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Abstract:When facedwith the need of implementing a de-

centralized behavior for a group of collaborating robots,

strategies inspired from swarm intelligence often avoid

considering the human operator, granting the swarmwith

full autonomy. However, field missions require at least to

share the output of the swarm to the operator. Unfortu-

nately, little is known about the users’ perception of group

behavior and dynamics, and there is no clear optimal in-

teraction modality for swarms. In this paper, we focus on

the movement of the swarm to convey information to a

user: we believe that the interpretation of artificial states

based on groups motion can lead to promising natural in-

teraction modalities. We implement a grammar of decen-

tralized control algorithms to explore their expressivity.

We define the expressivity of a movement as a metric to

measure how natural, readable, or easily understandable

it may appear. We then correlate expressivity with the con-

trol parameters for the distributed behavior of the swarm.

A first user study confirms the relationship between inter-

robot distance, temporal and spatial synchronicity, and

the perceived expressivity of the robotic system.We follow

upwith a small group of users taskedwith the design of ex-

pressive motion sequences to convey internal states using

our grammar of algorithms. We comment on their design

choices and we assess the interpretation performance by

a larger group of users. We show that some of the internal

states were perceived as designed and discuss the param-

eters influencing the performance.
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1 Introduction
As robotsmake their way into ourworld, the number of ap-

plication domains where they are likely to interact and co-

operatewith humansmultiplies. Each of these domains of-

fers an opportunity to developmore intuitive relationships

with robots, bypushing forward their capacity to detect so-

cial attitudes and adopt expressive stances.While robotics

often deals with humanoid and zoomorphic artefacts, re-

cent technological advances result in the emergence of

new forms as well as new action opportunities, sometimes

remote from familiar modes of operations. Robot swarms

are one of these new entities, composed of large num-

bers of robots that can evolve in formation and adapt to

multiple environments. The robustness of swarm systems

comes mostly from their distributed and scalable control.

An increasing number of low-cost commercial swarm sys-

tems are available, but the complexity of decentralized

control, based on local interactions between the robots

and with their environment, is what still holds back their

expansion to real-world applications [1].

Domain-specific programming languages [2] and soft-

ware architectures [3] try to address these issues, so that

researchers can focus on novel user interaction design.

Concerning the interaction with humans, what makes

swarms special is that they have no defined physicality:

they can adopt emerging configurations depending on en-

vironmental constraints, internal policies, and commands

issued by a user [4]. As such the motion of swarms is de-

fined and constrained by the structure of biological enti-

ties and considered as a type of biologicalmotion [5]. How-

ever, swarm motions have no underlying form that rigidly

determines the relationship between parts, as opposed to

motions of the human body for instance. This absence of

predictable structure, and the necessity for an observer to

consider multiple individuals, possibly as a single entity,

make it necessary to develop new methods for the anal-

ysis of human-swarm interaction. Those methods should
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investigate whether the perception of swarms motion is

sensitive to the structure of moving swarms and whether

the human interpretation is coherent to an expressed in-

ternal state of a swarm (e.g, system alerts or important

new information available for the operator). As opposed

to the undergoing research in animated group motion al-

ready active for decades (for instance with the major work

of Reynold [6]), research on robot swarms’ expressive ca-

pabilities has only started [7]. So farwepossess scant infor-

mation about how a swarm’smotion impacts a user’s emo-

tional response [8]. Specifically, we do not know how the

state attributed to a swarm (e.g. is it considered as a single

entity, an aggregate of autonomous robots, an ephemeral

formation?) affects its perceived psychological traits (ner-

vous, shy, aggressive, etc.), as well as the expressivity that

may be attributed to its behavior. Is the perception of a

robot swarmsimilar to the observation of a school of fish or

a flock of birds? How is a robot swarm able to impress the

sense of a collective movement organized towards a goal?

What collective features govern the transmission of infor-

mation about the swarm’s perceptive and social states?

This paper addresses these questions, elaborating on

the notion of swarm expressive behavior. In particular, we

examine how various parameters contribute to the orga-

nization perceived in a swarm’s behavior, and how this

organization translates into the swarm’s expressivity and

the possibility to identify internal states such as emotions.

These questions are addressed with two user studies in-

volving a small swarm of tabletop robots. The article pro-

ceeds in four steps. First we introduce the topic of robotic

swarms’ expressive behavior (Section 2). Second, we de-

scribe the software infrastructure, the control algorithms,

and the control attributes implemented to study a swarm’s

expressive behavior (Section 3). Third, in a first experi-

ment, we investigate the relationship between expressive

behavior and perceived key attributes of a swarm (Sec-

tion 4). In particular, we test whether the expressivity at-

tributed to the swarm’s behavior depends on attributes

of temporal and spatial synchronicity, and whether vari-

ations in that expressivity are correlated with variations of

the parameters of organization perceived in the swarm. Fi-

nally, in a second experiment (Section 5) we further inves-

tigate the expression of internal states by a robot swarm,

using expressive motion sequences designed by choreog-

raphers to represent specific emotions. We evaluate the

success of this representation and determine on which

parameters of perceived organization the expressive se-

quences are relying upon.

2 Expressive behavior of robotic
swarms

An important issue for the supervision of a semi-

autonomous swarm is the possibility to efficiently con-

vey information about the swarm’s current state, its fu-

ture states, and the effects of human input on its behav-

ior. This work originates from the recent key contributions

to human-swarm interaction [5, 9–14] and the use of non-

verbal communication from robots [15–19]. Both domains

are discussed in this section, leading to the key concept of

the cohesion of a swarm for group-level perception of mo-

tion.

2.1 Human-swarm interaction

Human-Swarm Interaction (HSI) differs from common

Human-Robot Interaction (HRI) for the large numbers of

units involved and because it heavily relies on local inter-

action from which the group behaviors emerge [10]. Such

self-organized and emerging behaviors are more challeng-

ing to visualize than deterministic and predictable con-

trol strategies. This is where the current design paradigm

of commercial centralized mission planners is limited.

For instance, when rendering online positions of a de-

ployed aerial fleet on a screen, the operator will havemore

difficulties understanding group motion than individual

mission-oriented goals. All robot activities have to be en-

compassed in a supportive visual interpretation that fa-

cilitates the operator decision-making [20]. The informa-

tion conveyed to the swarm operator is determined from

the collective movement of the swarm as it progresses to-

wards a specific goal. This requires examining the possible

swarm visual configurations to identify the most efficient

means of communicating, for instance, directions or dan-

ger. A stepping stone towards the intuitive visualization of

swarmbehaviors consists of the identificationof invariants
for the design of interactions between human and collec-

tives of robots [9].

The design of appropriate control algorithms notwith-

standing, one of the current HSI challenges is the state es-

timation and visualization for swarms [10]. A very impor-

tant issue is whether humans may be able to understand

swarmmotion dynamics [11] and properly react to it, lead-

ing to the design of swarmmotion dynamics that are com-

patible with human cognitive skills of interpretation.

Humans are generally good at recognizing patterns of

collective motion [13]. However, because human attention

can fluctuate and the capacity of humans working mem-
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ory is limited, the number of robots a single operator can

control is also limited [12, 21]. In fact, in tasks where op-

erators have to recognize a common type of swarm be-

havior (e.g. flocking ), they report to be taking a holistic

approach to the perception of collective motion inherent

to emergent swarm behaviors [13]. Walker and Lewis [13]

observed operators applying strategies such as “unfocus-

ing their eyes” and/or “watching for a global pattern to

emerge”. Those strategies are the responses of the cogni-

tive system to deal with the increase in control workload

during swarm interaction [22, 23]. Research in the emerg-

ing field of HSI has often used user studies to investigate

workload and performance [5, 14]. Seiffert et al. [5], for in-

stance, considered motion perception for the evaluation

of the swarm configuration, and they observed that the

discrimination of organized swarms is superior than for

scrambled systems without structure, but inferior to the

discrimination of motions for rigid structures. Therefore,

to consider the swarm’s specificity with respect to human

interaction, one needs to take into account its distributed

nature, and develop the adequate concepts to determine

how socially impactful a swarm can be. To the best of our

knowledge, previous studies have rarely focused on how

a human perceives a swarm based on the expression of its

internal state.

2.2 Nonverbal communication in HSI

To convey information about swarm states, a flexible strat-

egy is to use iconic representations that users can recog-

nizewithout having to recall them, such as the top LEDs on

eachof the robots [15], ormake the robots emit sounds [24].

Note that the latter uses sounds to help the user be aware

of amalfunction in the swarm, not to share high-level state

information. For broader use, one needs to define the in-

formation conveyed by a swarm, a non trivial task that

Cappo et al. [25] addressed with swarm behavior descrip-

tors defined as: 1- action for the global motion of the fleet,

2- goal, i.e. the destination of the fleet, 3- shape, maintain-

ing a geometry over the whole motion, 4- heading of the

robots, and 5- manner, i.e. trajectory variations giving var-

ious dynamic attributes to the movement. The researchers

simulated over 1000 possible combinations of behaviors

descriptors, but without performing any user interaction

study. The shape descriptor is restrictive for general swarm

motion as it removes the possibility of using distributed

path planning algorithms thatwould notmaintain a shape

throughout the complete motion. Beyond issues of com-

munication and supervision, the representation of swarm

states is also a matter of social presence. As robot swarms

are bound to evolve inside social territories, they need to

develop communication modalities beyond symbols and

signs. Nonverbal behaviors, social attitudes, emotional ex-

pressions constitute important ingredients to establish a

social bond [26]. For such a connection to be formed and

maintained, several paths have been explored with tradi-

tional forms of robotics. Mimicking the human silhouette

and postural structures, a humanoid robot can express

emotional states using a combination of body postures, fa-

cial, and gestural expressions [17]. Yetmore abstract, high-

level motion patterns can contribute to the emotional ex-

pression, without requiring a humanoid appearance, or

even specific emotions to be expressed [27]. For instance,

the kinematics ofmovementhasbeen shown toparticipate

in the emotional appraisal of an action [18, 28]. Motion

characteristics such as path curvature and acceleration

are correlated with different levels of perceived arousal

and valence [19, 29]. A common denominator for the dif-

ferent modalities of social presence is the notion of ex-

pressivity. An expressive behavior can be considered one

that successfully transmits a particular emotion, an atti-

tude, or a general disposition to act and react in certain

ways. Phrased by Simmons&Knight [16], expressivity rep-

resents the ability to “convey an agent’s attitude towards

its task or environment”. The expressivity of a movement

determines how natural, readable, or easily understand-

able this movement may appear. Thus, expressivity deter-

mines to a great extent the capability for an intuitive and

transparent interaction with a robot, including the inter-

action with a robot swarm.

Because of the distributed nature of robot swarms, the

notion of expressivity is bound to take a different mean-

ing from traditional approaches that connect expressivity

to gestural andmorphological properties. A swarm has no

body nor body parts to express feelings or attitudes. With-

out a definite physicality, a swarm can reconfigure and

adapt to different environments and commands coming

from the user. In this context, an observer has to consider

the emergent properties resulting frommultiple individual

behaviors, for instance the tendency for the individuals to

remain close to each other, or to adopt similar velocities.

Determining a swarm’s expressivity is therefore a different

process than considering themovements of a single robot,

or even of a small group of centrally controlled robots.

2.3 Perceiving the swarm as a coherent
entity

Instead of relying on body and motion perception, assess-

ing the behavior of a swarm depends on at least three do-
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mains of computation: 1. ensemble coding, 2. perceptual

grouping, and 3. perception of motion features. In order

to convey internal states of a swarm, one must first un-

derstand what contributes to the user’s perception of the

swarm as a single entity.

Research on the perception of ensembles (1) has deter-

mined that sets are represented in a qualitatively different

way than single items [30, 31]: from a set of objects peo-

ple have the ability to rapidly extract information about

size, orientation, motion direction, or even social features

such as emotions attached to facial expressions [32]. Ob-

serving the behavior of the robots composing the swarm,

a person may extract statistical summaries, relative for in-

stance to the average velocity or average direction of the

robots’ movements.

The perception of a swarm as a coherent ensemble (2)

is also determined by Gestalt factors. The visual system in-

tegrates elements of the visual scene as parts of the same

structure when those elements, in addition to being close

to each other, move coherently, that is in a similar speed

and direction [33, 34]. This property of common fate gov-

erns the possibility to consider the swarmas a cohesive en-

tity and attribute to this entity a number of traits defining

its behavior. Gestalt factors also determine some dynamic

motionpatterns, such as the perception of chasing [35, 36]:

when two or more mobiles give the impression of chasing

each other, that may contribute to the expressive behavior

of the swarm. In general, the rapid detection of temporal

contingencies between changes in speed or direction [37]

provides a perceptual basis uponwhich identifyingmean-

ingful interactions among the swarm’s robots.

Kinematic and dynamic features (3) constitute a third

class of information picked up by the visual system when

considering the behavior of the swarm. Movement qual-

ities may be related to emotion expression [28, 38, 39].

While the general level of movement activity and spatial

extent are considered important features for the distinc-

tion of emotion categories, variations in movement pat-

terns may provide further evidence to distinguish levels of

valence and arousal. Dietz et al. [7] have recently investi-

gated the impact of such variations on the perception of a

swarm’s behavior and found that an increase in speed and

smoothness had a significant effect on the perceived emo-

tional state.

Together, ensemble coding, perceptual grouping, and

perception ofmotion features, conspire to produce the per-

ception of different global states characterizing a swarm.

These states may vary in terms of perceived cohesion (i.e.

whether the robots give the appearance of a cohesive en-

tity) and perceived organization (i.e. whether the robots

give the appearance of manifesting an organized behav-

Table 1: The parameters governing the representation of a robot
swarm as a coherent entity.

aggregation the tendency to perceive the robots

as remaining close to each other

synchronization the tendency to perceive the robots

as synchronizing their movements

leadership the tendency to perceive the robots

as following one of theirs

figure the tendency to perceive the robots

as forming a figure altogether

ior). Traditionally, the literature on swarm behavior distin-

guishes two different parameters that govern the represen-

tation of a swarm as a single entity [40, 41]: a parameter of

cohesion that represents a tendency for individuals to re-

main close to each other, and a parameter of synchroniza-

tion, which can be in terms of velocity or alignment.

For the purpose of this article, we make a distinction

between four parameters of perceived organization (pre-

sented in Table 1): a parameter of aggregation, correspond-

ing to the impression for an observer that the robots form-

ing the swarm tend to stay together rather than scattering;

a parameter of synchronization, or the impression that the

robots are aligning their movements; a parameter of lead-

ership addressing the impression that the robots are fol-

lowing or chasing a member of the swarm; and a param-

eter of figure composition (second study only), or the im-

pression that the robots are forming a figure. More specifi-

cally,wewill use the term cohesion as a key concept to refer
to a global property resulting from the interaction between

the three aforementioned parameters. This perceived co-

hesion canbe seen as apre-condition to the representation

of the robot ensemble as a coherent entity potentially able

to express internal states through its behavior.

2.4 Research questions and general
hypotheses

This article attempts to evaluate the sources of a swarm’s

expressive behavior. This endeavor required the imple-

mentation of a flexible swarm control infrastructure for

the design of decentralized groupmotions (Section 3), and

the construction of evaluation tools to assess how an ob-

server perceive and evaluate these movements. Based on

these two sets of tools, we could determine the relation-

ship between motion observables, as determined by de-

centralized control algorithms, and the qualifications at-

tributed to collective movements.
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     CONTROL ALGORITHMS
(aggregation, graph formation, cyclic pursuit, autonomous deployment, �ocking)

CONTROL ATTRIBUTES
(average inter-robot distance, spatial synchronicity, temporal synchronicity)

PERCEIVED ORGANIZATION
(aggregation, synchronization, leadership, �gure)

COHESION
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STATES

1
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Figure 1: Structure of collective expression explored: from swarm
control algorithms (1), we extract common control attributes (2)
in order to assess the swarm perceived organisation elements (3)
and finally relate these elements to cohesion, expressivity and
emotional states (4) of the swarm.

The architecture of this study on collective expression

has a four-tier structure of key concepts (Figure 1):

1. five decentralized swarm control algorithms are im-

plemented to create expressive swarm behaviors (Sec-

tion 3.2);

2. we determine a set of control attributes to tune these

algorithms and design group motion sequences from

them (Section 3.4);

3. these sequences are investigated with respect to the

user’s evaluation of parameters of perceived organiza-

tion (introduced in Section 2.3);

4. these parameters and their respective scales allow to

determine someperceptual determinants of the global

cohesion attributed to the swarm, the expressivity at-

tached to its movements, and the possible emotional

states identified.

Given the necessity of considering multiple individ-

ual robots, we surmise that an observer has to represent

the swarm as a single entity before attributing any kind

of properties to its behavior. We suppose therefore that a

certain level of perceived cohesion is necessary for expres-

sivity to develop, and we should expect to observe a rela-

tionship between the perception of a swarm as a coherent

entity, as measured by parameters of organization, and a

score of expressivity attributed to the swarm’s behavior.

When swarm behaviors are designed by experts (choreog-

raphers) to convey emotional states, we expect these pa-

rameters to play a role in the way collective motions are

channeled to produce recognizable emotions.

We make the following hypotheses:

1. Considering the swarm as a coherent and stable en-

tity should depend on the ability to identify parame-

ters of aggregation, synchronization and leadership in

the swarm movements (first experiment);

2. Expressivity should also be related to the parameters

of aggregation, synchronization, and leadership, inas-

much a sufficient level of organization is necessary for

the swarm to be considered as a single entity. How-

ever, an excessive organization may be detrimental to

the overall expressivity if it results in stereotyped mo-

tion patterns (first experiment);

3. Users can distinguish internal states (e.g. attitudes or

emotions) of a robotic swarm based on group motion

designed by an expert (e.g. choreographer) in expres-

sive motion (second experiment);

4. The recognition performance of a given set of expres-

sive motions designed from internal states also relies,

perhaps not consciously, on perceived attributes of or-

ganization in the swarm’s behavior (second experi-

ment).

3 Implementation of swarm
expressive behaviors

Literature on swarm intelligence covers a plethora of de-

centralized control algorithms for connected groups of

robots [42]. Within this body of knowledge, interaction

studies often focus on a single control mechanism at the

time to relate control inputs to the user perception. In-

stead, our interest lies in the relation between the motion

attributes of the group and the user perception. We imple-

ment and studymultiple control algorithms in terms of the

motion they generate. Thesemotions can thenbe analyzed

in relation with user perception. A flexible and generic

system for the design of decentralized group motions re-

quires specialized tools. We introduce in this section our

software infrastructure, leveraging a swarm-specific pro-

gramming language uniform for all control algorithms.We

can then detail the control algorithmswe implemented for

this study, and the attributeswe extract from the generated

motions.

3.1 Software ecosystem

Even the implementation of known algorithms for a

swarm can be very challenging, especially considering
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Figure 2: Common swarm behaviors implemented for this study: a- aggregation, b- graph formation, c- cyclic pursuit, d- autonomous de-
ployment, e- flocking.

that swarms are in essence decentralized systems, the be-

havior of which is based only on local interactions. To

the best of our knowledge, only one solution can provide

portability, scalability and fast development time: Buzz.

Buzz is both a programming language and a virtual ma-

chine to run its scripts. It was created by our research

group in 2016 to accelerate the implementation of swarm

behaviors [2]. Buzz provides special constructs to address

three essential concepts: a) shared memory (virtual stig-

mergy), b) swarm aggregation, and c) neighbour opera-

tions. The Buzz virtual machine (BVM) must run on ev-

ery unit of the swarm and with the exact same script, but

units can differ (i.e., a heterogeneous swarm), since the

language is platform-agnostic. Example scripts are avail-

able online [43], as well as the code for the compiler and

BVM [44]. The behaviors described in this section are also

open-source [45].

Using Buzz, we ensure our code can be deployed on

many hardware platforms. In this work we also lever-

aged its swarm-level primitives: virtual stigmergy [46] and

neighbour operations. We use the former (a tuple space

shared across the swarm) to agree on swarm-wide vari-

ables, such as the current state in a swarm-wide state ma-

chine.We use the latter (a local communication system) as

it is the root of most swarm intelligence algorithms: local

interaction.

3.2 Control algorithms

As shown in Figure 2, we implemented a set of five com-

mon swarm behaviors in Buzz scripts: aggregation, forma-

tion from graph descriptions, cyclic pursuit, autonomous

deployment, and flocking. All scripts require only local in-

teraction with their neighbours: for n robots in the swarm,

each pair of robots knows bij, the bearing between robot i
and j, and dij, the distance between these two. In the fol-

lowing subsections, we detail each algorithm to compute

from these inputs, sometimes in conjunction with consen-

sus mechanisms, each robot’s velocity vector. Their usage

for both experiments, such as to which emotional state

(fear, anger, happiness, sadness, surprise or disgust) they

were associated, is mentioned.

In a Buzz script, this velocity vector is an argument to

a function dealing with low-level hardware control to ac-

tuate the robot. In the end, while the exact path of each

robot is not determined, the groupmotion parameters and

goal locations are scripted.

3.2.1 Flocking

Among the most popular formalization of biological

swarm behaviors, potential functions are a simple, yet

flexible control approach. Averaging potential force algo-

rithms are often referred as a flocking behavior. Each robot
computes a virtual force vector:

f =
k∑︁
i=1

fi(di)ejθi , (1)

where θi and di are the direction and the distance of the

ith perceived obstacle or robot and the function fi(di) is de-
rived from an artificial potential function. One of the most

commonly used artificial potentials is the Lennard-Jones

potential, adapted for our physical systemas shown in Fig-

ure 3. The two parts of the potential equation represent the

attractor and repulsor effect driven by only two parame-

ters: a target distance (D) and a gain (ϵ). In this control ap-
proach, a goal (target location) is represented as an attrac-

tor influencing the whole group simultaneously.

Bymanually tuning the function’s gains we generated

sequences to highlight the control attributes of Section 3.2.

The wide spectrum of available motion provided by this

control algorithm alone made it the ideal candidate for a

first phase of user study (see Section 4). Then, in the sec-

ond phase of our user study, flocking is the control algo-

rithm selected by a focus group to represent sadness (see
Section 5).
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Figure 3: The Lennard-Jones potential adapted for wheeled robots
formation. The ’-’ and ’+’ domains are respectively the repulsive and
attractive parts, for which the pivot point is set with parameter t. D
is the distance between two robots and ϵ a parameter acting as a
control gain on the potential.

3.2.2 Aggregation

Aggregation is a simple behavior regrouping all robots

to a point, often the swarm centroid. As mentioned by

Sahin [47], it is frequently observed in biological systems

and it constitutes a pre-condition for most collective be-

havior. It was shown to be feasible without any computa-

tion on the robots, by directly adapting the velocity vector

to the average relative position of neighbours [48].Weused

a more formal model for aggregation, with each robot lin-

ear and rotational velocity, given by, respectively:

vi =
∑︀n

j dij
n , and ωi =

∑︀n
j bij
n , (2)

which computes a gradient minimizing the distance and

bearing between near robots, ultimately converging to the

same point. To force the swarm to regroup on a different

location, we add a component:

vi =
∑︀n

j dij
n + dit, and ωi =

∑︀n
j bij
n + bit, (3)

with dit and bit, the distance and bearing to the target

meeting point, respectively. Aggregation is the control al-

gorithmselectedby the focus group to represent fear in our
second user study (see Section 5).

3.2.3 Cyclic pursuit

Even with the simplest form of robotic swarm, devoid

of computational resources, two additional behaviors

(together with aggregation previously introduced) were

shown to emerge from a local reactive control: dispersion

and cyclic pursuit [48]. Pursuit is an important behav-

ior for many applications in robotics such as patrolling

aroundapoint of interest, an intruder, or scanning abuild-

ing. Further analysis of the pursuit transient states showed

more complex patterns that have significant potential for

expressive motion [4]. In this work, we selected a formal

model without the transient states, so that each robot lin-

ear and rotational velocity are given by:

vi = f bip, and ωi =
vi
r − k cos(bit), (4)

with r the distance to point of interest, bit the bearing to-
ward this point, bip the bearing toward robot i predecessor
in the circle (i.e. the closest robot in front), and f , k, param-

eters of the pursuit behavior similar to those used by Kubo

et al. [49]. Cyclic pursuit is the control algorithm selected

by the focus group to represent happiness in our second

user study (see Section 5).

3.2.4 Graph formation

Swarm intelligence has not been inspired only by behav-

iors observed in biological systems. As mentioned ear-

lier, a decentralized algorithm leverages local interactions

with neighbouring robots and thus relies heavily on the

swarm network topology. Therefore, many algorithms find

their roots in network engineering, such as the body of

work around graph-based formations. A directed graph is

composed of nodes having predecessors and successors

(see Figure 2-b), a representation useful formodelling con-

trol structures, information flows, and the error propaga-

tion [50]). The challenge is to progressively reach a forma-

tion from a given shape, as long as a directed graph can be

generated for that shape.

Our implementation represents the target shape as

an acyclic directed graph in which each robot can find

its position using two other robots (predecessors) that

have already taken place in the shape as reference. We as-

sume that all robots possess the graph representation, but

none is initially assigned to a specific position. The overall

shape is built dynamically and iteratively: each new robot

joins the shape only after being granted permission by one

of the parents, using local communication exclusively. The

resulting algorithm is completely decentralized and paral-

lel: multiple robots can join different parts of the shape at

any given time. This method is detailed in the work of [51].

To summarize, when a robot gets close to another that is

already in formation, it bids to be its successor in a known
graph structure, and if granted, it moves toward the rela-

tive position of the next node in the directed graph. While

this control structure has a lot of potential for figurative

representations (icons or symbols) in HSI, we restricted its

usage to abstract geometrical shapes to focus on the mo-
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tion attributes of the group. Graph formation is the control

algorithm selected by the focus group to represent disgust
(alternating between a ‘C’ shape and its mirror) in our sec-

ond user study (see Section 5).

3.2.5 Autonomous deployment

The last control algorithm implemented for this study

emerges from computational geometry. Instead of consid-

ering relative motion of the robots only, a surrounding re-

gion is split between the swarm members, a process re-

ferred to as surface tessellation. Some major application

scenarios benefit from this approach, e.g. search and res-

cuemissions, and the deployment of sensor networks. The

Voronoi tessellation [52] is an algorithm that has been ex-

tensively studied for multi-robot deployment. It usually

takes the initial robot positions as seeds to the tessellation
problem and then partitions the area. The logic is simple:

create a frontier halfway between each robot and then stop

those lineswhen they cross another frontier or the region’s

borders.We integrated inBuzz the sweeping line algorithm,
also known as Fortune’s algorithm, one of the most effi-

cient ways to extract cell lines from a set of seeds [53]. We

then cut the open cells with a user-defined convex polyg-

onal boundary. From this point on, each robot has knowl-

edge of its cell’s limits. For a uniform distribution of the

robots in the area, we use a simple gradient descent to-

wards the centroid of each cell, such as in [54]. Each robot

recomputes the tessellation following updates on the rela-

tive position of its neighbours; an approach that is robust

to both packet loss and environmental dynamics. Within

each robot cell, theuser candetermine anyway to compute

the goal of the robots instead of its centroid. For instance,

to explore a region while trying maximum coverage, one

can generate random goals within each cell.

Autonomous deployment is the control algorithm se-

lected by the focus group to represent anger (random

goals) and surprise (uniform) in our second user study (see

Section 5).

3.3 Hardware selection

The robotic platform selected for this study has to be

portable and avoid as much as possible any bias due to an

anthropomorphic or zoomorphic appearance. We selected

the Zooids [55], a group of small tabletop cylindrical robots

2.6 cm indiameter, localizedusing structured light emitted

by a ceiling projector. While our behavioral scripts can be

ported on any hardware platform (as explained above), we

selected the Zooids for the minimal setup time, their low

cost of manufacturing, their open-source controller code,

and the simplicity of their manipulation. Even if abstract

shapes are a bit less common in human-robot interaction

studies, examples showed they can, for instance, generate

less embarrassment from the user [56].We built a charging

station and we made enough Zooid units for two sets: one

can charge while the other performs.

The Buzz low-level actuating functions implemented

on the Zooids call their embedded controller. To be able

to explore the expressivity of the robot’s motion from the

quality of theirmovements, wemanipulate some low-level

variables of the controller:

1. themaximum velocity changes the average velocity
of the swarmmotionwithout rendering the systemun-

stable (such as playing with the controllers gains can

do), because the Zooids controller is focused on small

precise movement to reach the goals and it saturates

for large displacements;

2. artificial delays to the movement commands allow

us to manipulate the synchronicity of the movements,

such as creating an implicit leader in the swarm.

3.4 Control attributes

Each algorithmhas its ownparameters, increasing quickly

the complexity of the analysis of their influence.Moreover,

simple behaviors in mobile swarm systems, such as flock-

ing and cyclic pursuit, often lead to emerging transient

states [4]. To derive and deconstruct these states gener-

ated by a given set of control parameters, one must run

numerous simulations. Instead, to influence the level of

perceived organization and expressivity we designed a set

of higher level motion control attributes. These control at-

tributes determine objective interdependence between the

robots. These relationships are the basis of our evaluation

of perceived organization and expressivity:

1. the average inter-robot distance,

2. the spatial synchronicity of the swarm, i.e. the robots

move as a cohesive group, and

3. the temporal synchronicity of the swarm, i.e. the

robots move simultaneously.

Each attribute is positioned on a continuous range

(close/far, synchronized/unsynchronized), by the behav-

ior control parameters. For instance, increasing the dis-

tance (target) parameter alone in a Lennard-Jones poten-

tial leads to an unstable and unpredictable inter-robot dis-
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tance over time. Therefore, the epsilon/target pair has to

be manipulated together to get a stable formation for each

inter-robot distance. Leveraging the unstable spectrum of

the range of these two parameters, one can also influence

the spatial synchronicity of the group. In other words, the

more unstable a given pair of parameters is, the sparser

the robot motion will be. Temporal synchronicity requires

the use of another control parameter in the potential def-

inition: the delay or latency for each robot in registering

a goal attractor. By delaying the influence of a goal’s at-

traction on certain robots, we influence the temporal syn-

chronicity. For instance, a leader robot can notice the goal

attractor seconds before the rest of the swarm, thus creat-

ing a break in the temporal synchronicity. These three con-

trol attributes serve to generate motions deprived of inter-

nal state (or conceptual meaning) to objectively study the

cohesion and expressivity of the swarm in our first experi-

ment.We thenextract the valueof these attributes from the

motions designed by choreographers in our second exper-

iment. We achieved numerical estimation of each control

attributes from computing the standard deviation of the

rotational velocity for spatial synchronicity, themaximum

individual velocity gap from the group for temporal syn-

chronicity and the standard deviation of the average dis-

tance to the swarm centroid for the inter-robot distance.

4 First experiment: influence of
perceived organization on
collective expression

As a first step to enhance our knowledge on the relation-

ships between perceived organization and expressivity in

a robot swarm, we conducted a user study to validate hy-

potheses 1 and 2 (see Section 2.4). From high and low val-

ues of the attributes detailed in Section 3.4, we generated

eight abstract non-figurativemotion sequences and assess

their level of perceived organization and expressivity from

the scores attributed by participants in live sessions.

4.1 Participants

We recruited 27 participants with good knowledge and ex-

perience of dance. For this study on swarm motion per-

ception, we intentionally targeted this specific population

to give us insights on the slight differences in each of

the swarmmotion states: dancers and choreographers are

among the experts of body motions, let it be human or

A C

B

Figure 4: Six Zooids moving toward the user to form a figure. The
green letters show the successive goals covered by each motion
sequence.

artificial. We believe the conclusions obtained from their

answers can better help us define the motion parameters

for a broader spectrum of users. From the 27 participants,

4 identified themselves as men, 22 as women and 1 as

“other”; two thirds are dance students (19), while the oth-

ers are freelancers (8). The participants did not receive any

kind of financial compensation for the study, but rather

participated out of curiosity about natural interactionwith

robotic systems. The study protocol was approved by the

Paris 8 University research board and Polytechnique de

Montréal’s ethical committee. Participants signed an in-

formed consent form to partake in the study.

Table 2: The six experimental variables.

Spatial
synchronicity

S+ robots tend to remain

close together

std dev of

rotational

velocity

S- robots tend to scatter

Temporal
synchronicity

T+ robots tend to move

simultaneously

the maximum

robot velocity gap

from the group

T- robots tend to follow

a leader

Inter-robot
distance

D+ robots are moving with

large distances between

them

std dev of robots

distance to

centroid

D- robots are moving with

small distances between

them

4.2 Methods

To illustrate the different motion patterns in multiple se-

quential sessions, we alternated between two sets of six

Zooids robots. As shown in Table 2, the three high-level

motion attributes described earlier were used as binary in-
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puts, generating 8 possible combinations, i.e. 8 different

motion scripts. Each motion followed the same goal se-

quence (see Figure 4): (1) from point A to point B, (2) from

point B to point C, (3) from C to B, (4) from B to C, and (5)

from C to A.

Participants were asked to sit in front of the table on

which the Zooids performed. They had a 14 questions to

answer on a tablet (available in French and English) af-

ter observing each sequence. Each motion script was run

only once for the participants, but theywere played follow-

ing one of three possible orders: 1-2-3-4-5-6-7-8, 5-6-7-8-1-2-3-

4 and 1-2-7-8-3-4-5-6. The motion sequences were triggered

one at the time by the experimenters when the participant

confirmed all questions were answered. The experimenter

also explained beforehand that an unknown number of

motion sequences going through the same goals would be

automatically generated with different motion attributes.

To assess the values of cohesion and expressivity at-

tributed to the swarm, participants completed a survey

comprising three different scales (see table 3): (i) a scale

evaluating the organization perceived in the swarm’s be-

havior; (ii) a scalemeasuring the cohesion attributed to the

swarm (i.e. whether it is considered as a coherent and sta-

ble entity); and (iii) a scale assessing the level of expressiv-

ity of the swarm’s behavior. For each item of the different

scales, we used a seven-point Likert scale with response

ranging from 0 (strongly disagree) to 6 (strongly agree).

4.3 Results

This study presents a large number of tied ranks for a rel-

atively small dataset (27 participants). We used Kendall’s

τb correlation test to assess the contribution of each pa-

rameter in our dataset. We extract the perceived organi-

zation from the measures of cohesion and expressivity. As

we could not assume that the psychological distance be-

tween the scores of expressivity and between those of co-

hesionwere equivalent, we used an ordinal logistic regres-

sion to examine the effect of spatial synchronization, tem-

poral synchronization, and distance on both perceived co-

hesion and expressivity.

Howdo theparameters of perceived organization contribute
to the cohesion attributed to the swarm?

We found a positive correlation between cohesion and

tendency to stay in groups: a higher perceived tendency for

the robots to stay in groups is more likely to be associated

with a higher perceived cohesion (τb = 0.398, ρ < 0.001).
Similarly, we found that a higher perceived tendency for

the robots to synchronize their movements is more likely

Table 3: Three scales to assess the values of organization, cohesion
and expressivity attributed to the swarm.

Or
ga
ni
za
tio

n on a scale from 0 to 6, indicate to which extent you

agree with the following statements:

– the robots tend to stay in groups

– the robots tend to synchronize their movements

– the robots tend to follow one of theirs

Co
he
si
on

on a scale from 0 to 6, indicate to which extent you

agree with the following statement: the robots form a

coherent and stable group and seem to progresswhile

connected to each other

Ex
pr
es
si
vi
ty

on a scale from 0 to 6, how would you evaluate the

expressivity of the robot swarm?

to be associated with a higher perceived cohesion (τb =

0.440, ρ < 0.001). Finally, we found a significant positive
association between the perceived tendency for the robots

to follow one of theirs and the cohesion attributed to the

swarm (τb = 0.309, ρ < 0.001).

Howdo theparameters of perceived organization contribute
to the expressivity of the swarm?

The correlation scores between expressivity and the

perceived tendency for the robots to stay in groups were

less important than for the cohesion, but we still found a

significant positive association (τb = 0.148, ρ = 0.008),

as well as the perceived tendency for the robots to follow

one of theirs (τb = 0.197, ρ < 0.001). While the tendency

to stay in groups and the possibility to perceive chasing

relationships between the robots seem to benefit the ex-

pressivity of the swarm, an excessive level of synchroniza-

tion may be detrimental to this measure, as indicated by

the absence of a significant association between the per-

ceived tendency for the robots to synchronize their move-

ments and expressivity (τb = 0.033, ρ = 0.585).

How themotion control attributes affect the expressivity and
cohesion of the swarm?

Temporal synchronicity had a significant effect on the

expressivity of the swarm (see Figure 5). With temporally

asynchronous conditions, expressivity was 1.647 (95% CI,

1.012 to 2.681) timesmore likely to increase (χ2(1) = 4.028,

ρ = 0.045). However, we did not find an impact of spatial

synchronicity: the odds of spatially asynchronous condi-

tions to be considered expressivewas similar to that of spa-

tially synchronous conditions (odds ratio of 0,698, 95%CI,

0.430 to 1.134), χ2(1) = 2.107, ρ = 0.147. Similarly, the

odds of large spacing conditions to be considered expres-
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Figure 5: Average scores of expressivity for the different conditions
of spatial synchronicity (S+/S-), temporal synchronicity (T+/T-), and
inter-robot distance (D+/D-).

sive did not differ from that of small spacing conditions

(odds ratio of 1,389, 95%CI, 0.855 to 2.256), χ2(1) = 1.761,

p = 0.184.

Compared to expressivity, the cohesion score was af-

fected principally by spatial synchronicity (see Figure 6):

with spatially asynchronous conditions, cohesion was

0.321 (95% CI, 0.194 to 0.530) times more likely to decrease

(χ2(1) = 19.725, p < .001). Temporal synchronicity and

distance did not affect significantly the score of cohesion:

temporal synchronicity (odds ratio of 0.661, 95% CI, 0.407

to 1.075; χ2(1) = 2.787, ρ = 0.095); distance (odds ratio of

0.859, 95% CI, 0.530 to 1.392; χ2(1) = 0.381, ρ = 0.537).

4.4 Discussion

In this first experiment, we assumed that the expressivity

of a swarm is dependent on a sense of cohesion emanating

from the robotsmovements, itself contingent upon param-

eters of perceived aggregation, synchronization, and lead-

ership. We verified the hypothesis that the score of cohe-

sion (measuring towhat extent people consider the swarm

as a coherent and stable entity) is linked to the possibility

of identifying moments of aggregation and synchroniza-

tion. We found indeed that all the three parameters we

measured (tendency to perceive the robots as staying in

groups, synchronizing their movements, and following a

leader) were positively associated with the score of cohe-

sion. As predicted, the relationship between those param-

eters and expressivity is slightlymore complicated.Motion

patterns considered expressive are more likely to be asso-

ciated with a higher level of aggregation and with the im-

Figure 6: Average scores of cohesion for the different conditions of
spatial synchronicity (S+/S-), temporal synchronicity (T+/T-), and
inter-robot distance (D+/D-).

pression that the robots were following a leader, but we

did not find a significant correlationwith the scores of syn-

chronization (both temporal and spatial). We also found

that conditions more favorable to expressivity are those in

which movements are temporally asynchronous, confirm-

ing the idea that a high synchronicity may be detrimen-

tal to expressive patterns. It is interesting to observe that,

contrary to the score of expressivity, the score of cohesion

is mainly affected by spatial synchronicity, with spatially

asynchronous conditions being considered less cohesive.

We observe an interesting relationship between the two

parameters: we postulate that a sufficient level of cohe-

sion is necessary for the swarm to be considered expres-

sive (hence the positive correlation between expressivity

and the aggregation and organization parameters), but co-

hesion and expressivity dissociate with respect to the im-

pact of temporal synchronicity (detrimental to expressiv-

ity) and spatial asynchrony (detrimental to cohesion).

5 Second experiment: expression
of emotional states using
collective movements

The previously validated swarm attributes (cohesion and

expressivity) cannowbe related to thedesignof expressive

sequences: we conducted a second user study address-

ing hypotheses 3 and 4 (Section 2.4). The domain of emo-

tion expression through swarm movements is largely un-

charted, and we do not know which movement patterns
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are responsible for the expression of specific emotions.

For this reason, we assigned a group of choreographers

the task to design from scratch expressive sequences that,

according to them, would evoke one of the six emotions

known as basic emotions: happiness, sadness, fear, anger,

disgust, and surprise [57]. Subsequently we tested the pos-

sibility for naive observers to identify the emotions asso-

ciated with these expressive sequences and we used the

measures of perceived organization devised for the previ-

ous experiment to determine to what extent the identifi-

cation of emotions (and the possible ambiguity between

emotional states) could be related to variations in organi-

zation patterns.

5.1 Participants

After the design phase, this second studywas entirely con-

ducted online. The participants were recruited through di-

rect email invitations andwith promotion of the study over

social networks. We reached out to 41 participants, 34%

men and 66% women. While the previous study focuses

on students and young professionals, this one gathers the

inputs from participants above 30 years old in majority

(59%). The participants did not receive financial compen-

sation for this study, and the protocol was approved by

both universities’ ethical committees (Paris 8 University

and Polytechnique Montreal). Before the online question-

naire started, all participants had to accept the consent

form for this study.

5.2 Methods

To create the sequences, we tasked three choreographers

with the design of six expressive motions using a small

tabletop swarm of six Zooids. The experiment is twofold:

we first gathered a small focus group to design expressive

sequences and we then presented the results to a larger

number of participants.

We did not expect the motion sequences designers to

have good knowledge of decentralized programming, so

we designed a simple software interface to ease their it-

erative design. All the control algorithms detailed in Sec-

tion 3.2 can be selected by the user from the interface

and then tuned using parameters such asmaximumveloc-

ity, overall group shape, inter-robot distance, and tempo-

ral synchronicity (leadership). Each choreographer sepa-

rately practiced with a programmer the spectrum of con-

trol actions. Subsequently, the choreographers met and

decided together how to best represent six emotions us-

ing the Zooids expressive motions: fear, happiness, sad-

ness, surprise, disgust, anger. These emotions are known

to be the easiest to name (self-recognize) [57].We then con-

ducted a small (six participants) qualitative assessment

to confirm the perceived emotions for each designed se-

quence and we made small adjustments according to the

participants’ feedback. The resulting six Zooids’ emotions

are detailed in terms of control algorithms and velocity in

Table 4. A compilation video of all six sequences is avail-

able online¹.

Table 4: The six expressive motions designed based on the control
algorithms defined in Section 3.2 and the setpoint velocity of the
robots.

Emotional state Control Algorithm Velocity
Fear Aggregation Fast

Happiness Cyclic pursuit Average

Sadness Flocking Slow

Surprise Uniform deployment Fast

Disgust Graph formation Average

Anger Random deployment Fast

The participants were asked to complete a survey

(11 questions on a Likert scale) after watching each se-

quence. To conduct this part online, we filmed six short

video sequences made with the Zooids. Each sequence

related to one of six emotions. For each expressive se-

quence, participants had to evaluate on six seven-point

Likert scales whether the sequence evoked fear, surprise,

disgust, anger, happiness and sadness. Participants had

also to evaluate the sequences with the three scales of per-

ceived organization presented in the first experiment as

well as the fourth one introduced in Section 2.3: the ten-

dency to perceive the robots as forming a figure altogether.

5.3 Feedback from choreographers

We acknowledge that the design of the six sequences is

limited by the available control algorithms and the se-

lected control attributes. This limitation can only be re-

laxed with a larger set of control options than what we

implemented: we believe this would bring a level of com-

plexity to the system that may influence the designers.

However, discussion with the three choreographers high-

lighted the characteristics of their design choices and they

1 https://www.youtube.com/watch?v=rchI1HDYTr8

https://www.youtube.com/watch?v=rchI1HDYTr8
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did not feel constrained. The designers reached a smooth

and fast consensus on the representation of Anger, Fear,

Surprise and Happiness. Choreographers selected the fast

random deployment for anger because the robots seemed

“crazy”, i.e. disorganized without any apparent logic in

their movements and sometimes even colliding with one

another. Fear was the easiest to design for them, and it re-

flects on the resultsmentioned above: aggregation seemed

like the obvious choice to them. Surprise and happiness

turned out to be both represented by circles, but not on

purpose. Happiness used cyclic pursuit, as a form of tribal

dance around a fire, a celebration of the group. On the

other hand, surprise used uniform autonomous deploy-

ment, for them, a more abstract representation of a spurt

or a sudden heart-rate burst. Disgust was themost difficult

emotion to represent: in the end, the “C” shapemade from

graph formation control aimed at creating the impression

of a jury, as far as possible from the center (user focus),

sometimeswhispering (shaking) from their highmoral au-

thority perspective. Finally, the focus group never reached

an agreement on the representation of sadness, but the se-

lected behavior (flocking from right to left close to the user)

was perceived by them as comforting, a behavior we gen-

erally seek when sad.

Table 5: Control attributes computed for each sequence. Small
standard deviation of the rotational velocity shows high spatial
synchronicity, small difference in maximum velocities show high
temporal synchronicity and small standard deviation of the average
distance to the swarm centroid shows small inter-robot distance.

Expressive sequence Spatial
sync.
(rad/s)

Temporal
sync.
(cm/s)

Inter-
robot
distance
(cm)

fear 0.66 7.6 4.08

happiness 0.77 1.1 16.81

sadness 0.53 3.9 14.7

surprise 0.65 16.7 15

disgust 0.4 0 12.1

anger 0.74 42.5 24.3

The design approach based on high-level algorithms

selection and few control attributes options in this sec-

ond experiment is far more intuitive than the regulated

tuning of parameters required to generate the motion se-

quences variations of the first experiment. Nevertheless,

we extracted from the resulting sequences measures to

quantify the underlying control attributes. To ensure the

values were perfectly fit for the video sequences presented

to the participants, we extracted the position of all robots

from each sequence. Using each robot position recorded at

30Hz, we computed the velocity vector of all robots and of

the average for thewhole swarm. The spatial synchronicity

is measured with the standard deviation of each robot ro-

tational velocity, averaged over the entire sequence. With

larger standard deviation, the spatial synchronicity de-

creases. The temporal synchronicity is measured with the

largest difference between the maximum velocity of the

swarm and of the slowest member, over the whole se-

quence. A large difference means a low temporal syn-

chronicity. Finally, the inter-robot distance is measured

with the spatial dispersion of the swarm: the standard

deviation of the distance between each member and the

swarm centroid. Table 5 presents the values of each con-

trol attributes for all sequences. Fear as the smallest inter-

robot distance, while Anger as the largest, are expected

consequences of the aggregation and random deployment

algorithms. Happiness has the highest standard deviation

of rotational velocity, due to the circular movement, and

thus has the lowest spatial synchronicity, closely followed

by Anger. Disgust has the highest temporal synchronicity,

since most of the time all the robots are standing still to-

gether. Here again, Fear stands out as the least synchro-

nized sequence.

5.4 Results

We present two interrelated dataset: 1. the recognition of

emotions conveyed by each sequence and 2. the influence

of the parameters of perceived organization on the expres-

sivity of these sequences.
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Figure 7: Confusion matrix representing for each expressive se-
quence (fear, happiness, sadness, surprise, disgust, anger) the %
of participants having considered a given emotional state as the
best candidate to qualify for this sequence. For instance, 33% of
participants considered Surprise as the best candidate for the se-
quence designed to convey the emotion of fear.
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Howwellwere the emotional states distinguishedby thepar-
ticipants?

Theparticipants filled aLikert scale series of questions

assessing the level to which each sequence evokes a spe-

cific emotion. In general, participants had difficulty asso-

ciating emotional states to the sequences they were pre-

sented with. The best scores were found for Happiness,

Surprise and Fear scales, but only with an average of ap-

proximately two on a seven-point scale. If the sequences

donot evoke salient emotions, participants still responded

in different ways to them. This is what we can observewith

the classification distribution shown in Figure 7. For each

sequence and each participant, the best candidate (the

emotion reaching the highest score) was extracted from

the Likert-scale scores (including ties). Fear and Happi-

ness are the two most successful, in the sense that they

are associated more frequently to their corresponding se-

quence (the one choreographers intended to convey this

specific emotion). We ran a Kendall’s W test to evaluate

to what extent participants agreed on the rank attributed

to each emotion for each sequence. Coefficients of concor-

dance are indicated in Table 6. We found a significant con-

cordance for each sequence, except for the sequence ‘dis-

gust’.

The matrix also reveals potential misclassifications:

emotions preferentially attributed to a sequence that was

not intended to convey these emotions. If we look specifi-

cally to the sequences ‘fear’ and ‘happiness’, we can ob-

serve that both these sequences tend to be equally as-

sociated to their corresponding emotion and to the emo-

tion Surprise. Wilcoxon signed-rank tests conducted on

the rank scores associated with each emotional state con-

firm indeed that, for the sequence ‘fear’, the comparison

between Fear and Surprise is not significant (z = 1.023,

ρ = 0.306), while all the other comparisons are signifi-

cant. Similarly for the sequence ‘happiness’ the compari-

son between Happiness and Surprise is not significant (z =

1.157, ρ = 0.247), while all the other comparisons are sig-

nificant.

Table 6: Kendall W related scores for the six sequences. All Se-
quences have df = 5.

Expressive sequence Kendall W χ2 ρ
fear 0.311 63.777 <0.0005

happiness 0.210 43.096 <0.0005

sadness 0.127 25.983 <0.0005

surprise 0.200 40.990 <0.0005

disgust 0.061 12.525 0.028

anger 0.101 20.644 <0.05

How do parameters of perceived organization contribute to
the identification of emotional states?

We verified to what extent the identification of the dif-

ferent emotional states was associated to parameters of

perceived organization in the swarm’s behavior. As shown

in Table 7, some parameters of perceived organization are

specifically related to emotional states. The tendency for

the robots to stay in groups is more likely to be associated

to higher scores of Fear (τb = 0.115, ρ < 0.05). This is

coherent with the fact that choreographers chose to depict

a strong level of aggregation for the robots, similar to the

way the members of a biological swarm maintain a close

proximity to protect from predation. The tendency for the

robots to synchronize their movements is more likely to be

associated with higher scores of Happiness (τb = 0.161,

ρ < 0.005). We also found that Happiness is specifically

associated to the tendency for the robots to form figures

(τb = 0.216, ρ < 0.0005). In combination, the parame-

ters of synchronicity and figure seem to be critical to the

particular sequence choreographers chose to express hap-

piness. Robots were represented as engaged in a sort of

circle dance, evolving along the lines of a virtual figure,

with a high level of interdependence between the robots’

movements. The tendency for the robots to follow one of

their peers was associated to most emotional states, ex-

cept Happiness and Anger. In fact, Fear, Surprise, Sad-

ness and Disgust sequences all used at some point an ele-

ment of sequential transformation, one dynamic state (for

instance the robots aggregated in the bottom left corner

of the table), followed by another state with a transition

phasewhere one robot is perceived as leading theway. The

emotional states not significantly associated with the pa-

rameter of leadership are those where this element of se-

quentiality is not present, with the robots scattered ran-

domly all over the table (Anger), or staying inside the same

zone during the entire sequence (Happiness).

5.5 Discussion

The Buzz programming language and its virtual machine

proved a versatile tool to design expressive sequences. Due

to the simplified design parameters, the choreographers

achieved a mapping between the target emotional states

and the control algorithms, without requiring decentral-

ized programming expertise. Each available control algo-

rithm was in the end associated with a unique target emo-

tional state, such as fearwith ‘aggregation’, whereas anger

was uniquely associatedwith the ‘randomdeployment’ al-

gorithm.
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Table 7: Correlation scores for the six sequence (τb).

Fear Surprise Happiness Sadness Disgust Anger
tend to stay in group 0.115 0.030 0.041 0.029 0.012 -0.032

tend to synchronize -0.34 0.005 0.161 0.005 0.065 -0.017

tend to follow one of theirs 0.220 0.107 0.029 0.191 0.123 0.103

tend to form figures -0.038 0.016 0.216 0.073 0.053 0.000

However, thismapping between emotions and control

algorithms did not translate into a unique recognition pro-

file for the emotional states: in general participants had

difficulty identifying the emotions intended by the chore-

ographers, while still being able to differentially respond

to these emotions.Whereas Fear andHappinessweremore

frequently associated with the corresponding sequences,

other emotions such as sadness or disgust proved espe-

cially difficult to represent using collective motions. It is

difficult to determine whether Fear and Happiness were

more successful because they can be conveyed using ab-

stract patterns [58] that are suited to swarm expression,

whereas other emotions are more tightly linked to facial,

gestural and postural configurations (e.g. a defensive pos-

ture in the case of Disgust). Some of the perception confu-

sion observed in our study are similar to the ones already

pointed out by Barakova and Lourens [59] with the use of

the Laban dance notation on robotic motion: an overlap

arise between the coding of ‘fear’, ‘anger’ and ‘happiness’.

It is also possible that, in order to better illustrate emo-

tions,whatwas lackingwas a fine control of themovement

qualities that are known to evoke specific emotion (e.g.,

jerky movements for anger; large and fast movements for

happiness [28, 60]). Misclassifications, especially between

Fear and Surprise, and between Happiness and Surprise,

could also result from limits of the control parameters to

finely tune motion parameters. In addition, we can sur-

mise that Fear was confused with Surprise because of the

sudden reconfiguration of the swarm at certain points of

the sequence, implying an element of rapid adjustment to

external variations. Happiness and Surprise, on the other

hand, could be confused because of an impression of high

arousal due to frequent changes of configuration.

An interesting element for the study of collective

expressions is the diverse range of intuitions choreog-

raphers relied upon when designing the expressive se-

quences. Based on the variations we observed in the pa-

rameters of perceived organization, we can delineate at

least four expressive features: collective behaviors, picto-

rial elements, narrative elements, and variations in inter-

dependence. To depict emotions, choreographers could

draw from a repertoire of collective behaviors observed in

animal groups. Flocks of birds or fish schools display self-

organization behaviors [61] that may inspire collective ex-

pression of robotic swarms. In our experiment, choreog-

raphers seemed to base their design of fear-related mo-

tion on animal behaviors when they animated the swarm

as a flock of sheep fleeing from a predator. In certain

sequences, a pictorial element is involved, when robots

adopt a configuration that, to a human observer, may sug-

gest a geometrical figure. Such an element was present

in the sequence representing happiness. In this sequence

choreographers depicted a circle, thus making use of the

feature of roundness, a feature frequently associated to the

expression of positive emotions [58, 62]. In some other se-

quences, such as Fear and Disgust, choreographers based

their design on a narrative approach, portraying a se-

quence of events. Successive changes of the swarm config-

uration, and chasing sequences where one robot is seen

as leading the way, were used to convey attitudes and

emotions. These sequences echo sequences used in nu-

merous experimental investigations of animacy percep-

tion [63, 64], and suggest that the motion patterns thus

depicted correspond to basic expressive patterns. Finally,

choreographers made use of variations in robots’ interde-

pendencies to illustrate certain emotional states. Happi-

ness was associated to a high level of synchronicity by

observers and exemplifies the expressive potential of dy-

namic interrelationships. In this sequence, the robotswere

engaged in a highly dynamic game of position adjustment

that could transmit a playful attitude of joy. These subtle

patterns constitute an interesting element to tap intowhen

designing expressive collective motions.

6 Conclusion
In this work, we addressed the challenge of represent-

ing internal states of a swarm. We designed two sets of

user studies, each increasingourunderstandingof themo-

tions parameters involved. A flexible implementation was

required to conduct theses studies, so we presented our

decentralized software infrastructure. Based on a swarm-
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specific programming language, we implemented a series

of common swarmcontrol algorithms formotion designers

to pick and tune, independently from the underlying hard-

ware. Each algorithm has specific parameters, quickly in-

creasing the complexity of the analysis of their influence.

To narrow the analysis, we propose a small set of three

high-level motion attributes: temporal synchronicity, spa-

tial synchronicity and inter-robot distance.

The first experiment relates the expressivity and cohe-

sion of the robot group to the high-level control attributes,

injected as control parameters of a flocking behavior. The

results show that the perceived cohesion of the group in-

creases with the robots’ tendency to stay in groups (be or-

ganized) and their spatial synchronicity. The expressivity

of the swarmwas also increased by the robots’ tendency to

stay in groups, but was reduced by temporal synchronic-

ity.

The second experiment tasked a small group of pro-

fessional choreographers with the design of six expressive

motion sequences to illustrate internal emotional states.

The results show that half the sequences were attributed

emotions with significant agreement over all the online

participants: fear, happiness and surprise. Fear andhappi-

ness were associated with high synchronicity, and happi-

ness also to the tendency to form figures.We also observed

that anger was associated significantly to the absence of

leadership in the swarm.

Using these results, the swarmmotion can be tuned to

share high-level information to its operator. For instance,

while conducting an exploration mission, part of the de-

ployed swarm can synchronously aggregate when detect-

ing a gas leak to inform their operator of the danger. In

a broader perspective, we believe these preliminary re-

sults represent a stepping stone on the path to a better

understanding of artificial swarm perception aimed at im-

proving non-verbal communication between human and

swarm during collaborative tasks.

Further steps include understanding the expressive

figures that develop in relation to the swarm’s dynamic

state changes. They also involve understanding the re-

lationship between such expressive figures and whether

the swarm is perceived as a friendly, indifferent, or in-

timidating presence. Finally, our next experiments will

integrate the design of expressivemotions in task-oriented

interaction scenarios to explore how to best leverage these

findings.
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