
HAL Id: hal-03797921
https://hal.science/hal-03797921v1

Submitted on 5 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automated and Robust User Story Coverage
Mickael Gudin, Nicolas Herbaut

To cite this version:
Mickael Gudin, Nicolas Herbaut. Automated and Robust User Story Coverage. International Con-
ference on Product-Focused Software Process Improvement 2022, Nov 2022, Jyväskylä, Finland. �hal-
03797921�

https://hal.science/hal-03797921v1
https://hal.archives-ouvertes.fr


Automated and Robust User Story Coverage

Mickael Gudin1 and Nicolas Herbaut1[0000−0003−1540−2099]

Centre de Recherche en Informatique
Université Paris 1 Panthéon-Sorbonne
nicolas.herbaut@univ-paris1.fr

Abstract. Current practices in software testing such as Test Driven
Development or Behavior Driven Development aim at linking code to
expected behavior. In this context, code coverage is widely used to im-
prove code quality, reduce bugs and ssure requirements satisfaction. Even
if change tracking software allows finely analyzing code evolution, asso-
ciating a particular code chunk to the requirements at the origin of the
code modification is difficult for a large code base. In this preliminary
work, we propose a new “user story coverage” metric that reports lack-
ing requirement coverage quality, to help developers focus their efforts
on enhancing unit and integration tests. We propose a methodology to
compute this metric in a robust and automated fashion and evaluate its
feasibility on open-source projects.

Keywords: requirements · code coverage · abstract-syntax-tree · software qual-
ity

1 Introduction

In the software industry, testing best practices such as Test-Driven Develop-
ment(TDD) or Behavior-Driven Development(BDD) are now mainstream. TDD’s
goal is to have consistent test cases with the produced code whereas BDD’s goal
is to have consistent test cases with the expected behavior, which is the actual
business needs [1]. In the unit testing phase, developers use the code coverage
metric to assess how well the code base is tested, as a high coverage rate is
deemed to make a software program less error-prone [2].

Another common practice is the use of software configuration management
(SCM), to track code changes and facilitate collaboration. A good practice in
SCMs is to have traceability between requirements and implementation [3],
through commit messages. Commits often mentions the issue ID, which in turns
contains a reference to the business needs behind the code modification, com-
monly formalized as User Stories (US) in agile teams. This precious traceability
information, however, tends to degrade over time. The reason is that SCM-
provided tools, such as blame, are line-centric: newer commits mask the previous
ones, effectively breaking the traceability chain. As a consequence, there is no
easy way, given a chuck of code, to backtrack to the requirement which led to
its inclusion into the codebase.



2 Mickael Gudin and Nicolas Herbaut

This paper fills the gap in requirements to code traceability code by com-
bining unit test coverage, SCM history and issue tracker data to compute a
new metric, User Story coverage, which can be considered as a proxy to assess
Requirement coverage . In the rest of the paper, we present some background,
methods, evaluation and discussion before concluding.

2 Background and Related work

Requirements and User story Coverage In this paper, we make the assump-
tion that issues contains User Stories, which is a form of requirement expressed
from the perspective of an end-user goal. Agile teams often use USs as a proxy
for proper requirements to facilitate developers’ understanding of the desired
features [4].

A semi-automated requirement coverage tool was proposed in [5], where au-
thors demonstrated the feasibility of the concept. The main difference with our
approach is that we rely on robust code differencing to prevent recent commits
masking previous ones, and we also make the hypothesis that the process linking
requirements and code are fully automated, through commit messages containing
issue IDs pointing to USs.

In [6], authors present a new metric based on the Requirements Traceability
Matrix (RTM) to better allocate testing efforts based on requirements coverage.
We have a related goal, but we do not assume the existence of an RTM and use
the existing unit tests to cover testing intents.

Robust Code differencing Code differencing is commonly performed through
a text-based approach with git diff and git blame commands relying by
default on the Myers algorithm [7]. Abstract syntax tree(AST)-based tools are
the current state-of-the-art and bring more accurate differences, which are espe-
cially efficient at detecting refactoring and minor code modification [8].

In this paper, we decided to use vanilla GumTree for the AST-based approach
and compare it with a text-based approach, leaving out considering recent en-
hancements in this field for future work.

3 Methods and Evaluation

In this section, we detail how we built the proof of concept1 to compute the
requirement coverage metric. To aggregate the code chunks to a given require-
ment, we aggregate the code of all commits that references the corresponding
issues. We implemented two coverage approaches as two code chunks aggrega-
tion techniques : line-based and method-based which are in turn based on unit
test coverage metrics: line coverage and method coverage.

1 https://github.com/nh-group/dextorm



Automated and Robust User Story Coverage 3

3.1 US Coverage Metric computation

Data Collection Data collection uses 3 different data sources: The Issue Man-
ager (IM), Repository and Code Coverage (CC) from unit tests. In this section,
we present the data sources and the different steps that lead to the generation
of US Coverage data.

git blamegumtree

commit 1

commit 1

commit 2 commit 3

commit 4

commit 4

commit 3

commit 4

commit 3

commit 4

commit 2

commit 1

commit 2

commit 1

1

1

1 1 2

2 3

3 3

commit 1

commit 1 commit 1

commit 4

commit 3

commit 2

commit 1

User Story #1

User Story #2

get coverage data or

B
. U

se
r S

to
ry

 M
a
p

p
in

g

A
. C

o
d

e
 M

a
p

p
in

g

C
. C

o
d

e
 C

o
v
e
ra

g
e

D
. U

se
r S

to
ry

C
o
v
e
ra

g
e

line 1 cov1

line 2 cov2

line 3 cov3

line 
number

coverage
 data

commit 
history

User 
Stories

User Story #1 commit 1 commit 2

commit 3 commit 4User Story #2

Fig. 1. High-level Architecture

Code Mapping Code mapping aims at correlating each code chunk with a
commit from the repository. This operation is trivial when using the blame
command, but offers poor precision: since (1) each line of code is associated
with exactly one commit and (2) whenever any token from the line is modified
by a commit, the line becomes associated with the said commit. This means that
refactoring, reformatting and commenting on a line will destroy the connection
between the statements and the associated commit, hence the user story.

For this paper, we developed a more robust method to compute Code Map-
ping, relying on GumTree. This method reads the git history for each file, and
analyze each modification done on the file, producing ASTs labeled with the
commit and line. More precisely, for each file F , for each commit t, we com-
pare the two versions of the file Ft−1 and Ft, before and after commit t. We
subsequently parse the files as AST Tt−1 and Tt, and compute the mapping Mt

between Tt−1 and Tt. If there is a mapping between nodes N ∈ Tt−1 and M ∈ Tt,
we add all the labels of N to M . If no mapping exists, then M is labeled with
commit t.

US Mapping First, we connect to the issue manager and assemble every issue
corresponding to the project. The user can apply specific filters (e.g., date, la-



4 Mickael Gudin and Nicolas Herbaut

bel, issue status) to restrict which issues are included in the analysis. Then, we
scan the whole history of the project, and gather commit messages containing
references to IM issues. We finally associate each commit with the corresponding
US.

Code and User Story Coverage Due to lack of space, we do not present
the full description of the US coverage metric, but instead intuitions and usage
examples. The line-based User story coverage metric is the ratio of the number
of lines associated with a US, which are marked as covered by unit tests, over the
total number of lines associated to the US. Likewise, method-based User story
coverage metric follows the same principle based on method coverage.

3.2 Illustrative example

To illustrate our approach, we take the example of a US where some contact
information is retrieved from a phone number, implemented in commit1.

1 public class ContactService {
2 RepositoryContact repo = new RepositoryContact();
3
4 public Contact findContactWithPhoneNumber(String
5 number) {
6 return repo.getContactWithPhoneNumber(number);
7 }
8 }

Listing 1.1. commit 1

1 +++ a/ContactService.java
2 --- b/ContactService.java
3 @@ -2,9 +2,6 @@ public class ContactService {
4 RepositoryContact repo = new RepositoryContact();
5
6 public Contact findContactWithPhoneNumber(String

number) {
7 + if(number != null && number.length() == 10) {
8 + return repo.getContactWithPhoneNumber(number

);
9 + }

10 + return null;
11 - return repo.getContactWithPhoneNumber(number);
12 }
13 }

Listing 1.2. commit2 (patch format)

Assuming that the US coverage is 100% in commit1, it would stay at 100%
in commit2 when computed with GumTree, since line 6 of listing 1.1 would still
be associated with commit1, thanks to Gumtree being resistant to code moves.

If we were to use git blame however, the result would change drastically:
none the news lines in listing 1.2 would be associated with commit 1 and with
the US anymore: since git blame is line-based, the US would not be covered
at all, since no line linked with commit1 would be executed in the unit tests.

3.3 Performance evaluation

We evaluated the presented US coverage computation techniques on several real-
world open source projects RxJava, Shenyu and dnsjava, which use GitHub SCM
to support both issues and version tracking:

We carried out computations on an Intel Xeon W-10855M CPU @ 2.80GHz
with SSD and 32GB of RAM. We used the Java Microbenchmark Harness and
we report the execution time with the AverageTime method over 10 executions
for each combination.

We show static metrics for each project (number of classes, number of ver-
sions, number of significant line of codes and number of collected issues) and



Automated and Robust User Story Coverage 5

Table 1. Performance and Runtime Comparison

Project DA Scope Execution
Time (s) # Classes # Versions # NCLOC # Issues GitBlame

Loss ratio
GitBlame Method
Loss ratio

RxJava
GitBlame instructions 337.54

2941 6001 368,268 3096 7.84% 23.89%methods 52.59

GumTree instructions 5384.89
methods 5360.19

apache/shenyu
GitBlame instructions 32.28

1807 2488 100,399 1559 4.48% 20.96%methods 15.42

GumTree instructions 846.75
methods 841.76

dnsjava
GitBlame instructions 15.91

277 2066 22,308 147 6.25% 25.62%methods 8.63

GumTree instructions 101.17
methods 105.25

the computation runtime for each combination of diff algorithms (GitBlame
and GumTree) and scope (instruction-based or method-based). We also re-
port two performance metrics: the gap between the most accurate coverage
computation method (GumTree algorithm computed on instructions) and an-
other reference method: Gi (GitBlame Loss ratio, which represents the nor-
malized average difference between GumTree and GitBlame coverage with in-
struction scope) and Ii (GitBlame Method Loss Ratio, that represent the nor-
malized average difference between instruction-based coverage for the GumTree
algorithm and method-based coverage for GitBlame). We define these metrics

as: Gi =
√∑

i∈I (c
g,inst
i − cb,inst

i )2/#I, and Ii =
√∑

i∈I (c
g,inst
i − cb,meth

i )2/#I

where I is the set of the issues for the project, cg,inst
i (resp., cb,inst

i ) is the cover-
age ratio reported by GumTree (resp., GitBlame) for issue i with the instruction
scope and cb,meth

i is the coverage ratio for the method scope for the GitBlame
algorithm.

4 Discussion

As we can see from Table 1, computations using the GitBlame algorithm outper-
form GumTree by one order of magnitude and shows a coverage precision loss
of 4.48% to 7.84%. The main factor explaining this is the necessity for GumTree
to compute as many diff trees as there are revisions for each file with an O(N2)
worst-case complexity (with N equals the number of nodes in the AST), while
git blame relies on a diff algorithm [9] requiring only O(M) space (where M is the
number of tokens of the file). Interestingly, using the method scope (based on
comparing method signatures), does not provide a large benefit in runtime for
the GumTree algorithm, since the main bottleneck is the computation of AST
mappings that need to be computed anyway. For GitBlame, however, the time
reduction seems significant (from 50% to 84% improvement) while increasing the
loss ration from 20.96% to 25.62%. While the precision erosion is substantial, it
stays limited. This suggests that we could use both approaches conjointly: using
GumTree with instructions (the slowest but most precise) in an off-line setting
(e.g., on a software factory while computing the other continuous integration



6 Mickael Gudin and Nicolas Herbaut

tasks), along with GitBlame with methods (the fastest, bit least precise) on the
developer’s workstation for a fast feedback loop.

5 Conclusion

In this article, we proposed a methodology to compute a proxy for requirement
coverage that we called User Story coverage. Thanks to AST-based code differ-
encing and data aggregation from issue manager, SCM and unit tests coverage,
the metric can be automatically obtained robustly. As future work, we plan to
integrate this metric in an IDE and follow a design science approach to evalu-
ate how it can improve code quality throughout the development lifecycle. We
also expect performance improvement through more advanced AST-based code
differencing techniques.

Reference

[1] F. Zampetti, A. Di Sorbo, C. A. Visaggio, G. Canfora, and M. Di
Penta, “Demystifying the adoption of behavior-driven development in
open source projects,” Information and Software Technology, vol. 123,
p. 106311, 2020.

[2] T. Bach, A. Andrzejak, R. Pannemans, and D. Lo, “The impact of cov-
erage on bug density in a large industrial software project,” in 2017
ACM/IEEE international symposium on empirical software engineering
and measurement (ESEM), 2017, pp. 307–313.

[3] Standard for configuration management in systems and software engineer-
ing. IEEE Standard 828-2012, 2012.

[4] M. Cohn, User stories applied: For agile software development. Addison-
Wesley Professional, 2004.

[5] R. Mordinyi and S. Biffl, “Exploring traceability links via issues for de-
tailed requirements coverage reports,” in 2017 IEEE 25th international
requirements engineering conference workshops (REW), 2017.

[6] C. Ziftci and I. Kruger, “Getting more from requirements traceability:
Requirements testing progress,” in 2013 7th international workshop on
traceability in emerging forms of software engineering (TEFSE), 2013.

[7] Y. S. Nugroho, H. Hata, and K. Matsumoto, “How different are different
diff algorithms in git?” Empirical Software Engineering, vol. 25, no. 1, pp.
790–823, 2020.

[8] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,
“Fine-grained and accurate source code differencing,” in Proceedings of
the 29th ACM/IEEE international conference on automated software en-
gineering, 2014, pp. 313–324.

[9] E. W. Myers, “An o(ND) difference algorithm and its variations,” Algo-
rithmica, vol. 1, no. 1, pp. 251–266, 1986.

https://doi.org/10.1016/j.infsof.2020.106311
https://doi.org/10.1016/j.infsof.2020.106311
https://doi.org/10.1109/rew.2017.69
https://doi.org/10.1109/rew.2017.69
https://doi.org/10.1109/tefse.2013.6620148
https://doi.org/10.1109/tefse.2013.6620148

	Automated and Robust User Story Coverage

