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Automation in radiotherapy treatment planning: examples of use in clinical practice and future trends for a complete automated workflow Automatisation de la planification du traitement par irradiation : exemples d'implémentations cliniques et futures tendances pour un flux de travail entièrement automatisé

Modern radiotherapy treatment planning is a complex and time-consuming process that requires the skills of experienced users to obtain quality plans. Since the early 2000s, the automation of this planning process has become an important research topic in radiotherapy. Today, the first commercial automated treatment planning solutions are available and implemented in a growing number of clinical radiotherapy departments. It should be noted that these various commercial solutions are based on very different methods, implying a daily practice that varies from one center to another. It is likely that this change in planning practices is still in its infancy. Indeed, the rise of artificial intelligence methods, based in particular on deep learning, has recently revived research interest in this subject. The numerous articles currently being published announce a lasting and profound transformation of radiotherapy planning practices in the years to come. From this perspective, an evolution of initial training for clinical teams and the drafting of new quality assurance recommendations is desirable.
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Résumé

La planification moderne des traitements par irradiation est un processus complexe et long qui requiert les compétences d'utilisateurs expérimentés pour obtenir des plans de qualité. Depuis le début des années 2000, l'automatisation de ce processus de planification est devenue un sujet de recherche important en radiothérapie. Aujourd'hui, les premières solutions commerciales de planification automatisée des traitements sont disponibles et mises en oeuvre dans un nombre croissant de services cliniques de radiothérapie. Il faut noter que ces différentes solutions commerciales sont basées sur des méthodes très différentes, impliquant une pratique quotidienne variable d'un centre à l'autre. Il est probable que cette évolution des pratiques de planification n'en soit qu'à ses débuts. En effet, l'essor des méthodes d'intelligence artificielle, basées notamment sur le deep learning, a récemment relancé l'intérêt des chercheurs pour ce sujet. Les nombreux articles actuellement publiés annoncent une transformation durable et profonde des pratiques de planification des plans de traitement par irradiation dans les années à venir. Dans cette perspective, une évolution de la formation initiale des équipes cliniques et la rédaction de nouvelles recommandations d'assurance qualité sont souhaitables. Mots-clés : planification de traitement automatisée -prédiction de dose -imitation de dose Automation in radiotherapy treatment planning: examples of use in clinical practice and future trends for a complete automated workflow P.Meyer * without distinction between those used for training, validation and tests ** number of structures given if available *** IMRT objectives set are then estimated from the 3D dose distribution

Introduction

Automated radiotherapy treatment planning (ATP) is slowly making its way into early clinical services. Several commercial systems based on different paradigms are now available. Current ATP techniques are often classified into three categories [START_REF] Hussein | Automation in intensity modulated radiotherapy treatment planning-a review of recent innovations[END_REF][START_REF] Wang | Artificial Intelligence in Radiotherapy Treatment Planning: Present and Future[END_REF][START_REF] Wang | A Review on Application of Deep Learning Algorithms in External Beam Radiotherapy Automated Treatment Planning[END_REF]: (a) automated rule implementation and reasoning (ARIR), multicriteria optimization (MCO) and knowledge-based planning (KBP). There are two approaches to MCO: a posteriori and a priori (b). Furthermore, KBP can be divided into two additional categories: (c) statistical modeling of case/atlas-based and (d) machine learning methods [START_REF] Ge | Knowledge-based planning for intensity-modulated radiation therapy: A review of data-driven approaches[END_REF]. In the first part of this article, we present one example of the clinical implementation of commercial ATP solutions for each category (a, b, c and d) in four different French radiotherapy departments.

In parallel with this diffusion to the first clinical services, ATP remains an active area of research, notably because of the emergence of artificial intelligence (AI) [START_REF] Netherton | The Emergence of Artificial Intelligence within Radiation Oncology Treatment Planning[END_REF]. In the second part of this article, we review current research, focusing only on recent ATP studies, including the final deliverable plan calculation step.

Examples of clinical implementations of commercial ATP solutions

The following feedback illustrates the clinical implementation of commercial ATP solutions in four different French radiotherapy centers, of which a summary is given in Table 1. Note that the objective of this part is to present practical on-site implementations: the theoretical details of the ATP algorithms can be found in the literature reviews cited in the introduction.

Feedback on the clinical implementation of an ARIR ATP solution

AutoPlanning (AP) in the Pinnacle (Philips Radiation Oncology Systems, Fitchburg, WI) treatment planning system (TPS) is an example of an available solution to the ARIR system. The user enters the prescription for target volumes and the constraints for organs at risk (OARs) into the optimizer. The user also defines the number of iterations per optimization. Then, the system automatically generates secondary structures allowing, among other things, the management of overlaps between the planning target volume (PTV) and OARs, the confirmation of the dose and the sparing of OARs. A cycle of five iterations corresponding to a successive creation of control structures finally leads to a solution.

In the private Amethyst radiotherapy center (Creil, France, 700 patients/y with two radiation units), Pinnacle was commissioned in 2015 with the AP module. The use of AP started while treatments using volumetric modulated arc therapy (VMAT) techniques for locations such as pelvic or head and neck tumors were increasing. Later, VMAT localizations were deployed for more complex treatments (hippocampal sparing, breast and finally intra-and extracranial stereotactic treatments), making the use of automatic tools such as AP and scripting essential for the clinic's physicists.

Initially, AP was introduced in this hospital for the treatment of prostate cancer. The contributions of a consultant physicist and a senior physician helped to implement this system and to find an efficient and reproducible set of goals and constraints. The validation of treatment plans was performed for the first 50 cases using gamma index measurement (98.9% ± 0.7%, local, 3%-3 mm) with a Delta4 Phantom (Scandidos, Sweden) and point dose measurements with a 0.125 cm 3 ionization chamber (PTW, Germany) in a Plexiglas phantom (0.1% ± 0.8%).

In current practice at the radiotherapy center, ATP is performed as a combination of both AP and homemade scripts. The center employs the following workflow:

-Physicians: Perform auto-contouring based on atlas methods for main OARs, a version for corrections and validation is needed, -Physicians: Run scripts to generate a list of empty structures (remaining OARs and target volumes) according to medical protocols (name, limits, extensions and colors) and segment manually, -Physicists: Run scripts that load isocenters/beams/prescriptions and dose constraints in the AP module to reach protocol objectives for both the PTV and OARs. The calculation is performed during this last step.

Although the calculation time might sometimes be relatively long (up to one hour, depending on the complexity and size of the irradiated volumes), the system remains efficient in providing reliable results. Today, more than 80% of patients are treated with VMAT techniques in this radiotherapy center. Among 95% of these treatment plans (especially prostate, rectal, cervical, head and neck and lung cancers) are obtained only with AP, without additional manual optimization. The team experience allowed to continuously improve the constraints in the templates and generate the final treatment plans more quickly. This methodology not only allowed to progressively implement new techniques with an accelerated learning curve but also to reduce interoperator variability.

Feedback on a clinical implementation of an atlas-based KBP solution

Rapidplan Training datasets were composed of 100-150 carefully selected plans with well-defined trade-offs and consistent OAR contours. Model validation is a two-step process: first, the DVH estimation part is evaluated, and outliers are processed (i.e., plans different from the rest of the database, which biased the regression model). Second, the optimization criteria extracted from the estimation are fine-tuned to match the user expectations (priorities, supplementary hard constraints).

Models were evaluated on 20 new patients not included in the database. Homogeneity, efficiency and quality were improved with Rapidplan compared to manual optimization. Eighty-three percent of the plans met the clinical criteria in a single optimization. The only failures came from plans whose geometry was different from those in the database (e.g., larger OAR or PTV-OAR overlap). This suggested increasing the variability of the plans in the database to help the model provide an optimal solution for various geometries. The DVH estimation added only a few minutes compared to a standard plan generation.

The greatest strength of Rapidplan is DVH estimation. Its ability to generate the DVH of an optimal plan can be used to assess the quality of plans in a clinical trial [START_REF] Tol | Analysis of EORTC-1219-DAHANCA-29 trial plans demonstrates the potential of knowledge-based planning to provide patient-specific treatment plan quality assurance[END_REF]. The greatest weakness is the tuning of the objectives. Finding the desired tradeoffs for the final plans can be time consuming. One limitation is that the model can only provide the best of what it has learned. Maintenance is needed to reflect improvements in treatment techniques and for version upgrades. However, the models show good versatility with the ability to be easily tweaked to work with different prescriptions or different treatment machines (single stack multileaf collimator of a TrueBeam versus double stack of a Halcyon). An evaluation is currently being performed in the center to use Rapidplan combined with a posteriori MCO. The development of models for other treatment sites, such as the cervix, breast and lung, is also planned.

Feedback on a clinical implementation of a machine learning (ML)-based KBP solution

RayStation v9B autoplanning (Raysearch Laboratories, Sweden) is a ML-based KBP solution. It uses a random forest model trained with a database of treatment plans (CT, dose map and ROIs) coming from Raysearch Laboratories (RS model) or from the clinic (local model). For a new patient, the ML process assigns a dose value for each voxel. Then, the new dose map is sent to the "mimicker", which transforms the ML dose distribution to an objective function for the optimization module to make it deliverable. A given model (RS or local) can be locally adapted for two close locations or for different prescriptions (for example, a 78 Gy prostate and a 66 Gy prostate bed prescription).

In the Oncorad Garonne Group private radiotherapy center (Toulouse, France, 2500 patients/y with seven radiation units). VMAT planning is performed with RayStation v9B. The group had its first ML model (RS) in July 2020. Since then, it has optimized its own ML models (local model) for pelvic treatment plans obtained from 50 plans with lymph nodes and 100 plans without nodes to treat the male pelvis at 78 Gy for the prostate (with seminal vesicles and lymphatics nodes) irradiation and 66 Gy for the prostate bed (with lymphatics nodes).

The ML plans were evaluated qualitatively (visualization) and quantitatively with clinical goals, a homogeneity index, a conformity index and a dose gradient index [START_REF] Mahé | Recommandations en radiothérapie externe et curiethérapie (Recorad) : 2e édition[END_REF]. Eighty percent of the automatic plans were acceptable without new optimizations and were generated in approximately 16 minutes.

ML integration in the clinical routine is performed with Python scripts to standardize the planning and to decrease planning time. To prevent errors due to scripting, some key control points were kept during the automatic process: validation was required after each main step. Physicists and a PhD student were trained by Raysearch for TPS python scripting. For ML, one physicist and the PhD student were directly involved in developing and adapting ML local models. Dosimetrists were trained by physicists for the use of scripts.

The main difficulty in obtaining an ML local model lies in the patient's database construction, which is time-consuming (it requires 50 to 100 homogenized plans). The most challenging part of the planning workflow is the adaptation of the ML model to suit all patients and all prescriptions.

The dose measurements for TPS commissioning were performed with a 3DS water tank (SunNuclear, USA) and microdiamond detector (PTW, Germany). Matching between measurements and ML calculations followed IAEA 1583/1540 and SFPM 27 report recommendations. VMAT patient QA was performed with an ARCHECK 3D matrix and EPID Dosimetry with SunCheck (SunNuclear, USA). The patient QA results were the same with or without ML, i.e., more than 95% points with a gamma index <1 for 3%-2 mm (local).

Feedback on a preclinical implementation of an a priori MCO solution

The autoplanning solution (mCycle) proposed by Elekta Company (Elekta AB, Sweden) uses an a priori-MCO plan optimization algorithm that was first developed and implemented in the Erasmus MC Cancer Center Institute. At that time, the Erasmus-iCycle algorithm needed to be converted to Monaco plans to generate clinical plans. It has now been implemented in a research version of the Monaco TPS (Elekta AB, Sweden, v 5.59.11), which is currently not commercially available. The solution was evaluated for 18 months at Leon Berard Comprehensive Cancer Center (Lyon, France 3500 patients/y with eight radiation units) as part of a research partnership with Elekta.

The algorithm directly and automatically generates a single Pareto-optimal plan for each new patient using a "wish-list" with predefined clinical dose objectives or constraints on OARs and PTVs based on a protocol. The optimization stage has two passes. During the first pass, mCycle optimizes the individual objectives to meet the different requested goal values while respecting the priority order and all defined constraints. If the goal value cannot be achieved, it is constrained at the achieved value and excluded from the second pass for further dose reduction. If the achieved value is below the goal dose, the goal dose is constrained, leaving optimization space for the lower prioritized objectives. During the second pass, the optimizer further reduces the doses that are below the goal value in the first pass as low as possible. One major advantage of mCycle is that it does not stop optimization at the set objective goals but always minimizes the dose to OARs and unspecified tissues.

To obtain a robust wish list, each protocol is discussed with the clinical team to assign the plan constraints and priority for each OAR objective. The first aim is to mimic the clinical plans. This can be achieved using existing optimization templates, sequencing parameters from the clinical version of the Monaco TPS and modifying some cost functions to take advantage of the new optimization algorithms. An evaluation of the current wish list is made after applying it to a restricted number of patients (typically 4-5) per protocol. The wish list is then updated until an optimal solution is obtained for all cases. At this step, the goal is to improve the clinical plans. The process is stopped when it is considered that further improvements are impossible. Then, it is applied to a larger cohort (10 patients) and validated if no failure is observed. Hence, it might take time to generate a robust wish list if many OARs have to be considered (i.e., Head-and-neck cancer), but once validated for one clinical protocol and for localization, it can be quickly adapted to another dose protocol.

Since the solution is available at Leon Berard Cancer Center, wish lists for prostate cancer (60 Gy/20 fr), breast cancer and head-and-neck cancer (70 Gy-54 Gy/35 fr) have been elaborated. Once the wish lists are established, the optimization time is 50-60 min for a head-and-neck case and less for prostate or breast cases (30-45 min). The performances of mCycle versus manual plans were assessed on a cohort of 28 head-and-neck cases (including nasopharyngeal carcinoma). All plans were considered clinically acceptable by the physicians without any manual adjustment of the wish list. Notably, mCycle plans were considered better than manual plans in 75% of cases. The number of MUs (+30%) and the complexity of the plan were significantly increased with mCycle compared to manual plans, but QA results were not impacted (minimum gamma pass rate of 95.7% using the ArcCheck device; analysis criteria: 3%-3 mm, global analysis method). Conversely, the delivery time was increased by 20% with mCycle

Minireview of complete ATP pipeline research articles

While the first ATP solutions are being implemented in clinical departments, research in this area continues to intensify, particularly due to the democratization of deep learning methods. Most papers deal with dose map prediction, starting from planning CT images and contoured structures. A proof of the strength and interest in this research topic was an open-access dose prediction grand challenge that recently gathered 195 participants from 28 countries [START_REF] Babier | OpenKBP: The openaccess knowledge-based planning grand challenge[END_REF]. However, a good prediction model does not guarantee obtaining a good deliverable plan in an ATP workflow [START_REF] Babier | The importance of evaluating the complete automated knowledge-based planning pipeline[END_REF]. This is why an increasing number of research teams are interested in the complete ATP pipeline, including the creation of deliverable treatment plans: these papers (published after 2020) are the focus of this mini-review. Table 2 summarizes articles published from 2020 to April 2021 that address obtaining deliverable plans in an ATP process. For articles published before 2020, we recommend Netherthon and Wang's literature reviews on IA for ATP [START_REF] Wang | Artificial Intelligence in Radiotherapy Treatment Planning: Present and Future[END_REF][START_REF] Netherton | The Emergence of Artificial Intelligence within Radiation Oncology Treatment Planning[END_REF].

Two main models are conventionally used to convert dose distributions to deliverable plans: dose mimicking and inverse optimization [START_REF] Wang | A Review on Application of Deep Learning Algorithms in External Beam Radiotherapy Automated Treatment Planning[END_REF][START_REF] Babier | The importance of evaluating the complete automated knowledge-based planning pipeline[END_REF]. Dose mimicking consists of automatically minimizing the differences between a dose distribution prediction input and the deliverable dose output, while the inverse optimization method basically consists of using predicted optimization weights/constraints in a conventional optimization model. The inputs for these models can be IMRT objective sets [START_REF] Jihong | Automated Intensity Modulated Radiation Therapy Treatment Planning for Cervical Cancer Based on Convolution Neural Network[END_REF], 3D dose distributions [START_REF] Babier | Knowledge-based automated planning with three-dimensional generative adversarial networks[END_REF][START_REF] Bakx | Development and evaluation of radiotherapy deep learning dose prediction models for breast cancer[END_REF][START_REF] Miki | Evaluation of optimization workflow using custom-made planning through predicted dose distribution for head and neck tumor treatment[END_REF] and, more recently, probability distributions of dose [START_REF] Nilsson | Probabilistic dose prediction using mixture density networks for automated radiation therapy treatment planning[END_REF][START_REF] Zhang | Probabilistic feature extraction, dose statistic prediction and dose mimicking for automated radiation therapy treatment planning[END_REF]. This latest type of input may help to better manage specific dosimetric and clinical trade-off problems in the ATP workflow.

However, other methods have been recently developed to obtain deliverable plans, such as predicting fluence maps. Fluence maps are predicted either via a dose distribution prediction step [START_REF] Wang | Fluence Map Prediction Using Deep Learning Models -Direct Plan Generation for Pancreas Stereotactic Body Radiation Therapy[END_REF][START_REF] Ma | Deep learning-based inverse mapping for fluence map prediction[END_REF] or even directly from planning images and contoured structures [START_REF] Li | An Artificial Intelligence-Driven Agent for Real-Time Head-and-Neck IMRT Plan Generation using Conditional Generative Adversarial Network (cGAN)[END_REF][START_REF] Li | Automatic IMRT planning via static field fluence prediction (AIP-SFFP): a deep learning algorithm for real-time prostate treatment planning[END_REF]. The advantage of this method is that there is no need for an inverse planning step, and fluence maps are easily processed by commercial TPSs to generate deliverable plans.

Finally, a new method based on reinforcement learning (RL) has been investigated in the ATP process. This method has been successfully used in complex decision-making problems such as video or Go games. It has the advantage of not requiring a predictive model by gradually integrating human experience. In an ATP approach, RL has recently been used for direct tuning of optimization weights [START_REF] Shen | Improving Efficiency of Training a Virtual Treatment Planner Network via Knowledge-guided Deep Reinforcement Learning for Intelligent Automatic Treatment Planning of Radiotherapy[END_REF] or machine parameters [START_REF] Hrinivich | Artificial intelligence-based radiotherapy machine parameter optimization using reinforcement learning[END_REF].

Concerning the prediction step, the methods used in the different articles we reviewed are varied (see Table 2): random forest, Bayesian networks, CNN, GAN, U-Net… These methods are based on the use of contoured structures with or without the planning CT, keeping the integrity of the information or using different means of dimensionality reduction. As stated above, the predictions output range from an IMRT objectives set to fluence maps. Depending on the studies, mimicking, inverse optimization or fluence map processing is performed with commercial or in-house TPS.

Conclusion

In this work, we have presented different clinical implementations of current commercial ATP methods, showing the diversity of possible practices. ATP practice may nevertheless still evolve strongly in the coming decade, as we have pointed out in a mini-review of research papers dedicated to full AI-based ATP pipelines. From this perspective, it becomes essential that clinical teams be properly prepared through an evolution of initial training [START_REF] Zanca | Expanding the medical physicist curricular and professional programme to include Artificial Intelligence[END_REF] and dedicated quality assurance recommendations [START_REF] Vandewinckele | Overview of artificial intelligence-based applications in radiotherapy: Recommendations for implementation and quality assurance[END_REF]. 

  an optimized base plan for a-posteriori MCO Plans can come from several experts at the same time no interoperator variability once robust wish list is established Manual adjustment possible Possibility to adapt to a different dose prescription or machine Drawbacks Association with Scripts for daily optimization Database of 100-150 quality plans required Requires a database of 100 plans before making the model. Plan quality must be the best possible. Time for elaborating a robust wish list (head-and-neck) Calculation time Calculation time Difficult to act on some dosimetric choices (preferred irradiation zones, distribution of medium and low doses, etc.) Wish list is operator-dependentto be expert in Monaco planning is a plus: need for providing reference wish lists as starting points for new users H&N: head and neck; NA : non applicable; NK : not known *preclinical version, some items are NA

  CS: contoured structures; H&N: head and neck; IMRT: intensity modulated radiotherapy; VMAT: volumetric modulated arc therapy; SBRT: stereotactic body radiotherapy; GAN: generative adversarial network; CNN: convolutional neural network; FBP: filtered back projection; TPS: treatment planning system; CT: computed tomography

Table 2

 2 Studies on automated radiotherapy treatment planning, including the creation of deliverable plans, that were published between January 2020 and April 2021.

					Obtaining deliverable plans
		Prediction step	Prediction output =	
					step	Major Contribution/
	Reference			input for obtaining	
					Dose	Highlights
	Patient cohort*	Input data**	Method	deliverable plan	Method
					calculation
	[12]				

Gustave Roussy Cancer Campus received fundings from Therapanacea for ARTPlan evaluation. The "mCycle" study was performed in the framework of a research cooperation agreement with Elekta AB.

Table 1

Summary of feedback from four teams that have clinically implemented different automated treatment planning solutions. Note that the elements presented in this table reflect the subjective experience of each team and are not intended to allow an objective comparison between the four ATP solutions.