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Abstract 
Summary: Recent studies suggest that the loop extrusion activity of Structural Maintenance of Chro-
mosomes complexes is central to proper organization of genomes in vivo. Polymer physics-based 
modeling of chromosome structure has been instrumental to assess which structures such extrusion 
can create. Only few laboratories however have the technical and computational expertise to create in 
silico models combining dynamic features of chromatin and loop extruders. Here we present 3DPolyS-
LE, a self-contained, easy to use modeling and simulation framework allowing non-specialists to ask 
how specific properties of loop extruders and boundary elements impact on 3D chromosome structure. 
3DPolyS-LE also provides algorithms to compare predictions with experimental Hi-C data. 
Availability: Software available at https://gitlab.com/togop/3DPolyS-LE; implemented in Python and 
Fortran 2003 and supported on any Unix-based operating system (Linux, Mac OS). 
Contact: peter.meister@unibe.ch; daniel.jost@ens-lyon.fr  
Supplementary information: Supplementary information are available at Bioinformatics online. 

 
 

1 Introduction  
Genes are regulated at many levels, from local transcription factor binding 
to the megabase-range contacts between enhancers and promoters. Recent 
findings have highlighted the function of the chromosome 3D organiza-
tion in the latter regulation, as the genome is partitioned into consecutive 
regions of enhanced compaction, the so-called ‘topologically associated 
domains’ (TADs), where promoters and enhancers colocalize (Dixon et 
al. 2012; Nora et al. 2012). At this scale, genome folding is mostly a con-
sequence of the interplay between loop extrusion factors of the Structural 
Maintenance of Chromosome (SMC) complexes family and oriented 
boundary elements bound by proteins that limit loop extrusion (reviewed 
in Mirny and Dekker 2022). In particular, by comparing results from in 
silico models and in vivo Hi-C data, polymer simulations proved very use-
ful to understand the TAD structure of chromosomes, as well as to suggest 
and test hypotheses on the function of boundary elements or loop 

extrusion factors (Rao et al. 2017; Fudenberg et al. 2016; Schwarzer et al. 
2017; Goloborodko et al. 2016; Brandão et al. 2021; Nuebler et al. 2018). 
As the development of such simulations is technically difficult and thus 
generally not accessible to biologists aiming to (in)validate a mechanistic 
hypothesis on TAD formation for their system of interest, we provide an 
open-access, user-friendly, generic modeling framework for physics-
based polymer simulations of loop extrusion (3DPolyS-LE), wrapped as a 
Python package, allowing users to run simulations, varying parameters on 
boundary elements and loop extruders properties and assess the expected 
structures. 

2 Model 
3DPolyS-LE simulates the dynamics of one chromosome, modeled as a 
coarse-grain polymeric chain in which each monomer, of size 50 nm, con-
tains 2 kb of chromatinized DNA. In absence of loop extrusion, the dy-
namics of the chain is governed by the generic properties of a homopoly- 
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mer: chain connectivity, excluded volume and bending rigidity (Ghosh 
and Jost 2018). Additionally, the polymer can be extruded by loop extrud-
ing factors (LEFs) that dynamically bind and unbind from chromatin 
(Fig.1A, Supplementary Methods). Initial binding of LEFs could be at pre-
defined loading sites or non-specifically along the chromosome. Bound 
LEFs are composed of two ‘legs’ that may translocate along the genome, 
creating dynamic loops between gradually more distant regions along the 
chain. We implemented two scenarios for the leg motion: (1) symmetric 
extrusion with LEF legs progressing along chromatin in opposite direc-
tions at the same speed, as observed in vitro for cohesin (Davidson et al. 
2019; Kim et al. 2019); (2) asymmetric extrusion with only one translo-
cating leg, as observed in vitro for condensin (Ganji et al. 2018; Kong et 
al. 2020). The motion of a LEF can be restricted by the presence of bound-
ary elements that may stop or slow down the progression of legs depend-
ing on their directionality, and by collisions with the other extruding LEFs. 
We integrated two scenarios for collisions between extruding legs: (1) legs 
are impenetrable obstacles and they cannot move until one detaches from 
chromatin as usually assumed for cohesin-mediated extrusion (Fudenberg 
et al. 2016); (2) legs are phantom obstacles and can cross each other. This 
is the so-called Z-loop process recently observed in vitro for yeast con-
densin (Kim et al. 2020) and in vivo for bacterial SMCs (Brandão et al. 
2021).  

3 Description of the program 

3.1 Inputs and outputs 
3DPolyS-LE allows to modify several parameters controlling LEF prop-
erties (binding, density, velocity), to select the leg motion type (symmet-
ric/asymmetric) and head-to-head collisions scenarios (impenetra-
ble/phantom), as well as to position of boundary elements (with individual 
directionality and strength; for a detailed description of parameters and 
how to change them, see Supp. Methods). Depending on the model pa-
rameters and extrusion properties, 3DPolyS-LE simulates, for a given 
number of independent polymers, the dynamics of the chromosome during 
a user-defined time period. During the simulations, snapshots of the cur-
rent polymer conformations and LEF positions are stored at regularly-
spaced time intervals. From these snapshots, virtual Hi-C maps and ChIP-

seq profiles for LEF occupancy are produced in HDF5 (with an included 
converter to ‘cooler’ format, (Abdennur and Mirny 2019)) and bedGraph 
formats, respectively (Fig.1B). Optionally, three-way chromatin contacts 
(Sup. Fig. 3) can be extracted for downstream comparative analysis with 
data from GAM (Beagrie et al. 2017) or multi-contact nanopore-derived 
‘C’ technologies (Allahyar et al. 2018; Ulahannan et al. 2019). If a refer-
ence Hi-C map is provided, 3DPolyS-LE will compute relevant metrics 
including a χ2-score (Sup. Methods) to quantitatively compare model pre-
dictions with this data. A user-guide on how to select parameter ranges is 
given in Supp. Methods.  

3.2 Implementation and performance 
The program is organized as a Python package, requiring specific libraries 
for compilation and parallel processing of the core simulation module and 
for the downstream analysis (Supp. Methods). The first step ‘Simulations’ 
is running simulations defined by the configuration files describing pa-
rameter values, with the possibility to use multiple cores of a High-Perfor-
mance Computing (HPC) cluster over a Message Passing Interface frame-
work. The next step called 'Analysis' processes simulation results and ex-
tracts Hi-C and ChIP-seq data. The last step ‘Comparison’ is the compar-
ison to a provided reference dataset and the production of related plots. In 
the case of a series of simulations with different parameters (or ‘grid’-
simulations, Supp. Methods), summary statistics can be visualized in a 
heat-map plot. All steps are run with a single command using a scheduler. 
The package is working on any Unix-based operating system (Linux, Ma-
cOS) and has been tested on a Slurm HPC cluster. Using a polymer equiv-
alent to a 6 Mb chromosome (3000 beads), a two hours (real time) simu-
lation required roughly 20 CPU.min (AMD Epyc, 4 Gb RAM). 

3.3 Examples 
As an illustration of 3DPolyS-LE, we modeled loop extrusion by cohesins 
during interphase in mammals, by simulating an arbitrary 6 Mb-long pol-
ymer with impermeable boundaries placed along the chain (alternating be-
tween every 300kb and 600kb) with symmetric leg motion, impenetrable 
head-to-head collisions, random loading onto the polymer and default 
binding/unbinding rates estimated from in vivo imaging data (Supp. Meth-
ods) (Cattoglio et al. 2019; Hansen et al. 2017). For a density of 1 bound 
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Fig. 1.  Features provided by 3DPolyS-LE. (A) Input parameters for the simulation framework. For the polymer, its length, as well as the location and permeability of individual 
loading sites and boundary elements for the loop extrusion factors (LEFs) can be defined. The properties of the LEFs include their mode of extrusion (symmetrical/asymmetrical), the 
extrusion speed, the number of LEFs per polymer and the capacity of LEFs to cross each other (Z-loop formation). (B) Typical outputs of the simulations: virtual Hi-C data (top) and 
ChIP-Seq profile (bottom) of loop extruders. 
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LEF per 60 kb and an extruding velocity of ~100 kb/min, we observed the 
formation of TADs with corner peaks (Fig.1B). Then, to illustrate the 
‘grid’-simulations option, we varied the density of bound LEFs and their 
extruding velocity on a 8x4 sparse parameter grid for a total running time 
of ~100 CPU.day and compared the predicted intra-TAD contact proba-
bilities to a synthetic dataset extracted from a meta-TAD analysis of the 
experimental GM12878 Hi-C data for 300kb- and 600kb-long TADs (Sup. 
Fig. 1, Supp. Methods) (Rao et al. 2014). Among this grid, the optimal 
parameters that minimizes the χ2-score (Sup. Fig.1) are (1) a density of 1 
bound LEF per 85 kb twice more than in vivo estimations in mESC (1 
bound LEF every 186-372 kb (Cattoglio et al. 2019)) and (2) a velocity of 
~10 kb/min in the lower range of in vitro estimations on naked dsDNA 
(30-120 kb/min (Golfier et al. 2020; Kim et al. 2019; Davidson et al. 
2019)), suggesting a slowing down of extrusion in chromatinized contexts 
(Gabriele et al. 2022). Other examples showing the impact of different 
scenarios (asymmetric leg motion, phantom collisions, loading at specific 
sites, boundary directionality, permeable boundaries, etc.) are given in 
Sup. Fig. 2. 

4 Conclusion 
3DPolyS-LE represents a modular framework to investigate how loop ex-
trusion impacts chromosome folding, integrating a wide range of possible 
scenarios, including cohesin and condensin extrusion mode, and account-
ing for heterogeneities in loading rates or extrusion speeds. The model 
allows one to predict the effect of loop extruders on the 3D folding of 
specific genomic regions and test mechanistic hypotheses. Further devel-
opments will provide an integrative modeling platform combining loop 
extrusion and phase-separation (Ghosh and Jost 2018), the two major 
mechanisms of chromosome organization (Mirny et al. 2019). 
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