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bIMT Atlantique LS2N UMR CNRS Nantes France

Abstract

We propose a new approach to formulating the Scheduled Service Network Design Problem
(SSNDP) that involves modeling with enumerated consolidations of shipments routed on the
physical network. This is in contrast to the classical approach of capturing the synchroniza-
tion of vehicles and shipments needed for consolidation with a time-expanded network. The
proposed formulation has both a stronger linear relaxation and is less symmetric. We present
multiple speed-up techniques and with an extensive computational study illustrate that the
consolidation-based formulation is much easier to solve with an off-the-shelf solver than the
classical formulation based on a time-expanded network.

To avoid instances involving large numbers of consolidations we propose a hybrid formulation
that combines ideas from the consolidation and time-expanded network-based approaches to
formulating the SSNDP. We show that instances of the hybrid formulation are much easier to
solve than both instances of the pure consolidation-based formulation and those based on a
time-expanded network formulation. Finally, we discuss how formulating with consolidations
facilitates modeling issues that have not yet been addressed in the literature, such as bin-packing
considerations when computing vehicle capacity needs. In addition, the proposed modeling
technique for bin-packing considerations in a consolidation-based formulation yields instances
that are easier to solve than those wherein capacity is modeled in an aggregate sense.

Keywords: Freight Transportation, Scheduled Service Network Design Problem, Integer
Programming

1. Introduction

The Scheduled Service Network Design Problem (SSNDP) is a classic optimization problem
that can be used to plan the inter-city transportation operations of carriers that specialize in
shipments that are small relative to vehicle capacity (Crainic 2000, Wieberneit 2008). Examples
of such carriers can be found in multiple industries that generate billions of USD a year in
revenues world-wide, including parcel and small package as well as Less-than-truckload (LTL)
freight. Both of these industries are critical to economies around the world, with LTL carriers
supporting many supply chains and parcel and small package carriers supporting eCommerce
sales. In the United States the LTL industry was reported to be $46 billion in 2021 (Schulz
2021) while UPS reported $69.44 billion in revenue from its US and international small package
operations in 2020 (UPS 2021). For every mode of transportation other than pipeline, one can
find examples of carriers for whom the SSNDP is relevant (Barnhart and Schneur 1996, Bakir,
Erera, and Savelsbergh 2021, Chouman and Crainic 2021, Christiansen et al. 2021). Given
the markets they serve, a key to the profitability of these carriers is the ability to consolidate
multiple shipments into the same vehicle dispatch, increasing vehicle utilization and decreasing
transportation costs.
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To enable consolidation, such carriers do not route shipments directly from customer origin
to destination. Instead, they are routed through a network of consolidation terminals at which
shipments can be transferred from inbound vehicles to outbound vehicles. More precisely, they
are routed on a path through the terminal network that begins at its origin terminal, visits one
or more intermediate terminals, and ends at its destination terminal. Typically, each shipment
is to be picked up at its origin terminal no earlier than the time at which it is expected to
be available and delivered to its destination terminal no later than the time at which it is
due. A shipment need not move continuously through the terminal network. Instead, it can be
held at both the origin and intermediate terminals on its path. Transporting shipments between
terminals requires the use of one or more vehicles, each of which has a capacity, potentially along
multiple dimensions. Transportation costs are incurred on a per-vehicle basis that depends on
distances traveled.

Many variants of the SSNDP have been studied in the literature. However, the classical SS-
NDP seeks to determine a path for each shipment through the terminal network and a dispatch
time for each terminal to terminal movement on this path. It also determines the number of ve-
hicles and their corresponding dispatch times on each terminal to terminal movement within the
network. Constraining these decisions are the need to respect shipment available and due times,
travel times, and to ensure that sufficient vehicle capacity is dispatched on each movement to
carry the shipments to be transported. The objective the SSNDP considers is to minimize total
vehicle transportation costs. A recent survey on Service Network Design, including a description
of the SSNDP is provided in Crainic and Hewitt (2021).

Consolidation is possible when multiple shipments dispatch on the same terminal to terminal
movement at the same time. The classical integer programming formulation of the SSNDP
captures this synchronization by modeling the routing of shipments on a directed time-expanded
network consisting of nodes and arcs. In such a network, activities at a terminal at different
points in time are modeled with different nodes. Similarly, a terminal to terminal movement
dispatched at different times is modeled with different arcs. As such, the opportunity for
consolidation is recognized in this formulation when multiple shipments travel on the same arc
in the time-expanded network. Capacity needs are captured by ensuring a sufficient number of
vehicles also travel on that same arc with knapsack-type linking constraints.

Time-expanded network-based formulations of the SSNDP have received significant atten-
tion in the academic literature, and from various perspectives. Many papers have addressed
extending the scope of decision-making considered by the SSNDP to include additional man-
agement issues. A classic and important example is the need to move vehicles empty to position
them for future transportation moves. This is sometimes referred to as empty repositioning, or,
more generally, asset or resource management (Hewitt et al. 2019, Scherr et al. 2019, Crainic
et al. 2016, Erera et al. 2013, Andersen et al. 2011, Teypaz, Schrenk, and Cung 2010, Jarrah,
Johnson, and Neubert 2009, Andersen, Crainic, and Christiansen 2009). Other papers have
focused on adapting and extending the SSNDP to issues particular to certain modes of trans-
portation. One example is rail, wherein consolidation can happen at multiple levels (Chouman
and Crainic 2021, Zhu, Crainic, and Gendreau 2014). Many papers have focused on algorithmic
techniques for the SSNDP, with some proposing exact methods (Crainic and Gendron 2021,
Marshall et al. 2020, Hewitt 2019, Boland et al. 2017) and others heuristics (Crainic and Gen-
dreau 2021, Chouman and Crainic 2015). We note that in this paper we focus on solving the
SSNDP exactly. Lastly, regarding how time is discretized we are only aware of Boland et al.
(2019), which observes that the finer the granularity of the discretization used to construct
the time-expanded network, the higher the quality of solutions to the resulting instance of the
SSNDP.

Using a time-expanded network-based formulation leads to multiple computational chal-
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lenges when solving instances of the SSNDP. The first challenge is that the level of discretization
of time required to find high-quality solutions can lead to extremely large time-expanded net-
works. This in turn leads to large integer programs that are difficult to solve. This challenge is
somewhat mitigated by the Dynamic Discretization Discovery (DDD) framework presented in
Boland et al. (2017) and further studied in Hewitt (2019), Marshall et al. (2020), which propose
generating such networks iteratively as opposed to in a static, a priori manner. While DDD
has been shown to be computationally effective, it may be challenging to implement.

The duplication of physical links for different points in time also leads to the second chal-
lenge, which is that instances of the SSNDP formulated on a time-expanded network tend to
be very symmetric. As most integer programming solvers rely on a variable branching-type
mechanism to search the space of solutions, much of this time can be wasted. While research
has been done to reduce symmetry in mixed integer programs in general (Pfetsch and Rehn
2019, Margot 2010), we are unaware of any research that focuses on symmetries enabled by
formulating on a time-expanded network.

A third challenge related to solving time-expanded network-based formulations is that the
knapsack-type linking constraints used to model capacity needs lead to notoriously weak linear
programming relaxations. As most integer programming solvers rely on bounding techniques
that involve solving linear programming relaxations to establish the quality of a solution, the
time needed to establish that a solution is optimal (within a given tolerance) can be long. This
challenge is somewhat mitigated by Flow cover inequalities (Nemhauser and Wolsey 1988),
which are implemented in many commercial integer programming solvers. While these three
challenges are well-known, to the best of our knowledge, all research on the SSNDP to date has
relied on a time-expanded network-based formulation.

In this paper we propose new formulations for the SSNDP with the ultimate goal that these
formulations can be effectively solved by an off-the-shelf mixed integer programming (MIP)
solver. Our work is based on the concept of enumerated consolidations, introduced in Hewitt
and Lehuédé (2022) for a special case of the SSNDP in which the path of each commodity is
known before solving the problem.

The contributions of this paper are the following:

• We propose a new formulation for the SSNDP. This formulation does not involve a time-
expanded network and instead prescribes decisions at the level of the physical terminal
network. To recognize shipment synchronization needs required by consolidation, the
formulation is based on explicit enumerations of consolidations.

• We propose two enhancements to make the solving instances of the formulation more effi-
cient. First, we propose valid inequalities to further strengthen the formulation. Second,
we propose a pruning mechanism to recognize consolidations that need not be modeled
and reduce symmetries in the model.

• We connect the new formulation to the classical time expanded network formulation. This
results in a hybrid formulation that is able to capture desirable properties of both “pure”
formulations and can be adapted depending on data.

• We show that the consolidation based formulation can model operational issues that are
challenging to represent with a time-expanded formulation. Namely, bin packing-type
constraints and piecewise linear transportation costs. In a SSNDP context, bin packing
constraint model the fact that a commodity cannot be split over several vehicles. To our
knowledge, this is the first time this important feature is modeled in the SSNDP. Piecewise
linear costs can occur when cost parameters (e.g. per-unit-of-distance costs) depend on
the amount transported.
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In an extensive set of computational experiments we find that:

• An optimization solver can solve more instances of the consolidation-based formulation
than those based on the classical time-expanded network-based formulation. This is ex-
plained by showing that the consolidation based formulation has a stronger linear relax-
ation.

• The additional enhancements (pruning mechanism, valid inequalities and hybrid model)
enable significantly more instances to be solved within the time limit.

• Regarding modeling, we show that incorporating empty repositioning considerations into
instances of the consolidation-based formulations does not make them significantly harder
to solve. Similarly, the proposed procedure for incorporating bin-packing considerations
leaves instances that are actually easier to solve than when capacity is modeled in an
aggregate sense.

• Finally, we show that ignoring bin-packing constraints leads to a significant under-estimate
of costs, and that under-estimate increases as the number of shipments to transport gets
larger.

The rest of this paper is structured as follows. Section 2 grounds the paper by presenting
a mathematical notation relevant to the formulations of the SSNDP considered in this paper
as well as the classical time-expanded network-based formulation. Section 3 presents the pure
consolidation-based formulation of the SSNDP along with techniques for strengthening that
formulation. Section 4 presents the hybrid formulation while section 5 proposes modifications
to the consolidation-based formulations to capture issues such as empty repositioning and bin
packing. Section 6 describes the computational study of the proposed formulations and presents
findings. Finally, section 7 concludes the paper and presents avenues for future research.

2. Mathematical notation and time-expanded network formulation

To ground the paper, in this section we present the classical time-expanded network formulation
of the SSNDP. We also present notation that is useful both for that formulation and the new
ones proposed later.

Regarding notation, we presume a directed network D = (N ,A), where the set N models
consolidation terminals and the set A models physical transportation moves between terminals.
Regarding transportation, there is a fixed cost of fij incurred for each dispatch of a vehicle
of capacity uij on arc (i, j) ∈ A. We presume the travel time on arc (i, j) ∈ A is τij and
is independent of the departure time. There is a set of shipments K. Associated with each
shipment k ∈ K is a terminal where it is to be picked up, ok, no earlier than the release date ek,
and is to be delivered, dk, no later than the due date lk. In addition, associated with shipment
k is the size qk of the shipment, expressed in the same unit as vehicle capacity.

Regarding the routing of shipments, we presume for each shipment k ∈ K there is a known
set of paths Pk from ok to dk, that model potential sequences of movement(s) for that shipment
from origin to destination. A single such path must be chosen for each shipment. As further
notation, we let the set Kij denote the set of shipments k for which there is a path p ∈ Pk that
contains the arc (i, j). Relatedly, we let P (i, j)k ⊆ Pk denote the set of paths in Pk that contain
arc (i, j). We also presume that for each shipment and each movement in its chosen path the
entire shipment must dispatch at the same time. Lastly, we note that for each shipment k ∈ K,
path p ∈ Pk, and arc (i, j) ∈ p we can derive a time window [αkp

ij , β
kp
ij ] for when shipment k can

dispatch on arc (i, j) if it takes path p.
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The classical time-expanded network formulation of the SSNDP assumes a discretization of
time, T = {1, . . . , T}, of a planning horizon that is T periods long. This discretization of time
is used to construct the time-expanded network DT = (NT ,AT ). The node set NT consists of
nodes of the form (i, t), i ∈ N , t ∈ T , that model actions that occur at terminal i during the
time period represented by t. The set AT consists of two sets of arcs. The first set contains
arcs of the form ((i, t), (j, t′)), (i, t), (j, t′) ∈ NT , i ̸= j, t′ = min(t′′ ∈ τ |t′′ − t ≥ τij) that model
traveling from terminal i at time t to arrive at terminal j at time t′. The second set contains
arcs of the form ((i, t), (i, t+1)), (i, t), (i, t+1) ∈ NT that model idling at terminal i from period
t to period t+ 1.

On this network, we define the integer variables ytt
′

ij , ((i, t), (j, t
′)) ∈ AT to represent the

number of vehicles to be dispatched on arc ((i, t), (j, t′)). For a shipment k, the choice of a path
p ∈ Pk is identified by a variable vkp which is equal to one if shipment k follows path p. To model

the routing of shipments on arcs we let the binary variables xktt
′

ij , k ∈ K, ((i, t), (j, t′)) ∈ AT
denote whether shipment k takes arc ((i, t), (j, t′)). Given these decision variables, the SSNDP
can be formulated as follows. We label this formulation TEN(D).

zTEN(D) = minimize
∑

((i,t),(j,t′))∈AT

fijy
tt′
ij

subject to∑
p∈Pk

vkp = 1 ∀k ∈ K, (1)

∑
p∈P (i,j)k

vkp =
∑

(t,t′):((i,t),(j,t′))∈AT

xktt
′

ij ∀(i, j) ∈ T, k ∈ Kij , (2)

∑
((i,t),(j,t′))∈AT

xktt
′

ij −
∑

((j,t′),(i,t))∈AT

xkt
′t

ji =


1 (i, t) = (ok, ek)

−1 (i, t) = (dk, lk)

0 o.w.

∀(i, t) ∈ NT , ∀k ∈ K, (3)

∑
k∈K

qkx
ktt′
ij ≤ uijy

tt′
ij ∀((i, t), (j, t′)) ∈ AT , (4)

ytt
′

ij ∈ N ∀((i, t), (j, t′)) ∈ AT , (5)

vkp ∈ {0, 1} ∀k ∈ K, p ∈ P (i, j)k, (6)

xktt
′

ij ∈ {0, 1} ∀((i, t), (j, t′)) ∈ AT , k ∈ K.

(7)

The objective function seeks to minimize the sum of transportation cost. Constraints (1)
state that each commodity is assigned a path. Constraints (2) connect the commodity arc
and path variables. Constraints (3) are classical flow balance constraints, albeit expressed
on the time-expanded network. Constraints (4) ensure sufficient vehicle capacity on timed
arcs. Constraints (5)-(7) define the decision variables and their domains. There are standard
pre-processing techniques for removing unnecessary variables from an instance of the TEN(D)
formulation. One example is to only create the variable ytt

′
ij if ∃k ∈ K such that xktt

′
ij is created.

3. Consolidation-based formulation

We next present a consolidation-based formulation of the SSNDP. There are two significant
differences between this formulation and TEN(D). The first is that it is not defined on a time-
expanded network like DT but instead the network (N ,A). The second is that it is based on an
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a priori enumeration of consolidations on each arc (i, j) ∈ A, wherein a consolidation is defined
as a set of shipments that dispatch on the same physical move at the same time.

Regarding notation for this formulation, we let Ωij define the set of potential shipment
consolidations on arc (i, j). Thus, an element ω ∈ Ωij is a subset of shipments (i.e. ω ⊆ K). For
(i, j) ∈ A, ω ∈ Ωij , we let ϕk

ω indicate whether shipment k ∈ K is contained in consolidation ω.
Relatedly, we let sω define the number of vehicles needed to transport consolidation ω ∈ Ωij . This

formulation can mimic how capacity needs are modeled with TEN(D) by setting sω = ⌈
∑

k∈ω qk
uij

⌉.
However, the values sω can be used to model more accurate or complex capacity considerations.
For example, it is common for the capacity of a vehicle to involve multiple dimensions, such as
weight and cubic volume. Capturing multiple dimensions of capacity in the CONS(D) simply
requires accurate computation of vehicle needs, sω. We present other examples later in the
paper.

Given this notation, we define the binary decision variable δω to indicate whether the con-
solidation ω ∈ Ωij is chosen. The integer decision variable zij is used to model the number of
vehicles that dispatch on arc (i, j) ∈ A. Like the formulation TEN(D), the choice of physical
routing of shipments is done with the binary variables vkp ∈ {0, 1}, p ∈ Pk, k ∈ K. The deci-

sion variable γkij represents the time at which shipment k dispatches on arc (i, j) ∈ A. The
consolidation-based formulation we present, which we label CONS(D), is as follows.
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zCONS(D) = minimize
∑

(i,j)∈A

fijzij

subject to

(1)∑
ω∈Ωij

ϕk
ωδω =

∑
p∈P (i,j)k

vkp ∀(i, j) ∈ A, k ∈ Kij , (8)

∑
ω∈Ωij

sωδω ≤ zij ∀(i, j) ∈ A, (9)

γkij − γk
′

ij ≤ T (1−
∑

ω∈Ωij

ϕk
ωϕ

k′
ω δω) ∀(i, j) ∈ A, k, k′ ∈ Kij , (10)

∑
p∈P (i,j)k

αkp
ij v

k
p ≤ γkij ∀(i, j) ∈ A, k ∈ Kij , (11)

γkij ≤
∑

p∈P (i,j)k

βkp
ij v

k
p ∀(i, j) ∈ A, k ∈ Kij , (12)

∑
(ok,j)∈A

γkokj ≥ ek ∀k ∈ K, (13)

∑
(i,dk)∈A

(γkidk + τidk(
∑

p∈P (i,dk)k

vkp)) ≤ lk ∀k ∈ K, (14)

∑
(i,j)∈A

(γkij + τij(
∑

p∈P (i,j)k

vkp)) ≤
∑

(j,i)∈A

γkji ∀j ∈ N, k ∈ K, (15)

γkij ≥ 0 ∀k ∈ K, (i, j) ∈ A, , (16)

zij ∈ N ∀(i, j) ∈ A, (17)

δω ∈ {0, 1} ∀ω ∈ Ωij , (i, j) ∈ A, (18)

(6).

Constraints (8) ensure that for each arc in the path chosen for a shipment, a consolidation is
chosen that contains that shipment. Constraints (9) ensure sufficient vehicles are dispatched on
each physical transportation move given the consolidations chosen for that move. Constraints
(11) and (12) ensure if the shipment travels on a path that contains an arc then the dispatch
time falls within the corresponding time window. Constraints (12) also ensure that for a given
arc and shipment if a path containing that arc is not chosen for that shipment then the dispatch
time is zero. Constraints (10) ensure that all pairs of shipments in a chosen consolidation for a
physical transportation move dispatch at the same time. Constraints (13) ensure each shipment
dispatches from its origin at a time after its release date. Similarly, constraints (14) ensure each
shipment does not arrive at its destination after its due date. Constraints (15) ensure that the
continuous dispatch variables agree with transportation times. Finally, constraints (16),(17)
and (18) define the additional decision variables needed for this formulation.

Hewitt and Lehuédé (2022) show analytically that their proposed consolidation-based for-
mulation for the Service Network Scheduling Problem, the SSNDP wherein shipment paths
have already been determined, is stronger than a time-expanded network formulation of the
problem. That analysis can be easily repeated in the more general context of the SSNDP.We
next present two techniques for reducing the time required to solve instances of CONS(D). The
first is a technique for removing variables that introduce symmetry into the formulation while
the second involves valid inequalities.
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3.1. Consolidation Pruning

We first present a pruning rule for when a consolidation can be omitted from the CONS(D)
formulation without rendering all optimal solutions infeasible. First, for a given arc (i, j) ∈ A
consider a consolidation ω ⊆ Ωij and the value sω. Next, consider a partition of ω into two
subsets ω1, ω2 with values sω1 , sω2 and suppose that sω = sω1 + sω2 . We prove in Lemma 3.1
that in this case the consolidation ω can be removed from the formulation as any solution that
selects consolidation ω can instead select consolidations ω1 and ω2.
Theorem Consider a given arc (i, j) ∈ A and consolidation ω ⊆ Ωij such that there exists
ω1, ω2 ⊆ ω wherein ω1∪ω2 = ω, ω1∩ω2 = ∅ and sω = sω1 +sω2 . The optimal objective function
value of the instance of CONS(D) formulated without ω is the same as the instance formulated
with ω.

Proof. Consider a solution (γ̄, z̄, δ̄, v̄) such that δ̄ω = 1. Note this implies that z̄ij ≥ sω. Note
that because of constraints (10) we have γ̄kij = γ̄k

′
ij ∀k, k′ ∈ ω. Next, consider a solution

(γ̃, z̃, δ̃, ṽ) wherein all decision variables take on the same values as in (γ̄, z̄, δ̄, v̄), except δ̃ω = 0
and δ̃ω1 = δ̃ω2 = 1. We note that as sω = sω1 +sω2 we have z̃ij = z̄ij ≥ sω = sω1 +sω2 . Similarly,
as ω1, ω2 ∈ ω we have γ̃kij = γ̃k

′
ij ∀k, k′ ∈ ωq, q = 1, 2. Thus, the solution (γ̃, z̃, δ̃, ṽ) is feasible

for CONS(D) and has same objective function value.

We refer to the procedure of removing consolidations such as ω as Consolidation Pruning
(CP).

3.2. Valid inequalities

Regarding valid inequalities, we note that classical cutset-type inequalities for network de-
sign problems (Chouman, Crainic, and Gendron 2017) can be adapted to this formulation.
For example, ensuring a sufficient number of vehicles depart a terminal to transport the ship-
ments that originate at that terminal can be expressed as in constraints (19). To define these
constraints we first compute ui = minj:(i,j)∈Auij .

∑
j:(i,j)∈A

zij ≥ ⌈
∑

k∈K:ok=i qk

ui
⌉ ∀i ∈ N . (19)

The analogous inequality regarding shipments destined for terminal i can also be used to
strengthen CONS(D). This type of inequality is denoted Vehicle Cutset (VC) inequalities in
the following.

Similar reasoning enables the derivation of a new inequality. Namely, recognizing that for
each shipment there must be a consolidation chosen for an arc that departs its origin we have
the following valid inequality. ∑

j:(ok,j)∈A

∑
ω∈Ωokj

ϕk
ωδω = 1 ∀k ∈ K. (20)

We call these inequalities Origin Consolidation Cutset (OCC) inequalities. There are analogous
inequalities for each shipment and its destination terminal, which we refer to as Destination
Consolidation Cutset (DCC) inequalities.
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ij xktlt′ l

ij xktrt′ r
ij

Figure 1: Modeling dispatch times on an arc differently in different partitions of the time horizon

4. Hybrid formulation

In this section, we present a hybrid formulation that combines elements of the consolidation-
based formulation and the classical time-expanded network formulation. The primary motiva-
tion for this formulation is to avoid computational challenges associated with solving instances
of CONS(D) involving large numbers of consolidations, even after pruning. One such chal-
lenge is enumerating the consolidations. Another is formulating and solving the resulting mixed
integer program as it will have a large number of binary decision variables.

Consider a single arc and interval of time. The number of consolidations associated with
that arc and interval of time is exponential in the number of shipments that can dispatch on that
arc during that interval. Thus, if the number of shipments is large, the number of consolidations
will be as well. By instead modeling synchronization of shipment dispatches with timed copies
of arcs, the number of consolidations can be greatly reduced. Thus, the hybrid formulation we
propose relies on creating a partition of the time horizon for each arc. During some elements of
the partition, shipment and vehicle movements on arcs are modeled as in the consolidation-based
formulation. During other elements, they are modeled as in a time-expanded network.

More precisely, we presume that for each arc (i, j) ∈ A the planning horizon T = {1, . . . , T}
has been partitioned into time intervals C(i, j)q, q = 1, . . . ,mc and E(i, j)q, q = 1, . . . ,me. The
intervals C(i, j)q contain times during which a shipment dispatching on that arc is to be mod-
eled with a continuous dispatch variable. The intervals E(i, j)q contain times during which a
shipment dispatching on that arc is to be modeled with a timed copy of that arc. In this for-
mulation, the set AT contains only a subset of the arcs used to form TEN(D). More precisely,
the set AT = {((i, t), (j, t′)) : (i, j) ∈ A,∃q∥t ∈ E(i, j)q}. We note that for this formulation AT
does not contain arcs of the form ((i, t), (i, t + 1)), i ∈ N . We illustrate this partition of time
and resulting modeling of dispatch times for a single arc in Figure 1.

Notationally-speaking, the formulation involves the same decision variables as presented
above. The objective function combines the terms from the formulations presented above.
Some constraint sets are the same as a set from one of the formulations presented above while
others are a hybrid of constraints from each. We present the complete formulation below, even
though some constraints have already been presented, for clarity.

9



minimize
∑

(i,j)∈A

fijzij +
∑

((i,t),(j,t′))∈AT

fijy
tt′
ij

subject to∑
p∈Pk

vkp = 1 ∀k ∈ K, (21)

∑
ω∈Ωij

sωδω ≤ zij ∀(i, j) ∈ A, (22)

γkij − γk
′

ij ≤ T (1−
∑

ω∈Ωij

ϕk
ωϕ

k′
ω δω) ∀(i, j) ∈ A, k, k′ ∈ Kij ,

(23)∑
k∈K

qkx
ktt′
ij ≤ uijy

tt′
ij ∀((i, t), (j, t′)) ∈ AT ,

(24)∑
ω∈Ωij

ϕk
ωδω +

∑
(t,t′):((i,t),(j,t′))∈AT

xktt
′

ij =
∑

p∈P(i,j)k

vkp ∀(i, j) ∈ A, k ∈ Kij ,

(25)

γkij ≤ T
∑

ω∈Ωij

δω ∀(i, j) ∈ A, (26)

∑
p∈P (i,j)k

αkp
ij v

k
p ≤ γkij +

∑
(t,t′):(i,t),(j,t′))∈AT

txktt
′

ij ∀(i, j) ∈ A, k ∈ Kij ,

(27)∑
(t,t′):(i,t),(j,t′))∈AT

txktt
′

ij + γkij ≤
∑

p∈P (i,j)k

βkp
ij v

k
p ∀(i, j) ∈ A, k ∈ Kij ,

(28)∑
(ok,j)∈A

γkokj +
∑

(t,t′):((ok,t),(j,t′))∈AT

txktt
′

ij

 ≥ ek ∀k ∈ K, (29)

∑
(j,dk)∈A

(γkjdk + τjdk(
∑

p∈P (i,j)k

vkp)) +
∑

(t,t′):((j,t),(dk,t′))∈AT

t′xktt
′

jdk

 ≤ lk ∀k ∈ K, (30)

∑
(i,j)∈A

(γkij + τij(
∑

p∈P (i,j)k

vkp)) +
∑

(t,t′):((i,t),(j,t′))∈AT

t′xktt
′

ij

 ≤

∑
(j,i)∈A

γkji +
∑

(t,t′):((j,t),(i,t′))∈AT

txktt
′

ji

 ∀j ∈ N , k ∈ K, (31)

vkp ∈ {0, 1} ∀k ∈ K, p ∈ P (i, j)k, (32)

γkij ≥ 0 ∀k ∈ K, (i, j) ∈ A (33)

xktt
′

ij ∈ {0, 1} ∀((i, t), (j, t′)) ∈ AT , k ∈ K, (34)

δω ∈ {0, 1} ∀ω ∈ Ωij , (35)

zij ∈ N ∀(i, j) ∈ A, (36)

ytt
′

ij ∈ N ∀((i, t), (j, t′)) ∈ AT . (37)
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The objective of the model seeks to minimize the total vehicle transportation costs, recog-
nizing that these costs are potentially measured in two ways on each arc. Constraints (21) - (24)
are the same as in the previous formulations presented. Constraints (25) ensure that if a path
is chosen that contains an arc, either a consolidation is chosen for that arc or a timed version
of that arc is chosen. Constraints (26) ensure that the dispatch variable for a commodity on an
arc only takes a positive value if a consolidation for that arc is chosen. Constraints (29) - (31)
are analogous to constraints (13) - (15), but recognize that the time at which a shipment may
dispatch on a particular arc may either be represented by a continuous dispatch variable or a
variable associated with a timed copy of that arc. Constraints (32) - (37) define the decision
variables of the formulation and their domains.

5. Modeling additional considerations

The TEN(D) captures few of the operational realities considered by consolidation carriers when
developing shipment and vehicle routing plans. Relatedly, the academic literature includes mul-
tiple models that capture some of these considerations. In this section we first present a variant
of CONS(D) that captures one of the most widely-modeled considerations in the literature,
empty repositioning. We next present a variant of CONS(D) that captures a consideration that
has not yet been modeled in the literature, bin packing. The third variant integrates piecewise
linear costs, which are often used in less-than-truckload transportation networks.

5.1. Asset management

The formulations presented so far presume vehicles are always available when needed. In prac-
tice, the need to move vehicles empty to position them to transport shipments can contribute
greatly to the costs incurred by a carrier. The academic literature related to the SSNDP and
its variants has labeled the need to move vehicles empty as a resource management issue. This
issue can be captured in CONS(D), in an aggregate sense, with the following constraint.∑

j:(i,j)∈A

zij −
∑

j:(j,i)∈A

zji = 0 ∀i ∈ N . (38)

This constraint ensures the number of vehicles that depart a terminal is the same as the number
that arrive at that same terminal. However, as it does not consider the time at which vehicles
depart and arrive a terminal it is only an approximation of empty repositioning needs. This
approximation has been used in other papers (Powell and Sheffi 1989, Braklow et al. 1992) that
propose formulating a service network design model on a physical network.

5.2. Bin packing

In situations wherein shipments can not be broken down and transported in different vehicles,
the TEN(D) formulation can under-estimate capacity needs as it treats them in aggregate. To
illustrate, consider a consolidation ω̄ on arc (i, j) consisting of three shipments k, k′, k′′ such
that each has a size that occupies two thirds the capacity of a vehicle (e.g. qk = qk′ = qk′′ =
2, uij = 3). A solution to the instance of TEN(D) could have xktt

′
ij = xk

′tt′
ij = xk

′′tt′
ij = 1 for some

(t, t′) and thus the left-hand side of constraint (4) would have value 6, requiring ytt
′

ij ≥ 2. Given

that ytt
′

ij appears with a positive coefficient in the objective function of TEN(D), in the absence

of other inequalities an optimal solution involving this consolidation will have ytt
′

ij = 2. Yet no
two of k, k′ and k′′ can fit within a single vehicle and thus three vehicles are actually needed.

Modeling this in CONS(D) simply requires setting sω̄ = 3. More generally, for consolidation
ω ∈ Ωij we can compute the values sω by solving a homogeneous bin packing problem formulated
with items that correspond to shipments in ω and a bin size that is uij .

11



However, in a setting where bin packing is to be enforced we can remove consolidations much
like with the Consolidation Pruning procedure. Specifically, consider a consolidation ω such
that sω = m > 1. This implies that ω can be partitioned into consolidations ωj , j = 1, . . . ,m
such that sωj = 1. Because each consolidation ωj is also used to formulate CONS(D), the
consolidation ω can be omitted. To summarize, CONS(D) needs only be instantiated with
consolidations ω′ such that sω′ = 1.

5.3. Piecewise linear costs

Piecewise linear cost functions are often used in less-then-truckload transportation to model
economies of scale or outsourcing rates (see eg. Balakrishnan and Graves (1989), Croxton,
Gendron, and Magnanti (2003), Lapierre, Ruiz, and Soriano (2004)). Following the presentation
of Frangioni and Gendron (2021), we suppose a transportation cost gij(xij) on an arc (i, j) ∈ A
that depends on the transported quantity xij on this arc. Frangioni and Gendron (2021) presume
the cost function gij is lower semi-continuous, non-decreasing and such that gij(0) = 0. Let
us define for all (i, j) ∈ A and all ω ∈ ωij , the cost κωij = gij(

∑
k∈ω qk) of dispatching all

shipments in ω together on arc (i, j). Then a piecewise linear cost function can be integrated
in the CONS(D) formulation by replacing the objective function by:

zPL-CONS(D) =
∑

(i,j)∈A

κωijδω.

Since κωij can be calculated before solving the model, the objective function remains linear
without extra linearization effort. In addition, no presumptions regarding the structure of the
cost function g(·) are necessary for the correctness of this approach.

6. Computational analysis

In this section, we focus on studying the efficiency of an optimization solver when solving
different formulations presented in this paper. We first study whether and when an optimization
solver can solve instances of the CONS(D) more effectively than the TEN(D).We then study the
performance of an optimization solver when solving instances of the hybrid consolidation-based
formulation. Finally, we return to the CONS(D) formulation and study the performance of a
solver when solving instances of models that capture empty repositioning and/or bin packing
considerations.

6.1. Computational setting

To perform our computational analysis we consider a set of randomly generated instances based
on a portion of the network of a United States-based LTL carrier. Specifically, a portion of the
network that consists of 25 terminals (e.g. |N | = 25) and 530 physical moves between terminals
(e.g. |A| = 530). The carrier provided cost, capacity, and travel time data.

We randomly generated instances that varied in two parameters. The first is the number
of shipments, or, the size of the set K. The second is the number of potential paths for each
shipment (i.e. |Pk|). We note that we generated instances such that all commodities have the
same number of paths (i.e. |Pk| = |Pk′ |, ∀k, k′ ∈ K). For each shipment k, to construct the
set Pk for a given number of paths µ, we enumerated all paths from ok to dk to identify a
set of candidate paths. We removed paths from this candidate set based on two other factors
inspired by discussions with practitioners. First, we removed paths that visit more than three
terminals other than the origin or destination. Second, we removed paths with distance greater
than 150% the distance between origin and destination terminals, when such a direct move is
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possible. From the remaining set of candidate paths, we included in Pk the µ shortest with
respect to travel time. We refer to the number of paths per shipment in an instance by |P|.

We define the class of an instance by the pair (|K|, |P|). We considered classes wherein K
takes on one of the values 100,150,200,250,or 300. Regarding paths, we consider classes wherein
|P| takes on one of the values 5,6,7,8,9, or 10. Thus, we considered 30 classes in total. For each
class we generated five instances randomly, yielding a test set that consists of 150 instances.

All experiments were run on a computer equipped with 64 Intel Xeon Gold 6130 CPU
processors operating at 2.10GHz and running the Ubuntu distribution of the Linux operating
system. All optimization models were solved with CPLEX 12.10 (Studio-CPLEX 2013). All
formulations and code to instantiate them were implemented in Python 3.7 (VanRossum and
Drake 2010). All code was run for two hours, or, 7,200 seconds. All optimization models
were solved to a 1% tolerance. CPLEX 12.10 was configured to use a single thread. All other
parameters of CPLEX 12.10 were left at their default values. All times reported are in seconds.

6.2. Computational comparison of TEN(D) and CONS(D)

This section focuses on the computational efficiency of solving the new formulation together
with its enhancements and the extension to a hybrid formulation.

6.2.1. Comparison of basic formulations

We first study the ability of the solver to solve instances of each formulation. We present in
Tables 1 and 2 the percentage of instances of each formulation in each class that could be solved
within the time limit of two hours.

|P|
|K| 5 6 7 8 9 10 Average
100 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
150 100.00% 100.00% 100.00% 100.00% 80.00% 40.00% 86.67%
200 100.00% 100.00% 100.00% 40.00% 0.00% 0.00% 56.67%
250 80.00% 40.00% 40.00% 20.00% 0.00% 0.00% 30.00%
300 60.00% 0.00% 0.00% 0.00% 0.00% 0.00% 10.00%

Average 88.00% 68.00% 68.00% 52.00% 36.00% 28.00% 56.67%

Table 1: % of instances of CONS(D) solved

|P|
|K| 5 6 7 8 9 10 Average
100 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
150 100.00% 100.00% 100.00% 40.00% 40.00% 20.00% 66.67%
200 100.00% 100.00% 100.00% 0.00% 0.00% 0.00% 50.00%
250 20.00% 20.00% 0.00% 0.00% 0.00% 0.00% 6.67%
300 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Average 64.00% 64.00% 60.00% 28.00% 28.00% 24.00% 44.67%

Table 2: % of instances of TEN(D) solved

We see that more instances of CONS(D) were solved overall and of each class. However, we
also see that for a given number of paths per commodity, as the number of commodities in an
instance increases, fewer instances of CONS(D) are solved. Similarly, for a given |K| > 100, as
the number of paths per commodity increases, fewer instances of CONS(D) are solved.

To understand this further, we report in Table 3 the average number of consolidations used
to formulate an instance of CONS(D) by instance class. Not surprisingly, we see that as either
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|K| or |P| increases, the number of consolidations used to formulate the instance increases,
suggesting that large numbers of consolidations yield instances of CONS(D) that are more
difficult to solve.

|P|
|K| 5 6 7 8 9 10 Average
100 1,373.20 1,751.20 2,127.00 2,444.00 2,777.20 3,166.60 2,273.20
150 3,012.20 4,196.20 6,109.00 7,398.20 8,935.20 11,711.60 6,893.73
200 6,627.00 13,716.20 32,922.20 78,534.40 96,218.60 164,180.80 65,366.53
250 12,383.40 26,273.20 55,972.40 82,530.00 113,069.40 147,035.40 72,877.30
300 25,851.20 44,499.20 103,772.60 141,768.60 191,203.20 262,254.40 128,224.87

Average 9,849.40 18,087.20 40,180.64 62,535.04 82,440.72 117,669.76 55,127.13

Table 3: Average number of consolidations per instance of CONS(D)

We next consider instances wherein both the CONS(D) and TEN(D) formulation could be
solved within the time limit of two hours. We note that among those, instances of CONS(D)
were solved, on average, in 257.56 seconds while instances of TEN(D) were solved in 996.54
seconds.

6.2.2. Experimental comparison of linear relaxations

To understand why the CONS(D) is easier to solve, we solved the linear programming relaxation
of the CONS(D) and TEN(D) formulations for each instance. We denote the objective function
values of the optimal solutions to these linear programming relaxations by zLPR

CONS(D) and zLPR
TEN(D).

Given these, we compute the gap (zLPR
CONS(D) − zLPR

TEN(D))/z
LPR
CONS(D) as well as the average of

this gap over all 180 instances. That average gap is 22.60%, suggesting that CONS(D) is a
significantly stronger formulation than TEN(D).

We next study the strength of the two formulations from another perspective by comparing
the objective function values of the respective formulations with the objective function value
of the highest-quality known solution to the integer program. More specifically, letting zIP

represent the objective function value of that high-quality (not necessarily optimal) solution, we
compute for CONS(D) the gap IPGapCONS(D) = (zIP − zLPR

CONS(D))/z
IP. The gap IPGapTEN(D)

is computed similarly. In Table 4 we report the averages of these gaps over all instances with
the same number of shipments. We see that not only is CONS(D) a much stronger formulation
but that its linear programming relaxation provides a bound that is often within 5% of the best
known solution to the integer program.

|K|
100 150 200 250 300 Average

IPGapCONS(D) 2.36% 4.33% 3.37% 4.11% 5.14% 3.86%

IPGapTEN(D) 22.37% 27.82% 26.44% 26.25% 23.78% 25.33%

Table 4: LP gaps with best-known IP solutions

6.2.3. Consolidation Pruning

We next consider the proposed speed-up techniques. We report in Table 5 the percentage of
instances of CONS(D) that could be solved within the time limit of two hours when consolidation
pruning is used and when it is not. Then, of the instances that could be solved in both cases,
we report the average time needed in each case. Finally, of the instances that could not be
solved either with or without consolidation pruning, we report the average optimality gap in
each case. We see that the use of Consolidation Pruning enables more instances to be solved
and in less time. Relatedly, of those not solved, the average optimality gap is smaller.
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% instances solved Time Opt. gap not solved

With CP 60.67% 400.69 3.84%
Without 56.67% 692.75 5.33%

Table 5: Solving CONS(D) with and without Consolidation Pruning

As another measure of the effectiveness of Consolidation Pruning we present in Table 6
the average number of consolidations used to formulate an instance of CONS(D), both when
Consolidation Pruning is used and when it is not used. We see that particularly for instances
with larger numbers of commodities the pruning procedure removes the vast majority of con-
solidations.

|K|
100 150 200 250 300 Average

With CP 1,660.90 3,890.97 8,218.43 13,959.37 21,600.13 9,952.67
Without 2,273.20 6,893.73 65,366.53 72,877.30 128,224.87 55,127.13

# With/# Without 73.06% 24.09% 2.54% 2.28% 1.30% 18.05%

Table 6: Average number of consolidations per instance of CONS(D)

6.2.4. Valid inequalities

We next turn our attention to the valid inequalities discussed in Section 3.2, using CONS(D)
with consolidation pruning as a baseline. We consider when only the Origin Consolidation
Cutset (OCC) and Destination Consolidation Cutset (DCC) inequalities are added to the for-
mulation as well as when they and the Vehicle Cutset (VC) inequalities are added.

We report in Table 7 for each configuration the percentage of all instances that could be
solved within the two hour time limit. Then, of the instances that could be solved for each
configuration we report the average time needed to do so. Finally, of the instances that could
not be solved by any configuration, we report the average optimality gap.

% instances solved Time Opt. gap not solved

With CP 60.67% 510.85 4.03%
+ OCC and DCC inequalities 62.67% 455.89 3.43%

+ VC inequalities 59.33% 726.28 5.04%

Table 7: Effectiveness of valid inequalities

We see that adding the OCC and DCC inequalities enables the solver to solve more instances
while adding the VC inequalities as well does not. We hypothesize that a reason adding the
VC inequalities does not increase the number of instances solved is that the constraints in the
CONS(D) formulation that model capacity usage (e.g. the constraints zij ≥

∑
ω∈Ωij

sωδω) are

much stronger than those present in TEN(D) (e.g. the constraints
∑

k∈K qkx
ktt′
ij ≤ uijy

tt′
ij ).

6.2.5. Solving the hybrid formulation

In this section, we study the ability of the solver to solve instances of the hybrid formulation
presented in Section 4. Instantiating the hybrid formulation requires partitioning the time
interval for each arc (i, j) ∈ A into time intervals (C(i, j)q) during which shipment dispatch
times are modeled with continuous dispatch variables and time intervals (E(i, j)q) during which
they are modeled as with a time-expanded network. To perform this partition for arc (i, j) ∈ A,
we assume a parameter ν that dictates the maximum cardinality consolidation to consider in
the formulation. Then, for any consolidation ω ∈ Ωij such that |ωij | > ν, the corresponding
time window during which that consolidation may occur is used to define the intervals during
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which shipment dispatch times are modeled as with a time-expanded network (i.e. the sets
E(i, j)q). The remaining time intervals are used to construct the sets C(i, j)q.

To study the strength of the hybrid formulation, we illustrate in Figure 2 the percentage
of instances that could be solved for values of ν ranging from 4 to 10. We note that the
Consolidation Pruning procedure was not used in the experiments conducted to generate these
results. Nor were the OCC or DCC inequalities added to the formulation.

We observe that for all values of ν considered in these experiments at least as many instances
of the resulting hybrid formulation were solved as instances of the CONS(D). However, for
ν = 5, nearly 9% more instances of the hybrid formulation were solved than CONS(D).

54%

56%

58%

60%

62%

64%

66%

68%

70%

4 5 6 7 8 9 10

% solved

Figure 2: Percentage of instances of hybrid formulation solved, by ν, the maximum cardinality consolidation

Continuing the comparison between CONS(D) and the hybrid formulation we present in Ta-
ble 8 the percentage of instances of each formulation solved, the average time to solve instances
wherein each formulation could be solved, and the average gap of those instances wherein neither
formulation could be solved. We see that in addition to enabling more instances to be solved,
for the instances for which both formulations could be solved, the hybrid formulation instances
were solved in much less time. Relatedly, for the instances for which neither formulation could
be solved, the average optimality gap reported at termination of solving the hybrid formulation
is much smaller. Finally, we note that over all the instances of the hybrid formulation with

% instances solved Time Opt. gap not solved

CONS(D) 59.33% 692.75 5.33%
Hybrid, ν = 5 68.00% 164.30 2.20%

Table 8: Comparision of CONS(D) and hybrid formulation

ν = 5 that could be solved, the average time to do so was 715.10 seconds. Relatedly, of all the
instances of the hybrid formulation with ν = 5 that could not be solved, the average optimality
gap reported at termination of the solver was 2.15%.

To further understand why solving the hybrid formulation is effective we report in Table
9 the average gaps between the optimal objective function value of the linear programming
relaxation of TEN(D) and the CONS(D) as well as the hybrid formulation. Relatedly, we
report in Table 10 the percentage of arcs that are modeled as hybrid arcs. In other words, arcs
wherein E(i, j)1 ̸= ∅.

Comparing the two tables we see that the hybrid formulation is significantly stronger than
the TEN(D) but, not surprisingly, weaker than the CONS(D). Also not surprisingly, the
strength of the hybrid formulation as compared to CONS(D) depends on the percentage of
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|K|
100 150 200 250 300 Average

CONS(D) 20.50% 24.57% 23.87% 23.08% 20.33% 22.47%
Hybrid, ν = 5 20.07% 23.21% 21.46% 19.35% 15.76% 19.97%

Table 9: Gap with linear programming relaxation of TEN(D)

|K|
100 150 200 250 300 Average

% hybrid arcs, ν = 5 0.77% 3.13% 5.94% 9.72% 13.50% 6.61%

Table 10: Percentage of hybrid arcs in D, by |K|

the arcs in the network that are modeled in a hybrid fashion, and that percentage increases as
the number of shipments associated with an instance increases.

We next consider solving the hybrid formulation with Consolidation Pruning and the OCC
and DCC valid inequalities. We report solving statistics in Table 11 and see that with these
additional techniques, nearly 73% of instances are solved, and in less than 15 minutes of time
(on average). In addition, the optimality gap associated with instances that were not solved is
small.

|K|
100 150 200 250 300 Average

% solved 100.00% 100.00% 90.00% 53.33% 20.00% 72.67%
Solve time 3.92 349.83 1,136.10 2,329.46 1,397.56 797.65

Gap not solved 1.06% 1.90% 3.08% 2.52%

Table 11: Solving hybrid formulation, ν = 5, with CP and OCC, DCC valid inequalities.

Finally, we recall that a motivation for the hybrid formulation was to avoid creating instances
with large numbers of consolidations. To assess whether this was achieved, we report in Table
12 the average number of consolidations created in instances of four different formulations,
averaged over instances with the same number of shipments. We repeat statistics for CONS(D)
and CONS(D)+CP in Table 12 for ease of comparison. We see that instantiating the hybrid
formulation requires far fewer consolidations than CONS(D) both when consolidation pruning
is applied and when it is not.

6.2.6. Synthesis

Finally, we summarize the computational efficiency of solving different formulations in Table
13. In this table we report, by number of shipments in an instance, the percentage of instances
solved to within a 1% optimality tolerance. We also report for each formulation the average
time it took to solve the instances of that formulation that could be solved. Note that in Table
13, and unlike previous tables, the set of instances being averaged over varies by formulation.
For example, the average for TEN(D) is over a different (smaller) set of instances than the
average for CONS(D). Finally, we report for each formulation the average optimality gap of
instances of that formulation that could not be solved. Similarly, this average is computed over
a set of instances that varies by formulation. The average for TEN(D) is over a larger set of
instances than the average for CONS(D).

We see that by solving instances of the CONS(D) formulation, along with the proposed
speed-up techniques, 17% more can be solved than by solving the TEN(D) formulation. An
additional 11% more instances of the hybrid formulation can be solved when the proposed
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|K|
100 150 200 250 300 Average

CONS(D) 2,273.20 6,893.73 65,366.53 72,877.30 128,224.87 55,127.13
Hybrid(ν = 5) 2,182.37 5,560.48 10,588.10 20,209.60 32,623.26 14,232.76
CONS(D)+CP 1,660.90 3,890.97 8,218.43 13,959.37 21,600.13 9,952.67
Hybrid(ν = 5)

+CP+OCC&DCC 1,588.83 3,162.77 4,478.00 6,739.27 8,361.17 4,866.01

Table 12: Average number of consolidations.

|K| Time Opt. gap
100 150 200 250 300 Average solved not solved

TEN(D) 100.00% 66.67% 50.00% 6.67% 0.00% 44.67% 996.54 4.04%
CONS(D) 100.00% 86.67% 56.67% 30.00% 10.00% 56.67% 692.75 5.33%

CONS(D)+CP 100.00% 96.67% 60.00% 36.67% 10.00% 60.67% 761.19 3.79%
CONS(D)

+CP + OCC&DCC 100.00% 96.67% 63.33% 36.67% 11.67% 61.67% 784.84 3.58%
Hybrid(ν = 5) 100.00% 93.33% 86.67% 40.00% 20.00% 68.00% 715.10 2.15%
Hybrid(ν = 5)

+CP+OCC&DCC 100.00% 100.00% 90.00% 53.33% 20.00% 72.67% 797.65 2.52%

Table 13: Synthesis of experiments

speed-up techniques are used. While the hybrid formulation is easier to solve, as we will see in
the next section, the pure CONS(D) formulation allows for more accurate modeling of complex
operational issues such as bin packing.

6.3. Empty repositioning and bin-packing

In this section we first consider the ability to solve instances of models that explicitly capture
aggregate empty repositioning constraints. We then consider instances of models wherein bin
packing considerations are explicitly considered.

Regarding empty repositioning, we consider instances of the hybrid formulation wherein the
aggregate empty repositioning constraints (38) are also included. We instantiate these hybrid
formulations based on the parameter value ν = 5 and with the OCC and DCC inequalities. We
also apply Consolidation Pruning to the instances under consideration. We consider the same
instances reported on in the previous section. We report in Table 14 three statistics, averaged
over instances with the same number of shipments. We report for each number of shipments
the percentage of instances solved, the average time needed to do so, and the optimality gap
of instances that were not solved. Comparing Table 14 with Table 11 we see that adding the
empty repositioning constraints (38) to the CONS(D) formulation leads to instances that are
slightly harder to solve.

|K|
100 150 200 250 300 Average

% solved 100.00% 100.00% 86.67% 46.67% 23.33% 71.33%
Solve time 3.97 255.74 907.92 1,850.45 2,174.18 677.78

Gap not solved 1.22% 1.82% 2.62% 2.19%

Table 14: Solving hybrid formulation instances that recognize empty repositioning

We next turn to instances of CONS(D) that capture bin packing considerations, as discussed
in Section 5.2. We note that in this analysis we consider additional classes of instances. Namely,
those with 350,400, 450, and 500 shipments. Instances in each of these classes are generated in
the same manner as those already discussed. We report in Table 15 the same statistics reported
in Table 14. Comparing Table 15 with Tables 1 and 5, we see that larger instances of such
models can be solved and in less time, on average. We also see that of the instances that could
not be solved, the optimality gap is typically smaller than when bin packing is not considered.
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|K|
100 150 200 250 300 350 400 450 500 Average
100 150 200 250 300 350 400 450 500 Average

% solved 100.00% 100.00% 100.00% 86.67% 90.00% 86.67% 76.67% 60.00% 26.67% 80.74%
Solve time 1.32 34.07 69.09 967.39 914.52 2,348.06 2,453.13 2,887.43 1,070.23 1,059.57

Gap
not solved 1.67% 1.16% 1.59% 1.89% 2.00% 2.73% 2.19%

Table 15: Solving instances of bin packing models

Finally, we recall that ignoring bin packing can lead to underestimates of capacity needs
and transportation costs. To understand the magnitude of this underestimate, we consider the
gap between objective function values of high-quality solutions to CONS(D) formulated with
and without bin packing considerations. More precisely, we let zNO−BP represent the objective
function value of a high-quality solution to CONS(D) formulated without bin packing. Simi-
larly, we let zBP represent the objective function value of a high-quality solution to CONS(D)
formulated with bin packing. We then compute gap = (zBP − zNO−BP )/zNO−BP . We report
this gap, averaged over instances with the same number of shipments, in Table 16. We see that
this gap is significant, over 5%. In addition, this gap increases as the number of shipments
associated with an instance increases.

|K|
100 150 200 250 300 Average

% increase in cost 2.60% 4.36% 6.16% 7.21% 7.48% 5.56%

Table 16: Percentage increase in costs when recognizing bin packing, by |K|

7. Conclusion

In this paper, we proposed new formulations for the SSNDP based on formulating with consol-
idations of shipments. Doing so obviates the need to use a time-expanded network to capture
the synchronization of shipments needed for their consolidation. Instead, one can formulate
on the physical network itself, which leads to much smaller and less symmetric integer pro-
grams. Formulating with consolidations also enables explicit representation of vehicle capacity
needs, resulting in much stronger linear programming relaxations. Computationally, instances
of the proposed consolidation-based formulations are easier to solve than those based on a
time-expanded network. Relatedly, the consolidation-based formulation enables instances to be
solved that previously would have required implementing powerful but elaborate algorithm such
as Dynamic Discretization Discovery. Formulating with consolidations also facilitates modeling
issues that have not yet been addressed in the literature, such as bin-packing considerations
when computing vehicle capacity needs. In addition, the proposed modeling technique for bin-
packing considerations in a consolidation based formulation yields instances that are easier to
solve than those wherein capacity is modeled in an aggregate sense.

The proposed formulations present multiple avenues for future research. From an algorithmic
perspective, the enumerative nature of modeling with consolidations points towards the need
for a solution method based on branch-and-price. However, the efficiency we observed when
solving instances of the hybrid formulation suggests a Dynamic Discretization Discovery-type
approach for discretized time windows may be promising for large scale problems.

From a modeling perspective, formulating with consolidations makes capturing other phe-
nomenon that are prevalent in logistics much easier, in terms of solving the resulting integer
program, than with a time-expanded network-based formulation. For instance, it is common
in freight transportation that some products cannot travel together in a vehicle. Modeling this
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with a consolidation-based formulation is straightforward. Similarly, vehicles may have multiple
types of compartments, each with a different storage capability (e.g. different temperatures),
and capacities quoted along multiple dimensions. This can be integrated into a consolidation-
based formulation in a manner similar to bin packing, albeit for each compartment.
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