to compactly represent the data, where the nonlinearities are encoded into the learned parameters.

[H2 From linear regression to kernel methods]

We start with the familiar concept of linear regression and show how it can be modified into kernel ridge regression. In the simplest form of linear regression (introduced in Chapter 6

Machine learning: An overview and covered in more detail in Chapter 12 Linear models for machine-learning interaction potentials), the learning problem is finding such a single regression coefficient 𝛽 that gives the approximating function 𝑓(𝑥; 𝛽)

𝑓(𝑥; 𝛽) = 𝛽𝑥, (1)
taking a single-valued input x. Such a function has no intercept and is only applicable to very simple problems. If we try to fit Eq. 1 to an H 2 dissociation curve with energies E calculated at FCI/aug-cc-pV6Z for 20 different internuclear distances

R 𝐸 = 𝑎𝑅, (2)
we obviously obtain a very wrong result (Figure 4). We can make linear regression more flexible by using a p-dimensional input vector x rather than a single-valued input x. This generalization of linear regression is called multiple linear regression, and it requires finding p regression coefficients 𝛽 " :

𝑓(𝐱; 𝛃) = E 𝛽 " 𝑥 " # "$% = 𝐱 & 𝛃 (3)
In

𝐸 = 𝑎𝑅 + 𝑏. (4
)
The latter equation visually better fits the H 2 dissociation curve (Figure 4), but it is still qualitatively wrong as it does not capture the minimum. You might ask whether linear regression is capable at all of fitting the nonlinear function.

A somewhat unintuitive answer is yes. The trick is to realize that we can map our input to the d-dimensional feature space, and then apply multiple linear regression to the d-dimensional feature vector. In fact, we have just done it when we mapped 1-dimensional (𝑅) into 2-dimensional (1, 𝑅). We will denote such a mapping function as 𝛷 which in our example is 𝛷J(𝑅)K = (1, 𝑅).

Are there better mappings than 𝛷J(𝑅)K = (1, 𝑅)? This question can be answered from several somewhat related perspectives. One of them is basically the feature selection scheme discussed in Chapter 6 Machine learning: An overview. Another one is the kernel-based perspective, which we introduce below. Based on physical knowledge, we can use a feature vector that allows us to obtain an expression with the correct physical form of the dissociation curve, e.g., the mapping 𝛷J(𝑅)K = (1, 𝑅 '(, 𝑅 '%)) transforms Eq. 3 to an expression based on Lennard-Jones potential: [START_REF] Lewars | Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics[END_REF] 𝐸 = E 𝛽 " 𝛷J(𝑅)K " * "$% = 𝑎𝑅 ! '(+ 𝑏𝑅 ! '%) + 𝑐.

(5)

The fit with this equation already provides a correct shape of the H 2 dissociation curve (Figure 5). Naively, the more elements are in the feature vector, the more flexible the linear regression becomes, and we can obtain better fits. It turns out that there is a trick that allows us even to make a mapping from p-dimensional input space into infinitely-dimensional feature space, which is obviously impossible to do explicitly (or manually!). This trick is called the kernel trick and can be derived from a simple expansion of the 𝛽 regression coefficients through the sum of terms running over all 𝑁 tr points in the training set: [START_REF] Rupp | Machine learning for quantum mechanics in a nutshell[END_REF] 𝛽 " = E 𝛼 ! 𝑥 !"

+ tr !$% (6)
where 𝑥 !" is the j-th element of the vector x i representing the i-th training point and 𝛼 ! is the corresponding regression coefficient. After we substitute Eq. 6 into Eq. 3, we obtain for any point 𝐱 , : [START_REF] Rupp | Machine learning for quantum mechanics in a nutshell[END_REF] 𝑓(𝐱 ,) = E QE 𝛼 ! 𝑥 !"

+ tr !$% R 𝑥 " , # "$% = E 𝛼 ! + tr !$% E 𝑥 !" 𝑥 " , = E 𝛼 ! ⟨𝐱 ! , 𝐱 , ⟩ + tr !$% # "$% (7)
where ⟨𝐱 ! , 𝐱 , ⟩ is the dot-product (also called inner product or scalar product) of two vectors 𝐱 ! and 𝐱 , . If we assume that x denotes vector in the input space, analogous expression can be written in the feature space:[3,17]

𝑓J𝛷(𝐱 ,)K = E 𝛼 ! ⟨𝛷(𝐱 !), 𝛷(𝐱 ,)⟩ + tr !$% = E 𝛼 ! 𝑘(𝐱 ! , 𝐱 ,) + tr !$% (8)
where 𝑘(𝐱 ! , 𝐱 ,) is the dot-product of vectors in the feature space ⟨𝛷(𝐱 !), 𝛷(𝐱 ,)⟩ and it is called the kernel or the kernel function. [START_REF] Hofmann | Kernel methods in machine learning[END_REF][START_REF] Rupp | Machine learning for quantum mechanics in a nutshell[END_REF] As mentioned in the introduction, the kernel function can also be interpreted as a similarity measure for comparing vectors corresponding to a point 𝐱 , and training points 𝐱 ! . [START_REF] Hofmann | Kernel methods in machine learning[END_REF][START_REF] Rupp | Machine learning for quantum mechanics in a nutshell[END_REF] For the identity mapping 𝛷(𝐱) = 𝐱, the kernel is also a dot-product in the input space:

𝑘(𝐱 ! , 𝐱 ,) = ⟨𝐱 ! , 𝐱 , ⟩ (9)
Using this kernel obviously leads to an expression equivalent to multiple linear regression, thus being called linear kernel or dot-product kernel. [START_REF] Rupp | Machine learning for quantum mechanics in a nutshell[END_REF][START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF] The kernel trick is to calculate the kernel without ever explicitly mapping the input vector to the feature space. We do not need to know how the feature vectors look like, and this allows us to choose very flexible mappings! This trick is the foundation of the kernel methods. For example, we can choose the so-called Gaussian kernel

𝑘(𝐱 ! , 𝐱 ,) = exp Q- 1 2𝜎) EJ𝑥 !" -𝑥 " , K) # " R , (10)
which is equivalent to mapping the input vector to the infinite feature space (𝜎 is the width scale hyperparameter). [START_REF] Rupp | Machine learning for quantum mechanics in a nutshell[END_REF] To show the power of this kernel, we can obtain the perfect fit of the training points for the H 2 dissociation curve taking only R as the input (Figure 6). The expression for the energy will be then

𝐸 = E 𝛼 ! exp Z- (𝑅 ! -𝑅)) 2𝜎) [+ tr $)- !$% . (11
)
From Eq. 11, one can see that the energy prediction for a new point R is essentially composed of a convolution of "basis functions" k centered on each training point and weighted by a set of regression coefficients a that needs to be determined.

Even though the kernel trick allows us to map input vectors into feature space, it is still essential to choose appropriate input. One can, e.g., also take (1, 𝑅 '(, 𝑅 '%)) as input vector and use the Gaussian kernel to perform implicit mapping into an infinite feature space 𝛷J(1, 𝑅 '(, 𝑅 '%))K. Thus, feature selection and kernel methods can and should be combined, and one approach does not eliminate the need for another. Below we discuss how to fit the kernel method functions given by Eq. 8.

𝐸 = ∑ 𝛼 ! exp(-(𝑅 ! -𝑅)) (2𝜎)) ⁄) + tr $)- !$%
and 𝜎 = 1 (see Case study 1). [START_REF]The black markers are 20 training points from a data set with 451 points (black line) calculated at FCI/aug-cc-pV6Z, which are taken from[END_REF] The fit was performed with MLatom [START_REF] Dral | A Package for Atomistic Simulations with Machine Learning[END_REF][START_REF]MLatom: A Program Package for Quantum Chemical Research Assisted by Machine Learning[END_REF][START_REF] Dral | MLatom 2: An Integrative Platform for Atomistic Machine Learning[END_REF] as described in Ref. [START_REF]Quantum Chemistry Assisted by Machine Learning[END_REF].

[H2 Fitting kernel methods: Kernel ridge regression]

As is usual in supervised learning problems, it is required to find the optimal ML model parameters, i.e., the regression coefficients 𝛼 ! of a kernel-based model that gives a good approximating function defined by Eq. 8. We can use least-squares method, where the coefficients are fit to get the minimum residual sum of squares (RSS) with respect to the training set with 𝑁 tr reference values y:

arg min 𝛂 EJ𝑓J𝐱 " ; 𝛂K -𝑦 " K) + !" "$% (12)
It is equivalent to saying that we want to minimize the L 2 loss defined by:

𝐿 = EJ𝑓J𝐱 " ; 𝛂K -𝑦 " K) + #$ "$% , (13
)
which after substituting 𝑓J𝐱 " ; 𝛂K = ∑ 𝛼 ! 𝑘J𝐱 ! , 𝐱 " K

+ #$!$%
(analogous to Eq. 8):

𝐿 = E QfE 𝛼 ! 𝑘J𝐱 ! , 𝐱 " K + #$!$% g -𝑦 " R) + #$ "$% , (14
)
or in matrix notation:

𝐿 = (𝐊𝛂 -𝐲) & (𝐊𝛂 -𝐲), (15
)
where K is the kernel matrix -sometimes also called the covariance matrix (particularly in the literature about the Gaussian process regression discussed in this chapter below). [START_REF] Hofmann | Kernel methods in machine learning[END_REF][START_REF] Rupp | Machine learning for quantum mechanics in a nutshell[END_REF][START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF][START_REF] Hastie | The Elements of Statistical Learning: Data Mining, Inference, and Prediction[END_REF] The kernel matrix elements consist of kernel function evaluations for each pair of training points, and it is 𝑁 tr × 𝑁 tr symmetric matrix as, e.g., 𝑘J𝐱 % , 𝐱

+ tr K = 𝑘J𝐱 + tr , 𝐱 % K: 𝐊 = Q 𝑘(𝐱 % , 𝐱 %) ⋯ 𝑘J𝐱 % , 𝐱 + tr K ⋮ ⋱ ⋮ 𝑘J𝐱 + tr , 𝐱 % K ⋯ 𝑘J𝐱 + tr , 𝐱 + tr K R . (16
)
The nice feature of the kernel methods in contrast to many other ML approaches such as NNs is that we actually have a closed, analytical solution to the minimization problem defined by Eq. 12. The solution can be obtained by taking a derivative of the loss defined by Eq. 15 with respect to 𝛂, setting it to zero, and solving the resulting expression. After doing the math, the final expression is very simple:

𝛂 = 𝐊 '𝟏 𝐲. (17
)
This solution is equivalent to solving a system of linear equations in matrix form:

𝐊𝛂 = 𝐲 (18)
Unfortunately, Eq. 17 has a serious problem and is rarely used in practice: it is numerically unstable, especially in cases where several solutions are possible. Looking back at our example with H 2 dissociation curve, we can try to fit it with the linear kernel, which, as we know, should lead to the solution equivalent to the linear regression 𝑓(𝑥; 𝛽

) = 𝛽𝑥 = -0.2962𝑥, because 𝛽 = ∑ 𝛼 ! 𝑥 ! + tr $)- !$% = ∑ 𝛼 ! 𝑅 ! + tr $)- !$%
. Nevertheless, it is obvious that you can get the same 𝛽 using infinite number of combinations of 𝛼 ! , e.g., 𝛽 = (-0.2962

• 2) • 0.5 + ∑ 0𝑥 ! + tr $)- !$)
and 𝛽 = 198476910439 • 0.5 -19847691043.95924 • 5 + ∑ 0𝑥 ! + tr $)-!$0 are both possible. In the latter expression, very large coefficients 𝛼 ! cancel out each other.

Such large coefficients are generally undesirable in the approximating functions as they can lead to high variance in prediction since the predictions will be numerically very sensitive to even slightest change in the input. Thus, a class of shrinkage methods was suggested to deal with such situations by penalizing large coefficients to make predictions smoother. [START_REF] Hastie | The Elements of Statistical Learning: Data Mining, Inference, and Prediction[END_REF] In the case of linear regression (see Chapter 12 Linear models for machine-learning interaction potentials), such methods are ridge regression (penalizing the sum of squared regression coefficients), the Lasso, etc. [START_REF] Hastie | The Elements of Statistical Learning: Data Mining, Inference, and Prediction[END_REF] This approach is also widely used in kernel methods giving rise, e.g., to kernel ridge regression (KRR). [START_REF] Rupp | Machine learning for quantum mechanics in a nutshell[END_REF][START_REF] Hastie | The Elements of Statistical Learning: Data Mining, Inference, and Prediction[END_REF] In KRR, the regression coefficients can be found using an expression: [START_REF] Rupp | Machine learning for quantum mechanics in a nutshell[END_REF][START_REF] Hastie | The Elements of Statistical Learning: Data Mining, Inference, and Prediction[END_REF]]

𝛂 = (𝐊 + 𝜆𝐈) '% 𝐲 (19
)
where I is the identity matrix and 𝜆 is a smoothing parameter often called the regularization hyperparameter (connected to the other name of KRR: kernel regularized least squares [START_REF] Stulp | Many regression algorithms, one unified model: A review[END_REF]).

𝜆 is usually a rather small nonnegative number. In contrast to Eq. 17, adding even a small value to the diagonal elements of the kernel matrix as done in Eq. 19 makes the solution possible and numerically stable. [START_REF] Rupp | Machine learning for quantum mechanics in a nutshell[END_REF][START_REF] Hastie | The Elements of Statistical Learning: Data Mining, Inference, and Prediction[END_REF] It is equivalent to solving the minimization problem [START_REF] Rupp | Machine learning for quantum mechanics in a nutshell[END_REF][START_REF] Hastie | The Elements of Statistical Learning: Data Mining, Inference, and Prediction[END_REF] arg min 𝛂 (𝐊𝛂 -𝐲) set. [START_REF] Rupp | Machine learning for quantum mechanics in a nutshell[END_REF][START_REF]MLatom: A Program Package for Quantum Chemical Research Assisted by Machine Learning[END_REF] We note that another kernel method, Gaussian process regression, allows searching for hyperparameters by optimizing the log marginal likelihood as discussed below. [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF] Besides the hyperparameter 𝜆, kernel methods can have other hyperparameters.

For example, methods using the Gaussian kernel have hyperparameter 𝜎 (kernel width) in their kernel function. with MLatom [START_REF] Dral | A Package for Atomistic Simulations with Machine Learning[END_REF][START_REF]MLatom: A Program Package for Quantum Chemical Research Assisted by Machine Learning[END_REF][START_REF] Dral | MLatom 2: An Integrative Platform for Atomistic Machine Learning[END_REF] as described in Ref. [START_REF]Quantum Chemistry Assisted by Machine Learning[END_REF].

They need to be also optimized together with the regularization hyperparameter. This is how the fit in Figure 6 was obtained. [START_REF]Quantum Chemistry Assisted by Machine Learning[END_REF] Particularly, in the case of the Gaussian kernel, 𝜎 plays a role similar to 𝜆, as for too small values of 𝜎 it will be unable to generalize well, while for too large values, it will fail to learn from the training data (Figure 7). [START_REF] Rupp | Machine learning for quantum mechanics in a nutshell[END_REF] Other hyperparameters (such as n in the Matérn kernel discussed in the next subsection) can have different meanings, as we will see.

[H2 On a choice of the kernel function]

So far, we have seen two types of kernel functions: the linear (Eq. 9) and Gaussian kernels (Eq. 10). The kernels can be chosen from a wide range of functions, although formally, the choice is limited to the so-called positive semidefinite kernels, for which the following expression is true for any vector c with real values:[3,17]

𝐜 & 𝐊𝐜 ≥ 0. (21
)
Another example of the kernel function is the polynomial kernel with hyperparameters c and d: [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF][START_REF] Hansen | Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies[END_REF]

𝑘(𝐱 ! , 𝐱 ,) = (⟨𝐱 ! , 𝐱 , ⟩ + 𝑐) * . (22
)
A popular and very flexible family of kernels are the Matérn kernels [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF][START_REF]Quantum Chemistry Assisted by Machine Learning[END_REF][START_REF] Gneiting | Matérn Cross-Covariance Functions for Multivariate Random Fields[END_REF]]

𝑘(𝐱 ! , 𝐱 ,) = exp p- 1 𝜎 fEJ𝑥 !" -𝑥 " , K) # " g %/) q E (𝑛 + 𝑘)! (2𝑛)! t 𝑛 𝑘 u p 2 𝜎 fEJ𝑥 !" -𝑥 " , K) # " g %/) q 3'4 3 4$- , (23)
whose form can be efficiently tuned with the integer hyperparameter n. For example, by making n sufficiently large, it behaves similarly to the Gaussian kernel, while for 𝑛 = 0 it reduces to the exponential kernel:

𝑘(𝐱 ! , 𝐱 ,) = exp p- 1 𝜎 fEJ𝑥 !" -𝑥 " , K) # " g %/) q (24
)
The last kernel we need to mention here is the Laplacian kernel, as it was successfully used in the early works on ML in quantum chemistry: [START_REF]MLatom: A Program Package for Quantum Chemical Research Assisted by Machine Learning[END_REF][START_REF] Hansen | Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies[END_REF]]

𝑘(𝐱 ! , 𝐱 ,) = exp Q- 1 𝜎 Ev𝑥 !" -𝑥 " , v # " R (25)
Kernels discussed above are often called isotropic kernels, while some of them have anisotropic variants, which are easiest understood on an example such as the anisotropic Gaussian kernel: [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF] 𝑘

(𝐱 ! , 𝐱 ,) = exp Q-E J𝑥 !" -𝑥 " , K) 2𝜎 ") # " R . (26
)
As you can easily see, instead of a single width scale hyperparameter 𝜎 as in the isotropic Gaussian kernel (Eq. 10), we have p-hyperparameters 𝜎 " for each input element. Optimal values of 𝜎 " can be used to estimate the importance of the corresponding input element, which may be useful for data analysis. Thus, such anisotropic kernels are often called automatic relevance determination (ARD) kernels, which can assist in feature selection. [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF] We note that feature selection can be performed with other kernel-based methods such as feature vector machine and other kernelized versions of the Lasso algorithm, where input is expanded in kernel functions calculated for individual input elements, and the L 1 instead of L 2 norm is used as a regularization term. [START_REF] Yamada | High-dimensional feature selection by feature-wise kernelized Lasso[END_REF] Such methods allow to perform feature selection in the high-dimensional space by capturing nonlinear input-output dependencies.

Many other types are possible, and the reader can find more examples, e.g., in Ref. [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF]. You can construct your own kernels too (e.g., sum and product of kernels also makes valid kernels). [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF][START_REF] Duvenaud | Structure Discovery in Nonparametric Regression through Compositional Kernel Search[END_REF] In some cases, kernels are also normalized as:

𝑘(𝐱 ! , 𝐱 ,) w𝑘(𝐱 ! , 𝐱 !)w𝑘(𝐱 , , 𝐱 ,) . (27
)
The form of a kernel strongly affects the behavior of the kernel methods, and each kernel has its own advantages and disadvantages. Given such an overwhelming abundance of kernels, the question arises, how to choose a kernel? The most rational way to choose a kernel is to consider it as a hyperparameter and then choose it accordingly, which is also known as multiple kernel learning. [START_REF] Gönen | Multiple Kernel Learning Algorithms[END_REF] Also, some applications restrict the choice of the kernel, e.g., when derivatives of the kernels are necessary, one has to choose a sufficiently differentiable kernel. For example, the exponential kernel is not differentiable, and the Matérn kernel is only differentiable to the order of its integer hyperparameter n. [START_REF]Quantum Chemistry Assisted by Machine Learning[END_REF][START_REF] Gneiting | Matérn Cross-Covariance Functions for Multivariate Random Fields[END_REF]

[H2 Other kernel methods: Support vector regression]

The third kernel method related to KRR is support vector regression (SVR). The fitting function is similar to the fitting functions of KRR: [START_REF] Hastie | The Elements of Statistical Learning: Data Mining, Inference, and Prediction[END_REF] 𝑓(𝐱 ,) = E 𝛼 ! 567 𝑦 ! 𝑘(𝐱 ! , 𝐱 ,), 0 < 𝛼 ! 567 < 𝐶.

+ !" !$% (28)
In training, all regression coefficients are forced to be less than 𝐶.

[H2 Other kernel methods: Gaussian process regression]

Gaussian process regression (GPR) or kriging is closely related to KRR derived from a frequentist perspective. In contrast, GPR can be formally derived from a completely different probabilistic perspective and considered a Bayesian method. While we are not going into these derivations in this chapter, you can later see this in Chapter 10 Bayesian inference. Here we just emphasize the main points of GPR.

The fitting function of GPR is exactly the same as in KRR (Eq. 8). Coefficients of this function can also be found in the same way as in the KRR by using Eq. 19. Thus, from the point of view of ML model, GPR and KRR are completely equivalent, and for all practical purposes the names KRR, GPR, kriging can be used interchangeably when talking about predictions with the trained models. For a given set of hyperparameters, the training is also identical to these models. However, following the Bayesian approach to GPR derivation, one can also obtain several 'by-products', which can be useful in ML research. One of them is the estimation of the model variance given by: [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF] 𝑉(𝐱 ,) = 𝑘(𝐱 , , 𝐱 ,) -𝐤 ,& (𝐊 + 𝜆𝐈) '% 𝐤 ,

with 𝐤 ,& = J𝑘(𝐱 % , 𝐱′) ⋯ 𝑘J𝐱 + tr , 𝐱′KK.

Another "by-product" is that the hyperparameters are often found by optimizing log-marginal likelihood: [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF] log 𝑝(y|𝑋

) = - 1 2 𝐲 & 𝛂 - 1 2 log|𝐊 + 𝜆𝐈| - 𝑁 89 2 log 2𝜋 . (30
)
For some kernels, the hyperparameter optimization can be done via analytical derivatives of log-marginal likelihood, e.g., for the Gaussian kernel 𝜕log 𝑝(y|𝑋, 𝜎) 𝜕𝜎 ⁄ . [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF] In GPR, the kernel function is alternatively defined as the covariance between function values: [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF] 𝑘(𝐱 ! , 𝐱 ,) = covJ𝑓(𝐱 !), 𝑓(𝐱 ,)K

which is often called in GPR literature the covariance function, while the kernel matrix is called the covariance matrix. As we will see in the following subsection, such a view on kernel functions can be useful to explicitly include covariances also of function derivatives into the training set.

[H2 Including derivative information for training]

In quantum chemistry, derivatives of properties are of high importance. For example, derivatives of potential energy with respect to nuclear coordinates yield forces, which, as we have seen in Chapter Often, quantum chemistry programs provide derivative information, which is a valuable source of additional information about the curvature of the function to learn. Thus, it is highly desirable to take into account this derivative information while training the ML model [START_REF] Christensen | On the role of gradients for machine learning of molecular energies and forces[END_REF][START_REF] Pinheiro | Choosing the right molecular machine learning potential[END_REF]. This can be done in several different ways within the framework of kernel methods. The first way is to simply include the error of derivatives of ML model with respect to the reference derivatives in the loss function as is done in many other ML models such as those based on neural networks:

𝐿 = EJ𝑓J𝐱 " ; 𝛂K -𝑦 " K) + #$ "$% + E E Z 𝜕𝑓J𝐱 " ; 𝛂K 𝜕𝑥 ",* - 𝜕𝑦 " 𝜕𝑥 ",* [) # *$% + #$ "$% , (33
)
where the regularization term is not shown, but is required for making predictions generalizable to unseen situations. This is equivalent to solving an extended system of equations with the least-squares method.

The system of equations in matrix form is: [START_REF] Christensen | FCHL revisited: Faster and more accurate quantum machine learning[END_REF] …

𝐊 𝜕𝐊 𝜕𝑥 † 𝛂 = … 𝐲 𝜕𝐲 𝜕𝑥 † (34
)
where the right-hand is a vector of size (𝑁 @A + 1)𝑝 with elements 𝑦 " and 𝜕B * 𝜕? *,, and the lefthand matrix is no longer symmetric and square, but has size of (𝑁 @A + 1)𝑝 × 𝑁 @A with elements 𝑘J𝐱 ! , 𝐱 " K and

:4;𝐱 ' ,𝐱 * > :? ',,
, which is multiplied by the regression coefficients vector 𝛂 with 𝑁 @A elements. This approach, sometimes called in the chemical literature operator learning, also requires some way of regularization. [START_REF] Christensen | FCHL revisited: Faster and more accurate quantum machine learning[END_REF] The first approach takes into account derivative information implicitly through the loss function. Kernel methods also offer the possibility of including the derivative information explicitly in the ML model. This can be done in the GPR approach by extending the original definition of the kernel matrix elements as covariance between function values (Eq. 31) to also include covariances between function values and its derivatives:[18]

𝜕𝑘(𝐱 ! , 𝐱 ,) 𝜕𝑥 !,* = cov … 𝜕𝑓(𝐱 !) 𝜕𝑥 !,* , 𝑓(𝐱 ,) † (35)
as well as between function derivatives: [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF] 𝜕

2 𝑘(𝐱 ! , 𝐱 ,) 𝜕𝑥 !,* 𝜕𝑥 8 , = cov Z 𝜕𝑓(𝐱 !) 𝜕𝑥 !,* , 𝜕𝑓(𝐱 ,) 𝜕𝑥 8 , [(36)
This way, we can solve the usual KRR-like system of equations with the square and symmetric (𝑁 @A + 1)𝑝 × (𝑁 @A + 1)𝑝 extended kernel matrix: [START_REF] Denzel | Gaussian process regression for geometry optimization[END_REF] p

𝐊 𝜕𝐊 𝜕𝑥 𝜕𝐊 𝜕𝑥′ 𝜕 2 𝐊 𝜕𝑥𝜕𝑥′ q t 𝛂 𝛂 drv u = … 𝐲 𝜕𝐲 𝜕𝑥 † (37)
where 𝜕𝐊 :? has elements :?:?, blocks. [START_REF] Denzel | Gaussian process regression for geometry optimization[END_REF] If we use the second explicit way, then to make a new prediction for a function value, we also need to take into account covariances between function values and derivatives: [START_REF] Denzel | Gaussian process regression for geometry optimization[END_REF] 𝑓(𝐱 ,) = E 𝛼 " 𝑘(𝐱 ! , 𝐱 ,)

+ tr !$% + E E 𝛼 !* drv 𝜕𝑘(𝐱 ! , 𝐱 ,) 𝜕𝑥 !,* # *$% + tr !$% (38)
and to estimate derivatives, we need to include covariances between derivatives: [START_REF] Denzel | Gaussian process regression for geometry optimization[END_REF] 𝜕𝑓(𝐱 ,) 𝜕𝑥

The latter approach in chemical literature is also known under different names, including "gradient-enhanced kriging" [START_REF] Raggi | Restricted-Variance Molecular Geometry Optimization Based on Gradient-Enhanced Kriging[END_REF] or "GPR kernel" [START_REF] Christensen | FCHL revisited: Faster and more accurate quantum machine learning[END_REF] approach. In some approaches, such as the so-called "gradient-domain machine learning" [START_REF] Chmiela | Machine learning of accurate energy-conserving molecular force fields[END_REF], only derivative information is considered, so that only the terms containing 𝛂 drv remain in the above equations, and the kernel matrix only has covariance between derivatives.

Higher derivatives can be included in analogous ways. Second derivatives are often available from quantum chemical calculations and successfully used to improve the accuracy of kernelmethod potentials. [START_REF] Schmitz | A Gaussian process regression adaptive density guided approach for potential energy surface construction[END_REF] Finally, it is worth noting that taking into account function derivatives leads to an explicit dependence of the KRR algorithm with respect to the molecular representation or descriptors used as input vectors. If the function derivatives are calculated with respect to input, the above expressions can be used as is, leading to kernel-based potentials (discussed in the corresponding Chapter) and are often used, e.g., in geometry optimization, where both the Cartesian coordinates and internal coordinates can be used as input and to calculate derivatives (see the corresponding Chapter). However, while the function derivatives are usually calculated with respect to the Cartesian coordinates of the atoms for physical reasons, the model's input is often given by coordinates transformation into a descriptor. Therefore, the derivatives shown in this subsection usually need to be expand via chain rule to relate the target property y (e.g., potential energy) with the physical quantity of interest (e.g., the atomic coordinates). [START_REF] Dral | MLatom 2: An Integrative Platform for Atomistic Machine Learning[END_REF][START_REF] Chmiela | Machine learning of accurate energy-conserving molecular force fields[END_REF]

[H2 Computational resources requirements]

As we have seen above, the kernel methods include the training data explicitly in their functional form. It gives kernel methods the flexibility to learn efficiently even from small training data. The drawback is that the more data is available, the larger the function will become. This has several implications on the requirements for computational resources. One is that the function evaluation when making new predictions will be slower for larger training data. Another is that training becomes considerably slower as solving system of equations with the 𝑁 tr × 𝑁 tr kernel matrix scales as 𝑂(𝑁 89 0). [START_REF]Quantum Chemistry Assisted by Machine Learning[END_REF] In addition, storing the 𝑁 tr × 𝑁 tr matrix requires large RAM and for large data sets, it will no longer fit in the RAM. [START_REF]Quantum Chemistry Assisted by Machine Learning[END_REF] Such increased demands for computational resources when using the kernel methods, often limits their applications. There is no standard solution to this problem. One of the most straightforward solutions is to simply reduce the size of the kernel matrix by selecting only a subset of training points, [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF] e.g., using only some reference gradients in Eq. 37, when gradients are explicitly included in the ML model (so-called PGEK model) [START_REF] Chen | A screening-based gradient-enhanced Kriging modeling method for high-dimensional problems[END_REF]. Other solutions may be problem-specific. For example, when including the derivative information (see preceding subsection), one may prefer the first way using Eq. 34 instead of the second explicit way defined by Eq. 37, as the latter has to deal with a very large kernel matrix. [START_REF] Christensen | FCHL revisited: Faster and more accurate quantum machine learning[END_REF] Finally, promising progress has been recently made for accelerating training and prediction with kernel methods, as was demonstrated on successful fast training on millions of data points without loss of accuracy. [START_REF] Wang | Exact Gaussian Processes on a Million Data Points[END_REF]

[H3 Unsupervised learning]

Kernel methods have proven to be very effective also in unsupervised learning as tools for discovering patterns in highly nonlinear data. This is particularly useful for quantum chemical data since different molecular representations are often found to lie on a nonlinear manifold of a high-dimensional space [START_REF] Stocker | Machine learning in chemical reaction space[END_REF][START_REF] Cheng | Mapping Materials and Molecules[END_REF]. In the following sections, we will present two classes of unsupervised learning methods-dimensionality reduction and clustering-that make use of kernels to incorporate nonlinearities when performing data pattern search.

[H3 Kernel principal component analysis -KPCA]

Principal Component Analysis (PCA) is the simplest and standard method of choice to perform dimensionality reduction through linear (uncorrelated) projections of the original data, where the transformed features account for the largest variance [START_REF] Jolliffe | Principal component analysis: a review and recent developments[END_REF]. However, PCA is doomed to fail in effectively capturing meaningful information when applied to more complicated data sets, which are described by nonlinear functions of the original features. This is the kind of scenario where the power of kernel methods comes into play. Viewed as a generalization of standard PCA, kernel PCA (KPCA) uses a nonlinear transformation of the original data via kernel functions to project the points onto a higher dimensional feature space, where they can be linearly separable [START_REF] Schölkopf | Nonlinear Component Analysis as a Kernel Eigenvalue Problem[END_REF][START_REF] Schölkopf | Kernel principal component analysis[END_REF]. That is, given a set of observations 𝐱 ! ∈ ℝ # with i = 1,…,n, if a nonlinear function is used to map these points to an d-dimensional feature space, it is, in principle, possible to find one or more hyperplanes that divide the points into a set of clusters. Although this idea might sound counter-intuitive since the objective is to reduce the dimension of the data, the Vapnik-Chervonenkis theory tells us that under certain circumstances, it is often possible to enhance the classification power of the algorithms by applying a mapping function that takes the original input space into a (meaningful) higher-dimensional space [START_REF] Vapnik | The Nature of Statistical Learning Theory[END_REF]. The circumstances are related to the special family of mapping functions called (Mercer) kernels that allows to implicitly represent data points in the high-dimensional space by simply computing the dot-products between the images of all pairs of data in the original input space. This is possible due to the "kernel trick" already discussed in section 2.1. To understand how the KPCA algorithm works in practice, let us first revisit the mathematical basis of the method.

First, consider a nonlinear mapping 𝜙(𝐱) that takes the original p-dimensional input space onto a d-dimensional feature space. For the sake of simplicity, we will also assume that the mapped data is mean-centered, that is, the data has zero mean in the high-dimensional space spanned by the 𝜙(𝐱) transformation (we will return to this assumption later). With this, the 𝑛 × 𝑛 sample covariance matrix of the projected data can be written in the form,

𝐂 = 1 𝑛 E 𝜙(𝐱 G)𝜙(𝐱 G) & 3 G$% (40)
Note that by replacing 𝜙(𝐱) with a linear identify mapping, i.e., 𝜙(𝐱) = 𝐱, kernel PCA reduces to linear PCA, and therefore it constitutes a natural nonlinear extension to PCA.

Thus, the learning problem can be expressed as an eigenvalue problem given by

𝐂𝛎 4 = 𝜆 4 𝛎 4 , 𝑘 = 1,2, … , 𝑁, (41)
where the eigenvectors 𝐯 4 can be written as a linear combination of the transformed data features

𝛎 4 = 1 𝑛𝜆 4 E(𝜙(𝐱 G) & 𝛎 4) 3 G$% 𝜙(𝐱 G) = E 𝛼 4G 3 G$% 𝜙(𝐱 G) (42)
Now, substituting equations 42 and 40 back into equation 41, we get

% 3 ∑ 𝜙(𝐱 G)𝜙(𝐱 G) & t∑ 𝛼 4" 3 "$% 𝜙J𝐱 " Ku 3 G$% = 𝜆 4 ∑ 𝛼 4" 3 "$% 𝜙J𝐱 " K, (43)
which can be rearranged into the following expression

1 𝑛 E 𝜙 3 G$% (𝐱 G) pE 𝛼 4" 3 "$% 𝜙(𝐱 G) & 𝜙J𝐱 " Kq = 𝜆 4 E 𝛼 4" 3 "$% 𝜙J𝐱 " K (44)
Looking at the left-hand side of Eq. 44, one can immediately recognize the elements of the kernel matrix, 𝐾 !" = J𝜙(𝐱 !)K & 𝜙J𝐱 " K. Therefore, multiplying both sides of Eq. 44 by 𝜙(𝐱 !) & and using the kernel trick leads to

1 𝑛 E 𝑘(𝐱 ! , 𝐱 G) 3 G$% QE 𝛼 4" 𝑘J𝐱 G , 𝐱 " K 3 "$% R = 𝜆 4 E 𝛼 4" 𝑘J𝐱 ! , 𝐱 " K 3 "$% (45)
which can be expressed in matrix-vector notation as

𝐊) 𝛂 = 𝑛𝜆𝐊𝛂, (46)
where 𝛂 denotes the column vector with entries 𝛼 % ,…,𝛼 3 . The solutions of Eq. 46 can be determined by solving the eigenvalue equation,

𝐊𝛂 = 𝑛𝜆𝛂 (47)
for nonzero eigenvalues l. Finally, applying a normalization condition for the 𝛂 4

eigenvectors under the constraint that the corresponding eigenvectors in the high-dimensional space are normalized, 𝐯 4 & 𝐯 4 = 1, we obtain

∑ ∑ 𝛼 49 𝛼 4H 𝜙(𝐱 9) & 𝜙(𝐱 H) 3 H$% 3 9$% = 1 ⇒ 𝛂 4 & 𝐊𝛂 4 = 1. (48)
Now multiplying Eq. 47 by 𝛂 4 & and using the normalization condition given in Eq. 48, lead to

(𝜆 4 𝑛)𝛂 4 & 𝛂 4 = 1 ⇒ 𝛂 4 𝛂 4 = % 3I . . (49)
Once the kernel matrix has been calculated, and the eigenvector expansion coefficients 𝛂 4

have been determined by solving Eq. 47, it is possible to predict the kth nonlinear principal component for a new test point 𝐱 by simply computing

𝑦 4 (𝐱) = 𝜙(𝐱) & 𝜈 4 = ∑ 𝛼 4G 3 G$% 𝜙(𝐱) & 𝜙(𝐱 G) = ∑ 𝛼 4G 3 G$% 𝑘(𝐱, 𝐱 G). (50)
Recall that our first assumption was that the data had zero-mean in feature space. However, this is generally not the case, even if 𝐱 is centered in its original space. To guarantee that the centralization requirement is always satisfied in the high-dimensional space, one preliminary step is to subtract the mean in feature space by making,

𝛟 " (𝒙) = 𝛟(𝒙) - 1 𝑛 E 𝛟(𝒙 4) 3 4$% = 𝛟(𝒙) -𝛟(𝒙) 𝑻 𝟏 𝒏 (51
)
where 1 n is the 𝑛 × 𝑛 matrix for which each element takes value 1/𝑛.

With this transformation, the kernel matrix is given by

𝐊 " = 𝛟 " & 𝛟 " = (𝛟 -𝟏 L 𝛟)(𝛟 -𝟏 L 𝛟) M = 𝛟𝛟 𝐓 -𝟏 L 𝛟𝛟 𝐓 -𝛟𝛟 𝐓 𝟏 L + 𝟏 L 𝛟𝛟 𝐓 𝟏 L 𝐊 " = 𝐊 -𝟏 3 𝐊 -𝐊𝟏 3 + 𝟏 3 𝐊𝟏 3 (52)
So, in practice, the centralized kernel 𝐊 " is used to perform the KPCA algorithm described by Eqs. 47, 49, and 50.

KPCA satisfies the same mathematical and statistical properties as PCA. For example, if the eigenvectors found by KPCA are sorted in descending order according to the size of the respective eigenvalues, the first p principal component contains the largest variance in the high-dimensional space, and all principal components are uncorrelated. However, it is important to mention that in KPCA, data reconstruction is no longer a straightforward task as in its linear version. This is because the outcome of PCA after the kernel transformation lives in some high-dimensional feature space that does not necessarily have pre-images in the input space (Figure 8). Some approximations have been developed to recover the coordinates of the data points in the original input space (pre-images) after reducing the dimension of the data using KPCA. These approximations essentially involve either nonlinear optimization methods [START_REF] Mika | Kernel PCA and de-noising in feature spaces[END_REF] or regression [START_REF] Bakır | Learning to find pre-images[END_REF]. The possibility of determining the (approximate) pre-image 𝐳 for a given point w in the high-dimensional feature space (i.e., find the inverse map 𝐳 = 𝜙 '% (𝐰)) allows to expand the scope of KPCA applications to include data compression and noise removal [START_REF] Jade | Feature extraction and denoising using kernel PCA[END_REF]. the kernel transformation, the reconstruction of the projected point, 𝑃𝜙(𝑥 4), back to the original input space, 𝑥 4 * , can only be obtained with some approximated method.

[H3 Kernel K-means]

Another class of unsupervised learning methods that also admits a kernelized formulation is clustering [START_REF] Filippone | A survey of kernel and spectral methods for clustering[END_REF] and, in this section, we will consider a particular example of the kernel kmeans algorithm. K-means is one of the simplest and probably the most popular clustering methods that aim at finding the most compact partitioning of a given set of n data points 𝐱 ! ∈ ℝ P into K distinct (non-overlapping) subgroups C k in which each point is assigned to the cluster with the nearest mean (cluster centroid), representing a prototype (𝛍 4) of the cluster. [START_REF] James | An Introduction to Statistical Learning: with Applications in R[END_REF] Mathematically, this clustering procedure can be translated into an optimization problem expressed by the following quadratic cost function

𝐽(𝛍 % , . . . , 𝛍 4) = ∑ ∑ 𝑠 !" 3 "$% 4 !$% oe𝐱 " -𝛍 ! oe) , (53)
where the within-cluster sum of squares J should be minimized by iteratively updating the position of the centroids 𝛍 4 in each optimization cycle (‖⋯ ‖ denotes the L 2 norm, i.e., the Euclidean distance). The coefficients 𝑠 !" in Eq. 53 form a binary vector given by

𝑠 !" = • 1, if 𝑥 " ∈ 𝐶 ! 0, otherwise (54)
that defines the cluster assignments. For a detailed discussion about k-means, you can check Chapter 7, which is entirely devoted to unsupervised learning. Although the objective in Eq.

53 is a nonlinear function, it can be shown that the solution results in linear boundaries between clusters that split the space according to hyperplanes. Therefore, it would be interesting to exploit the principle of kernels to extend the k-means algorithm and enable the identification of clusters in a dataset that is non-linearly separable in input space. With this motivation in mind, our primary goal here is to find a kernelized version of the k-means minimization objective given by Eq. 53.

Similarly to our initial assumption in KPCA (see Eq. 40), we can start with a slight modification in Eq. 53 where we replace the original data points 𝐱 " by a nonlinear mapping function 𝜙J𝐱 " K that sends the data to a high-dimensional feature space. In this case, the new objective function becomes

𝐽(𝛍 % , . . . , 𝛍 4) = E E 𝑠 !" 3 "$% 4 !$% oe𝜙J𝐱 " K -𝜙(𝛍 !)oe) (55
)
where the new centroids 𝜙(𝛍 4) are also projected in the high-dimensional feature space.

From Eq. 55, it turns out that the position of each centroid, which originally corresponds to the mean of all data points assigned to a given cluster, cannot be easily mapped to the feature space. Thus, as a first proposition, we will consider that 𝜙(𝛍 4) can be expressed as a linear combination of the image of each data point as follows,

𝜙(𝛍 4) = ∑ 𝜙(𝐱 G) 𝐱 / ∈R . 𝑚 4 (56)
where 𝑚 4 is a normalization factor that denotes the total number of points in cluster k. With this assumption, the cost function in Eq. 55 becomes solely dependent on the image of the data points. However, it is generally not computationally efficient to perform the explicit nonlinear mapping 𝜙(𝛍 4) over all data points. Instead, we would like to express the minimization objective Eq. 55 in terms of dot-products involving pairs of data points so that the kernel trick could be invoked. Fortunately, this can be achieved by expanding the quadratic term in Eq. 55 and making use of our assumption in Eq. 56, which leads to the equations below.

𝐽 = E E 𝑠 !" 3 "$% 4 !$% £𝜙J𝐱 " K - ∑ 𝜙(𝐱 G) 𝐱 / ∈R ' 𝑚 ! £) (57) 𝐽 = E E 𝑠 !" 3 "$% 4 !$% Z𝜙J𝐱 " K & 𝜙J𝐱 " K - 2 ∑ 𝜙 𝐱 / ∈R ' (𝐱 G) & 𝜙J𝐱 " K 𝑚 ! + ∑ 𝜙 𝐱 ! ,𝐱 / ∈R ' (𝐱 8) & 𝜙(𝐱 G) 𝑚 !) [(58)
Now, one can immediately see that Eq. 58 can be further simplified by replacing the inner product across data points in the three terms of Eq. 58 with the evaluation of kernel functions in the form 𝑘J𝐱 ! , 𝐱 " K = 𝜙(𝐱 !) & 𝜙J𝐱 " K. By doing this, we can finally obtain the minimization objective of k-means in feature space, which is expressed as

𝐽 = E E 𝑠 !" 3 "$% 4 !$% p𝑘J𝐱 " , 𝐱 " K - 2 𝑚 4 E 𝑘 𝐱 / ∈R ' J𝐱 G , 𝐱 " K + 1 𝑚 4) E 𝑘 𝐱 ! ,𝐱 / ∈R ' (𝐱 8 , 𝐱 G)q (59)
The minimization of the cost function in Eq. 59 can still be performed iteratively as in the conventional k-means algorithm. However, due to the k-means kernelization, the new objective function Eq. 59 does not involve cluster prototypes (centroids) anymore. In fact, the minimization problem in kernel k-means becomes finding an optimal set of cluster membership indicators ¤𝑠 !" ¥ instead of determining the cluster centers explicitly as in the original problem. This leads to a practical issue that does not happen in conventional kmeans: the minimization variables 𝑠 !" are integer numbers; such an optimization problem is generally more difficult to solve since the objective is not differentiable. On the other hand, kernel k-means has a considerable advantage for finding non-convex clusters within a distribution of data points that is not linearly separable.

[H1 Case studies]

In this section, you will do exercises using kernel methods for supervised (Case study 1) and unsupervised learning (Case study 2).

[H2 Case study 1: Fitting with kernel ridge regression]

In Finally, you can also experiment with different kernels, e.g., by trying the polynomial, Laplacian, and Matérn kernels with different n.

[H2 Case study 2: Kernel principal component analysis]

To illustrate the potentialities of kernel methods in the context of unsupervised learning, we provide here a step-by-step, hands-on tutorial considering kernel PCA as an example of a method to discover patterns in quantum chemical data. The tutorial is fully written in Python language, and the notebook containing all coding steps is available at https://github.com/maxjr82/MLinQCbook22-KMs. A detailed from-scratch implementation of the KPCA method is also provided in the tutorial, so you will have an opportunity to learn in practice the whole training process of KPCA that starts from building the kernel matrix.

The only Python package required for this implementation is Numpy [START_REF] Harris | Array programming with NumPy[END_REF].

The SN2 reactions dataset [START_REF] Unke | PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments, and Partial Charges[END_REF] (https://doi.org/10.5281/zenodo.2605340) that explores both conformational and configurational degrees of freedom in the chemical space of reactions involving different methyl halide species and halide anions (i.e., X -+ CH 3 Y → CH 3 X + Y - with X, Y = F, Cl, Br and I) will be used for this case study. This is a robust dataset in terms of molecular structures, 452709 data points in total with the number of atoms ranging from 2 to 6, and chemical properties with reference energies, forces, and dipole moments available.

Although any of these properties could be used as a target quantity for an ML model, we will explore the SN2 dataset from the unsupervised learning perspective with the aim of finding a low-dimensional representation of the chemical space that may reveal meaningful patterns in the data. Indeed, one typical task in dimensionality reduction is to compress the highdimensional vector representation of the data such that each molecular structure can be represented as a point in a 2D map [START_REF] Cheng | Mapping Materials and Molecules[END_REF], thereby allowing us to identify groups of molecules sharing similar properties simply by visual inspection.

As a first step, each molecular structure in the SN2 dataset, originally represented by Cartesian coordinates, is converted into the so-called Coulomb Matrix (CM) descriptor [START_REF] Hansen | Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies[END_REF][START_REF] Rupp | Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning[END_REF]. The maximum size of the CM vector representation across the entire SN2 dataset is 21. Thus, we will use the KPCA method to reduce the dimension of the feature vectors to 2. The similarity between two data points will be measured by a radial basis function (RBF) kernel. To limit the kernel matrix to a computationally tractable size, a total of 5000 data points is randomly picked from the full SN2 dataset to train the KPCA-RBF model. After training the model, the reduced dataset (5000×2) can be represented in a scatter plot, where the points can be colored according to some chemical property of interest. As you can see in the Python notebook, the KPCA map with two components shows a separation between the groups of molecules having low (blue) and high (yellow to red) potential energy, respectively (Figure 9). It is important to highlight that the potential energy was not explicitly used as part of the training set. Similar to the supervised learning problem discussed in the previous case study, the reduced space obtained with KPCA strongly depends on the functional form of the kernel used as well as the kernel hyperparameters. As an exercise, you are encouraged to try different values for the width of the RBF kernel (gamma parameter) implemented in the notebook to see how it affects the distribution of points in the KPCA 2D map. As a more advanced exercise, you can implement the Laplacian kernel (hint: use the scikit-learn package, https://scikitlearn.org/stable/modules/metrics.html) and then compare the results with the RBF kernel using the same gamma value in both cases. It is worth mentioning that, in these exercises, there is no a clear and unique way to determine which kernel function or hyperparameters give the best results simply because there is no ground-truth for the low dimensional manifold of the original data that could be used to compare with the KPCA map. As a rule of thumb, finding a suitable model in unsupervised learning often requires some intuition and expert knowledge about the data.

[H1 Conclusions and outlook]

In this chapter, we have presented an introduction to kernel methods in machine learning, focusing on quantum chemical applications. Before the rigorous mathematical definitions, the general concepts underlying the kernel theory, such as similarity functions and data representation, were introduced in a qualitative way, considering a simple molecular data as a motivating example. This conceptual overview paves the way to better understand how and why kernel methods are powerful in extending linear machine learning models to describe non-linear data. In fact, we have seen that kernel methods permeate all hierarchy of ML algorithms, going from supervised (for both regression and classification) to the unsupervised learning domains. For supervised learning, a simple regression problem on a 1D dataset was used to present the mathematical formalism of a regularized kernel regression model, since regression is one of the most used applications of kernel methods in quantum chemistry. In the case of unsupervised learning, we have shown two different examples of classical linear algorithms for which the kernelized version may lead to significant improvements for discovering hidden patterns in high-dimensional data. As usual, the final part of this chapter was dedicated to practical case studies used to illustrate the application of kernel methods to real quantum chemical problems.

There are still advanced research topics in kernel methods not covered in this chapter, such as multiple kernel learning, graph kernels, and deep kernel learning, that are promising to perform machine learning on molecular data. In the case of multiple kernel learning, for example, it has been shown that the potential energy surface of a molecular dimer can be accurately fitted by a Gaussian process when an optimal kernel is obtained from a linear combination of basis kernel functions [START_REF] Sugisawa | Gaussian process model of 51-dimensional potential energy surface for protonated imidazole dimer[END_REF]. Also, specialized kernels can be designed to operate directly on a graph space, the so-called graph kernels, which thus provide a natural way to measure the similarity between molecular structures in traditional machine learning algorithms [START_REF] Tang | Prediction of atomization energy using graph kernel and active learning[END_REF][START_REF] Ferre | Learning molecular energies using localized graph kernels[END_REF][START_REF] Casier | Hybrid localized graph kernel for machine learning energy-related properties of molecules and solids[END_REF]. Finally, deep kernel learning [START_REF] Wilson | Deep Kernel Learning[END_REF] is a recently proposed framework that aims at surpassing the scalability problems of non-parametric kernel methods by using deep neural networks to learn highly flexible kernel functions with the possibility of training on very large datasets.

Figure 1 .

 1 Figure 1. Hierarchical representation of most popular kernel-based algorithms used in machine learning.

Figure 2 .

 2 Figure 2. An illustrative chemical example of the idea of pairwise similarity and its relation with the definition of the kernel matrix. The Python code used to build the kernel matrix and generate the plots is available at https://github.com/maxjr82/MLinQCbook22-KMs.

Figure 3 .

 3 Figure 3. An illustrative example of how to perform a prediction using a kernel-based learning model.

Figure 4 .

 4 Figure 4. Linear fits of the H 2 dissociation curve (red and blue lines) using expressions 𝐸 = 𝑎𝑅 and 𝐸 = 𝑎𝑅 + 𝑏.[15] Fits are done in Excel.

Figure 5 .

 5 Figure 5. Fit of the H 2 dissociation curve (red line) using the expression 𝐸 = 𝑎𝑅 ! '(+ 𝑏𝑅 ! '%) + 𝑐.[15] Fit is done in Excel.

Figure 6 .

 6 Figure 6. Fit of the H 2 dissociation curve (red line) using the expression

Figure 7 .

 7 Figure 7. Fit of the H 2 dissociation curve (red line) with the kernel ridge regression using the Gaussian kernel. Red fit is obtained with 𝜎 = 10 1 and 𝜆 = 1 to demonstrate underfitting, and the blue fit is obtained with 𝜎 = 0.1 and 𝜆 = 0 to demonstrate overfitting.[15] Fits were done

Figure 8 .

 8 Figure 8. Schematic illustration of the pre-image problem in kernel PCA. Since the projection of the data points is performed in the high-dimensional feature space spanned by

Figure 7 .

 7 Figure 7. If you need to find optimal hyperparameter values, even with two hyperparameters,

Figure 9 .

 9 Figure 9. Nonlinear PCA map calculated using the RBF kernel for a subset of 5000 points

[

 H1 Acknowledgements] P.O.D. acknowledges funding by the National Natural Science Foundation of China (No. 22003051), the Fundamental Research Funds for the Central Universities (No. 20720210092), and via the Lab project of the State Key Laboratory of Physical Chemistry of Solid Surfaces. The authors thank Bao-Xin Xue for converting Case study 1 to the Jupyter notebook and for assistance with reference formatting issues. [Author contributions] MPJ has written the original versions of Introduction, Kernel methods explained for chemists, and Unsupervised learning sections of Methods, Case study 2, and Conclusions and outlook. POD has written the original versions of the Methods part on supervised learning with kernel methods and Case study 1. Both authors revised the whole manuscript.

 our previous example, 𝐱 = (𝑅) & and Eqs. 1 and 2 are a special case of Eq. 3. If we take

	𝐱 = (1, 𝑅) & and 𝛃 = (𝑏, 𝑎) & , then Eq. 3 becomes equivalent to the linear regression with
	intercept b:

 The KRR functions are much smoother and can generalize better to the unseen points than unregularized kernel methods. Without regularization, KRR with the Gaussian or other flexible kernels (the topic of the next subsection) can perfectly fitting the training points but fail to make reasonable predictions for unseen points (overfitting; the model is said to have high variance and low bias).[START_REF] Rupp | Machine learning for quantum mechanics in a nutshell[END_REF][START_REF]Quantum Chemistry Assisted by Machine Learning[END_REF][START_REF] Hastie | The Elements of Statistical Learning: Data Mining, Inference, and Prediction[END_REF] Thus, regularization is also a way to alleviate the overfitting problem. On the other hand, too large values of the regularization hyperparameter would lead to a model incapable of learning from training data, a situation known as underfitting (high bias and low variance).[START_REF] Rupp | Machine learning for quantum mechanics in a nutshell[END_REF][START_REF]Quantum Chemistry Assisted by Machine Learning[END_REF][START_REF] Hastie | The Elements of Statistical Learning: Data Mining, Inference, and Prediction[END_REF]

& (𝐊𝛂 -𝐲) + 𝜆𝛂 & 𝐊𝛂 (20) instead of Eq. 15. Here, the regularization term in Eq. 20 is essentially the Euclidean norm (or L 2 -norm) of the coefficients weighted by the kernel matrix. Thus, the hyperparameter 𝜆 should be chosen with care. It can be usually determined by splitting the training data into the sub-training and validation sets and then searching in a range of predefined hyperparameter values to achieve the minimum error in the validation

 SVR, 𝐶 plays the role of the regularization hyperparameter similar to the hyperparameter 𝜆 in KRR. It shrinks the coefficients for better generalization. Basically, predictions with KRR and SVR are equivalent because for the set of the SVR regression coefficients 𝛼 ! 567 in Eq. 28 can be multiplied by the reference values 𝑦 ! to get the KRR regression coefficients 𝛼 ! in Eq. 8, i.e., 𝛼 ! = 𝛼 ! 567 𝑦 ! . The difference is only in the training algorithm as during SVR

 this Case study, you can get hands-on experience with KRR on an example of fitting the H 2 dissociation curve. For this, you can follow the tutorial fully written in Python language; the notebook containing all coding steps and data are available at https://github.com/maxjr82/MLinQCbook22-KMs. Alternatively, you can implement KRR algorithms using your preferred programming language as an advanced exercise, which will help you to understand better KRR. You can even use Excel for fitting with KRR, which You can investigate the role of regularization on the magnitude of 𝛼. For larger regression coefficients 𝜆, they shrink as expected, and for very large values, e.g., 10 1 , regression coefficients and estimated energies become practically zero, i.e., your model severely underfits the training points. Now, you can train the KRR model to get a result equivalent to linear regression with intercept, i.e., 𝐸 = 𝑎𝑅 + 𝑏. There are many possible ways to solve this problem, and one of them was mentioned in Methods subsections. No solution is given here or in the tutorial, and we leave this exercise to you.As discussed in the Methods subsection, a more flexible kernel function is the Gaussian kernel. You can reproduce the fit shown in Figure6by using the hyperparameters 𝜎 = 1 and 𝜆 = 3.5⋅10 -13 (see https://github.com/maxjr82/MLinQCbook22-KMs). It is useful to play with different values of 𝜎 and 𝜆 to see their effect on estimated values for both training and test points. For example, you can take the values of hyperparameters from http://mlatom.com/aqctutorial/ to obtain severe underfits or overfits of the data, as shown in

	the values estimated with KRR for the training points. Another way to confirm this is to find
	a sum 𝛽 = ∑	+ tr $)-!$%	𝛼 ! 𝑅 !	, which should be close to -0.2962.

would require some ingenuity and a bit of patience (hint: you can use Excel's Solver add-in). As a first exercise, train the KRR model with the linear kernel. If you do not use regularization, your calculations of the regression coefficients 𝛼 can fail or lead to unsatisfactory results depending on the implementation and program you use. If this is the case, you need to use a small positive regularization hyperparameter, e.g., 𝜆 = 10 '(. The coefficients you obtained with such a small regression coefficient 𝜆 = 10 '(already provide essentially the same predictions as the linear regression, which you can confirm by looking at