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We investigate here the asymptotic behaviour of a large, typical meandric system. More

precisely, we show the quenched local convergence of a random uniform meandric

system Mn on 2n points, as n → ∞, towards the infinite noodle introduced by Curien

et al. [3]. As a consequence, denoting by cc(Mn) the number of connected components

of Mn, we prove the convergence in probability of cc(Mn)/n to some constant κ,

answering a question raised independently by Goulden–Nica–Puder [8] and Kargin [12].

This result also provides information on the asymptotic geometry of the Hasse diagram

of the lattice of non-crossing partitions. Finally, we obtain expressions of the constant

κ as infinite sums over meanders, which allows us to compute upper and lower

approximations of κ.

1 Introduction

1.1 Background and main result

We study in this paper meandric systems of given size n, which are collections of non-

crossing loops intersecting the horizontal axis exactly at the points 0, . . . , 2n − 1 (up to

continuous deformation fixing the horizontal axis). See Figure 1 for a simulation of a

uniform meandric system of size 60.
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Meanders and Noodles 12539

Fig. 1. Left: a uniform random meandric system of size 60. Right: a uniform random meandric

system of size 20, with four connected components.

Fig. 2. A uniform random meander of size 30.

A meandric system consisting of only one loop is called a meander (see Figure 2).

Their study can be traced back to Poincaré, and they are connected to different domains

of mathematics, theoretical physics, or even biology, where they can be used as a model

for polymer foldings [5].

Combinatorially, meandric systems can be uniquely represented as a pair of

non-crossing pair-partitions; in particular, there are Cat2
n meandric systems of size n.

On the contrary, the enumeration of meanders is a notoriously hard problem; see [17]

for a survey on the topic and [6] for a remarkable conjecture on the critical exponent.

Subclasses of meandric systems or meanders have been also (at least asymptotically)
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12540 V. Féray and P. Thévenin

enumerated, for example, meandric systems with a large number of connected compo-

nents [7] or meanders with a given number of minimal arcs [4]. This raises connections

respectively with free probability theory (see also [14]) and with the work of Mirzakhani

about enumeration of geodesics on surfaces [13].

In this paper, we focus on another natural question: what is the number of

connected components cc(Mn) of a uniform random (unconditioned) meandric system

Mn of size n? This question has been raised recently, independently by Kargin [12] and

Goulden–Nica–Puder [8]. Both sets of authors prove (through different methods) a linear

lower bound for E[cc(Mn)] and conjecture that the quotient E[cc(Mn)]/n converges to a

constant. We show here a stronger version of this conjecture, proving the convergence

in probability of cc(Mn)/n towards a constant.

Theorem 1. Let Mn be a uniform random meandric system of size n. Then there exists

a constant κ ∈ (0, 1) such that cc(Mn)/n → κ in probability.

We note that Kargin [12] further conjectures that cc(Mn) is asymptotically

normal with a variance linear in n, but we leave this problem open.

1.2 Quenched local convergence to the infinite noodle

A key step in our proof of Theorem 1 is the identification of the local limit of the uniform

meandric system Mn of size n. This limit turns out to be the so-called infinite noodle

M∞, introduced by Curien et al. [3] (the term infinite noodle refers to a hypothetical

infinite component of the system in [3], while we use here this denomination for the

whole (multi)-graph on Z, independently of the existence of an infinite component). We

recall here its construction. We first take two infinite sequences (ai)i∈Z and (bi)i∈Z of

i.i.d. balanced random variables in {L, R}. Observe that there is a unique non-crossing

pair-partition of Z so that i is the left end of an arc if and only if ai = L. We draw this

non-crossing partition above the horizontal axis (“a” stands for “above”). Similarly, we

construct another non-crossing partition from the sequence (bi)i∈Z and draw it below

the horizontal axis (“b” stands for “below”). Taken together, the two matchings form

a (multi-)graph on Z; we are interested in its connected components. In particular, it

is proven in [3] that either there is exactly one infinite component a.s. or there is no

infinite component a.s. The question of deciding which of these two statements holds is

open.

We now come back to the connection with meandric systems. In Section 2, a

notion of local convergence for meandric systems is introduced. The local convergence
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Meanders and Noodles 12541

of a uniform meandric system Mn of size n to the infinite noodle is rather intuitive, and

proved in Proposition 5 below, based on some known results for conditioned random

walks [2, 9]. This convergence holds in a strong sense, namely in the quenched setting

(see Section 2 for a definition). Roughly speaking, it says that, for any k fixed, the

k-neighbourhood of a uniform point in a fixed typical meandric system Mn of size n

converges in distribution to the k-neighbourhood of 0 in M∞.

As said above, this quenched local convergence result is central in our proof

of Theorem 1. In fact, the constant κ has a natural expression in terms of the infinite

noodle:

κ = E

[
2

|C0(M∞)|
]

, (1)

where |C0(M∞)| is the size of the component containing 0 in M∞ (with the convention

2/∞ = 0). We note that it is not known whether this component is finite a.s.; this is

equivalent to the fact that the infinite noodle has no infinite component a.s., which, as

we said before, is still an open question.

Based on this probabilistic interpretation, in Section 4, we give two formulas

for κ, as infinite sums over meanders of all sizes and closely related objects (open

meanders). Truncating these sums to finite index sets yields rigourous lower and upper

bounds for κ. With the aid of a computer software, we can prove that κ is in the

interval [0.207, 0.292], improving on the bounds 0.17 and 0.5 given in [8] (computational

experiments suggest that the true value should be around 0.23; see again [8] or [12]).

1.3 Asymptotic geometry of the Hasse diagram of the lattice of non-crossing partitions

We now discuss a geometric consequence of our result, regarding non-crossing par-

titions. For brevity, we will not recall all definitions in the introduction. The reader

unfamiliar with non-crossing partitions may look at Appendix A or [8] for the relevant

definitions. We denote by NC(n) the poset of non-crossing partitions of size n, with the

refinement order. Considering the Hasse diagram (i.e., the graph of covering relations) of

this poset endows the set NC(n) with a graph structure; we will denote this graph by Hn.

It turns out that distances in this graph can be understood through meandric

systems. Indeed, in [8], the authors construct a bijection M from NC(n)2 onto the set of

meandric systems of size n such that, for all ρ, π ∈ NC(n),

dHn
(ρ, π) = n − cc

(
M(ρ, π)

))
.
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12542 V. Féray and P. Thévenin

We refer to Appendix A for a short informal description of the bijection. Hence,

Theorem 1 is equivalent to the following statement.

Proposition 2. For each n, let ρn and πn be independent uniformly distributed

elements in NC(n). As n tends to infinity, the quantity 1
ndHn

(ρn, πn) converges in

probability to 1 − κ.

In other words, in the rescaled graph (Hn, n−1dHn
), asymptotically almost all

pairs of points are at the same distance 1 − κ from each other. We note that this kind

of phenomena, where asymptotically all pairs of points are at the same distance of

each other, occurs in many other natural models of (random) discrete measured spaces:

for examples in hypercubes of growing dimensions or in models of random trees of

logarithmic height [10, Sections 12–14].

Remark 3. To understand further the asymptotic geometry of NC(n), a natural

question is to study the distance to a fixed particular element, for example the partition

0n in singletons (i.e., the minimal element of NC(n)). Letting ρn a uniform random

element in NC(n), one can prove that 1
ndHn

(ρn, 0n) converges to 1/2 in probability.

Hence, 0n is not a typical element in NC(n). The same holds replacing 0n by the one-

block partition 1n by symmetry (recalling that NC(n) is self-dual). Here, we see a

difference with the asymptotic geometry of random tree models with logarithmic height,

where the distance to the root is typically half the distance between two random points,

and of hypercubes, where the typical distance to the root is the same as between two

uniform random vertices.

1.4 Combinatorial definition of meandric systems

A matching of size n is a partition of the set {0, . . . , 2n − 1} into sets of size 2. It is

customary to represent a matching P as a set of arcs all on the same side of a horizontal

line, with an arc connecting i to j for each pair {i, j} in P. A matching is non-crossing if

the corresponding set of arcs does not contain any crossing, that is, if there does not

exist two pairs {i, k} and {j, �} in P, with i < j < k < �. It is well known that there are

Catn matchings of size n, where
(Catn:= 1

n+1
2nn

)
is the n-th Catalan number.

It is easy to see that a meandric system M of size n can be uniquely represented

as a pair of non-crossing matchings of the same size, drawn respectively above and

below the same horizontal line. Consequently, there are exactly Cat2
n meandric systems

of size n. Considering both non-crossing matchings together gives a (multi-)graph
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Meanders and Noodles 12543

structure on {0, . . . , 2n−1} and we denote by cc(M) the number of connected components

of this graph. It corresponds to the number of loops when we see the meandric system

as a collection of non-crossing loops intersecting the horizontal axis exactly at positions

0, . . . , 2n − 1.

1.5 Organization of the paper

We show in Section 2 the local convergence of a random uniform meandric system to the

infinite noodle (Proposition 5). We then use this result to prove Theorem 1 in Section 3.

Section 4 is devoted to the proof of two ways of writing the constant κ of Theorem 1,

whose computation provides upper and lower bounds for its value. Finally, Appendix A

provides definitions used in Proposition 2.

1.6 Notation

In the whole paper,
(d)→ will denote the convergence in distribution of a sequence of

random variables, and
P→ the convergence in probability.

2 Quenched Local Convergence of a Uniform Meandric System

The goal of this section is to prove the convergence of a uniform meandric system of size

n, in the so-called quenched Benjamini–Schramm sense, towards the infinite noodle

introduced by Curien et al. [3]. The proof of this result consists in encoding a meandric

system by conditioned random paths, for which results of local convergence have been

established [2, 9].

2.1 Local topology on meandric systems

Let us define a local topology on meandric systems with a marked point. To this end,

we introduce the notion of partial matchings and partial meandric systems.

Let A be an integer interval (finite or infinite). A partial matching on A is a par-

tition of A into pairs and singletons, where singletons are decorated with either L or R.

We represent partial matchings with a set of arcs, where pairs are treated as above and

a singleton {i} decorated with L (resp. R) is represented by a dashed unbounded open

arc, whose left end (resp. right end) is i. A partial matching is non-crossing if it does not

contain any of the following configurations (see Figure 3):

• two pairs {i, k} and {j, �}, with i < j < k < �;
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12544 V. Féray and P. Thévenin

Fig. 3. The three forbidden configurations in a non-crossing partial matching of the interval

�1, 5�.

Fig. 4. A partial matching on �−8, 7� and its restriction to �−2, 2�.

• a pair {i, k} and a singleton {j} with i < j < k (regardless of the decoration of

{j});
• two singletons {i} and {j} with i < j where i is decorated with L and j with R.

A partial meandric system is then a pair of two non-crossing partial matchings

of the same interval, drawn respectively above and below the same horizontal line.

Components in partial meandric systems are defined similarly as in meandric systems.

We will sometimes refer to meandric systems as complete meandric systems to

emphasize the opposition to partial ones.

If B is a subinterval of A and P a partial matching on A, there is a natural notion

of restriction P/B. Namely, we keep only pairs and singletons of P containing elements

in B. If a pair {i, i′} of P contains one element of B and one not in B, say i is in B but not i′,
then P/B contains {i} as a singleton, decorated either with L (if i′ > i) or with R (if i′ < i).

See Figure 4. Subsequently, we define the restriction M/B of a partial meandric system

M on A by taking the restrictions to B of the two partial matchings of M.
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Meanders and Noodles 12545

A marked (partial) meandric system is a pair (M, r), where M is a (partial)

meandric system of some integer interval A (possibly infinite) and r an element of A.

We denote by Mpart the set of marked partial meandric systems. Two marked partial

meandric systems (M1, r1) and (M2, r2) are equivalent if they differ by a shift: we write

(M1, r1) ≡ (M2, r2). Furthermore, we define a distance between two marked partial

meandric systems as follows:

d
(
(M1, r1), (M2, r2)

) = 1

1 + max{k : M1/[r1 − k; r1 + k] ≡ M2/[r2 − k; r2 + k]} ,

with the convention that d
(
(M1, r1), (M2, r2)

) = 0 if they are equivalent and 1 if M1/{r1} �=
M2/{r2}. With this distance, marked partial meandric systems, up to equivalence, form

a compact Polish space.

2.2 Benjamini–Schramm convergence

In graph theory, we say that a (deterministic) sequence of graphs (Gn)n≥1 converges in

the Benjamini–Schramm sense—also known as local weak convergence—if the sequence

of random rooted graphs (Gn, vn) converges for the local topology, where for each n, vn

is a uniform random vertex of Gn. This notion has first appeared in [1] and has been

largely used since then. When the sequence of graphs (Gn) is random, there are two

natural extensions.

• Either we consider the pair (Gn, vn), where vn is a uniform random vertex of

Gn, as a random rooted graph and we look at its limit in distribution. In this

case, we speak of annealed Benjamini–Schramm convergence.

• Or we consider the conditional law L((Gn, vn)|Gn), which is a random mea-

sure on the set of rooted graphs. If this random measure converges weakly

in distribution, we speak of quenched Benjamini–Schramm convergence.

We will borrow this terminology in the setting of matchings and define a notion of

quenched Benjamini–Schramm convergence. In the latter, we use the notation L for the

(conditional) law of a random variable.

Definition 4. A sequence of random partial meandric systems (Mn)n≥1 converges in

the quenched Benjamini–Schramm sense if, letting in be a uniform random element of
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12546 V. Féray and P. Thévenin

Mn (chosen independently of Mn), we have in distribution

L
(
(Mn, in) | Mn

) weakly→
n→∞ μ,

where μ is a random measure on the set of marked partial meandric systems. Equiva-

lently, it means that, for any bounded continuous function F : (Mpart, d) → R+, we have

E
[
F(Mn, in)|Mn

] (d)→
n→∞

∫
Mpart

F(M, r) dμ(M, r).

To avoid dealing with random measures, we use mostly the 2nd definition.

Remark moreover that, in the case of interest for us, the limiting measure is a.s. equal

to the law of the infinite noodle, so that for all F,

∫
Mpart

F(M, r) dμ(M, r) = E[F(M∞, 0)]

is a deterministic quantity.

2.3 Convergence of a uniform meandric system

We prove here the following result, showing the quenched Benjamini–Schramm conver-

gence of a uniform meandric system of size n towards the infinite noodle M∞.

Proposition 5. A uniform random meandric system Mn of size n converges in the

quenched Benjamini–Schramm sense to the law of the infinite noodle (M∞, 0), that is,

for any bounded continuous function F : (Mpart, d) → R+, one has

E
[
F(Mn, in)|Mn

] P→
n→∞ E[F(M∞, 0)].

Since the right-hand side is a constant, observe that it is equivalent to the

convergence in distribution towards the same quantity. The proof is based on an

straightforward encoding of meandric systems, as pairs of well-parenthesized words,

which we now describe.

Let P be a partial non-crossing matching on an integer interval A. We associate

with it a function w : A → {L, R} as follows: w(i) = L if and only if {i} is a singleton of P

decorated with L or if i is the smallest element in its pair. Such functions will be called

words in the sequel. The following lemma is elementary.
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Meanders and Noodles 12547

Lemma 6. This function w defines a bijection from partial non-crossing matchings

on A to {L, R}A, compatible with restriction. Moreover, for a finite interval A, a partial

non-crossing matching is complete (i.e., does not contain singletons) if and only if the

associated word is a well-parenthesized word (i.e., it has as many Ls as Rs and all its

prefixes have at least as many Ls as Rs).

Using this correspondence, partial meandric systems are mapped to pairs

(wa, wb) of words in {L, R}A. A pair (w, r), where w is a word in {L, R}A, and r a point in

A will be called a marked word. Marked words are considered equivalent if they differ

only by a simultaneous shift of the domain set A and of the marked point r. We can

define a natural distance between marked words (w1, r1) and (w2, r2) as follows:

D
(
(w1, r1), (w2, r2)

) = 1

1 + max{k : w1/[r1 − k; r1 + k] ≡ w2/[r2 − k; r2 + k]} ,

again with the convention that D
(
(w1, r1), (w2, r2)

) = 0 if they are equivalent and 1 if

w1(r1) �= w2(r2). Again, this defines a compact metric space, which we denote W∗.

We recall that the infinite noodle M∞ is the meandric system on Z correspond-

ing to random words wa∞, wb∞, where all images wa∞(i) (i ∈ Z) and wb∞(j) (j ∈ Z) are

uniform in {L, R} and independent of each other. On the other hand, a uniform meandric

system Mn of size n corresponds to independent uniform well-parenthesized words

wa
n, wb

n. Since the bijection between partial matchings/meandric systems and words

commutes with restriction, Proposition 5 is equivalent to the following proposition.

Proposition 7. A uniform random well-parenthesized word wn on {0, . . . , n − 1}
converges in the quenched Benjamini–Schramm sense to the law of a random word w∞,

whose images (w∞(i))i∈Z are uniform in {L, R} and independent of each other. In other

words, for any bounded continuous function F : W∗ → R+, we have

E
[
F(wn, in)|wn

] P→
n→∞ E[F(w∞, 0)], (2)

where in denotes a uniform element of {0, . . . , n − 1}.

Proof. As in the case of Proposition 5, it is enough to prove this convergence in

distribution. We first consider the case where F depends only on the restriction of w

to a fixed size neighbourhood of r, say F(w, r) = g(w(r − k), . . . , w(r + k)) (we call such a
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12548 V. Féray and P. Thévenin

function a local function). Then,

E
[
F(wn, in)|wn

] = 1

n

n−k−1∑
r=k

g(wn(r − k), . . . , wn(r + k)) + O(1/n),

where the error term comes from boundary effect. Taking wn uniformly at random

among all well-parenthesized word on {0, . . . , n − 1} amounts to consider a simple

random walk conditioned to come back at 0 at time n − 1 and be nonnegative between 0

and n − 1 (simply replace L by +1 and R by −1). In this context, it is known that

1

n

n−k−1∑
r=k

g(wn(r − k), . . . , wn(r + k))

converges in probability to

E[g(ζ1, . . . , ζ2k+1)],

where (ζ1, . . . , ζ2k+1) are i.i.d.random variables uniform in {−1; 1} (or in {L, R}): see

[2, Proposition 2.2] for an asymptotic normality result implying this convergence in

probability (Borga’s result is itself based on [9, Lemma 6.1]). Since

E[F(w∞, 0)] = E[g(ζ1, . . . , ζ2k+1)],

this proves (2) for any local function F.

The general case follows by standard arguments, approximating F by local

functions. Here are the details. We consider a general continuous function F : W∗ → R+.

Since W∗ is compact, F is uniformly continuous. For k ≥ 1, we set Fk(w, r) = F(w/[r −
k; r + k], r). We note that

D((w, r), (w/[r − k; r + k], r)) ≤ 1/(k + 1).

This bound is uniform on (w, r) and implies, using the uniform continuity of F, that Fk

tends uniformly to F. We then write: a.s., it holds that

∣∣∣E [
F(wn, in)|wn

] −E[F(w∞, 0)]
∣∣∣ ≤

∣∣∣E [
F(wn, in)|wn

] −E [
Fk(wn, in)|wn

] ∣∣∣
+

∣∣∣E [
Fk(wn, in)|wn

] −E[Fk(w∞, 0)]
∣∣∣ +

∣∣∣E[Fk(w∞, 0)] −E[F(w∞, 0)]
∣∣∣. (3)
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Meanders and Noodles 12549

Fix ε > 0. Using the uniform convergence of Fk to F, we can find k such that the 1st and

3rd terms are at most ε (a.s. for the 1st term, which is a random variable). But, for this

value of k, the 2nd term converges to 0 in probability, since we know that (2) holds for

the local function Fk. We conclude that the left-hand side of (3) tends to 0 in probability,

as wanted. �

3 Proof of Theorem 1

We prove here our main result, Theorem 1, using Proposition 5. Indeed, it turns out that

the number of connected components cc(M) of a meander M can be expressed as the

expectation of a functional of (M, i), where i is a random element of M. To this end, if M

is a meandric system of size n and i an integer in {0, . . . , 2n − 1}, we denote by |Ci(M)|
the size of the connected component Ci(M) of M containing i.

Lemma 8. Let M be a meandric system of size n and in a uniform random integer in

{0, . . . , 2n − 1}. Then cc(M)
n = E

[ 2
|Cin (M)|

]
.

Proof. Since in is uniformly distributed, we have

E
[ 2

|Cin (M)|
] = 2

2n

2n−1∑
i=0

1

|Ci(M)| .

Let C be a connected component of M. Each i in C contributes 1/|C| to the above sum,

so that all of them together contribute 1 to the sum. Since this holds for all connected

components of M, the value of the sum is simply the number of connected components

of M, proving the lemma. �

We consider the following function on the set Mpart of marked partial meandric

systems: IS(M, r) := 1
|Cr(M)| (IS stands for “inverse size”). Though not continuous on the

whole space Mpart, this function has a nice continuity set.

Lemma 9. The functional IS is continuous at any complete meandric system.

Proof. Consider a sequence (Mj, rj)j≥1 converging to a complete meandric system

(M, r). We want to prove that

lim
j→+∞

IS(Mj, rj) = IS(M, r). (4)
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12550 V. Féray and P. Thévenin

Assume first that the component Cr(M) is finite. Then, since M is complete, Cr(M) is a

loop. Let us denote by k the longest distance between a point of Cr(M) and r. For j large

enough, we have Mj/[rj − k; rj + k] = M/[r − k; r + k]. The latter contains entirely Cr(M).

We conclude that for j large enough, Crj
(Mj) is also a loop and has the same cardinality

as Cr(M). Hence, IS(Mj, rj) = IS(M, r), proving (4) in the finite component case.

Assume now that Cr(M) is infinite, so that IS(M, r) = 0. We fix an integer m > 0.

We can choose k such that the component of r in M ∩ [r − k; r + k] has at least m points.

For j large enough Mj/[rj − k; rj + k] = M/[r − k; r + k], so that the connected component

of rj in Mj contains at least m points, that is, IS(Mj, rj) ≤ 1/m. Since m was arbitrary, we

have limj→+∞ IS(Mj, rj) = 0, proving (4) in the infinite component case. �

We can now prove our main theorem.

Proof of Theorem 1. Using Proposition 5 along with [11, Theorem 4.11], we know

that the sequence of random measures L
(
(Mn, in)|Mn

)
converges in distribution for

the vague topology towards the law of the infinite noodle L
(
M∞, 0

)
. Thus, by [11,

Lemma 4.12], we have

E
[
IS(Mn, in)|Mn

] P→
n→∞ E[IS(M∞, 0)], (5)

provided that the set of discontinuity of IS is negligible under the limiting measure

L
(
M∞, 0

)
. By Lemma 9, it is enough to prove that M∞ is a.s. a complete meandric

system. Assume without loss of generality that wa∞(0) = L. Then, again with the

convention that L = 1 and R = −1, the random walk (wa∞(i))i≥1 is a.s. recurrent. Let

j := inf{i ≥ 1,
∑i

k=1 wa
k = −1}. Then j < ∞ a.s., and 0 and j are connected by an arc in the

upper half-plane. The same works in the lower half-plane and, therefore, there is a.s.

no singleton in M∞ and M∞ is a.s. complete. This proves Equation (5). By Lemma 8, the

left-hand side of Equation (5) is 1
2ncc(Mn), while κ is twice the right-hand side (see (1)).

Therefore, we have proved that 1
ncc(Mn) converges in probability to κ. �

4 Two Formulas for κ

It is possible to write the limiting constant κ of Theorem 1 in different ways. This allows

in particular to bound from above and from below the value of this constant.

4.1 Lower bounds

Given a realization of the infinite noodle M∞, we will define the shape S0 of the

component C0(M∞) containing 0. To obtain this shape, let E ⊂ Z be the set of points
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Meanders and Noodles 12551

Fig. 5. A meander with six faces. In this example, we have I(F1) = {0}, I(F2) = {1}, I(F3) = {0, 2},
I(F4) = {3}, I(F5) = {2, 4}, and I(F6) = {4}.

of C0(M∞), and let (wa∞, wb∞) be the words in {L, R}Z describing M∞. Assuming E is

finite, there exists a unique increasing bijection g : E → �0, |E| − 1�. The shape is the

meandric system of size |E|/2 obtained from the pair (wa, wb) on {L, R}|E| such that, for

all 0 ≤ i ≤ |E| − 1, wa(i) = wa∞(g−1(i)) and wb(i) = wb∞(g−1(i)). In particular, S0 is a

meandric system with only one connected component, that is, a meander. It is therefore

possible to write

κ =
∞∑

k=1

1

k

∑
C∈M(1),k

P
(
S0 = C

)
, (6)

where M(1),k is the set of meanders of size k (recall that they are defined on {0, . . . , 2k−1}).
The interest of this formula is that, the meander C being fixed, it is possible to compute

P(S0 = C). To this end, we introduce some terminology. Let C be a meander of size k.

We consider the union of C and the real axis; it divides the plane in some regions,

two unbounded ones and several bounded ones. We call such bounded regions faces

of the meander and denote their set by F(C). A face F in F(C) is incident to a number of

segments [i; i + 1]; we let I(F) be the set of indices i such that F is incident to [i; i + 1]. A

meander with six faces and the corresponding index sets are shown on Figure 5. With

this notation, we have the following.

Proposition 10. For any meander C of size k, we have

P(S0 = C) = 2−4k+1k
∑

�1,...,�2k−1≥0

⎛
⎝ ∏

F∈ F(C)

Cat�I(F)
2−2�I(F)

⎞
⎠ , (7)

where, for a set I of indices, we use the notation �I = ∑
i∈I �i.
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12552 V. Féray and P. Thévenin

Proof. Fix a meander C of size k. For 1 ≤ i ≤ 2k, we call Ai the event “0 is the i-th

smallest point in C0(M∞)”. We clearly have

P(S0 = C) =
2k∑
i=1

P
[
(S0 = C) ∧ Ai

]
.

By translation invariance of the model, the summands in the right-hand side are all

equal and

P(S0 = C) = 2kP
[
(S0 = C) ∧ A1

]
. (8)

We split the event {(S0 = C) ∧ A1}, depending on the set of points E of C0(M∞). Under

the event {(S0 = C) ∧ A1}, we have |E| = 2k and min(E) = 0, so that

E = {0, m1 + 1, m1 + m2 + 2, . . . , m1 + · · · + m2k−1 + 2k − 1},

for some integers m1, m2, . . . , m2k−1 ≥ 0; in other words, mi is the number of empty

places (i.e., integers that do not belong to S0) between the i-th and i+1st elements of E.

Necessarily, each mi must be even: indeed, since C0 is connected, any other component

of the meandric system must cross the segment between the i-th and the i+1st point of

E an even number of times. We therefore write mi = 2�i for integers �1, �2, . . . , �2k−1 ≥ 0.

Fixing some integers �1, �2, . . . , �2k−1 ≥ 0, we compute the probability of the event

(S0 = C) ∧ A1 ∧ (
E = {0, m1 + 1, m1 + m2 + 2, . . . , m1 + · · · + m2k−1 + 2k − 1}). (9)

We claim that the probability of this event is given by

2−4k
∏
F∈ C

Cat�I(F)
2−2�I(F) . (10)

To avoid complicated notation, we will prove this formula on an example.

We consider the meander drawn on Figure 5. We recall that the infinite noodle is

constructed from two independent random words wa∞ and wb∞ in the alphabet {L, R}
(the upper and lower words below; we shall also think of L and R as arrows pointing to

the left or right, when convenient). Then the event (9) holds if and only if the words wa∞
and wb∞ satisfy the following properties.

• All upper and lower arrows at points {0, m1 + 1, m1 + m2 + 2, . . . , m1 + · · · +
m2k−1 +2k −1} should be pointing in a specific direction so that the infinite
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noodle restricted to this set can have shape C. In our example, it means

that at 0, both arrows should point to the right, at m1 + 1, the upper arrow

points to the right, and the lower to the left and so on . . . This happens with

probability 2−4k (here k = 3).

• To have an arc in the lower matching between 0 and m1 + 1, we need to

have a well-parenthesized word in L and R at positions {1, . . . , m1} in the

lower word wb∞. This happens with probability Cat�1
2−2�1 , where m1 = 2�1.

Similarly, to have m1 + 1 and m1 + m2 + 2 connected in the upper matching,

we need to have a well-parenthesized word in L and R at positions {m1 +
2, . . . , m1 + m2 + 1}. This happens with probability Cat�2

2−2�2 . Conditioning

on having an arc between m1 + 1 and m1 + m2 + 2 in the upper matching, we

also want 0 and m1 + m2 + m3 + 3 to be connected. This happens if and only

if the restriction of wa∞ to

{1, . . . , m1, m1 + m2 + 3, . . . , m1 + m2 + m3 + 2}

is well parenthesized; this is an event of probability Cat�1+�3
2−2�1−2�3 .

Continuing this way, we see that we get one term Cat�I(F)
2−2�I(F) for each face

F of the matching.

This proves that the probability of the event (9) is indeed given by (10) and ends the

proof of the lemma. �

Using the lemma and Mathematica to evaluate the infinite sums, it is possible

to evaluate P(S0 = C) for simple meanders.

• For (which is the only meander of size 2), we have

P(S0 = C) = 1

8

∞∑
�=0

Cat2
�2−4� = 2

π
− 1

2
≈ 0.137.

• For (which is the only meander of size 4, up to vertical symmetry), we

have

P(S0 = C) = 1

64
·
⎛
⎝∑

�2≥0

Cat�2
2−2�2

⎞
⎠ ·

⎛
⎝ ∑

�1,�3≥0

Cat�1
Cat�3

Cat�1+�3
2−4�1−4�3

⎞
⎠

= 1

64
· 2 ·

(
8 − 64

3π

)
= 1

4
− 2

3π
≈ 0.038. (11)
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12554 V. Féray and P. Thévenin

Probabilities P(S0 = C) for larger meanders C do not seem to have such compact

expressions in Q(π).

Remark 11. The factorization occurring in Equation (11) is an instance of a general

fact. Indeed, each face F of a meander C contains either only even numbers or only odd

numbers. We write Fe(C) and Fo(C) for the sets of faces of C with even and odd numbers,

respectively. We have

∑
�1,...,�2k−1≥0

⎛
⎝ ∏

F∈ F(C)

Cat�I(F)
2−2�I(F)

⎞
⎠ =

⎛
⎝ ∑

�1,�3,...,�2k−1≥0

∏
F∈ Fo(C)

Cat�I(F)
2−2�I(F)

⎞
⎠

·
⎛
⎝ ∑

�2,�4,...,�2k−2≥0

∏
F∈ Fe(C)

Cat�I(F)
2−2�I(F)

⎞
⎠ .

This factorization yields sums over smaller index sets, which are easier to approximate

numerically than the original sum.

Plugging Equation (7) into Equation (6), and using the above remark, gives the

following formula for κ:

κ =
∞∑

k=1

2−4k+1
∑

C∈M(1),k

⎛
⎝ ∑

�1,�3,...,�2k−1≥0

∏
F∈ Fo(C)

Cat�I(F)
2−2�I(F)

⎞
⎠

·
⎛
⎝ ∑

�2,�4,...,�2k−2≥0

∏
F∈ Fe(C)

Cat�I(F)
2−2�I(F)

⎞
⎠ .

Replacing infinite sums by some truncations allows to find lower bounds on κ. We have

implemented this formula in Sage [16] (the code is available upon request) and found

that κ ≥ 0.207.

4.2 Upper bounds

In order to obtain upper bounds on κ, remark first that we can rewrite its expression

in terms of the following event “the point 0 is the leftmost point of the connected

component C0(M∞) in the infinite noodle”. We call this event L0.
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Lemma 12. We have

κ := E

[
2

|C0(M∞)|
]

= 2P
(
L0

)
.

Proof. From Equation (8), we know that, conditionally on the size |C0(M∞)| ∈ N ∪ {∞}
of the connected component of 0, the probability that 0 is the leftmost point of the

component is exactly 1/|C0(M∞)| (the argument is given for |C0(M∞)| < +∞ but is easily

adapted to the infinite case to show that infinite components, if they exist, do not have

leftmost points a.s. ). This implies the lemma. �

In order to see whether 0 is the leftmost point in its component or not, we

discover the component step by step. More precisely, for any k ≥ 0, define the event

Ek: 0 is not the leftmost point of its connected component restricted to (−∞, k�. In other

words, one of the paths starting from 0 visits (−∞, −1� before visiting �k + 1, +∞).

Observe that the event Ek only depends on the value of (wa∞, wb∞) on �0, k�. Clearly,

denoting L0 the complement of the event L0, we have L0 = ⋃
k≥0 Ek. Assuming L0, one

can thus define

K := inf{k ≥ 0, Ek}.

In particular, the event E0 holds if and only if either wa∞(0) or wb∞(0) is R (which

happens with probability 3/4). Suppose now that K ≥ 1. Then we define the partial

shape P0 of the component of 0 as follows: let E ⊂ Z+ be the connected component

of 0 in the restriction M∞/�0; K�. There exists a unique bijection g : E → �0, |E| − 1�.

The partial shape is the partial meandric system on �0, |E| − 1� obtained from the pair

(wa, wb) on {L, R}|E| such that, for all 0 ≤ i ≤ |E| − 1, we set wa(i) = wa∞(g−1(i))

and wb(i) = wb∞(g−1(i)). In particular, P0 is a partial meandric system with only

one connected component. Moreover, since the event EK holds, P0 has at least one

singleton either in the lower or upper matching (coming from an arc connecting �0; K�

to (−∞, −1�).

Lemma 13. Assume that L0 holds. Then, P0 satisfies the following conditions.

(i) Either K = 0 or the restriction of P0 to �0, |E| − 2� does not have 0 and a

singleton R in the same connected component.

(ii) Each of the words wa and wb of P0 has exactly one singleton, one of them

being L and the other R.
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12556 V. Féray and P. Thévenin

(iii) Necessarily, P0 has odd size.

Proof. All three items are straightforward if K = 0. Let us therefore assume in the

proof that K ≥ 1.

Item (i) follows by minimality of K. Indeed, if item (i) is not satisfied, then 0 is

connected to (−∞, −1� in the restriction M∞/�0; K − 1�, contradicting the minimality

of K.

Let us first prove (ii). Since P0 is connected and has at least one singleton, then

necessarily the total number of singletons is exactly 2. Except if both are at position 0,

it is clear that they have to be at different positions in P0, say s1 and s2. Furthermore,

necessarily one of them, say s1 (we do not assume s1 < s2), has to take the value R

by definition. Then, by item (i), |E| − 1 should be between s1 and 0 when we follow P0.

Therefore, it cannot be between s2 and 0 (s1 and s2 are the extremities of P0), so that s2

is already connected to 0 in P0 restricted to �0, |E| − 2�. Using item (i), we conclude that

the singleton in s2 has value L.

We still need to prove that s1 and s2 are not singletons on the same side of the

real line. Assume it is the case. Then P0 visits first s1 with the value R, then |E| − 1, then

0 and finally s2 with the value L on the same side of the real line. This is impossible

without crossing arches. Thus, (ii) holds.

Item (iii) follows directly, since matchings with exactly one singleton necessarily

have odd size. �

For any k ≥ 1, we denote by Pk the set of partial meanders on �0, 2k� satisfying

the three conditions of Lemma 13. The set Pk is a subset of what are usually called open

meanders of odd size. We can write the following proposition.

Proposition 14.

1 − κ

2
= P

(
L0

) = 3

4
+

∑
k≥1

∑
P∈Pk

P
(
P0 = P

)
. (12)

The term 3/4 corresponds to the probability that K = 0. We note that keeping

only this term gives 1 − κ
2 ≥ 3

4 , that is, κ ≤ 1
2 , which is exactly the upper bound provided

by Goulden et al. [8].

Similarly toP
(
S0 = C

)
above, we can obtain a summation formula forP

(
P0 = P

)
.

Let P be in Pk. As for meanders, we denote F(P) its set of faces, that is, bounded regions

delimited by the arcs and the real line. We also define two open faces as follows. Assume
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Meanders and Noodles 12557

Fig. 6. A possible partial shape on �0, 8� and the two added virtual open faces F0 and F∞.

(up to symmetry) that there exists s1, s2 ≤ 2k such that wa(s1) = L and wb(s2) = R.

We complete P with an arc in the upper half-plane from s1 to 2k + 1 and an arc in the

lower half-plane from −1 to s2. This creates two new faces that we denote respectively

F∞ and F0. See Figure 6.

Before stating our formula, we recall a classical result of enumerative combi-

natorics (see, e.g., [15, Ex.6.19, p. 219]). For any n ≥ 0, we denote by Nn the number of

simple walks S : �0, n� → Z such that S0 = 0 and S ≥ 0.

Lemma 15. For all n ≥ 1, we have

Nn =
(

n

�n/2�
)

.

This helps us get the following proposition.

Proposition 16. For any k ≥ 1 and any element P ∈ Pk, we have (keeping the notation
of Lemma 10)

P (P0 = P) = 2−4k−2
∑

�0,...,�2k−1≥0

⎛
⎝ ∏

F∈F
Cat�I(F)

2−2�(F)

⎞
⎠ ×

(
2�I(F0)

�I(F0)

)
2−2�I(F0) ×

(
2�I(F∞)

�I(F∞)

)
2−2�I(F∞) ,

where, by convenience, we have set �−1 = �2k = 0.

Proof. We prove this lemma the same way as Lemma 10. Fix k ≥ 1, and take P a

partial meander in Pk. We split the event P0 = P, depending on the set of points E.

As in the proof of Lemma 10, we can find integers m1, . . . , m2k−1 ≥ 0 such that

E = {0, m1 + 1, . . . , m2k−1 + 2k − 1}, all these integers being even. For all i ≤ 2k − 1,

set mi = 2�i.
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The integers �1, . . . , �2k−1 being fixed, we compute the probability of the event

(P0 = P) ∧ (
E = {0, m1 + 1, . . . , m2k−1 + 2k − 1}) . (13)

The factors corresponding to the bounded faces that are not F0 or F∞ are

obtained the same way as in Lemma 10. Let us focus on F0. Assume that the singleton R

in P0 is in the lower matching, in position s1 ∈ E. In order for (13) to hold, then s1 must

not be connected by wb to any point of �0, s1 − 1�. Conditionally, on other arcs being

present, this holds if and only if s1 is not connected by wb to any other point of F0. For

any i ≤ |F0|, let Si be the number of points x among the last i points of F0 satisfying

wb(x) = R. Then, s1 is not connected to any point of F0 by wb if and only if Si ≥ 0 for all

i ≤ |F0|. The term corresponding to F0 follows by Theorem 15. The term corresponding

to F∞ is obtained the same way. �

As an illustration, we make explicit the term corresponding to k = 1 in

Proposition 14. There are two partial matchings in P1, which are symmetric from each

other through the reflection over the x-axis. The corresponding terms in Proposition 14

are given by

where the 3rd equality was computed with Mathematica. Hence, restricting the sum in

the right-hand side of Proposition 14 to k = 1 gives a bound 1 − κ
2 ≥ 3

4 + 2 ∗ 0.025 ≈ 0.8,

that is, κ ≤ 0.4. As for the lower bound, we have implemented the formula in Sage and

obtained a rigourous upper bound κ ≤ 0.292.

A Hasse Diagram of NC(n)

We recall here the definition of the Hasse diagram of the set of non-crossing partitions

NC(n) of an integer n. We refer to [8] for more details and results.

A partition of an integer n is a set of blocks {V1, . . . , Vk}, where all blocks are

non-empty, disjoint, and their union is {1, . . . , n}. We write V ∈ π to say that a block
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Fig. 7. An example of the bijection of [8]. Here, n = 4, the partition π (top) is {{1, 2, 3}, {4}} and

the partition ρ (bottom) is {{1, 3}, {2}, {4, }}. The red dots represent the associated meander of

size 4.

V is part of a partition π . A partition is non-crossing if there is no i �= j ∈ {1, . . . , k}
and a < b < c < d such that a, c ∈ Vi and b, d ∈ Vj. We denote by NC(n) the set of

non-crossing partitions of n.

The set NC(n) is endowed with a partial order as follows: for any π , ρ ∈ NC(n),

we say that π ≤ ρ if, for any V ∈ π , there exists W ∈ ρ such that V ⊆ W. In other words,

ρ can be obtained from π by merging blocks. In particular, with this order, (NC(n), ≤)

admits a minimum element 0n (the partition of {1, . . . , n} into n blocks of size 1), and a

maximum element 1n (the partition into a unique block of size n).

For ρ, π ∈ NC(n), we say that ρ covers π if π < ρ and there is no θ such that

π < θ < ρ. The Hasse diagram of NC(n) is the (undirected) graph whose vertices are the

elements of NC(n), and where two vertices π , ρ are connected if π covers ρ or ρ covers π .

In [8], the authors construct a bijection from NC(n)2 to the set of meandric

systems of size n, as shown in Figure 7. Roughly speaking, they represent a partition

π by drawing the points {1, . . . , n} on a line, and then connecting all points in a given

block of π to the same external point above the axis, in a non-crossing way. They also do

the same for a partition ρ below the axis, which gives a graph 	(π , ρ). Finally, drawing

one point immediately before and one immediately after each of the integers {1, . . . , n},
they join these new 2n points by following the edges of the graph 	(π , ρ). This gives a

meandric system M(π , ρ) on 2n points.

This construction is a bijection (see [8, Section 3]), with the additional property

that

dHn
(π , ρ) = n − cc(M(π , ρ)).
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