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Abstract 

 

Modern radiotherapy treatment planning is a complex and time-consuming process that 

requires the skills of experienced users to obtain quality plans. Since the early 2000s, the automation 

of this planning process has become an important research topic in radiotherapy. Today, the first 

commercial automated treatment planning solutions are available and implemented in a growing 

number of clinical radiotherapy departments. It should be noted that these various commercial 

solutions are based on very different methods, implying a daily practice that varies from one center 

to another. It is likely that this change in planning practices is still in its infancy. Indeed, the rise of 

artificial intelligence methods, based in particular on deep learning, has recently revived research 

interest in this subject. The numerous articles currently being published announce a lasting and 

profound transformation of radiotherapy planning practices in the years to come. From this 

perspective, an evolution of initial training for clinical teams and the drafting of new quality 

assurance recommendations is desirable. 

Keywords: automated radiotherapy treatment planning - dose mimicking - dose prediction 

 

Résumé 

La planification moderne des traitements par irradiation est un processus complexe et long 

qui requiert les compétences d'utilisateurs expérimentés pour obtenir des plans de qualité. Depuis le 

début des années 2000, l'automatisation de ce processus de planification est devenue un sujet de 

recherche important en radiothérapie. Aujourd'hui, les premières solutions commerciales de 

planification automatisée des traitements sont disponibles et mises en œuvre dans un nombre 

croissant de services cliniques de radiothérapie. Il faut noter que ces différentes solutions 

commerciales sont basées sur des méthodes très différentes, impliquant une pratique quotidienne 

variable d'un centre à l'autre. Il est probable que cette évolution des pratiques de planification n'en 

soit qu'à ses débuts. En effet, l'essor des méthodes d'intelligence artificielle, basées notamment sur 

le deep learning, a récemment relancé l'intérêt des chercheurs pour ce sujet. Les nombreux articles 

actuellement publiés annoncent une transformation durable et profonde des pratiques de 

planification des plans de traitement par irradiation dans les années à venir. Dans cette perspective, 

une évolution de la formation initiale des équipes cliniques et la rédaction de nouvelles 

recommandations d'assurance qualité sont souhaitables. 

Mots-clés : planification de traitement automatisée – prédiction de dose – imitation de dose 



Automation in radiotherapy treatment planning: examples of use in clinical practice and future 

trends for a complete automated workflow 

P.Meyer 

1. Introduction 

 

Automated radiotherapy treatment planning (ATP) is slowly making its way into early clinical 

services. Several commercial systems based on different paradigms are now available. Current ATP 

techniques are often classified into three categories [1–3]: (a) automated rule implementation and 

reasoning (ARIR), multicriteria optimization (MCO) and knowledge-based planning (KBP). There are 

two approaches to MCO: a posteriori and a priori (b). Furthermore, KBP can be divided into two 

additional categories: (c) statistical modeling of case/atlas-based and (d) machine learning methods 

[4]. In the first part of this article, we present one example of the clinical implementation of 

commercial ATP solutions for each category (a, b, c and d) in four different French radiotherapy 

departments. 

In parallel with this diffusion to the first clinical services, ATP remains an active area of research, 

notably because of the emergence of artificial intelligence (AI) [5]. In the second part of this article, 

we review current research, focusing only on recent ATP studies, including the final deliverable plan 

calculation step. 

 

2. Examples of clinical implementations of commercial ATP solutions 

 

The following feedback illustrates the clinical implementation of commercial ATP solutions in four 

different French radiotherapy centers, of which a summary is given in Table 1. Note that the 

objective of this part is to present practical on-site implementations: the theoretical details of the 

ATP algorithms can be found in the literature reviews cited in the introduction. 

 

2.1. Feedback on the clinical implementation of an ARIR ATP solution 

 

AutoPlanning (AP) in the Pinnacle (Philips Radiation Oncology Systems, Fitchburg, WI) treatment 

planning system (TPS) is an example of an available solution to the ARIR system. The user enters the 

prescription for target volumes and the constraints for organs at risk (OARs) into the optimizer. The 

user also defines the number of iterations per optimization. Then, the system automatically 

generates secondary structures allowing, among other things, the management of overlaps between 

the planning target volume (PTV) and OARs, the confirmation of the dose and the sparing of OARs. A 

cycle of five iterations corresponding to a successive creation of control structures finally leads to a 

solution. 

In the private Amethyst radiotherapy center (Creil, France, 700 patients/y with two radiation units), 

Pinnacle was commissioned in 2015 with the AP module. The use of AP started while treatments 

using volumetric modulated arc therapy (VMAT) techniques for locations such as pelvic or head and 

neck tumors were increasing. Later, VMAT localizations were deployed for more complex treatments 



(hippocampal sparing, breast and finally intra- and extracranial stereotactic treatments), making the 

use of automatic tools such as AP and scripting essential for the clinic’s physicists. 

Initially, AP was introduced in this hospital for the treatment of prostate cancer. The contributions of 

a consultant physicist and a senior physician helped to implement this system and to find an efficient 

and reproducible set of goals and constraints. The validation of treatment plans was performed for 

the first 50 cases using gamma index measurement (98.9% ± 0.7%, local, 3%-3 mm) with a Delta4 

Phantom (Scandidos, Sweden) and point dose measurements with a 0.125 cm3 ionization chamber 

(PTW, Germany) in a Plexiglas phantom (0.1% ± 0.8%). 

In current practice at the radiotherapy center, ATP is performed as a combination of both AP and 

homemade scripts. The center employs the following workflow: 

- Physicians: Perform auto-contouring based on atlas methods for main OARs, a version for 

corrections and validation is needed, 

- Physicians: Run scripts to generate a list of empty structures (remaining OARs and target 

volumes) according to medical protocols (name, limits, extensions and colors) and segment 

manually, 

- Physicists: Run scripts that load isocenters/beams/prescriptions and dose constraints in the 

AP module to reach protocol objectives for both the PTV and OARs. The calculation is 

performed during this last step. 

 

Although the calculation time might sometimes be relatively long (up to one hour, depending on the 

complexity and size of the irradiated volumes), the system remains efficient in providing reliable 

results. Today, more than 80% of patients are treated with VMAT techniques in this radiotherapy 

center. Among 95% of these treatment plans (especially prostate, rectal, cervical, head and neck and 

lung cancers) are obtained only with AP, without additional manual optimization. The team 

experience allowed to continuously improve the constraints in the templates and generate the final 

treatment plans more quickly. This methodology not only allowed to progressively implement new 

techniques with an accelerated learning curve but also to reduce interoperator variability. 

 

2.2. Feedback on a clinical implementation of an atlas-based KBP solution 

 

Rapidplan (Varian Medical Systems, Palo Alto, CA) is an atlas-based KBP solution that provides 

estimated dose-volume histograms (DVH) on the basis of patient contours, beam setup, dose 

prescription and an associated estimation model. The estimated DVHs are used to generate 

automatic objectives for inverse planning optimization. The software uses principal component 

analysis to extract the correlations between dosimetric and geometric features in a training data set 

for each OAR of the model. This results in an OAR regression model and the ability to predict DVH for 

each new patient. The estimation model can be built on a database of treatment plans from the 

center or provided by the manufacturer. 

Institut du Cancer – Avignon Provence (Avignon, France, 2800 patients/y with six radiation units) is a 

public cancer center in which Rapidplan was implemented in 2015. Dedicated models were built to 

reflect the current practice in the center. Two models were developed: one for VMAT 

prostate/seminal vesicle treatments with one single prescription (80 Gy / 54 Gy / 40 fractions) and 

three OARs and a broad scope head and neck VMAT model, with clinical sites from the larynx to 

nasopharynx, corresponding to different dose prescriptions and 16 OARs. 



Training datasets were composed of 100-150 carefully selected plans with well-defined trade-offs 

and consistent OAR contours. Model validation is a two-step process: first, the DVH estimation part is 

evaluated, and outliers are processed (i.e., plans different from the rest of the database, which 

biased the regression model). Second, the optimization criteria extracted from the estimation are 

fine-tuned to match the user expectations (priorities, supplementary hard constraints). 

Models were evaluated on 20 new patients not included in the database. Homogeneity, efficiency 

and quality were improved with Rapidplan compared to manual optimization. Eighty-three percent 

of the plans met the clinical criteria in a single optimization. The only failures came from plans whose 

geometry was different from those in the database (e.g., larger OAR or PTV-OAR overlap). This 

suggested increasing the variability of the plans in the database to help the model provide an optimal 

solution for various geometries. The DVH estimation added only a few minutes compared to a 

standard plan generation. 

The greatest strength of Rapidplan is DVH estimation. Its ability to generate the DVH of an optimal 

plan can be used to assess the quality of plans in a clinical trial [6]. The greatest weakness is the 

tuning of the objectives. Finding the desired tradeoffs for the final plans can be time consuming. One 

limitation is that the model can only provide the best of what it has learned. Maintenance is needed 

to reflect improvements in treatment techniques and for version upgrades. However, the models 

show good versatility with the ability to be easily tweaked to work with different prescriptions or 

different treatment machines (single stack multileaf collimator of a TrueBeam versus double stack of 

a Halcyon). An evaluation is currently being performed in the center to use Rapidplan combined with 

a posteriori MCO. The development of models for other treatment sites, such as the cervix, breast 

and lung, is also planned. 

 

2.3. Feedback on a clinical implementation of a machine learning (ML)-based KBP solution 

 

RayStation v9B autoplanning (Raysearch Laboratories, Sweden) is a ML-based KBP solution. It uses a 

random forest model trained with a database of treatment plans (CT, dose map and ROIs) coming 

from Raysearch Laboratories (RS model) or from the clinic (local model). For a new patient, the ML 

process assigns a dose value for each voxel. Then, the new dose map is sent to the “mimicker”, which 

transforms the ML dose distribution to an objective function for the optimization module to make it 

deliverable. A given model (RS or local) can be locally adapted for two close locations or for different 

prescriptions (for example, a 78 Gy prostate and a 66 Gy prostate bed prescription). 

In the Oncorad Garonne Group private radiotherapy center (Toulouse, France, 2500 patients/y with 

seven radiation units). VMAT planning is performed with RayStation v9B. The group had its first ML 

model (RS) in July 2020. Since then, it has optimized its own ML models (local model) for pelvic 

treatment plans obtained from 50 plans with lymph nodes and 100 plans without nodes to treat the 

male pelvis at 78 Gy for the prostate (with seminal vesicles and lymphatics nodes) irradiation and 66 

Gy for the prostate bed (with lymphatics nodes). 

The ML plans were evaluated qualitatively (visualization) and quantitatively with clinical goals, a 

homogeneity index, a conformity index and a dose gradient index [7]. Eighty percent of the 

automatic plans were acceptable without new optimizations and were generated in approximately 

16 minutes. 

ML integration in the clinical routine is performed with Python scripts to standardize the planning 

and to decrease planning time. To prevent errors due to scripting, some key control points were kept 



during the automatic process: validation was required after each main step. Physicists and a PhD 

student were trained by Raysearch for TPS python scripting. For ML, one physicist and the PhD 

student were directly involved in developing and adapting ML local models. Dosimetrists were 

trained by physicists for the use of scripts. 

The main difficulty in obtaining an ML local model lies in the patient's database construction, which is 

time-consuming (it requires 50 to 100 homogenized plans). The most challenging part of the planning 

workflow is the adaptation of the ML model to suit all patients and all prescriptions. 

The dose measurements for TPS commissioning were performed with a 3DS water tank (SunNuclear, 

USA) and microdiamond detector (PTW, Germany). Matching between measurements and ML 

calculations followed IAEA 1583/1540 and SFPM 27 report recommendations. VMAT patient QA was 

performed with an ARCHECK 3D matrix and EPID Dosimetry with SunCheck (SunNuclear, USA). The 

patient QA results were the same with or without ML, i.e., more than 95% points with a gamma 

index <1 for 3%-2 mm (local). 

 

2.4. Feedback on a preclinical implementation of an a priori MCO solution 

 

The autoplanning solution (mCycle) proposed by Elekta Company (Elekta AB, Sweden) uses an a 

priori-MCO plan optimization algorithm that was first developed and implemented in the Erasmus 

MC Cancer Center Institute. At that time, the Erasmus-iCycle algorithm needed to be converted to 

Monaco plans to generate clinical plans. It has now been implemented in a research version of the 

Monaco TPS (Elekta AB, Sweden, v 5.59.11), which is currently not commercially available. The 

solution was evaluated for 18 months at Leon Berard Comprehensive Cancer Center (Lyon, France 

3500 patients/y with eight radiation units) as part of a research partnership with Elekta. 

The algorithm directly and automatically generates a single Pareto-optimal plan for each new patient 

using a “wish-list” with predefined clinical dose objectives or constraints on OARs and PTVs based on 

a protocol. The optimization stage has two passes. During the first pass, mCycle optimizes the 

individual objectives to meet the different requested goal values while respecting the priority order 

and all defined constraints. If the goal value cannot be achieved, it is constrained at the achieved 

value and excluded from the second pass for further dose reduction. If the achieved value is below 

the goal dose, the goal dose is constrained, leaving optimization space for the lower prioritized 

objectives. During the second pass, the optimizer further reduces the doses that are below the goal 

value in the first pass as low as possible. One major advantage of mCycle is that it does not stop 

optimization at the set objective goals but always minimizes the dose to OARs and unspecified 

tissues. 

To obtain a robust wish list, each protocol is discussed with the clinical team to assign the plan 

constraints and priority for each OAR objective. The first aim is to mimic the clinical plans. This can be 

achieved using existing optimization templates, sequencing parameters from the clinical version of 

the Monaco TPS and modifying some cost functions to take advantage of the new optimization 

algorithms. An evaluation of the current wish list is made after applying it to a restricted number of 

patients (typically 4-5) per protocol. The wish list is then updated until an optimal solution is 

obtained for all cases. At this step, the goal is to improve the clinical plans. The process is stopped 

when it is considered that further improvements are impossible. Then, it is applied to a larger cohort 

(10 patients) and validated if no failure is observed. Hence, it might take time to generate a robust 

wish list if many OARs have to be considered (i.e., Head-and-neck cancer), but once validated for one 

clinical protocol and for localization, it can be quickly adapted to another dose protocol. 



Since the solution is available at Leon Berard Cancer Center, wish lists for prostate cancer (60 Gy/20 

fr), breast cancer and head-and-neck cancer (70 Gy-54 Gy/35 fr) have been elaborated. Once the 

wish lists are established, the optimization time is 50-60 min for a head-and-neck case and less for 

prostate or breast cases (30-45 min). The performances of mCycle versus manual plans were 

assessed on a cohort of 28 head-and-neck cases (including nasopharyngeal carcinoma). All plans 

were considered clinically acceptable by the physicians without any manual adjustment of the wish 

list. Notably, mCycle plans were considered better than manual plans in 75% of cases. The number of 

MUs (+30%) and the complexity of the plan were significantly increased with mCycle compared to 

manual plans, but QA results were not impacted (minimum gamma pass rate of 95.7% using the 

ArcCheck device; analysis criteria: 3%-3 mm, global analysis method). Conversely, the delivery time 

was increased by 20% with mCycle 

 

3. Minireview of complete ATP pipeline research articles 

 

While the first ATP solutions are being implemented in clinical departments, research in this area 

continues to intensify, particularly due to the democratization of deep learning methods. Most 

papers deal with dose map prediction, starting from planning CT images and contoured structures. A 

proof of the strength and interest in this research topic was an open-access dose prediction grand 

challenge that recently gathered 195 participants from 28 countries [8]. However, a good prediction 

model does not guarantee obtaining a good deliverable plan in an ATP workflow [9]. 

This is why an increasing number of research teams are interested in the complete ATP pipeline, 

including the creation of deliverable treatment plans: these papers (published after 2020) are the 

focus of this mini-review. Table 2 summarizes articles published from 2020 to April 2021 that address 

obtaining deliverable plans in an ATP process. For articles published before 2020, we recommend 

Netherthon and Wang's literature reviews on IA for ATP [2,5]. 

Two main models are conventionally used to convert dose distributions to deliverable plans: dose 

mimicking and inverse optimization [3,9]. Dose mimicking consists of automatically minimizing the 

differences between a dose distribution prediction input and the deliverable dose output, while the 

inverse optimization method basically consists of using predicted optimization weights/constraints in 

a conventional optimization model. The inputs for these models can be IMRT objective sets [10], 3D 

dose distributions [11–13] and, more recently, probability distributions of dose [14,15]. This latest 

type of input may help to better manage specific dosimetric and clinical trade-off problems in the 

ATP workflow. 

However, other methods have been recently developed to obtain deliverable plans, such as 

predicting fluence maps. Fluence maps are predicted either via a dose distribution prediction step 

[16,17] or even directly from planning images and contoured structures [18,19]. The advantage of 

this method is that there is no need for an inverse planning step, and fluence maps are easily 

processed by commercial TPSs to generate deliverable plans. 

Finally, a new method based on reinforcement learning (RL) has been investigated in the ATP 

process. This method has been successfully used in complex decision-making problems such as video 

or Go games. It has the advantage of not requiring a predictive model by gradually integrating human 

experience. In an ATP approach, RL has recently been used for direct tuning of optimization weights 

[20] or machine parameters [21]. 

Concerning the prediction step, the methods used in the different articles we reviewed are varied 

(see Table 2): random forest, Bayesian networks, CNN, GAN, U-Net… These methods are based on 



the use of contoured structures with or without the planning CT, keeping the integrity of the 

information or using different means of dimensionality reduction. As stated above, the predictions 

output range from an IMRT objectives set to fluence maps. Depending on the studies, mimicking, 

inverse optimization or fluence map processing is performed with commercial or in-house TPS. 

 

4. Conclusion 

 

In this work, we have presented different clinical implementations of current commercial ATP 

methods, showing the diversity of possible practices. ATP practice may nevertheless still evolve 

strongly in the coming decade, as we have pointed out in a mini-review of research papers dedicated 

to full AI-based ATP pipelines. From this perspective, it becomes essential that clinical teams be 

properly prepared through an evolution of initial training [22] and dedicated quality assurance 

recommendations [23].



Table 1 

Summary of feedback from four teams that have clinically implemented different automated treatment planning solutions. Note that the elements 

presented in this table reflect the subjective experience of each team and are not intended to allow an objective comparison between the four ATP 

solutions. 

 

 

Center 1 Center 2 Center 3 Center 4* 

TPS/Module 

Pinnacle AutoPlanning (Philips 

Radiation Oncology Systems, USA) 

Eclipse Rapidplan (Varian Medical 

Systems, USA) 

RayStation auto planning 

(Raysearch Laboratories, Sweden) 

mCycle (Elekta AB, Sweden) 

Version P16.2 15.6 9B Research version 

Method 

Automated rule implementation 

and reasoning 

Atlas-based knowledge-based 

planning solution 

Machine learning knowledge-

based planning solution 

A-priori multicriteria optimization 

Date of clinical set-up 2015 2015 2020 NA 

Initially treated localizations Prostate Prostate Prostate 

Prostate, breast and H&N (not 

clinically treated) 

Currently treated localizations 

Prostate, rectum, cervix, H&N, 

lung 

Prostate and H&N Prostate NA 

Initial commissioning 

Validation on 50 cases with Delta4 

and ionization chamber 

measurements 

Validation on 20 cases with EPID 

and Delta4 

NK 

Validation performed on 28 head-

and-neck cases with ArcCheck 

measurements 



Number of patients treated with 

AutoPlanning to date 

>2000 >2000 NK NA 

Training database mandatory? No Yes Yes (~100 + 10 validation patients) No 

Classical optimization? Yes Yes 

No (no need of objectives 

templates) 

Needs objectives templates 

Adjustable settings intra/inter 

localizations 

Dose Fall-Off 

All optimization parameters can 

be adjusted (priorities, 

constraints, volumes) 

Adjustable to prescription and 

localization modifications, if 

targets and OARs are not too 

different 

Dose objectives/constraints to 

targets/OARs 

Priority Target/OAR Priority order of the objectives 

Maximum dose thresholds (%) 

Sufficient values (when the goal is 

achieved) 

Calculation time 

Extended Pelvis, 3 mm Grid, 2 Full 

Arcs: approximately 1 h 

Stereotactic brain, 2.5 mm Grid, 4 

Partial Arcs: approximately 25 min 

2 minutes in addition to a classical 

plan generation  

(20 min H&N 4Full arcs 2.5 mm 

grid) 

15-20 min. Faster if less iterations. 

Voxel 2.5 mm 

30-55 min Voxel 3 mm 

Advantages 

Fast inverse planning learning 

curve 

Fast Fast Single optimal solution 

Fast clinical use upon installation Improves plan homogeneity 

Several strategies can be 

automated to take into account 

No manual adjustment/no 

learning curve 



the most common scenarios 

Easy to use and clinical approach Improves plan quality Requires only one verification No training database needed 

No training database needed 

Statistical tools included to 

evaluate the quality of the models 

Improves plan homogeneity 

Quick adaptation of the wish list 

for a single localization but 

different protocol 

Adaptation possible for 

stereotactic treatments 

Provides an optimized base plan 

for a-posteriori MCO Plans can come from several 

experts at the same time 

no interoperator variability once 

robust wish list is established 

Manual adjustment possible 

Possibility to adapt to a different 

dose prescription or machine 

Drawbacks 

Association with Scripts for daily 

optimization 

Database of 100-150 quality plans 

required 

Requires a database of 100 plans 

before making the model. Plan 

quality must be the best possible. 

Time for elaborating a robust wish 

list (head-and-neck) 

Calculation time  Calculation time 

Difficult to act on some dosimetric 

choices (preferred irradiation 

zones, distribution of medium and 

low doses, etc.) 

Wish list is operator-dependent- 

to be expert in Monaco planning 

is a plus: need for providing 

reference wish lists as starting 

points for new users 



H&N: head and neck; NA : non applicable; NK : not known 

*preclinical version, some items are NA  



Table 2 

Studies on automated radiotherapy treatment planning, including the creation of deliverable plans, that were published between January 2020 and April 

2021. 

 

Reference 

 Prediction step Prediction output = 

input for obtaining 

deliverable plan 

Obtaining deliverable plans 

step Major Contribution/ 

Highlights 

Patient cohort* Input data** Method Method 

Dose 

calculation 

[12] 

105 IMRT breast 

plans 

CS + CT 

Two models: U-

net and atlas 

regression 

forest 

3D dose 

distribution 

Dose 

mimicking 

Raystation 

TPS 

The first study focusing on dose 

prediction for breast cancer, with the 

use of CNNs 

[14] 

94 VMAT 

prostate plans 

Five CS U-net 

Probability 

distribution of dose 

Raystation 

TPS 

Probabilistic model, including the 

uncertainty of predictive distributions. 

[15] 

94 VMAT 

prostate plans 

Seven CS 

Variational 

autoencoder + 

Bayesian 

Probability 

distribution of dose 

Raystation 

TPS 

Probabilistic model, including the 

uncertainty of predictive distributions. 

Use of dimensionality reduction to 

preprocess prediction input data. 

[10] 140 IMRT Seven CS CNN IMRT objectives set Inverse Pinnacle TPS CNN model implemented to perform a 



cervical plans optimization prediction of patient specific 

IMRT objectives settings in Pinnacle 

[11] 

217 IMRT H&N 

plans 

11 CS + CT GAN 

3D dose 

distribution*** 

In-house 

Full 3D-dose predictions using a 

generative adversarial network and 

scaling of dose predictions pre-fluence 

map optimization. 

[13] 

81 VMAT H&N 

plans 

CS 

Two models: 

FBP and U-net 

3D dose 

distribution*** 

Eclipse TPS FBP method: no need for training data 

[16] 

100 IMRT SBRT 

pancreatic plans 

CS + CT 

CNN (3D dose 

distribution) + 

U-Net 

Fluence map 

NA 

Eclipse TPS 

A double CNN framework capable of 

directly predicting a fluence map from 

contour and CT alone 

[17] 

102 VMAT H&N 

and 14 prostate 

plans 

3D dose 

distribution 

U-Net Fluence map In-house 

Fluence map prediction from dose 

distribution in phantom geometry and 

scaling to patient geometry 

[18] 

231 IMRT H&N 

plans 

11 CS + CT GAN Fluence map Eclipse TPS 

Direct prediction of the fluence map 

from 2D structures projections 

[19] 

120 IMRT 

prostate plans 

Six CS + CT 

Dense residual 

hybrid network 

Fluence map Eclipse TPS 

Direct prediction of the fluence map 

from 2D structures projections 



[20] 

74 IMRT 

prostate plans 

(10 for training) Intelligent planning behaviors autonomously generated through a deep reinforcement 

learning process 

Direct tuning of optimization weights 

via reinforcement learning 

[21] 

40 VMAT/IMRT 

prostate plans 

(15 for training) 

Direct control of machine parameters 

via reinforcement learning 

CS: contoured structures; H&N: head and neck; IMRT: intensity modulated radiotherapy; VMAT: volumetric modulated arc therapy; SBRT: stereotactic body radiotherapy; 

GAN: generative adversarial network; CNN: convolutional neural network; FBP: filtered back projection; TPS: treatment planning system; CT: computed tomography 

* without distinction between those used for training, validation and tests 

** number of structures given if available 

*** IMRT objectives set are then estimated from the 3D dose distribution 
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