
HAL Id: hal-03798012
https://hal.science/hal-03798012

Submitted on 6 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deductive databases in four-valued logic: rule semantics
and models

Dominique Laurent, Nicolas Spyratos

To cite this version:
Dominique Laurent, Nicolas Spyratos. Deductive databases in four-valued logic: rule semantics and
models. Journal of Logic and Computation, inPress, �10.1093/logcom/exac047�. �hal-03798012�

https://hal.science/hal-03798012
https://hal.archives-ouvertes.fr


Manucript submitted to Journal of Logic and Computation

Deductive Databases in Four-Valued Logic:
Rule Semantics and Models

Dominique Laurent · Nicolas Spyratos

Abstract In this paper, we investigate rule semantics for deductive databases in
the context of Four-valued logic. In our approach a database is a pair ∆ = (E,R),
where E is a set of pairs, each pair associating a ground fact with a truth value
(thus allowing to store true, false or inconsistent facts) and R is a set of rules
generalizing standard Datalog rules in the following sense: (i) the head of a rule
can be a positive or a negative atom, and (ii) the body can involve any among
the connectors of Four-valued logic. We define the database semantics as the least
fixed point of a monotonic operator and we compare this semantics with that
of k-existential programs defined by Fitting and paraconsistent extended logic
programs defined by Arieli.

Our main contribution is to show that, if we consider rules as implications (that
is, if we view the database as a set of formulas) then the semantics of the database
is the unique minimal model of the set of database formulas. Here, minimality is
understood with respect to the knowledge ordering of Four-valued logic satisfying
a monotonicity property whereby the truth value of the head of an instantiated
rule is greater than that of the body. Moreover, we address the issue of updating
databases with finite semantics in the context of Four-valued logic. We argue that
our approach allows for a new kind of updates, in which the update result depends
not only on the fact involved in the update, but also on its current truth value in
the database.

Keywords Four-valued logic . Deductive database . Least fix point . Rule
semantics . Database model . Database update

Dominique Laurent
ETIS Laboratory - ENSEA, CY Cergy Paris University, CNRS
F-95000 Cergy-Pontoise, France
dominique.laurent@cyu.fr

Nicolas Spyratos
LISN Laboratory - University Paris-Saclay, CNRS
F-91405 Orsay, France
nicolas.spyratos@lri.fr

Acknowledgment: Work conducted while the second author was visiting at FORTH
Institute of Computer Science, Crete, Greece (https://www.ics.forth.gr/)



1 Introduction

In this paper, we extend the notion of deductive databases [10,17] to the context
of Four-valued logic [7], a formalism known to be suitable for data integration, as
it allows to deal with unknown, inconsistent, true and false information.

In our approach, a database is a pair ∆ = (E,R) where E is the database
extension and R is a set of rules. More precisely:

– the database extension E is a set of pairs of the form 〈ϕ, v〉, where ϕ is a ground
fact and v its truth value, thus allowing to store true, false or inconsistent facts

– the rules generalize standard Datalog rules in the sense that: (i) the head of
a rule can be a positive or negative fact, and (ii) the body can involve any
among the connectors of Four-valued logic, namely ¬, ∨, ∧, ⊕ and ⊗.

Database semantics is defined as the least fixed point of a monotonic operator, as
done for paraconsistent extended logic programs defined in [3] and for k-existential
programs defined by Fitting [14]. A comparison between our semantics and the
semantics in [3] and [14] is discussed in detail later in the paper. Before going into
technical details, let us motivate our approach through an example that we shall
use as our running example throughout the paper.

Running Example. Consider bags of rice grains that are transported from rice
farms to warehouses where they are stored. Two important factors that (among
others) influence the storage of rice, are color and humidity of the rice grains [6].
Each bag is tested for color and humidity in two different sites, first just before
leaving the rice farm and then just before entering the warehouse.

Assuming that each bag has a unique identifier, the bag with identifier ID is
associated with two atomic formulas, namely W Fit(ID) and H Fit(ID) whose
truth values respectively account for its fitness with respect to ‘whiteness’ and
for its fitness with respect to ‘humidity’. To pass the ‘whiteness’ criterion, i.e., to
ensure that W Fit(ID) is true, the tests should say that the grains in the bag are
indeed white, while to pass the ‘humidity’ criterion, i.e., to ensure that H Fit(ID)
is true, the tests should say that the grains in the bag are not humid.

Then, the overall fitness for a bag with identifier ID, denoted by Fit(ID), is
assessed through the conjunction W Fit(ID) ∧ H Fit(ID), which is generalized
as the rule Fit(x)←W Fit(x) ∧H Fit(x), where x is a variable.

Assume now that the tests are conducted by sensors: two sensors at the rice
farm, one for color, denoted W1, and one for humidity denoted H1; and two sensors
at the warehouse denoted W2 and H2. We also assume that, during a test, if the
sensor is functioning then it returns a Boolean value (true or false), otherwise it
returns no value. Under these assumptions, one of the following cases can appear
for the sensors testing color (and similarly for the sensors testing humidity):

1. The two sensors return the same value.
2. The two sensors return different values.
3. Only one of the two sensors returns a value.
4. Neither of the two sensors returns a value.

Then the question is: what value should we assign to W Fit(ID) in each of the
four cases above? In our approach, we answer this question by ‘integrating’ the
outputs of W1 and W2 as follows (and similarly for the outputs of H1 and H2):

2



1. W Fit(ID) is set to the common value returned by the two sensors.
2. W Fit(ID) is set to inconsistent, as the two sensors returned different values.
3. W Fit(ID) is set to the value returned by the sensor which returned a value.
4. W Fit(ID) is set to unknown, as neither of the two sensors returned a value.

It should be clear that we need more than the standard truth values, True and
False, to express cases 2 and 4 above. It turns out that the Four-valued logic
introduced in [7] is actually the right formalism as it provides the additional truth
values needed and also the appropriate connectors to work with these additional
truth values. For instance, using a connector denoted by ⊕ we can express all four
cases above as a single expression: W1(ID)⊕W2(ID). We can therefore generalize
this situation through the rule W Fit(x)←W1(x)⊕W2(x), where x is a variable.
The situation regarding humidity is expressed by means of a similar rule whose
head involves negation, namely ¬H Fit(x)← H1(x)⊕H2(x). 2

In the light of this example, our contributions are the following:

1. We define the formalism for expressing rules as discussed above, and then we
define database semantics as the least fixed point of a monotonic operator.
Moreover, we compare our semantics with that of k-existential programs as
defined by Fitting in [14,15], and that of paraconsistent extended logic pro-
grams as defined by Arieli in [3].

2. We show that if one considers the rules as implications then database semantics
is the unique minimal model of the set of implications. Here minimality is
understood with respect to the knowledge ordering of the Four-valued logic
satisfying a monotonicity property whereby the truth value of the head of an
instantiated rule is greater than that of the body. Our notion of minimality is
then compared with that in [3].

3. We characterize databases having finite semantics by means of the concept of
safe rule. This is an important issue as it guarantees that all answers to queries
are finite (except if we query for unknown facts). This is an issue not addressed
in [14,15] or [3].

4. We investigate the issue of database updating in the context of Four-valued
logic. This issue is not addressed in [14,15] or in [3], although knowledge revi-
sion is considered in [3]. We argue that the context of Four-valued logic allows
for defining a new kind of updates by which the result of an update depends
not only on the fact involved in the update, but also on its current truth value
in the database content.

The paper is organized as follows: In Section 2 we review the formalism related
to Four-valued logic. Section 3 provides the definitions of syntax and semantics of
databases in the context of Four-valued logic; in this section, we also investigate
properties of our semantics, in particular, in relation with [14,15] and [3]. In Sec-
tion 4, we address the issue of safe rules, to guarantee finite database semantics.
Section 5 is devoted to database updates in the context of our approach. In Sec-
tion 6, we review some of the numerous approaches related to our work. Finally, in
Section 7, we provide an overview of our results and outline directions for further
research.

3



ϕ ¬ϕ
t f
b b
n n
f t

ϕ 6∼ ϕ
t b
b t
n f
f n

ϕ ∼ ϕ
t f
b n
n b
f t

∨ t b n f

t t t t t
b t b t b
n t t n n
f t b n f

∧ t b n f

t t b n f
b b b f f
n n f n f
f f f f f

⊕ t b n f

t t b t b
b b b b b
n t b n f
f b b f f

⊗ t b n f

t t t n n
b t b n f
n n n n n
f n f n f

Fig. 1 Truth tables of basic connectors

2 Background: Four-Valued Logic

2.1 Basics of Four-Valued Logic

Four-valued logic was introduced by Belnap in [7], who argued that this formalism
could be of interest when integrating data from various data sources. To this
end, denoting by t, b, n and f the four truth values, the usual connectives ¬,
∨ and ∧ have been defined as shown in Figure 1. A prominent feature of this
Four-valued logic is that truth values can be compared according to two partial
orderings, known as truth ordering and knowledge ordering, denoted by �t and
�k, respectively, and defined as follows:

f �t n �t t ; f �t b �t t and n �k t �k b ; n �k f �k b.

We recall from [7] that the notation b and n for inconsistent and unknown, can be
read respectively as both and none. This is because considering the set {t, b, n, f} as
the power set of {True, False}, the truth values n, f, t, b are respectively associated
with ∅, {False}, {True}, {True, False}. We note that, under this association, the
ordering �k and the connectors ⊕ and ⊗ are respectively set theoretic inclusion,
union and intersection applied to the power set of {True, False}.

As in standard two-valued logic, conjunction (respectively disjunction) corre-
sponds to minimum (respectively maximum) truth value, when considering the
truth ordering. It has also been shown in [3,7,14,15] that the set {t, b, n, f}
equipped with these two orderings has a distributive bi-lattice structure, where
the minimum and maximum with respect to �k are denoted by ⊗ and ⊕, respec-
tively.

It should be emphasized that, not surprisingly, some basic properties holding in
standard logic do not hold in this Four-valued logic. For example, Figure 1 shows
that formulas of the form Φ ∨ ¬Φ are not always true, independently from the
truth value of Φ. More importantly, it has been argued in [4,23,32] that defining
the implication Φ1 ⇒ Φ2 by ¬Φ1 ∨ Φ2, is problematic.

To see this, as done in [4,7,23,32], the distinguished truth values in our ap-
proach, are t and b, meaning that distinguished truth values are those that ‘con-
tain some truth’. Then, a given propositional formula Φ is said to be valid for
a given truth value assignment of its propositional variables if the corresponding
truth value of Φ is distinguished.

4



⇒ t b n f

t t b n f
b t b t b
n t t n n
f t t t t

→1 t b n f

t t b n f
b t b n f
n t t t t
f t t t t

→2 t b n f

t t b n f
b t t n n
n t b t b
f t t t t

→3 t b n f

t t b n f
b t b n f
n b b b b
f b b b b

∗→1 t b n f

t t f n f
b t b n f
n t n t n
f t t t t

∗→2 t b n f

t t f f f
b t t f f
n t f t f
f t t t t

∗→3 t b n f

t b f f f
b b b f f
n b f b f
f b b b b

Fig. 2 Truth tables of ⇒ and of implications in Four-Valued Logic

Considering now the formula Φ defined by (Φ1 ∧ (Φ1 ⇒ Φ2)) ⇒ Φ2, Figure 2
shows that if v is a truth value assignment such that v(Φ1) = n and v(Φ2) = f,
then v(Φ1 ⇒ Φ2) = n and thus, v(Φ) = n. Hence in this case, Φ is not valid, which
is counter-intuitive, because it is expected that Φ should be valid in any case. This
remark leads to discard ⇒ as an implication.

2.2 Implication in Four-Valued Logic

Although rule based languages and implication are two distinct concepts, we recall
that, in standard logic programming, there is a strong link between the two. Indeed,
it is well known that the semantics of a positive logic program (i.e., a set of rules
with no negation) is the least model of the set of first order formulas obtained
by considering the rules as implications. In order to set a similar result in our
framework, we need to define an implication and, as our earlier discussion shows,
this implication cannot be ⇒.

Among the various proposals introduced in the literature (see [4,23,29,32]), we
mention six implications whose truth tables are shown in Figure 2. Considering ;
as a generic symbol standing for any of the symbols →i or

∗→i (i = 1, 2, 3), let Φ
be the formula (Φ1 ; (Φ1 ; Φ2)) ; Φ2. Then, contrary to Φ, the formula Φ has
truth value t of b for all truth value assignments of Φ1 and Φ2. In other words,
Φ is always valid, whatever the truth values assigned to Φ1 and Φ2. Thus, all six
implications →i and

∗→i for i = 1, 2, 3, are acceptable regarding the validity of Φ.

Although our purpose in this paper is not to assess which implication could
be ‘better’ than another, it is nevertheless relevant to recall some of their basic
properties. In doing so, we shall argue that, in our context, for every i = 1, 2, 3,
the implication →i has suitable properties, whereas such is not the case for

∗→i.
First, it is well known that none of these implications can be expressed using

the standard connectors ¬, ∨ and ∧ (see Corollary 9 in [4] regarding →1), and
that this becomes possible when considering the additional connectors available
in the Four-valued logic. To see this, considering as in [32] the basic connectors ¬,
∨, ∧, 6∼, ⊕ and ⊗, the connector ∼ is defined for every formula φ by:

∼ φ = ¬ 6∼ ¬ 6∼ φ = 6∼ ¬ 6∼ ¬φ.

Moreover, the additional connectors T, B, N and F are introduced in [32], with
truth tables as shown in Figure 3. These connectors allow to ‘characterize’ each

5



φ Tφ
t t
b f
n f
f f

φ Bφ
t f
b t
n f
f f

φ Nφ
t f
b f
n t
f f

φ Fφ
t f
b f
n f
f t

φ ◦φ
t f
b f
n t
f t

φ �φ
t n
b n
n b
f b

Fig. 3 Truth tables of unary connectors from [32] and of connectors ◦ and �

truth value in terms of only the standard ones, namely t and f. Roughly speaking,
given a truth value v, the corresponding connector which we denote by V, is
defined for every formula φ by the fact that Vφ is true if φ has the truth value v

and false otherwise.
Then, considering that two propositional formulas φ1 and φ2 are equivalent,

denoted by φ1 ≡ φ2, if they have the same truth tables, the following equivalences
are shown in [32]:

Tφ ≡ φ∧ ∼ ¬φ ; Bφ ≡ 6∼ φ∧ 6∼ ¬φ ; Nφ ≡∼6∼ φ ∧ ¬ 6∼ φ ; Fφ ≡∼ φ ∧ ¬φ.

Now, let the additional connectors ◦ and � be defined by:

◦φ = ¬(T(φ) ∨B(φ)) and �φ = 6∼ ¬(T(φ) ∨B(φ)).

It turns out that ◦ ‘characterizes’ the non validity of a formula φ in terms of the
truth values t and f. In other words, as shown by Figure 3, ◦φ is true if φ is not
valid and false otherwise. The connector � expresses a similar formula, using truth
values b and n instead of t and f.

These connectors provide the following simple formulas expressing the impli-
cations whose truth tables are shown in Figure 2.

1. φ1 →1 φ2 ≡ ◦φ1 ∨ φ2 (easy to prove based on the truth tables)
2. φ1 →2 φ2 ≡∼ φ1 ∨ φ2 (see [32] for the proof of this result)
3. φ1 →3 φ2 ≡ �φ1 ⊕ φ2 (easy to prove based on the truth tables)

4. φ1
∗→1 φ2 ≡ (φ1 →1 φ2) ∧ (¬φ2 →1 ¬φ1)

5. φ1
∗→2 φ2 ≡ (φ1 →2 φ2) ∧ (¬φ2 →2 ¬φ1)

6. φ1
∗→3 φ2 ≡ (φ1 →3 φ2) ∧ (¬φ2 →3 ¬φ1)

The last three items above show that, for i = 1, 2, 3,
∗→i has been introduced

due to the fact that →i does not satisfy the appealing property of contraposition
of implication, namely φ1 →i φ2 and ¬φ2 →i ¬φ1 are not equivalent. It is of
course easy to see that for i = 1, 2, 3,

∗→i satisfies the property of contraposition
of implication, i.e., the equivalence φ1

∗→i φ2 ≡ ¬φ2
∗→i ¬φ1 holds.

On the other hand, since ◦φ can be read as φ is not valid, the first item above
shows that φ1 →1 φ2 can be read as either φ1 is not valid or φ2, as mentioned in
[3]. A similar remark holds regarding→3, using 6∼ ¬ instead of ¬ as negation, and
⊕ instead of ∨ as disjunction. As for →2, it is argued in [32] that ∼ φ can be read
as the ‘complement’ of φ, and so, φ1 →2 φ2 can be read as either the complement
of φ1 or φ2.

For the purpose of our work, we emphasize that, as Figure 2 shows, the im-
plications φ1 →i φ2, for i = 1, 2, 3, are valid in the same cases, namely when
φ1 and φ2 are valid or when φ1 is not valid. This remark shows that, regarding
validity, the implications →i behave in a similar way as ⇒ does in the context of
two-valued logic (that is, φ⇒ φ2 is true if and only if φ1 and φ2 are true or φ1 is

false). However, this remark does not hold for the implications
∗→i, i = 1, 2, 3.

6



As we shall see later (Definition 5), the notion of database model relies only
on the validity of implications.It therefore follows from the above discussion that
choosing one implication among →1, →2 or →3 makes no difference in the results
obtained in our approach (see Section 4): these results hold no matter which of
these implications is chosen. However, the above discussion also shows that the
implications

∗→i, i = 1, 2, 3, have to be discarded in the context of our approach.
Therefore, in this paper we choose → as a generic symbol for implication. One

can replace it by any of the symbols →1, →2 or →3, with no effect on the results.

3 Four-Valued Logic and Databases

3.1 Database Syntax

As usual, when dealing with deductive databases, the alphabet is made up of
constants, variables and predicate symbols with a fixed arity. We thus assume a
fixed set of constants, called the Herbrand Universe and denoted by H. Note that
H may be infinite.

As in traditional approaches, a term is either a constant from H or a variable,
and an atomic formula (also called atom) is a formula of the form P (t1, t2, . . . , tk)
where P is a k-ary predicate and ti is a term, for every i = 1, 2, . . . , k. A formula
is said to be a ground formula if it contains no variables. A fact is a ground atom
that is an atom in which all terms are constants. Moreover, a literal is either an
atom or the negation of an atom; in the former case the literal is said to be positive
and in the latter case it is said to be negative. The Herbrand Base associated with
H, denoted by HB, is the set of all facts that can be built up using the constants
in H and the predicates. Clearly, if H is infinite, then so is HB.

In this setting, a valuation (or interpretation) of HB is defined to be a truth
value assignment associating every fact in HB with a truth value in {t, b, n, f}.
More formally, a valuation is a total function v : HB → {t, b, n, f}, and for every
fact ϕ in HB, v(ϕ) is referred to as the truth value of ϕ under v. The set Sv =
{〈ϕ, v〉 | v(ϕ) 6= n} is called the known part of v.

Conversely, let S be a set of pairs of the form 〈ϕ, v〉 where ϕ is in HB and v

is a truth value. Then, based on S, we can define a valuation vS if the following
assumptions hold:
(1) v is different than n, i.e., v is in {t, b, f},
(2) for all 〈ϕ1, v1〉 and 〈ϕ2, v2〉 in S, if ϕ1 = ϕ2 then v1 = v2,
(3) for every ϕ not occurring in S, vS(ϕ) = n.

Such set S is called a valuated-set, or v-set for short. As for the above assump-
tions, we emphasize the following:

1. Assumption (1) means that if a fact ϕ appears in S then it is in the known
part of vS , i.e., vS(ϕ) 6= n.

2. Assumption (2) means that every fact ϕ occurring in S is associated with one
and only one truth-value (which according to (1), belongs to {t, b, f}). We
shall refer to this assumption as the ‘functionality’ of S.

3. Assumption (3) means that every fact ϕ not occurring in S is ‘unknown’, i.e.,
vS(ϕ) = n. We shall refer to this assumption as the ‘Open World Assumption’
(or OWA for short).

7



We are now ready to define the concept of database in Four-valued logic.

Definition 1 A database over HB is a pair ∆ = (E,R) such that:

– E is a finite v-set over HB called the extension of ∆.
– R is a set of rules called the rule set of ∆. A rule in R is an expression of the

form ρ : h(X) ← B(X,Y ) where X and Y are vectors of variables such that
all variables in X occur in B(X,Y ). Moreover:
– h(X) is a positive or negative literal
– B(X,Y ) is a quantifier free, well formed formula built up using the con-

nectors ¬, ∨, ∧, ⊕ and ⊗.

Given a rule ρ : h(X)← B(X,Y ), h(X) is called the head of ρ, denoted by head(ρ),
and B(X,Y ) is called the body of ρ, denoted by body(ρ). 2

It should be clear that our definition of database generalizes that of standard
Datalogneg databases ([9,10]) in significant ways. Indeed:

– Contrary to Datalog databases, the database extension E is not a set of ground
facts, but a v-set. Therefore E stores not only true facts, but also false facts
or inconsistent facts. Moreover, contrary to Datalog databases, we allow the
predicate symbols occurring in E to also occur in the rule heads. In other words
we do not assume that the set of predicate symbols is partitioned into a set of
extensional and a set of intentional predicate symbols.

– As in Datalog, all variables occurring in the head of a rule also occur in the
body. However, in our approach, the rule body may involve any among the
connectors ¬, ∨, ∧, ⊕ and ⊗, and the head may be a positive or a negative
literal.

– Our definition generalizes rules as defined in [24] where the bodies of the rules
are restricted to be conjunctions only.

Before investigating the close relationship between our approach and the works in
[14,15] and [3], we illustrate Definition 1 in the context of our Running Example.

Example 1 In our Running Example, let us consider the set of predicate symbols
Pred = {H1, H2,W1,W2, H Fit,W Fit, F it, Species,Alert}, the set of constants
H = {101, 202, 303, s1, s2, low, high} and the corresponding Herbrand base HB.
Moreover, let us define the database ∆ = (E,R) as follows:

E = { 〈W1(101), t〉, 〈W1(202), f〉, 〈W2(202), t〉, 〈W1(303), f〉,
〈H1(101), f〉, 〈H2(101), f〉, 〈H2(202), t〉,
〈Species(101, s1), t〉, 〈Species(202, s1), t〉, 〈Species(303, s2), t〉,
〈Fragile(s1, low), t〉, 〈Fragile(s2, high), t〉 }

R = {ρ1, ρ′1, ρ2, ρ′2, ρ3, ρ′3, ρ4} where:

ρ1 : W Fit(x)← W1(x)⊕W2(x) ρ′1 : ¬W Fit(x)← ¬(W1(x)⊕W2(x))
ρ2 : ¬H Fit(x)← H1(x)⊕H2(x) ρ′2 : H Fit(x)← ¬(H1(x)⊕H2(x))

ρ3 : Fit(x)← W Fit(x) ∧H Fit(x)
ρ′3 : ¬Fit(x)← ¬(W Fit(x) ∧H Fit(x))
ρ4 : Alert(x, z)← ¬Fit(x)⊗ (Species(x, y) ∧ Fragile(y, z))

We refer to the introductory section regarding the intuition for the rules ρ1, ρ2 and
ρ3. Regarding their ‘dual’ versions ρ′1, ρ′2 and ρ′3, these rules are introduced because
negation ¬ in Four-valued logic is explicit, in the sense that ¬ϕ is inferred only if

8



either this piece of information is given in the database extension, or if it is explicitly
obtained through the rules. Thus, if no rule head involves, say ¬W Fit(x), for some
instance ID of x then it is not possible to state that ¬W Fit(ID) is true (i.e., that
W Fit(ID) is false). In fact, considering ρ1 and ρ′1 amounts to considering these
rules as an equivalence that is W Fit(ID) holds if and only if so does W1 ⊕W2.
We shall come back to this important point later in the paper, when comparing
our approach with those in [14,15] and [3].

Regarding ρ4, the intuition is that an alert should be raised in case of an unFit
bag whose content is fragile, and moreover the level of the alert is set to be that
of species fragility (high or low in our example).

More precisely, based on the truth tables shown in Figure 1, it turns out that
the formula ¬Fit(ID) ⊗ (Species(ID, s) ∧ Fragile(s, l)) has truth value t when
the truth value of ¬Fit(ID) is t or b and that of Species(ID, s)∧ Fragile(s, l) is
t. Moreover, if facts as Species(ID, s) or Fragile(s, l) are:
− either true (i.e., the pairs 〈Species(ID, s), t〉 or 〈Fragile(s, l), t〉 occur in E)
− or unknown (i.e., nothing has been stored regarding these facts),
then the formula Species(ID, s) ∧ Fragile(s, l) has truth value t if and only if
Species(ID, s) and Fragile(s, l) both have truth value t.

In other words, the intuition behind rule ρ4 is that an alert of level l is raised
for the bag ID and species s if the following holds: (i) the grains are unFit or an
inconsistent measure was made, and (ii) the grains are of species s whose fragility
level is l. Notice in this respect that raising such an alert needs to know that
Fit(ID) is false, which is achieved through the rule ρ′3, which in turn needs the
rules ρ′1 and ρ′2 to be properly triggered. 2

We end this section by observing that, from a technical point of view, the database
extension E is actually a means for the finite representation of a potentially infinite
function overHB under the assumptions seen earlier in the definition of vE (namely
the functionality of E and OWA).

3.2 Database Semantics

In our approach, as for Datalog, database semantics is defined as the least fixed
point of a monotonic operator. The definition of this operator relies on the following
extensions of the orderings �k and �t to the family of all v-sets over HB.

Definition 2 For all v-sets S1 and S2 over HB, S1 �k S2, respectively S1 �t S2,
holds if for every ϕ in HB, vS1

(ϕ) �k vS2
(ϕ), respectively vS1

(ϕ) �t vS2
(ϕ), holds.

2

For example for HB = {P (a), P (b), P (c)}, S1 = {〈P (a), t〉} and S2 = {〈P (a), b〉,
〈P (b), f〉}, we have vS1

(P (b)) = vS1
(P (c)) = vS2

(P (c)) = n. Thus:

– vS1
(P (a)) �k vS2

(P (a)), vS1
(P (b)) �k vS2

(P (b)) and vS1
(P (c)) �k vS2

(P (c)),
implying that S1 �k S2 holds.

– vS2
(P (a)) �t vS1

(P (a)), vS2
(P (b)) �t vS1

(P (b)) and vS2
(P (c)) �t vS1

(P (c)),
implying that S2 �t S1 holds.

– ∅ �k S2, because for every ϕ, v∅(ϕ) = n, the least value with respect to �k.
– ∅ and S2 are not comparable with respect to �t, because v∅(P (a)) = n and
vS2

(P (a)) = b are not comparable with respect to �t.

9



The extension of �k generalizes set inclusion in the sense that if S1 ⊆ S2, then we
have S1 �k S2. Notice that, as the last item above shows, the truth ordering �t
does not satisfy this property, because ∅ ⊆ S2 holds while ∅ �t S2 does not.

We now state the definition of the operator allowing for the computation of
database semantics. In this definition as well as in the remainder of the paper,

⊕
denotes the least upper bound with respect to �k.

Definition 3 Given a set of rules R, let inst(R) be the set of all instantiations of
the rules in R based on the atoms in HB. For every v-set V and every ϕ in HB,
let B+(ϕ) and B−(ϕ), be respectively defined by:

− B+(V, ϕ) = {ρ ∈ inst(R) | head(ρ) = ϕ ∧ vV (body(ρ)) ∈ {t, b}}
− B−(V, ϕ) = {ρ ∈ inst(R) | head(ρ) = ¬ϕ ∧ vV (body(ρ)) ∈ {t, b}}.
The semantic immediate consequence operator associated with a database ∆ =
(E,R), denoted by Ψ∆, associates a v-set V with the set Ψ∆(V ) containing all
pairs 〈ϕ, v〉 where ϕ is in HB and v is a truth value different than n defined by:

v = vE(ϕ) ⊕
⊕
{vV (body(ρ)) | ρ ∈ B+(V, ϕ)}

⊕
⊕
{¬vV (body(ρ)) | ρ ∈ B−(V, ϕ)}. 2

Notice that if B+(V, ϕ)∪B−(V, ϕ) = ∅ (i.e., if there is no instantiated rule whose
body is valid in V and whose head involves ϕ) and if ϕ does not occur in E then
the content of ∆ does not provide any relevant piece of information regarding ϕ.
In this case, it is intuitively justified to state that the truth value of ϕ in Ψ∆(V )
is n. This is precisely what is done according to Definition 3 because, in this case,
no pair involving ϕ is inserted in Ψ∆(V ).

It should also be emphasized that, according to Definition 3, for every v-set V ,
Ψ∆(V ) is a v-set in which, for every 〈ϕ, v〉 in E, Ψ∆(V ) contains 〈ϕ, v′〉 such that
v �k v′. The following lemma shows a basic property of the operator Ψ∆.

Lemma 1 For every ∆ = (E,R), let
(
Ψ i
)
i≥0

be the sequence defined by

Ψ0 = ∅, Ψn = Ψ∆(Ψn−1) for n ≥ 1, and Ψλ =
⊕
α<λ Ψ

α if λ is a limit ordinal.

The sequence
(
Ψ i
)
i≥0

has a limit which is the unique least fixed point of Ψ∆ with

respect to �k. Moreover, the least fixed point is reached for an ordinal at most ω.

Proof First, we notice that the connectors involved in standard rules are mono-
tonic, that is, for all formulas φ1 and φ2 involving ¬, ∨, ∧, ⊕ or ⊗, if S1 and S2

are two v-sets such that S1 �k S2 then vS1
(φ1) �k vS2

(φ2) (this can be checked
for each operator based on the truth tables in Figure 1). Therefore Ψ∆ is mono-
tonic with respect to �k, which by the Knaster-Tarski theorem implies that the
sequence

(
Ψ i
)
i≥0

has a unique least fixed point. Moreover, since the only infinitary

operator in our computation is
⊕

, Ψ∆ can be shown to be continuous as in [14].
Therefore, the ordinal for which the least fixed point is reached is at most ω. 2

We are now ready to define what we call database semantics in our approach.

Definition 4 The semantics of a given database ∆ = (E,R), denoted by sem(∆),
is defined as the least fixed point of the sequence

(
Ψ i
)
i≥0

.

The valuation defined by the v-set sem(∆) is denoted by v∆ and for every ϕ
in HB, v∆(ϕ) is referred to as the truth value of ϕ in ∆. 2

10



We note that according to the above definition, the truth value of the head is
changed only if that of the body is designated (either t or b), as Arieli does in
[3], and contrary to Fitting in [14,15], who does so also when the body is false.
However, in our approach, if the body is inconsistent, the head is inconsistent as
well, whereas in [3] it is set to true in this case. A more detailed comparison is
provided in the next sub-section.

The following example illustrates Definitions 3 and 4 and Lemma 2 in the
context of our running example.

Example 2 Continuing with our running example, let ∆ = (E,R) be the database
as defined in Example 1. Then the v-set sem(∆) is computed as follows, starting
from Ψ0 = ∅ and denoting by vi(ϕ) the truth value of ϕ in Ψ i for every i ≥ 0:

(1) For every ϕ in HB, we have v0(ϕ) = n, and thus for every ρ in inst(R),
v0(body(ρ)) = n. Hence, B+(Ψ0, ϕ) = B−(Ψ0, ϕ) = ∅, and Ψ1 = Ψ∆(Ψ0) = E.

(2) Computing Ψ2 = Ψ∆(Ψ1), we first consider ρ1 and ρ′1, which are the only rules
whose head involves W Fit.
• For ϕ = W Fit(101), v1(W1(101) ⊕W2(101)) = t ⊕ n = t, thus B+(Ψ1, ϕ) =
{W Fit(101) ← W1(101) ⊕ W2(101)}, and B−(Ψ1, ϕ) = ∅, as v1(¬(W1(101) ⊕
W2(101))) = f. Hence 〈W Fit(101), t〉 is inserted in Ψ2.
• For ϕ = W Fit(202), v1(W1(202) ⊕ W2(202)) = f ⊕ t = b, implying that
B+(Ψ1, ϕ) = {W Fit(202) ← W1(202) ⊕ W2(202)}, and that B−(Ψ1, ϕ) =
{¬W Fit(202)← ¬(W1(202)⊕W2(202))}. So 〈W Fit(202), b〉 is inserted in Ψ2.
• For ϕ = W Fit(303), v1(W1(303)⊕W2(303)) = f⊕ n = f, thus B+(Ψ1, ϕ) = ∅,
and B−(Ψ1, ϕ) = {¬W Fit(303)← ¬(W1(303)⊕W2(303))}. So, 〈W Fit(303), f〉
is inserted in Ψ2.

Considering now ρ2 and ρ′2, which are the only rules whose head involvesH Fit,
we have the following:
• For ϕ = H Fit(101), v1(H1(101) ⊕ H2(101)) = f ⊕ f = f, thus B+(Ψ1, ϕ) =
{H Fit(101)← ¬(H1(101)⊕H2(101))}, andB−(Ψ1, ϕ) = ∅. Hence 〈H Fit(101), t〉
is inserted in Ψ2.
• For ϕ = H Fit(202), v1(H1(202) ⊕H2(202)) = n ⊕ t = t, thus we obtain that
B+(Ψ1, ϕ) = ∅, and that B−(Ψ1, ϕ) = {¬H Fit(202) ← H1(202) ⊕ H2(202)}.
Hence 〈H Fit(202), f〉 is inserted in Ψ2.
• For ϕ = H Fit(303), v1(H1(303) ⊕ H2(303)) = n ⊕ n = n, thus B+(Ψ1, ϕ) =
B−(Ψ1, ϕ) = ∅, which implies no modification of Ψ2.
Since no other rule can be applied at this stage, we have:

Ψ2 = E ∪ {〈W Fit(101), t〉, 〈W Fit(202), b〉, 〈W Fit(303), f〉,
〈H Fit(101), t〉, 〈H Fit(202), f〉}.

(3) When computing Ψ3 = Ψ∆(Ψ2), ρ3 and ρ′3 are the only rules involving atoms
occurring in Ψ2 and not in Ψ1. The computations are as follows:
• For ϕ = Fit(101), v2(W Fit(101)∧H Fit(101)) = t∧ t = t, thus B+(Ψ2, ϕ) =
{Fit(101)←W Fit(101)∧H Fit(101)}, and B−(Ψ2, ϕ) = ∅. Hence 〈Fit(101), t〉
is inserted in Ψ3.
• For ϕ = Fit(202), v2(W Fit(202) ∧ H Fit(202)) = b ∧ f = f, thus we ob-
tain that B+(Ψ1, ϕ) = ∅, and that B−(Ψ1, ϕ) = {¬Fit(202) ← ¬(W Fit(202) ∧
H Fit(202))}. Hence 〈Fit(202), f〉 is inserted in Ψ3.
• For ϕ = Fit(303), v2(W Fit(303)∧H Fit(303)) = f∧n = f, thus B+(Ψ1, ϕ) = ∅
andB−(Ψ1, ϕ) = {¬Fit(303)← ¬(W Fit(303)∧H Fit(303))}. Hence 〈Fit(303), f〉
is inserted in Ψ3. We therefore obtain:

11



Ψ3 = Ψ2 ∪ {〈Fit(101), t〉, 〈Fit(202), f〉, 〈Fit(303), f〉}.
(4) When computing Ψ4 = Ψ∆(Ψ3), ρ4 is the only rule applying to the atoms
occurring in Ψ3 and not in Ψ2, and this rule generates ground atoms of the form
Alert(ID, l). In this case, for every such atom, B−(Alert(ID, l), Ψ3) is always
empty. On the other hand, since for all ID and l, ¬Fit(ID) ⊗ (Species(ID, s) ∧
Fragile(s, l)) is valid if and only if all involved literals are valid, the only cases
for which B+(Alert(ID, l), Ψ3) is not empty are when the triple (ID, s, l) is either
(202, s1, low) or (303, s2, high). The corresponding computations are as follows:
• For (202, s1, low) thus for ϕ = Alert(202, low), v3(¬Fit(101)⊗(Species(202, s1)∧
Fragile(s2, low))) = t⊗ (t ∧ t) = t. Thus, 〈Alert(202, low), t〉 is inserted in Ψ4.
• Similar computations for ϕ = Alert(303, high) lead to insert 〈Alert(303, high), t〉
in Ψ4. We therefore obtain:

Ψ4 = Ψ3 ∪ {〈Alert(202, low), t〉, 〈Alert(303, high), t〉}.
(5) As no further computations can generate new elements based on Ψ4 above, we
obtain that sem(∆) = Ψ4. 2

The following proposition states basic properties of our database semantics.

Proposition 1 Given a database ∆ = (E,R):

1. sem(∆) is a v-set such that E �k sem(∆).
2. For every rule ρ in inst(R) such that v∆(body(ρ)) is in {t, b}, it holds that
v∆(body(ρ)) �k v∆(head(ρ)).

Proof 1. sem(∆) is a v-set because the definition of Ψ∆ implies that it is not
possible for a ground atom ϕ to occur in two distinct pairs in sem(∆). Moreover,
vE(ϕ) �k v∆(ϕ) also holds for every ϕ as a consequence of the definition of Ψ∆.

2. Let ρ be in inst(R) such that v∆(body(ρ)) is in {t, b}. Let i0 be the least index
such that the truth value vb of body(ρ) in Ψ i0 is t or b when computing sem(∆).
By Definition 3, if vh denotes the truth value of head(ρ) in Ψ i0 , we have vb �k vh,
and by monotonicity of Ψ∆, this holds in sem(∆), which completes the proof. 2

We emphasize that, by Proposition 1(1), we have E �k sem(∆), which intuitively
means that the semantics extends the knowledge provided by the database exten-
sion E. This also means that our semantics gives priority to the rules over the
extension. It should be noticed that such is not the case in most approaches to
deductive databases. Indeed, in standard deductive approaches [10], as well as in
[14], the atoms in E are restricted to involve extensional predicate symbols, that
is predicate symbols not allowed to occur in the heads of the rules. On the other
hand, although extensional predicate symbols are not considered in [24], priority
is nevertheless given to the database extension, because instantiated rules whose
head involves an atom occurring in E are not ‘triggered’. Notice however that con-
sidering such restrictions in the context of the present work is possible and raises
no difficulty.

3.3 Comparison with [14,15] and with [3]

Considering first [14,15], our approach is closely related to what is called k-
existential programs, where the rules are expressions of the form h(X)← body(X,Y )
such that:

12



– The head h(X) is a positive literal whose free variables in X all occur in
body(X,Y ). It is also assumed that the variables in X are the only free variables
in body(X,Y ).

– The right hand-side body(X,Y ) is a well-formed formula involving ¬, ∧, ∨, ⊗,
⊕ and the quantifier

∑
(where the truth value of (

∑
Y ) (Φ(Y )) is defined as

the least upper-bound with respect to �k of the truth values of all instances
of Φ(Y )).

– It is not allowed that the heads of two distinct rules in a given program involve
the same predicate symbol.

It turns out that, with respect to rules as defined in Definition 1, the main differ-
ences are as follows:

1. We allow positive and negative literals in the heads of the rules, whereas neg-
ative literals are not allowed in the head of the rules in [14].

2. We do not restrict different rules to involve different predicate symbols in their
heads, as done in [14].

3. However, the quantifier
∑

is allowed in the bodies of the rules in [14], which is
not the case in our approach. Notice in this respect that our approach implicitly
assumes that in a rule h(X) ← body(X,Y ), the variables in Y are bounded
to a quantifier

∑
. That is, according to [14], the rule would be written as

h(X)← (
∑
Y ) body(X,Y ).

Additionally to these syntactical differences, rules are not processed in [14,15] as
we do in our approach. Indeed, although database semantics is defined as the least
fixed point of a monotonic operator with respect to �k, the two operators behave
in different ways, given an instantiated rule ϕ← Φ and a v-set V :

– According to [14,15], the operator assigns ϕ the truth value in V of Φ.
– In our approach, assuming that there is no other rule whose head is ϕ, ϕ is

assigned the truth value in V of Φ only if this truth value is designated (i.e., t
or b). Otherwise the truth value of φ is set to n.

This difference in computing database semantics is very important because it
implies that the intuition behind the rules is different. Indeed, roughly speaking,
according to [14,15], rules are seen as equivalences since the head and the body
are assigned the same truth value (assuming no interaction between the rules),
whereas in our approach, rules are considered as implications, as will be discussed
in the next section.

To illustrate the difference, let Student(Bob) ← PhD Student(Bob) be an
instantiated rule whose intuition is obvious. If it is known in the database that
PhD Student(Bob) has truth value f then, according to [14,15], Student(Bob)
has also truth value f, which is counter intuitive. In our approach, the truth value
of Student(Bob) is n, which better fits the intuition.

Comparing now our approach with that in [3], we notice the following syntac-
tical similarities and differences:

– According to [3], rule heads may involve positive or negative literals, as we do
in our approach.

– However, in [3], rule bodies are restricted to only involve the connectors ¬ and
∧ as for Datalogneg rules [10], whereas in our approach more connectors are
allowed.

13



– In [3], as in our approach, but contrary to [14,15], several rules involving the
same predicate are allowed.

Regarding semantics, rules are triggered in [3] according to the same policy as in
our approach, but in the following different way: given an instantiated rule ϕ← Φ
and a v-set V , if the truth value in V of Φ is designated (i.e., t or b), then the
truth value of ϕ is set to t. Otherwise the truth value of ϕ is set to n.

To see the impact of the above way of handling rules, consider again the in-
stantiated rule Student(Bob) ← PhD Student(Bob). As above, if it is known in
the database that PhD Student(Bob) has truth value f then, according to [3], the
truth value of Student(Bob) is n, as done in our approach.

On the other hand, assume that a problem regarding Bob’s status has lead to
assign PhD Student(Bob) the truth value b. Then, according to [3], the truth value
of Student(Bob) is set to t, whereas, according to our approach, Student(Bob) is
assigned the truth value b, which we think, better fits the intuition.

To end the comparison with [3], we note that [3] addresses two important issues
not addressed in the present paper, namely (i) the semantics of negation as failure
in the context of Four-valued logic, and (ii) prioritized logic programs. We do not
discuss these issues any further as they lie outside the scope of this paper.

We end the section by providing an example to illustrate the three approaches
more thoroughly than done above.

Example 3 We illustrate below the main differences between the three approaches
using very simple examples. In doing so we denote by semF (∆) and semA(∆) the
semantics of a database ∆ according to Fitting’s and Arieli’s semantics, respec-
tively. The explanations on how the semantics is obtained are omitted, since they
are very easy.

Case 1. Let ∆1 = ({〈q, f〉}, {p ← q}). In this case, semF (∆1) = {〈q, f〉, 〈p, f〉},
semA(∆1) = {〈q, f〉}, and sem(∆1) = {〈q, f〉}.

Case 2. Let ∆2 = ({〈q, b〉}, {p ← q}). In this case, semF (∆2) = {〈q, b〉, 〈p, b〉},
semA(∆2) = {〈q, b〉, 〈p, t〉}, and sem(∆2) = {〈q, b〉, 〈p, b〉}.

Case 3. Let ∆3 = ({〈q, t〉}, {¬p ← q}). In this case, semF (∆3) is undefined,
semA(∆3) = {〈q, t〉, 〈p, f〉}, and sem(∆3) = {〈q, t〉, 〈p, f〉}.

Case 4. Let ∆4 = ({〈q, t〉}, {p ← ¬q}). In this case, semF (∆4) = {〈q, t〉, 〈p, f〉},
semA(∆4) = {〈q, t〉}, and sem(∆4) = {〈q, t〉}.

Case 5. Let ∆5 = ({〈q, f〉}, {p← q⊕r}). In this case, semF (∆5) = {〈q, f〉, 〈p, f〉},
semA(∆5) is undefined, and sem(∆5) = {〈q, f〉}.

Case 6. Let ∆6 = ({〈q, t〉, 〈r, f〉}, {p← q ⊕ r}). In this case, semF (∆6) = {〈q, t〉,
〈r, f〉, 〈p, b〉}, semA(∆6) is undefined, and sem(∆6) = {〈q, t〉, 〈r, f〉, 〈p, b〉}.

Case 7. Let ∆7 = ({〈q, t〉, 〈r, f〉}, {p← q, p← r}). In this case, semF (∆7) is un-
defined, semA(∆7) = {〈q, t〉, 〈r, f〉, 〈p, t〉}, and sem(∆7) = {〈q, t〉, 〈r, f〉, 〈p, t〉}.

Case 8. Let ∆8 = ({〈q, t〉, 〈r, f〉}, {p← q ∨ r}). In this case, semF (∆8) = {〈q, t〉,
〈r, f〉, 〈p, t〉}, semA(∆8) is undefined, and sem(∆8) = {〈q, t〉, 〈r, f〉, 〈p, t〉}.

Case 9. Let ∆9 = ({〈q, t〉, 〈r, f〉}, {p ← q ∨ r, p ← q}). In this case, semF (∆9) is
undefined, semA(∆9) is undefined, and sem(∆9) = {〈q, t〉, 〈r, f〉, 〈p, t〉}.

To illustrate a case with a recursive set of rules with unstratified negation, let
R = {p← ¬p}. First, if ∆ = (∅, R), it is easy to see that semF (∆) = semA(∆) =
sem(∆) = ∅, because the rule is not triggered.

14



If ∆ = ({〈p, t〉}, R) then semF (∆) is not defined because according to [14,
15], ∆ contains two rules with head equal to p. On the other hand, we have
semA(∆) = sem(∆) = {〈p, t〉}. Simlarly, it is easy to see that if ∆ = ({〈p, f〉}, R)
then semF (∆) is not defined, whereas semA(∆) = sem(∆) = {〈p, b〉}. 2

4 Database Semantics vs. Database Models

4.1 Database Models

Based on the above discussion about k-existential clauses as defined in [14], every
rule ρ : h(X)← B(X,Y ) in our approach is associated with the following formula
in the Four-valued logic, denoted by ρ→:

ρ→ : (∀X) ((
∑
Y ) (B(X,Y )→ h(X))).

We recall that the implication → in ρ→ is generic, that is it can be replaced by
any of the three implications →1, →2 or →3 (see our discussion at the end of
Section 2). The notion of database model is now defined as follows.

Definition 5 Given ∆ = (E,R), a v-set M is a model of ∆ if:
− E �k M , and
− for every ρ in R, ρ→ is valid in M (i.e., vM (ρ→) is t or b).

A model M is said to be k-minimal if there does not exist a model M ′ such that
M ′ 6= M and M ′ �k M .

A model M is said to be k-increasing if for every ρ in inst(R) such that
vM (body(ρ)) is in {t, b}, vM (body(ρ)) �k vM (head(ρ)). 2

To state that sem(∆) is the unique k-minimal and k-increasing model of ∆, we
show the following lemma.

Lemma 2 If M1 and M2 are two v-sets, let us denote by M1 ⊗M2 the v-set M
such that for every ϕ in HB, vM (ϕ) = vM1

(ϕ)⊗ vM2
(ϕ).

Given ∆ = (E,R), if M1 and M2 are k-increasing models of ∆ then M =
M1 ⊗M2 is also a k-increasing model of ∆.

Proof For every 〈ϕ, v〉 in E, we have vE(ϕ) �k vMi
(ϕ) for i = 1, 2. Thus, vE(ϕ) �k

vM1
(ϕ)⊗ vM2

(ϕ), that is vE(ϕ) �k vM (ϕ) holds. Therefore, E �k M holds.
Let ρ : h(X)← B(X,Y ) be in R and h(α)← B(α, β) an instance of ρ such that

vM (body(ρ)) is in {t, b}. Since for i = 1, 2, M �k Mi, vMi
(body(ρ)) is in {t, b}.

Hence, for i = 1, 2, vMi
(B(α, β)) �k vMi

(h(α)) holds because Mi is k-increasing.
On the other hand, since the connectors involved in B(α, β) are monotonic with
respect to �k, vM (B(α, β)) �k vMi

(B(α, β)) for i = 1, 2. We thus obtain for
i = 1, 2, vM (B(α, β)) �k vMi

(B(α, β)) �k vMi
(h(α)), hence that vM (B(α, β)) �k

vM1
(h(α))⊗ vM2

(h(α)). That is vM (B(α, β)) �k vM (h(α)).
To show that ρ→ is valid in M , we notice that φ1 → φ2 is valid in M if either

φ1 is not valid in M , or otherwise, if vM (φ1) �k vM (φ2) (this can be seen from
the truth tables of →i for i = 1, 2, 3, as shown in Figure 2). Hence, for every ρ in
R, all instances of ρ→ are valid in M , that is for all instances α and β of X and Y
respectively, B(α, β) → h(α) is valid in M . This implies that (

∑
Y )(B(α, Y )) →

h(α) is valid in M (because by the truth table of ⊕ in Figure 1, the ‘sum’ of valid
formulas is a valid formula). Since the truth table of ∧ in Figure 1 shows that

15



the conjunction of valid formulas is valid, (∀X)((
∑
Y )(B(X,Y )→ h(X))), that is

ρ→, is valid in M . Thus M is a k-increasing model of ∆, and the proof is complete.
2

Proposition 2 Given a database ∆ = (E,R), sem(∆) is the unique k-minimal
and k-increasing model of ∆.

Proof We first show that sem(∆) is a k-increasing model of ∆. First, for every
ϕ occurring in E, vE(ϕ) �k v∆(ϕ) holds because of Proposition 1(1). For every
ρ : h(X)← B(X,Y ) in R, ρ→ is shown to be valid in sem(∆) in the same way as,
in the previous proof, ρ→ has been shown to be valid in M . Since Proposition 1(2)
shows that sem(∆) is k-increasing, sem(∆) is a k-increasing model of ∆.

Regarding k-minimality, let M be a k-increasing model of ∆ such that M ≺k
sem(∆). Then, for every ground atom ϕ, vM (ϕ) �k v∆(ϕ) and there exists at
least one ground atom ϕ0 such that vM (ϕ0) 6= v∆(ϕ0). This implies that every
such atom ϕ0 is such that v∆(ϕ0) 6= n, and so, that ϕ0 occurs in sem(∆).

We now argue that every such ϕ0 occurs in the head of at least one rule in
inst(R) such that v∆(body(ρ)) is in {t, b}. Indeed, otherwise, ϕ0 would occur
in E and we would have v∆(ϕ0) = vE(ϕ0). As M is a model of ∆, we have
vE(ϕ0) �k vM (ϕ0), and so v∆(ϕ0) �k vM (ϕ0), which is a contradiction.

Hence, given such an atom ϕ0, let i0 be the least index such that vM (ϕ0) ≺k
vi0(ϕ0), where vi0 denotes the interpretation induced by Ψ i0 . Since Ψ0 �k M
(because Ψ0 = ∅), it must be that i0 > 0, meaning that Ψ i0 = Ψ∆(Ψ i0−1) and
Ψ i0−1 �k M . Moreover, by definition of Ψ∆, vi0(ϕ0) is written as:

vi0(ϕ0) = vE(ϕ0) ⊕
⊕
ρ∈B+(Ψ i0−1,ϕ0)

(vi0−1(body(ρ)))

⊕
⊕
ρ∈B−(Ψ i0−1,ϕ0)

(¬vi0−1(body(ρ)))

where vi0−1 is the interpretation induced by Ψ i0−1. Since for every body(ρ) involved
in the above expression we have vi0−1(body(ρ)) �k v∆(body(ρ)) �k vM (body(ρ))
and since we assume that M satisfies vM (body(ρ)) �k vM (head(ρ)), we obtain
vi0−1(ϕ0) �k vM (head(ρ)). Since head(ρ) is either ϕ0 (if ρ ∈ B+(ϕ0)) or ¬ϕ0 (if
ρ ∈ B−(ϕ0)), we have vi0−1(ϕ0) �k vM (ϕ0) if ρ ∈ B+(ϕ0) and, if ρ ∈ B−(ϕ0),
vi0−1(ϕ0) �k vM (¬ϕ0), which is equivalent to ¬vi0−1(ϕ0) �k vM (ϕ0) (since for
all truth values v1 and v2, v1 �k v2 holds if and only if ¬v1 �k ¬v2 holds).

Therefore, vi0(ϕ0) �k vE(ϕ0) ⊕ vM (ϕ0), and as vE(ϕ0) �k vM (ϕ0) (because
M is a model of ∆), it follows that vi0(ϕ0) �k vM (ϕ0). This is a contradiction
with our assumption that vM (ϕ0) ≺k vi0(ϕ0), and so, sem(∆) is k-minimal.

To show the unicity of sem(∆), let M be another k-minimal and k-increasing
model of ∆. By Lemma 2, M ′ = sem(∆) ⊗M is also a k-increasing model of ∆,
and moreover, we have M ′ �k M and M ′ �k sem(∆). Since M and sem(∆) are
assumed to be k-minimal, we also have M �k M ′ and sem(∆) �k M ′. Therefore,
M = M ′ = sem(∆), and the proof is complete. 2

It turns out that Proposition 2 expresses properties of database semantics similar
to well-known properties of Datalog databases [10] whereby the semantics of a
Datalog database is its unique minimal (with respect to set-inclusion) model, when
rules h(X)← B(X,Y ) are seen as formulas (∀X)((∃Y )(B(X,Y )⇒ h(X))).

Regarding the comparison of the truth values of the body and the head of the
rules in the case of Datalog databases, when considering the ordering �t, it is easy
to see that for all instances α and β of X and Y , respectively, vI(B(α, β)) �t
vI(h(α)) holds whenever B(α, β)⇒ h(α) is valid in a two-valued interpretation I.

16



The result in Proposition 2 shows that, as for k-existential program semantics
[14] and paraconsistent logic programs semantics in [3], database semantics in our
approach is minimal with respect to the knowledge ordering. However, it should
be noticed that:

– In [14] k-minimality is expressed with respect to the set of fix-points of the
associated consequence operator, with no consideration of the most generic
notion of database model.

– In [3], the results are shown only for the implication denoted here by →1,
whereas our results hold for →1 as well as for two other implications, namely
→2 and →3.

– In [3], the notion of model is similar to ours, but k-minimality is shown in a
context more restrictive than our context.

– In [3], the uniqueness of the k-minimal model is shown by minimizing incon-
sistency, whereas in our approach, the uniqueness of the k-minimal model is
shown using a monotonic criterion involving the head and the body of instan-
tiated rules.

4.2 Finite Database Semantics

An important issue in rule based databases is that a database can have infinite
semantics when HB is infinite. This point is indeed problematic because in such
cases, answers to some queries can be infinite, which is not acceptable in practice.

As a simple case, consider a database ∆ = (E,R) where E = {〈S(a), t〉} and
R = {P (x, y)← Q(x, y)∨S(x)}. Based on the truth table of ∨ shown in Figure 1,
for all α and β in H, Q(α, β) ∨ S(α) is true if so is S(α). Hence, sem(∆) =
{〈S(a), t〉} ∪ {〈P (a, β), t〉 | β ∈ H}, which is infinite when H is infinite.

To cope with this difficulty, we define the notion of safe rules, inspired by the
case of Datalogneg databases [10]. To see how the two approaches are related re-
garding this issue, let D = ({S(a)}, {P (x, y)← ¬Q(x, y)∧S(x)}) be a Datalogneg

database, whose semantics is {S(a)} ∪ {P (a, β) | β ∈ H}. This result is somehow
similar to that for ∆ above, and the rule in D is clearly not safe since the variable
y in ¬Q(x, y) occurs in no positive literal in the body of the rule.

To define safe rules in our context, we need some preliminary definitions and
notation as detailed next. First, we adapt the notion of active domain in relational
databases [17] to our approach as follows. Given a universe H, its associated Her-
brand base HB and a database ∆ = (E,R) over HB, we call active domain of ∆,
denoted by A(∆), the subset of H containing all the constants occurring in ∆.
Then the active Herbrand base of ∆, denoted by AB(∆) is the set of all facts in
HB that only involve constants in A(∆). Notice that A(∆) and AB(∆) are finite
sets, even if H is infinite, because E and R are assumed to be finite. We first define
the notion of active domain preserving rule as follows.

Definition 6 Given a Herbrand base HB, a rule ρ is said to be active domain
preserving if for every database ∆ = (E, {ρ}) where E is an arbitrary finite v-set
involving facts in HB, sem(∆) involves only facts in AB(∆). 2

We also adapt the usual notion of disjunctive normal form of a formula to the
context of Four-valued logic. To this end, we recall from [15,32] the following
standard properties of the connectors of the Four-valued logic:

17



• ¬(φ1 ∨ φ2) ≡ ¬φ1 ∧ ¬φ2 ; ¬(φ1 ∧ φ2) ≡ ¬φ1 ∨ ¬φ2

• ¬(φ1 ⊕ φ2) ≡ ¬φ1 ⊕ ¬φ2 ; ¬(φ1 ⊗ φ2) ≡ ¬φ1 ⊗ ¬φ2

• Distributivity: for all distinct binary connectors ? and • in {∨,∧,⊕,⊗}
φ1 ? (φ2 • φ3) ≡ (φ1 ? φ2) • (φ1 ? φ3).

Using these properties, any quantifier free formula Φ can be transformed into an
equivalent formula according to the following steps:

1. ∨-transformation: Φ ≡ Φ1 ∨Φ2 ∨ . . .∨Φn where, for every i in {1, 2, . . . , n}, Φi
does not involve the connector ∨. Every Φi is called a ∨-component of Φ.

2. ⊕-transformation: For every i in {1, 2, . . . , n}, Φi is transformed into its equiv-
alent ⊕-normal form Φ1

i ⊕Φ2
i ⊕ . . .⊕Φpii where, for j in {1, 2, . . . , pi}, Φji does

not involve the connector ⊕. Every Φji is called a ⊕-component of Φi.

3. ∧-transformation: For every i in {1, 2, . . . , n} and every j in {1, 2, . . . , pi}, Φji
is transformed into its ∧-form Φji ≡ (φij1 ∧ φ

ij
2 ∧ . . . ∧ φ

ij
qij ) where, for k in

{1, 2, . . . , qij}, φijk does not involve the connector ∧. Every φijk is called a ∧-

component of Φji .
4. ⊗-transformation: For every i in {1, 2, . . . , n}, every j in {1, 2, . . . , pi}, and

every k in {1, 2, . . . , qij}, φijk is transformed into its ⊗-form φijk ≡ (λ1k ⊗ λ2k ⊗
. . .⊗λrkk ) where, for every l in {1, 2, . . . , rk}, every λlk is a literal, that is of the
form ϕ or ¬ϕ where ϕ is an atom.

Combining these transformations yields a formula equivalent to Φ, called the Four-
normal form of Φ. Based on the truth tables of Figure 1, given a formula Φ in-
volving no variable, for every v-set S, Φ is valid in S if and only if there exist i0
in {1, 2, . . . , n} and j0 in {1, 2, . . . , pi0} such that Φj0i0 is valid in S, that is if and
only if at least one ⊕-component of Φ is valid in S.

Furthermore, every ⊕-component Φj0i0 is valid in S if and only if each of its

∧-component φi0j0k is valid in S, which holds if and only if every literal λ occurring
in one of its ⊗-components is valid in S. It follows that, for every λ in the ⊗-
components of φi0j0k , vS(λ) is t or b if λ = ϕ, and vS(λ) is f or b if λ = ¬ϕ.

The syntactic notion of safe rule is defined based on Four-normal form as
follows.

Definition 7 Given a Herbrand base HB, let ρ : h(X)← B(X,Y ) be a rule such
that B(X,Y ) is written in its Four-normal form. Then ρ is said to be safe if every
⊕-component in B(X,Y ) involves at least all variables in X. 2

We notice that Φ is valid in S if and only if there exists an ⊕-component Φj0i0 in its
Four-normal form, for which all involved literals are valid in S, and thus occur in
S with an appropriate truth value. Based on this important remark, the following
proposition provides a syntactic characterization of active domain preserving rules
as defined in Definition 6.

Proposition 3 Let ρ : h(X) ← B(X,Y ) be a rule such that B(X,Y ) is written
in its Four-normal form. Then ρ is safe if and only if every ρ is active domain
preserving.

Proof Assume first that ρ is not safe. By Definition 7, there exist i0 in {1, 2, . . . , n}
and j0 in {1, 2, . . . , pi0} such that Φj0i0 does not involve all variables in X. We write

X as X1X2 to mean that the variables in X1 occur in Φj0i0 whereas those in X2 do

18



not. Let inst be an instantiation of the variables in X1 and ∆ = (E, {ρ}) where
E is the set of all pairs 〈ϕ, b〉 such that ϕ occurs in inst(Φj0i0 ). Then inst(Φj0i0 )
is valid in E and so, for every extension inst∗ of inst to the variables in X2 or
in Y , inst∗(body(ρ)) is valid in E but might involve facts not in AB(∆). Hence,
inst∗(h(X1X2)) belongs to the semantics of ∆, meaning that, according to Defi-
nition 6, ρ is not active domain preserving.

Conversely, assume that ρ is safe. By Definition 7, for every i in {1, 2, . . . , n}
and every j in {1, 2, . . . , pi}, Φji involves at least all variables in X. Then, whatever

the valid ⊕-component φj0i0 to make B(X,Y ) valid in S, the instantiation of the

variables in φj0i0 assigns a value to every variable in X implying that the fact
involved in inst(h(X)) is in AB(∆). Thus, according to Definition 6, ρ is active
domain preserving, and the proof is complete. 2

The following corollary holds as an immediate consequence of Proposition 3 and
of the fact that the cardinality of AB(∆) is finite.

Corollary 1 Given ∆ = (E,R), if every rule in R is safe, then sem(∆) is finite.

Corollary 1 shows that, if rules are safe then the v-set sem(∆) provides a finite
representation of the valuation v∆, in much the same way as the database extension
E provides a finite representation of the valuation vE .

Example 4 To illustrate Proposition 3 and Corollary 1 in the context of our run-
ning example, consider the rule ρ4 : Alert(x, z) ← ¬Fit(x) ⊗ (Species(x, y) ∧
Fragile(y, z)) in Example 1. It is easy to see that the Four-normal form of body(ρ4),
hereafter denoted by Φ, is (¬Fit(x)⊗ Species(x, y)) ∧ (¬Fit(x)⊗ Fragile(y, z)).

It is clear that Φ has one ∨-component and one ⊕-component, namely itself.
Thus, ρ4 is safe, and by Proposition 3, ρ4 is active domain preserving. As it is
easy to see that all other rules in R are safe, Corollary 1 ensures that, whatever
the database extension E, sem(∆) is finite. 2

5 Database Updating

In our approach to updating we follow standard approaches [2,25] in which up-
dating concerns only the database extension and does not modify the rule set. We
note that, to the best of our knowledge, our work is the first to address the issue of
database updating in the context of Four-value logic. Previous work has addressed
a different but related topic, namely knowledge revision [3].

In the next section, we introduce the notion of basic update, that is how to
change the database extension so as to assign a desired truth value to a given fact
of HB. Then in the following section, we introduce the concept of update policy as
a means to specify and enforce update properties.

5.1 Basic Updates

Let us first recall that the database extension is a finite v-set (see Definition 1)
and that a v-set is a means to store a valuation of HB. We also recall that storing
a valuation of HB in a database extension E is done under two assumptions,

19



Algorithm 1 Basic update

Input: ∆ = (E,R), a fact ϕ and a truth value v.
Output: The updated database extension E′ such that vE′ (ϕ) = v.
1: current v := vE(ϕ)
2: if v = current v then
3: E′ := E
4: else if current v = n then
5: E′ := E ∪ {〈ϕ, v〉}
6: else if v = n then
7: E′ := E \ {〈ϕ, current v〉}
8: else
9: E′ := (E \ {〈ϕ, current v〉}) ∪ {〈ϕ, v〉}

10: return E′

namely (1) E is ‘functional’, that is for all 〈ϕ1, v1〉 and 〈ϕ2, v2〉 in E, if ϕ1 = ϕ2

then v1 = v2, and (2) the Open World Assumption, meaning that a fact ϕ in HB
is known (i.e., vE(ϕ) is different than n) if and only if 〈ϕ, vE(ϕ)〉 is E. Both these
assumptions must also hold in the updated extension and therefore, they work as
constraints that must be satisfied by the updated database.

Definition 8 Let ∆ = (E,R) be a database, ϕ a fact in HB and v a truth value
in {t, b, n, f}. The basic update of ∆ by ϕ and v is defined to be the database
∆′ = (E′, R) such that vE′(ϕ) = v, and vE′(ϕ

′) = vE(ϕ′), for every ϕ′ 6= ϕ. 2

It is easily seen that for all ∆ = (E,R), ϕ and v, the database ∆′ always exists
and it is unique. Algorithm 1 provides an effective way of computing E′. Indeed:

– If the test on line 2 succeeds then the update requires no change, which is
achieved by letting E′ to be E.

– Otherwise, we have v 6= current v, and if the test on line 4 succeeds, E contains
no pair involving ϕ. As in this case we have v 6= n, 〈ϕ, v〉 is inserted in E so as
to take the update into account while generating a proper v-set E′.

– If the test on line 4 fails but the test on line 6 succeeds, then we have v 6=
current v, current v 6= n and v = n. In this case, 〈ϕ, current v〉 is deleted
from E so as to take the update into account.

– The last case is that on line 8, where v 6= current v, current v 6= n and v 6= n.
In this case, the pair 〈ϕ, current v〉 in E is changed to 〈ϕ, v〉 so as to take the
update into account while generating a proper v-set E′.

Example 5 In the context of our running example, due to the disagreement of
the sensors measuring the humidity of bag 202, assume that new measurements
have been conducted for this bag and that the sensors now output the following:
〈H1(202), t〉, 〈H2(202), t〉, 〈W1(202), t〉 and 〈W2(202), n〉.

Applying Algorithm 1 successively to each of these pairs, the database ∆ of
Example 1 is modified as follows:
− The pair 〈H1(202), t〉 is inserted.
− The pair 〈H2(202), t〉 is left unchanged.
− The pair 〈W1(202), f〉 is changed to 〈W1(202), t〉.
− The pair 〈W2(202), t〉 is deleted.

The resulting database extension E′ is thus the following v-set:

20



E′ = { 〈W1(101), t〉, 〈W1(202), t〉, 〈W1(303), f〉,
〈H1(101), f〉, 〈H2(101), f〉, 〈H1(202), t〉, 〈H2(202), t〉,
〈Species(101, s1), t〉, 〈Species(202, s1), t〉, 〈Species(303, s2), t〉,
〈Fragile(s1, low), t〉, 〈Fragile(s2, high), t〉 } 2

5.2 Update Policies

Although basic updates as defined earlier allow to perform any modification of the
database extension, it is common practice to specify an update policy in order to
enforce given properties on the update processing or on the resulting database.

The most typical situation is when constraints must be satisfied by the database,
in which case it is required that updates preserve constraint satisfaction. In other
words, assuming that the database satisfies the constraints before the update, it
is required that the updated database also satisfies the constraints. This is for ex-
ample very common when dealing with relational databases whose relations have
to satisfy functional dependencies such as key or foreign key constraints [17]. In
this case, one of two policies is adopted regarding acceptance of the update:

1. Policy 1: If the updated database does not satisfy the constraints then reject
the update. Roughly speaking, this policy gives priority to ‘old’ knowledge
over ‘new’ knowledge (i.e., it privileges the knowledge already stored in the
database).

2. Policy 2: Always accept the update and restore constraint satisfaction accord-
ingly by performing auxiliary updates. Roughly speaking, this policy gives
priority to ‘new’ knowledge (as expressed by the update) over ‘old’ knowledge.

In our case, as mentioned earlier, the database must satisfy two constraints, namely
the functionality of the database extension and the Open World Assumption. Both
these constraints must hold in the updated database and their satisfaction can be
enforced by applying one of the two policies above. Below, we describe the update
algorithm for each policy, recalling that each algorithm takes as input a database
∆ = (E,R), a fact ϕ and a truth value v, and aims at returning a database
∆ = (E′, R) such that vE′(ϕ) = v.

1. Algorithm for Policy 1 (give priority to old knowledge over new knowledge):
if vE(ϕ) = n and v 6= n then E′ := E ∪ {〈ϕ, v〉}
else if vE(ϕ) 6= n and v = n then E′ := E \ {〈ϕ, vE(ϕ)〉}
else E′ := E
return E′

2. Algorithm for Policy 2 (give priority to new knowledge over old knowledge):
if vE(ϕ) = v then E′ := E
else if vE(ϕ) = n and v 6= n then E′ := E ∪ {〈ϕ, v〉}
else if vE(ϕ) 6= n and v = n then E′ := E \ {〈ϕ, vE(ϕ)〉}
else E′ := (E \ {〈ϕ, vE(ϕ)〉}) ∪ {〈ϕ, v〉}
return E′

It should be noticed that each of the above two algorithms (Algorithm for Policy
1 and Algorithm for Policy 2) processes two truth values, namely v and vE(ϕ),
and computes a third truth value, namely vE′(ϕ) based on which it computes E′.

21



Therefore each of these algorithms computes the values of a binary operator
over {t, b, n, f}. We can view this operator as ‘defining’ the corresponding policy
and the truth table of the operator as ‘implementing’ the policy.

For example, let πold be the operator defining Policy 1 and let its truth table
be as shown in Figure 4. Then for a pair (v, vE(ϕ)) such that v = t and vE(ϕ) = f,
the value of πold(t, f) (i.e., the value found at row t and column f of the truth
table of πold) is f. As a consequence, according to Policy 1, if the update aims
at assigning truth value t to ϕ and if the current truth value of ϕ is f (i.e.,
vE(ϕ) = f), then in the updated database, the truth value of ϕ is not changed (as
stated by the last ‘else’ statement of Algorithm for Policy 1 above).

πold t b n f

t t b t f
b t b b f
n n n n n
f t b f f

πnew t b n f

t t t t t
b b b b b
n n n n n
f f f f f

Fig. 4 The truth tables of the operators πold and πnew

Similarly, let πnew be the operator defining Policy 2 and let its truth table be
as shown in Figure 4. Then for the same pair as above, that is the pair (v, vE(ϕ))
such that v = t and vE(ϕ) = f, the value of πnew(t, f) is t. Hence, according
to Policy 2, if the update aims at assigning the truth value t to ϕ and if the
current truth value of ϕ is f (i.e., vE(ϕ) = f), then in the updated database, the
truth value of ϕ is changed from f to t (as stated by the last ‘else’ statement of
Algorithm for Policy 2 above).

Now, an important remark is in order here regarding binary connectors imple-
menting update policies. Indeed, since the Four-valued logic has been shown to
be functionally complete [4], it turns out that any binary operator over {t, b, n, f}
can be defined by an expression whose operations are the basic connectors of Four-
valued logic. Thus, any update policy defined through a binary connector can also
be defined using a well-formed formula of the Four-valued logic.

For example, the expression Φnew(φ1, φ2) defining the operator πnew is sim-
ply Φnew(φ1, φ2) = φ1. This expression shows that, according to πnew, all up-
dates are processed as specified by the user. As another example, the expression
Φreject(φ1, φ2) = φ2 defines the (useless) update policy whereby all updates are
rejected. On the other hand, the expression Φold(φ1, φ2) defining πold is more
involved, since it follows from [26] that

Φold(φ1, φ2) = ((Φt ∨ ¬Φf)⊗ ∼6∼ Φn)⊕ 6∼ Φb

where1

Φt = (Tφ1 ∧Tφ2) ∨ (Tφ1 ∧Nφ2) ∨ (Bφ1 ∧Tφ2)

Φf = (Tφ1 ∧ Fφ2) ∨ (Bφ1 ∧ Fφ2) ∨ (Fφ1 ∧Nφ2) ∨ (Fφ1 ∧ Fφ2)

Φn = (Nφ1 ∧Tφ2) ∨ (Nφ1 ∧Bφ2) ∨ (Nφ1 ∧Nφ2) ∨ (Nφ1 ∧ Fφ2)

Φb = (Tφ1 ∧Bφ2) ∨ (Bφ1 ∧Bφ2) ∨ (Bφ1 ∧Nφ2) ∨ (Fφ1 ∧Bφ2).

1 The expressions involving the basic connectors for the unary connectors T, B, N and F
used here, can be found in Section 2

22



The technical details on how to obtain the above formula are omitted since they
lie outside the scope of the present paper. Whatever the way the update policy is
defined, whether through a binary operator or through an expression, the notion
of update policy is formally defined as follows.

Definition 9 Let ∆ = (E,R) be a database and let π be a binary operator over
{t, b, n, f} called an update policy. Then given a fact ϕ ofHB and truth value v, the
update of ∆ by ϕ and v, using policy π, is defined to be the database ∆′ = (E′, R)
such that vE′(ϕ) = π(v, vE(ϕ)) and vE′(ϕ

′) = vE(ϕ′), for every ϕ′ 6= ϕ. 2

Based on Definition 8 and Definition 9, it is easy to see that, given ∆, ϕ and v, the
basic update of ∆ by ϕ and v yields the same result as the update of ∆ by ϕ and
v, using policy πnew. As a consequence, basic updates can be seen as particular
updates using a policy, namely those updates using policy πnew.

We end this section by giving further examples of update policies that might
be relevant in practice.

π1 t b n f

t t b t f
b t b n f
n t b n f
f t b f f

π2 t b n f

t t t t t
b t b n b
n t n n n
f t b n f

Fig. 5 The truth tables of the connectors defining update policies π1 and π2

The first update policy we would like to introduce is that of data integration.
According to this policy, updates are performed so as the truth value v specified
in the update be combined with the existing one, vE(ϕ), through the connector ⊕,
whose truth table is shown in Figure 1. This update policy is used when integrating
data from various sources.

The data integration policy can be ‘smoothed’ by preventing new inconsis-
tencies from being introduced in a source from data coming from other sources
(through updates). More precisely, given ϕ and v, the update involving ϕ and v is
performed as follows:
− If vE(ϕ)⊕ v 6= b then set the truth value of ϕ to vE(ϕ)⊕ v;
− Otherwise reject the update.
The truth table of the associated connector π1 is shown in Figure 5. It should
be noticed from this truth table that, for instance, when v = t and vE(ϕ) = f,
vE(ϕ)⊕ v = b, thus implying that π1(t, f) = f. On the other hand, for v = f and
vE(ϕ) = n, vE(ϕ)⊕ v = f, and π1(f, n) = f.

As a last example of update policy consider what we could call truth increasing
policy. This policy states that an update involving ϕ and v is processed only if it
results in an increase with respect to the truth ordering of the truth value of ϕ.
In other words:
− If vE(ϕ) �t v then set the truth value of ϕ to v;
− Otherwise reject the update.
The truth table of the associated operator π2 is shown in Figure 5. We notice from
this truth table that, for instance, π2(t, b) = t because b �t t holds, and that
π2(f, n) = n because n �t f does not hold.

23



It should be clear by now that many other update policies could be defined.
However, considering every possible binary truth table as an update policy is
unrealistic. In any case, the examples presented in this section show that our
approach allows to specify various update policies in a way which is simple, easy
to implement and powerful as it allows to specify complex update policies.

We recall in this respect that the notion of update policy was first introduced
in [5] in the context of updating views in relational databases. This work was
thus the earliest one that provided a theoretical insight in the difficult problem of
specifying and implementing sophisticated database updates.

6 Related Work

Comparing our approach with all related work in the literature is simply impossible
due to the huge number of papers published during the past four or five decades
on the topics addressed here. In what follows we focus mainly on related work in
three areas: logic and databases, inconsistent databases, and multi-valued logic.

6.1 Logic and Databases

We refer to [10,17,28] for surveys of standard approaches to Datalog databases,
and to [9] for a more detailed survey of the problem of negation. We note that
all these works use the Closed World Assumption (CWA [30]), which leads to
difficulties when dealing with false facts - a problem that does not arise in our
framework, as we use the Open World Assumption (OWA).

Working under OWA is not new [8] and the need to do so emerged in problems
of data integration on the web. Indeed, when a piece of information is not retrieved
in the answer to a query, one cannot assume that this piece of information is false,
but rather that it has not been searched properly. Therefore it is more appropriate
to consider that this piece of information is unknown.

On the other hand, as the examples in this paper suggest, when integrating
information from several sources, contradictions may occur, and this motivates
the introduction of inconsistent as a truth value. This point of view has also been
considered in [11] but in a logical framework that differs from ours. Indeed, in
[11], the underlying four valued logic is not the one in [7], although the considered
implication looks similar to implication denoted here by →1. Moreover, in [11],
the authors consider two negations in the context of CWA and propose an alter-
nating strategy for computing the database semantics, inspired from well-founded
semantics [18].

The approach in [3] also considers two negations as done in [11]. As already
discussed in much detail, this approach is closely related to ours when not using
negation as failure - although the semantics is slightly different. However, our
approach is more expressive than [3] and [11], since we allow rules not allowed in
[3] and [11]. Investigating how to express negation as failure in our approach is a
topic of future work.

As seen earlier, the work in [14,15] is closely related to our approach because
the underlying logic in [14,15] is that of [7], and also because the syntax of the
rules in [14] is similar to ours - although not strictly comparable to ours. We

24



recall again that the semantics of k-existential programs defined in [14] differs
from ours, because the rules in [14] are seen as equivalences, which is not the case
in our approach.

In [19,20], related work following similar semantics can be found in the context
of relational databases. In that work, reasoning with four truth values is modeled
in two distinct ways: one for deducing true information and one for deducing
false information, while inconsistency is considered as information obtained by
the ‘intersection’ of these two ways of reasoning.

The problem of updating deductive databases was first addressed in [31]. Our
work in [2] was among the first to suggest storing false facts and giving priority to
most recent updates. The present work builds upon these basic ideas in a much
wider context, while the introduction of update policy stems from the work in [5].
Moreover, and to the best of our knowledge, this work is the first one to address
the issue of updates in the framework of Four-valued logic.

6.2 Inconsistent Databases

In this paper, in contrast to previous work on inconsistent databases, we propose
a radically different approach. Indeed, the goal of previous work dealing with
inconsistencies, is either to define and study ‘repairs’ so as to make the database
consistent ([1,21]), and/or to identify queries whose answers are independent from
any contradiction ([22]). Instead, we propose an approach in which inconsistent
information can be stored or deduced through rules, and our goal is not to eliminate
or avoid contradictions.

Our semantics allows for handling inconsistent information as such, thus re-
flecting what happens in real world applications in which true, false, inconsistent
and unknown information have to be dealt with. This is particularly true in data
integration environments. In our work, we follow the position in [16], in that in-
consistent information should not be avoided, but treated as such by taking appro-
priate actions when necessary. The issue of taking actions lies beyond the scope
of this paper, because our rules cannot express an information such as ‘If ϕ is
inconsistent then φ’. Indeed in our formalism such a rule would be expressed as
φ← Bϕ, which is not allowed. We are currently studying this topic.

The approach in [27] addresses the issue of data inconsistency due to data
integration according to a specific scenario: a central server collects facts from au-
tonomous sources and then tries to combine them using the syntax and semantics
of [14,15], on the one hand, and a set of hypotheses H, representing the server’s
own estimates, on the other hand. In this setting, the authors show how to com-
pute what they call the support of H, defined as the maximal part of H that does
not contradict the facts in the database semantics. This notion of support is then
shown to provide hypothesis-based semantics for the class of programs defined in
[15]; and in the case of Datalogneg programs, these semantics have been shown to
extend well-founded semantics of [18] and Kripke Kleen semantics of [12].

25



6.3 Multi-valued Logic

The Four-valued logic that we consider in this work has been introduced in [7] and
has since motivated several works in non standard logic. Again, our aim here is
not to review all these works, and we refer to [29] for a survey of this topic. Here,
we focus on works most closely related to ours. In [4] the issue of the functional
completeness has been addressed among others and their results have inspired
our concern on this issue. On the other hand, the bi-lattice structure of this logic
has been widely studied in [14,15], where the concept of logic programs in this
framework was first introduced. Rule semantics in Four-valued logic has been
investigated in [14,15] and in [3]. As seen in sub-Section 3.3, these two approaches
are related to ours although not always comparable. We notice here that our
approach offers a generic framework for expressing rules in Four-valued context: as
shown in Example 3, it happens that rules in our approach might not be expressible
in the approach of [14,15] or in the approach of [3]. Moreover the notion of database
model, as considered in this work, has been investigated in [3], but not in [14,15].
As a final remark, we note that the work in [32] established a strong relationship
between Four-valued logic and rough set theory.

7 Concluding remarks

In this paper we have introduced a novel approach to deductive databases dealing
with contradictory information. We stress again that our work is motivated by
the facts that (i) many contradictions occur in the real world and these contra-
dictions must be dealt with as such, and (ii) data integration is a field where such
contradictions are common. To cope with these issues we proposed a deductive
database approach based on the Four-valued logic initially introduced in [7]. We
have studied the strong relationship between our approach and those in [14,15]
and [3]. One of our main contributions is to have shown that database semantics
can be seen as the unique k-minimal and k-increasing database model, and that
this holds for three implications proposed so far in the literature. Two other im-
portant contributions of our work are (i) to characterize safe rules, ensuring that
the database semantics is finite, and (ii) to propose a new kind of update allow-
ing to ‘combine’ the new truth value of a fact with its current truth value in the
database. As shown in Section 5, this new way of updating is of particular interest
when it comes to enforcing updates satisfying properties of various kinds.

Based on these results, we are currently investigating the following issues. First,
as rules can contradict each other (something that happens frequently in real
life), it is important to characterize the exact situations when these contradictions
occur, so as to take appropriate actions, as suggested in [16]. We approach this
important issue by extending the form of the rules to allow in their body additional
connectors (such as connector B introduced in [32] and recalled in Section 2).
Another extension of our work is to investigate negation as failure in our context,
inspired by the work in [3,11]. Last but not least, we conjecture that the Four-
valued framework provides the right context for defining new measures related to
data quality, a research topic that we also plan to investigate in the future.

26



Declarations

Author contributions: The two authors contributed to the study, conception
and design. Both read and approved the submitted manuscript.

Funding: No funds, grants, or other support was received for conducting this
study.

Financial interests: The authors declare they have no financial interests.

Non-financial interests: The authors declare they have no non-financial inter-
ests.

Data availability: Data sharing is not applicable to this article as no data sets
were generated or analyzed during the current study.

References

1. Foto N. Afrati and Phokion G. Kolaitis. Repair checking in inconsistent databases: al-
gorithms and complexity. In Database Theory - ICDT, 12th International Conference,
Russia, March 23-25, 2009, Proceedings, pages 31–41, 2009.

2. Mirian Halfeld Ferrari Alves, Dominique Laurent, and Nicolas Spyratos. Update rules in
datalog programs. J. Log. Comput., 8(6):745–775, 1998.

3. Ofer Arieli. Paraconsistent declarative semantics for extended logic programs. Ann. Math.
Artif. Intell., 36(4):381–417, 2002.

4. Ofer Arieli and Arnon Avron. The value of the four values. Artif. Intell., 102(1):97–141,
1998.

5. François Bancilhon and Nicolas Spyratos. Update semantics of relational views. ACM
Trans. Database Syst., 6(4):557–575, 1981.

6. Yan L. Batay. Maintaining grain quality during storage and transport. In Cereal Grains,
Assessing and Managing Quality, Second Edition, pages 571–590. Woodhead Publishing
Series in Food Science, Technology and Nutrition, 2017.

7. Nuel D. Belnap. A useful four-valued logic. In J. Michael Dunn and George Epstein,
editors, Modern Uses of Multiple-Valued Logic, pages 5–37, Dordrecht, 1977. Springer
Netherlands.

8. Mike Bergman. The Open World Assumption: Elephant in the room. in
ai3:::adaptative information. www.mkbergman.com/852/the-open-world-assumption-
elephant-in-the-room, 2009. Online; accessed 22 April 2020.

9. Nicole Bidoit. Negation in rule-based database languages: A survey. Theor. Comput. Sci.,
78(1):3–83, 1991.

10. Stefano Ceri, Georg Gottlob, and Letizia Tanca. Logic Programming and Databases.
Surveys in computer science. Springer, 1990.

11. Sandra de Amo and Mônica Sakuray Pais. A paraconsistent logic programming approach
for querying inconsistent databases. Int. J. Approx. Reason., 46(2):366–386, 2007.

12. Melvin Fitting. A kripke-kleene semantics for logic programs. J. Log. Program., 2(4):295–
312, 1985.

13. Melvin Fitting. Negation as refutation. In Proceedings of the Fourth Annual Symposium
on Logic in Computer Science (LICS ’89), Pacific Grove, California, USA, June 5-8,
1989, pages 63–70. IEEE Computer Society, 1989.

14. Melvin Fitting. Bilattices in logic prograrnming. In Proceedings of the 20th International
Symposium on Multiple-Valued Logic, ISMVL 1990, Charlotte, NC, USA, May 23-25,
1990, pages 238–246. IEEE Computer Society, 1990.

15. Melvin Fitting. Bilattices and the semantics of logic programming. J. Log. Program.,
11(1&2):91–116, 1991.

16. Dov Gabbay and Anthony Hunter. Making inconsistency respectable: A logical framework
for inconsistency in reasoning, part i — a position paper. In Philippe Jorrand and Jozef
Kelemen, editors, Fundamentals of Artificial Intelligence Research, pages 19–32, Berlin,
Heidelberg, 1991. Springer Berlin Heidelberg.

17. Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database systems - the
complete book (2. ed.). Pearson Education, 2009.

27



18. Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded semantics for
general logic programs. J. ACM, 38(3):620–650, 1991.

19. Gösta Grahne and Ali Moallemi. A useful four-valued database logic. In Bipin C. Desai,
Sergio Flesca, Ester Zumpano, Elio Masciari, and Luciano Caroprese, editors, Proceedings
of the 22nd International Database Engineering & Applications Symposium, IDEAS 2018,
Villa San Giovanni, Italy, June 18-20, 2018, pages 22–30. ACM, 2018.

20. Gösta Grahne and Ali Moallemi. Universal (and existential) nulls. Fundam. Inform.,
167(4):287–321, 2019.

21. Gianluigi Greco, Sergio Greco, and Ester Zumpano. A logical framework for querying and
repairing inconsistent databases. IEEE Trans. Knowl. Data Eng., 15(6):1389–1408, 2003.

22. Sergio Greco, Cristian Molinaro, and Irina Trubitsyna. Computing approximate query
answers over inconsistent knowledge bases. In Jérôme Lang, editor, Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018,
July 13-19, 2018, Stockholm, Sweden, pages 1838–1846. ijcai.org, 2018.

23. Allen P. Hazen and Francis Jeffry Pelletier. K3, l3, lp, rm3, a3, FDE: how to make many-
valued logics work for you. CoRR, abs/1711.05816, 2017.

24. Dominique Laurent. 4-valued semantics under the OWA: A deductive database ap-
proach. In Giorgos Flouris, Dominique Laurent, Dimitris Plexousakis, Nicolas Spyratos,
and Yuzuru Tanaka, editors, Information Search, Integration, and Personalization - 13th
International Workshop, ISIP 2019, Heraklion, Greece, May 9-10, 2019, Revised Selected
Papers, volume 1197 of Communications in Computer and Information Science, pages
101–116. Springer, 2019.

25. Dominique Laurent, Viet Phan Luong, and Nicolas Spyratos. The use of deleted tuples in
database, querying and updating. Acta Inf., 34(12):905–925, 1997.

26. Dominique Laurent and Nicolas Spyratos. Four-valued semantics for deductive databases.
CoRR, abs/2108.02587, 2021.

27. Yann Loyer, Nicolas Spyratos, and Daniel Stamate. Hypothesis-based semantics of logic
programs in multivalued logics. ACM Trans. Comput. Log., 5(3):508–527, 2004.

28. Jack Minker, Dietmar Seipel, and Carlo Zaniolo. Logic and databases: A history of deduc-
tive databases. In Jörg H. Siekmann, editor, Computational Logic, volume 9 of Handbook
of the History of Logic, pages 571–627. Elsevier, 2014.

29. Hitoshi Omori and Heinrich Wansing. 40 years of FDE: an introductory overview. Studia
Logica, 105(6):1021–1049, 2017.

30. Raymond Reiter. On closed world data bases. In Hervé Gallaire and Jack Minker, edi-
tors, Logic and Data Bases, Symposium on Logic and Data Bases, Centre d’études et de
recherches de Toulouse, France, 1977, Advances in Data Base Theory, pages 55–76, New
York, 1977. Plemum Press.

31. Raymond Reiter. On formalizing database updates: Preliminary report. In Alain Pirotte,
Claude Delobel, and Georg Gottlob, editors, Advances in Database Technology - EDBT’92,
3rd International Conference on Extending Database Technology, Vienna, Austria, March
23-27, 1992, Proceedings, volume 580 of Lecture Notes in Computer Science, pages 10–20.
Springer, 1992.

32. A. Tsoukiàs. A first-order, four valued, weakly paraconsistent logic and its relation to
rough sets semantics. Foundations of Computing and Decision Sciences, 12:85–108, 2002.

28


