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Abstract 

Purpose. The purpose of this study was to retrospectively evaluate the quantitative and 

qualitative intra-patient concordance of pulmonary nodule risk assessment by commercially 

available radiomics software between full-dose (DF) chest-CT and ultra-low-dose (ULD) 

chest CT. 

Materials and Methods. Between July 2013 and September 2015, 68 patients (52 men and16 

women; mean age, 65.5 ± 10.6 [SD] years; range: 35 – 87 years) with lung nodules ≥ 5 mm 

and < 30 mm who underwent the same day FD chest CT (helical acquisition; 120 kV; 

automated tube current modulation) and ULD chest CT (helical acquisition; 135 kV; 10 mA 

fixed) were retrospectively included. Each nodule on each acquisition was assessed by a 

commercial radiomics software providing a similarity malignancy index (mSI), classifying it 

as “benign-like” (mSI < 0.1); “malignant-like” (mSI > 0.9) or “undetermined” (0.1 ≤ mSI ≤ 

0.9). Intra-patient qualitative agreement was evaluated with weighted Cohen Kappa test and 

quantitative agreement with intraclass correlation coefficient (ICC). 

Results. Ninety-nine lung nodules with a mean size of 9.14 ± 4.3 (SD) mm (range: 5 - 25 

mm) in 68 patients (mean 1.46 nodule per patient; range: 1–5) were assessed; mean mSI was 

0.429 ± 0.331 (SD) (range: 0.001–1) with FD chest CT (22/99 [22%] “benign-like”, 67/99 

[68%] “undetermined” and 10/99 [10%] “malignant-like”) and mean mSI was 0.487 ± 0.344 

(SD) (range: 0.002–1) with ULD chest CT (20/99 [20%] “benign-like”, 59/99 [60%] 

“undetermined” and 20/99 [20%] “malignant-like”). Qualitative and quantitative agreement of 

FD chest CT with ULD chest CT were “good” with Kappa value of 0.60 (95% CI: 0.46–0.74) 

and ICC of 0.82 (95% CI: 0.73–0.87), respectively. 

Conclusion. A good agreement in malignancy similarity index can be obtained between ULD 

chest CT and FD chest CT using radiomics software. However, further studies must be done 

with more case material to confirm our results and elucidate the diagnostic capabilities of 

radiomics software using ULD chest CT for lung nodule characterization by comparison by 

FD chest CT. 

Keywords: Radiomics; Pulmonary nodules; Nodule risk assessment; Ultra-low dose chest CT; 

Tomography, X-ray computed. 



 

 

Abbreviations 

CI: Confidence interval; CT: Computed tomography; DLP: Dose length product; 

FD: Full-dose; HU: Housfield unit; ICC: Intraclass correlation coefficient; IQR: Interquartile 

range; mSI: Malignancy similarity index; NLST: National lung screening trial; SD: Standard 

deviation; ULD: Ultra-low dose  

1. Introduction 

Incidental lung nodules are a common entity in everyday practice, all the more considering 

the continuously growing number of chest computed tomography (CT) examinations 

performed [1]. In addition, lung cancer screening programs with low-dose chest-CT are 

increasingly proposed to patients, with an average detection rate of 20% (range: 3–51%) but a 

rate of benign nodule of 90% [2]. In both situations (incidental and screening) the challenge is 

to discriminate between benign nodules that do not require follow-up and malignant nodules 

that must be managed promptly to provide a survival benefit. 

Several scientific societies have published guidelines to manage pulmonary nodules. For 

incidental pulmonary nodules, The Fleischner Society has published revised guidelines in 

2017 with the aim of being less aggressive in the management of small nodules, thus 

increasing the threshold of size for nodules requiring follow-up and increasing the follow-up 

intervals [3]. For lung cancer screening, several national trials, including the National Lung 

Screening Trial (NLST, USA) [4], Nederlans-Leuvens Longkanker Screenings Onderzoek 

(Nelson, Netherlands) [5], International Early Lung Cancer Action Program (iELCAP, USA) 

[6], Pan-Canadian Early Detection of Lung Cancer Study (PanCan, Canada) [7] or scientific 

societies, including the American College of Radiology (Lung-RADS) [8], give guidelines to 

manage pulmonary nodules in lung cancer screening, and follow the same policy of being less 

aggressive on small nodules, to avoid false-positive results. Nonetheless, follow-up CT 

examinations are needed in all these guidelines, as visual discriminators (essentially size, 

location and shape) have limited specificity. 

Artificial intelligence and especially radiomics are promising techniques to overcome these 

challenges. Radiomics extracts a high number of imaging features to achieve better diagnostic 

performance [9,10]. Machine-learning algorithms are used to compare radiomics extracted 



 

 

features with a large database of known malignant or benign pulmonary nodules, mostly from 

screening trials [11]. 

 Given the increasing number of chest CT examinations, limitation of the radiation 

dose is of paramount importance. Low-dose chest CT and ultra-low dose (ULD) chest CT, 

which do not have a clear definition in the literature, are associated with a marked decrease in 

dose-length product (DLP) [12–14], play an important role in reducing the global burden of 

radiation. However, the diagnostic performance of radiomics algorithm with low dose CT, as 

compared to the reference standard, is unknown, and one might fear that the degraded image 

quality of low-dose CT has an impact on the performance of the radiomics algorithm [15].  

The purpose of this study was to retrospectively evaluate the intra-patient concordance of 

pulmonary nodule characterization by commercially available radiomics software between 

full-dose (FD) chest CT and ULD chest CT.  

2. Materials and methods 

2.1 Study population 

One hundred seventy patients from three prior institutional review board approved 

prospective monocentric studies were all reviewed for retrospective inclusion in this work.  

 The first study (July 2013 to May 2014) included 55 patients with an occupational 

exposure to asbestos for at least 15 years for screening of asbestos-related pleuropulmonary 

lesions[16]; the second study (April 2014 to September 2014) [17] and the third study (April 

2015 to September 2015) included 51 and 64 patients who were referred for a clinically 

indicated unenhanced chest CT examination.  

Each patient included underwent unenhanced FD and ULD chest CT examinations with two 

successive acquisitions. All 170 patients, with a total of 340 CT acquisitions (170 FD CT and 

170 ULD CT), were retrospectively reviewed by the same operator (P.-A. A., radiologist with 

5 years of experience in CT) to detect all lung nodules (solid, ground glass and mixed) with a 

maximum diameter > 5mm and < 30 mm. All patients with at least one lung nodule were 

retrospectively included in this study. The size, location, type and margins of all nodules were 

recorded by the same operator. Electronic health records were searched in December 2019 to 

look for a final diagnosis for the lung nodule. Nodules were categorized as malignant when a 

definitive histopathological confirmation (biopsy and/or surgery) was available. Nodules were 



 

 

categorized as benign if stable or decreasing/disappearing from a subsequent CT examination 

with an at least 2-year interval.  

This retrospective study was approved by the institutional review board (Hôpitaux 

Universitaires de Strasbourg, France) with permission to perform chart review and a waiver of 

written informed consent.  

2.2 CT acquisition 

For each patient, FD chest CT (helical acquisition; 120 kV; automated tube current 

modulation) and ULD chest CT (helical acquisition; 135 kV; 10 mA fixed) were obtained 

with a second-generation 320-row scanner (Aquilion® ONE Vision Edition, Canon Medical 

Systems). CT examinations were performed in inspiration with the arms raised above the 

head. CT examinations were acquired in prone or supine position depending of the clinical 

indication. FD and ULD CT were reconstructed in lung window (width = 1500 Housfield unit 

[HU]; center = - 700 HU) with a hard kernel and a slice thickness of 1 mm, using an iterative 

reconstruction algorithm (AIDR-3D; Canon Medical Systems). 

2.3 Dosimetry and noise 

Radiation-dose was retrieved from the CT scan dose report and expressed in dose-length-

product (DLP). The effective dose was calculated by multiplying the DLP by the chest-

specific conversion factor of 0.014 mSv / mGy.cm-1 [19].  

 Noise was defined as the standard deviation (SD) of the attenuation of air inside the 

tracheal lumen in the parenchymal reconstruction. It was obtained from the averaging of 3 

consecutive measurements made by the same operator (P.-A. A.) on each acquisition. 

2.4 Radiomics of lung nodules 

Nodule analysis was performed with a research version of the RevealAI-Lung software 

(Mindshare Medical). RevealAI-Lung is a software analytics platform based on machine 

learning, trained with a population of lung nodules from low-dose CT and their known 

outcomes from the NLST database, to aid risk assessment of lung nodules. When the 

radiologist indicates a lung nodule, the software calculates image features from the indicated 

location and from the full image. The software calculates many features (> 1 k each) from 

multiple three-dimensional views of the scan and then uses ensemble machine learning 



 

 

training techniques to relate these features to known clinical outcomes. In the end, it provides 

a relative malignancy risk as a “malignancy similarity index” (mSI), a variable ranging from 0 

to 1. In accordance with the manufacturer guidelines and the design of the software, 

thresholds can be used that relate to sensitivity and specificity of existing nodule guidelines. 

An mSI < 0.1 may be considered likely benign (risk similar or below Lung-RADS Score 2), 

and a mSI > 0.9 is considered a high probability of malignancy (close to 50%). Between these 

two values, the manufacturer does not provide recommendation.  

Results were therefore classified in three categories depending of the mSI value: “benign-

like” – B (mSI < 0.1), “undetermined” – U (0.1–0.9), and “malignant like” – M (mSI > 0.9). 

2.5 Data collection 

Several data data were collected in a dedicated spreadsheet. They include patient sex, age and 

height (cm); dose length product (DLP) (mGy.cm); standard deviation (SD) of the air inside 

the trachea; number of pulmonary nodules; nodule size; nodule location; nodule type (solid, 

part-solid, ground glass); margins (regular, spiculated); nodule calcifications (presence or 

absence); follow-up CT data; results of histopathological analysis and mSI.  

2.6 Statistical analysis 

Statistical analysis was performed using R statistical software (v 3.4.5) (R Core Team 2019). 

Descriptive statistics were used to present results. The qualitative concordance (i.e. 

classification in B, U or M categories) between FD-CT and ULD-CT mSI results was 

evaluated using Cohen weighted kappa test [20]. The quantitative concordance (i.e. the 

number itself) between FD and ULD CT. mSI was evaluated using intraclass correlation 

coefficient (ICC). A graphical representation of the quantitative concordance was performed 

using Bland and Altman method [21]. Correlation between noise and mSI difference was 

evaluated using Spearman correlation test.  Differences in radiation dose and noise between 

FD and ULD CT were evaluated using Student t test. A P < 0.05 was considered to indicate 

statistically significant differences. 



 

 

3. Results 

3.1 Study population 

Out of the 170 patients screened, 68 had at least one lung nodule responding to the inclusion 

criteria and were therefore retrospectively included. The final study population included 52 

men and 16 women (mean age, 65.5 ± 10.6 [SD] years; age range: 35–87 years) with a mean 

number of 1.46 ± 1.12 (SD) nodule per patient (range: 1–7). A flowchart of the study is 

provided in Figure 1.  

3.2 Pulmonary nodules 

A total of 99 lung nodules > 5 mm and < 30 mm were detected in these 68 patients. All 

nodules were visible both on FD and ULD CT (Figure 2). Mean nodule size was 9.14 ± 4.3 

mm (SD) (range: 5–25 mm), 16 were located in the right upper lobe, 5 in the middle lobe, 30 

in the right lower lobe, 27 in the left upper lobe, and 21 in the left lower lobe. On CT, 90 

nodules were solid nodules, 6 were part-solid nodules and 3 were ground glass nodules; 65 

nodules had regular margins and 34 had irregular/spiculated margins. Eleven nodules were 11 

partly calcified. (Table 1). 

CT follow-up was available for 48/68 patients (70.6%), with a median follow-up for the entire 

cohort of 295 days (range: 0–1999 days; IQR: 0–992). Significant growth was noted in 8 

nodules and histopathological confirmation was obtained by percutaneous biopsy, endoscopic 

biopsy or surgical lobectomy; 7 nodules were malignant (5 adenocarcinomas, 1 small-cell 

carcinoma and 1 carcinoid tumor) and 1 was a histopathologically proven, benign fibrous 

nodule. Median time between initial CT examination in our cohort and final histopathological 

confirmation was 196 days (range: 22–704 days; IQR: 72–404). Thirty-two nodules showed 

decrease in size or no changes at 2-years follow-up and were considered benign. 

Consequently, 33/99 nodules (33%) were considered benign. Fifty-nine nodules (59/99; 

59.6%) had no or less than 2-years follow up and were considered undetermined.  

3.3 Dosimetry and noise 

With FD chest CT, mean DLP and effective dose were 238 ± 36 (SD) mGy.cm2 (range: 84–

793 mGy.cm2) and 3.3 ± 1.9 (SD) mSv (range: 1.2–11.1 mSv) respectively. With ULD chest 

CT mean DLP and effective dose were 16 ± 1.6 (SD) mGy.cm2 (range: 12.5–20 mGy.cm2) 

and 0.23 ± 0.02 (SD) mSv (range: 0.18–0.28 mSv), respectively. Mean noise was 38 ± 10 



 

 

(SD) (range: 22–62) with FD chest CT and 51 ± 13 (SD) (range: 18–74) with ULD chest CT. 

Significant differences between both groups were found for DLP, effective dose and noise (P 

< 0.001). 

3.4 Radiomics of lung nodules 

With FD chest CT, mean mSI was 0.429 ± 0.331 (SD) (range: 0.001 –1); 23/99 nodules 

(23.2%) were classified as “B”, 12/99 (12.1%) as “M” and 64/99 (64.7%) as “U”. With ULD 

chest CT, mean mSI was 0.487 ± 0.344 (SD) (range: 0.002–1); 20/99 nodules (20.2%) were 

classified as “B”, 22/99 (22.2%) as “M” and 57/99 (57.6%) as “U”.  

Quantitative reproducibility of the mSI metric between FD and ULD chest CT was good, with 

an ICC of 0.82 (95% CI: 0.73–0.87). Mean bias at Bland-Altman analysis was 0.058 [95% CI: 

0.018–0.097]. Bland and Altman plot is reported in Figure 3. 

 With ULD CT compared to FD CT, only one nodule classified as “B” shifted to “M”. 

Twenty-three other nodules have changed by one rank (“B”-“U” or “U”-“M”) (Table 2). 

Qualitative reproducibility (i.e. classification of nodules in B, U and M categories based on 

the mSI) between FD and ULD chest CT was good, with a weighted Cohen’s Kappa value of 

0.60 (95% CI: 0.46–0.74).  

No correlation between the noise difference and the mSI difference between FD and ULD 

chest CT was found (r = -0.17; P = 0.03).  

In the histopathologically-proven malignant subgroup of 7/99 (7.1%) nodules, mean mSI was 

0.621 ± 0.226 (SD) (range: 0.037–0.997) with FD chest CT and 0.598 ± 0.288 (SD) (0.056–

0.999) with ULD chest CT. 6/7 (86%) nodules were classified “U” and 1/7 (14%) was 

classified “M” (this latter nodule being an adenocarcinoma). There was no group change 

between FD and ULD chest CT for all these 7 nodules.  

In the benign subgroup of 32/99 (32.3%) lung nodules, mean mSI was 0.482 ± 0.333 (SD) 

(range: 0.004–0.993) with FD CT and 0.536 ± 0.366 (SD) (range: 0.039–1) with ULD-CT. 

With FD CT, 5/32 (15.6%) nodules were classified “B”, 23/32 (71.9%) nodules were 

classified “U”, and 4/32 (12.5%) nodules were classified “M”. With ULD CT, 7/32 (21.9%) 

nodules were classified “B”, 14/32 (43.8%) nodules were classified “U”, and 11/32 (34.3%) 

nodules were classified “M”. An example of mSI provided by the radiomics software on lung 

nodules is provided Figure 4. 



 

 

4. Discussion  

 In the present retrospective study including 99 pulmonary nodules in 68 patients, we 

evaluated the intra-patient concordance of a radiomics-based software analysis for nodule 

characterization between FD and ULD chest-CT. This concordance was qualitatively and 

quantitatively good (Kappa =0.60 and ICC = 0.82). These findings suggest that the impact of 

image quality for quantitative radiomics-based analysis is most likely minor and does have a 

limited effect on the final analysis, at least in our cohort. In addition, we did not find any 

correlation between noise difference and mSI difference between FD and ULD chest CT, 

meaning that the degraded signal-to-noise ratio does not correlate with the slight absolute mSI 

difference we observed. 

 Artificial intelligence, deep learning and radiomics are relatively recent terms in 

modern radiology. Messerli et al. have already evaluated the applicability of dedicated 

software on degraded chest-CT acquisition, with computer-aided-detection of solid 

pulmonary nodule on ULD chest-CT, with similar sensitivity of 68% versus 70% with FD 

chest CT [22]. Ohno et al. demonstrated that iterative reconstruction algorithm significantly 

improves nodule detection rate with computer aided detection on ULD chest-CT, meaning 

that relatively “basic” software applications can accommodate a degraded image quality[23]. 

 However, radiomics software are working on a more complex and deep scale [24]. 

They generate complex high-dimensional data from CT or other imaging techniques, and 

extract quantitative descriptors from images which can be divided in first-order statistical 

outputs: distribution of values of individual voxels; second-order statistical outputs: textures 

feature for intra-tumoral and inter-tumoral heterogeneity; and higher-orders statistical method. 

Then, all these data are compared with machine-learning on large database of known 

histological tumors, and promise to increase the accuracy of diagnosis, prognosis and 

prediction of tumor response [24]. The promise is to have a far better reproducibility than 

radiologists, whose visual discriminators are limited and subjective [11]. While radiomics of 

pulmonary nodules is facilitated by the low attenuation of the surrounding lung, it has also 

been developed and evaluated in non-chest imaging, as for prostate cancer; hepatocellular 

carcinoma; glioblastoma and more [24]. 

Despite all the aforementioned advantages and promises, radiomics has also some limitations 

on the reproducibility of results. Most of radiomics software have been trained on the same 

dataset, specifically LIDC-IDRI [25], NLST [4] and from the National Cancer Institute 



 

 

released in 2017, which limits the generalization of the results to other populations. Moreover, 

some studies have based their test-retest analysis on the same patients’ images with the same 

CT acquisition parameters, which yields excellent results [26] but does not reflect current 

clinical practice. Berenguer et al. conducted an in vitro study on phantoms to evaluate the 

reproducibility of radiomics features by modifying data acquisition protocls like kV, mAs, 

pitch, kernel acquisition; and using different CT manufacturers; with a poor reproducibility 

except for the pitch variation [27]. These researchers concluded that out of 177 radiomics 

features tested, only 71 were reproducible [27]. Another study on radiomics features 

variability revealed that the quality and reproducibility of radiomics features depended on 

image acquisitions/reconstruction, and that standards protocols had to be established [28]. A 

third study studied the effect of simulated dose reduction on chest CT of patients with known 

lung cancer [29]. This study showed a significant deviation in all radiomics features [29]. This 

may suggest that the use of radiomics software with different acquisition protocols on 

different CT equipment may lead to inconsistent results. 

Our study has some limitations due to the retrospective design, evaluated only on one CT 

model and manufacturer, and with only one type of radomics software. The fact that the 

software we evaluated was trained on the NLST database, meaning only low dose chest CT 

(below 1.5mSv, so still about 6 times the dose of ULD-CT in our cohort) were used, might 

have favored the similarity of results between FD and ULD chest CT examinations in our 

study. Further studies with more patients and CT acquisitions from different centers and 

manufacturers are needed. Another limitation related to relatively low number of nodules we 

analyzed. While the total number of lung nodules is enough to confirm a good concordance in 

radiomics analysis between FD CT and ULD CT examinations, the low number of confirmed 

lung nodules (27 benign and 7 malignant) and the retrospective nature of the study makes it 

impossible to draw any significant conclusions on the actual diagnostic performances of the 

radiomics software. 

 In conclusion, a good agreement in malignancy similarity index can be obtained 

between ULD chest CT and FD chest CT using radiomics software. However, further studies 

must be done with more case material to confirm our results and elucidate the diagnostic 

capabilities of radiomics software using ULD chest CT for lung nodule characterization by 

comparison by FD chest CT.  
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FIGURE LEGENDS 

 

Figure 1. Study flowchart. FD indicates full dose; ULD indicates ultra-low dose. 

Figure 2. Visual discriminators between full dose and ultra-low dose CT. A, B, 58-year-old 

man who underwent the same day unenhanced full-dose chest CT (A) and unenhanced ultra-

low-dose chest CT (B). The part-solid lung nodule (arrows) shows same characteristics on both 

CT acquisitions. C, D, 63-year-old woman with a smoking history who underwent the same day 

full-dose chest CT (C) and ultra-low-dose chest CT (D). Both CT acquisitions shows partially 

calcified lesion (arrows) of the right lower lobe. E, F, A 47-year-old man with history of cancer 

who underwent the same day full-dose chest CT (E) and ultra-low-dose chest-CT (F). A 

spiculated nodule with irregular margins is visible in the right lower lobe (arrows) displaying 

same characteristics on both CT acquisitions.  

Figure 3. Bland and Altman plot. Blue points: values; continuous blue line: bias; spotted blue 

line: 95% bias confidence interval; spotted red line: 95% confidence interval. Note that the bias 

is close to zero indicating good quantitative concordance. 

Figure 4. Examples of mSI provided by the radiomics software. A, B, C, 78-year-old man 

with smoking history who underwent the same day unenhanced full-dose chest CT and 

unenhanced ultra-low-dose chest CT. Full-dose chest CT image in the axial plane shows a 

spiculated lesion of the left pulmonary apex (arrow) (mSI = 0.997) (A), and ultra-low dose CT 

image show the same nodule (arrow) (mSI = 0.999) (B). On PET/CT examination, the nodule 

shows intense uptake of 18F-FDG (arrow) (C). Results of histopathological analysis were 

consistent with adenocarcinoma. D, E, F, 48-year-old woman with a single lung nodule who 

underwent the same day unenhanced full-dose chest CT and unenhanced ultra-low dose chest 

CT. Full-dose chest CT image in the axial plane shows 5-mm nodule (arrow) with regular 

margins of the right lower lobe (mSI = 0.022) (D), and ultra-low-dose CT image (mSI = 0.052) 

shows the same nodule (arrow) with similar features (E). Follow-up CT image at 1999 days 

shows a stable lesion (arrow) in size with a new calcification (F). G, H, I, 51-year-old man who 

underwent the same day unenhanced full-dose chest CT and unenhanced ultra-low dose chest 

CT. Full-dose chest CT image in the axial plane shows irregular lung lesion (arrow) in the right 

lower lobe (mSI = 0.923) (G), and ultra-low-dose CT image shows the same nodule (arrow) with 

similar features (mSI = 0.989) (H). Follow-up at 729 days shows a decrease in size of the lesion 

(arrow) consistent with benign lesion (I). 

Table 1. Nodules characteristics of the cohort according to histopathological proof and follow-

up. 

Table 2. Correlation table of malignancy risk between full dose and ultra-low dose CT. 

 

 

 











 

 Malignant Undetermined Benign Total 

Mean size (mm) 

13.7 ± 6.7 

[6–25] 

7 ± 3.8 

[5–25] 

10 ± 4 

[5–20] 

9.14 ± 4.3  

[5–25] 

Regular 3 (3/7; 42.8%) 41 (41/59; 69.5%) 21 (21/33; 63.6%) 
65 (65/99; 

65.7%) 

Irregular 4 (4/7; 57.2%) 18 (18/59; 30.5%) 12 (12/33; 36.4%) 
34 (34/99; 

34.3%) 

Calcifications 0 (0/7; 0%) 7 (7/59; 11.2%) 4 (4/33; 12.1%) 
11 (11/99; 

11.1%) 

RUL 2 (2/7; 28.5%) 10 (10/59; 16.9%) 4 (4/33; 12.1%) 
16 (16/99; 

16.1%) 

ML 1 (1/7; 14.3%) 2 (2/59; 3.4%) 2 (2/33; 6.1%) 5 (5/99; 5.1%) 

RLL 1 (1/7; 14.3%) 15 (15/59; 25.4%) 14 (14/33; 42.4%) 
30 (30/99; 

30.3%) 

LUL 2 (2/7; 28.5%) 14 (14/59; 23.7%) 11 (11/33; 33.3%) 
27 (27/99; 

27.3%) 

LLL 1 (1/7; 14.3%) 18 (18/59; 30.6%) 2 (2/33; 6.1%) 
21 (21/99; 

21.2%) 

Total 7 (7/99; 7.1%) 
59 (59/99; 

59.6%) 

33 (33/99; 

33.3%) 
99 

 
RUL: Right upper lobe; ML: Middle lobe; RLL: Right lower lobe; LUL: Left upper lobe; LLL: Left lower lobe. 

Size expressed in millimeters. Quantitative variables are expressed as means ± standard deviations; numbers in 

brackets are ranges. Qualitative variables are expressed as raw numbers; numbers in parentheses are proportions 

followed by percentages 

 

 

 



 

 
ULD CT 

FD CT 

 
B U M 

B 17 (1) 5 (0.5) 1 (0) 

U 3 (0.5) 49 (1) 12 (0.5) 

M 0 (0) 3 (0.5) 9 (1) 

 

ULD CT: ultra-low-dose CT; FD CT: full-dose CT; B: benign-like; U: 

undetermined; M: malignant-like. Qualitative variables are expressed as raw 

numbers; Numbers in parentheses are weights used for weighted kappa. 




