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ABSTRACT
One of the long-standing question in geoscience is whether there is
a topographical signature of life. Recent development of space-borne
LiDAR has led to massive data depicting planetary topographies,
opening up unprecedented opportunities to make progress in an-
swering this question. This is what we set out to do in an ongoing
project named 𝑃𝐴𝑅𝐾𝐸𝑅. A key step of PARKER is to find topograph-
ical features that are potentially relevant to intrinsic differences
between Earth and alien worlds. Due to the huge data volume,
sequential feature extraction cannot meet our needs in PARKER.
Hence, in this work we propose a GPU-accelerated framework for
fast feature extraction of planetary LiDAR, which as far as we know
is the first GPU-based solution for this task. Faced with multi-scale
features and limited GPU memory, we present a novel pseudo-
one-pass sweep (POPS) approach, leveraging memory-aware data
grouping and incremental data transfer to address these challenges.
We also develop a GPU-based solution to aggregate features ex-
tracted by POPS. Experiments on real and simulated data show
that our algorithms are 2-3 orders of magnitude faster than their
sequential counterparts and 1-2 orders of magnitude faster than
MPI-based multi-core parallelism, enabling near real-time analytics
of datasets with almost a billion points. Based on POPS, we have
been able to efficiently evaluate the relevance of topographical
features to intrinsic inter-planetary differences. So far, we have
assessed the abilities of two feature extractions methods, PCA and
STAT , to capture differences between Earth and Mars. Results show
that PCA features on scales of 300-500m can best capture such
differences. Thanks to the generic nature of POPS, we will be able
to expand our studies to new feature extraction methods and other
alien worlds than Mars in the next phase of PARKER.
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1 INTRODUCTION
The topography bears the mark of the mechanisms at work on
the surface of a planet that shape it. A long-standing question
related to topography whether there a topographical signiture of
life [6]. This is exactly the question we set out to answer in an on-
going project named PARKER. PARKER benefits from the growing
application of planatary LiDAR in the past two to three decades,
which is an advanced remote sensing technology that has lead to
datasets portraying the topographies of various planets. (e.g. the
GEDI dataset [7] for the Earth and the MOLA dataset [25] for Mars),
opening up unprecedented opportunities for inter-planetary com-
parative studies. Such datasets come in the form of 3D point clouds,
in which each point is represented by a tuple (𝑥,𝑦, 𝑧), where 𝑥 and
𝑦 are longitude and latitude values, while 𝑧 is the elevation of the
point at the aforementioned coordinates [Fig. 1 (a)]. In PARKER,
we leverage the profound semantics of planetary LiDAR to find
potential topographical signatures of life on Earth, a key step of
which is to extract features from LiDAR data of Earth and other
planets, so that we can later examine whether any of them point to
intrinsic differences between Earth and alien worlds where there
are no known life-forms by cross validation (CV) and visualization.

Figure 1: An illustration of planetary LiDAR data. (a): raw
point cloud from the GEDI [7] dataset, depicting the Socompa
Landslide on Earth; (b): gridded point cloud of interpolation
with the inverse distance weighting (IDW) [24] algorithm,
which is far denser than the raw data.

A major obstacle we face in PARKER is how to efficiently extract
features from planetary LiDAR with huge data volume. Covering
vast areas, raw planetary LiDAR point clouds can contain hundreds
of millions to billions of data points. For example, the GEDI [7]
mission is to conduct 10 billion measurements over its nominal
two-year mission life, and now extended until January 2023. Worse
still, these raw datasets are often irregularly-sampled along the 𝑥-
and 𝑦-axes, which can make it hard to compare data from different
geolocations and planets. Hence, it is necessary to transform them
into gridded data using some interpolation algorithms [15, 17, 24]
(Fig. 1 (b)) which can increase the data volume to several or several
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dozen times the original volume. Moreover, in PARKER, we would
like to achieve near real-time data analytics, where we can obtain
the features in a matter of seconds or minutes to quickly evalu-
ate them. CPU-based sequential feature extraction can not meet
such criteria for massive data. Therefore, we turn to the Graphics
Processing Unit (GPU) [22], a widely-adopted high performance
computing hardware whose parallel processing power is ideal for
our application.

However, it is not a trivial task to apply GPU acceleration to fea-
ture extraction of gridded topographical data. The main challenge
is the need formulti-scale features, as the same type of features can
be exhibited across multiple scales. For example, the distribution
of elevation values in a specific geolocation may be constant on
square-shaped grids of both 300m × 300m and 500m × 500m. For
GPU-based parallelism, an naïve solution to multi-scale feature
extraction is to perform parallel feature extraction on different sub-
regions in the grid for each scale, while keeping the processing
of multiple scales sequential. However, as will be shown in Sec-
tion 4.1.1, this requires multiple passes to process all scales, and
can often fail to fully unleash the computational power of the GPU.

To solve the multi-scale problem, we propose a novel psuedo-
one-pass sweep (POPS) framework for feature extraction. With
memory-aware data grouping and incremental data transfer, POPS
can extract multi-scale features with a nearly one-pass scan (hence
the term psuedo-one-pass) of the input data, even with the limited
GPU memory. Moreover, we note that POPS itself is not a feature
extraction method. Rather, it is a customizable framework that can
be instantiated by feature extraction methods of the user’s choosing.
As we will show in Section 4.2, even with limited memory, POPS
has the potential to adapt to many feature extraction methods.

Apart from feature extraction, in PARKER we need to aggregate
the features from multiple sub-regions to obtain location-invariant
features. Hence, we also provide a GPU-based method for feature
aggregation using various statistics.

The main contributions of this paper are as follows.

• Tomeet our need for analysis of massive planetary LiDAR data in
PARKER, we present POPS, a generic framework for GPU-based
feature extraction for massive gridded topographical data. To
the best of our knowledge, PARKER is the first project focusing
on extracting and comparing topographical features of different
planets, and POPS is the first framework for GPU-based plane-
tary LiDAR feature extraction1. By processing gridded data in a
pseudo-one-pass sweep fashion, POPS promises highly efficient
extraction of multi-scale topographical features.

• We showcase the customizability of our POPS framework by
demonstrating how to efficiently instantiate it using two specific
feature extraction methods, PCA and STAT, even with highly
limited memory resources on the GPU.

• We propose a novel method for aggregating features obtained
from POPS on the GPU.

• We conduct extensive experiments on both publicly available
real-world data andmassive simulated data. Notably, POPS can be
over 3 orders of magnitude faster than its sequential counterpart,

1In this paper, we limit our discussion to non-deep features, as opposed to learned
features by deep learning as they generally lack the interpretability needed in PARKER.

and 1-2 orders of magnitude faster than MPI-based parallelism
with 20 CPU cores.

• We show that in PARKER, POPS can achieve near real-time
processing of over 0.7 billion data points, which as far as we
know was previously impractical. This has enabled us to effi-
ciently evaluate the relevance of topographical features to in-
trinsic inter-planetary differences. Assessing the abilities of PCA
and STAT to capture differences between Earth and Mars. we
found that PCA features on scales of 300-500m can best capture
such differences. Moreover, the generic nature of POPS enables
us to expand PARKER to new feature extraction methods and
other alien worlds than Mars.

The rest of this paper is organizes as follows. Section 2 reviews
our related works. Section 3 introduces the preliminaries. Section 4
presents our POPS framework. Section 5 discusses our GPU-based
method for feature aggregation. Section 6 provides the experimental
results. Finally, Section 7 concludes the paper.

2 RELATEDWORK
For related work, we first look into current works on topographical
data that make use of GPU acceleration. A large chunk of these
works [3, 18, 19] focus on data interpolation, utilizing GPU-based
parallelism to accelerate existing interpolation methods [15, 17, 24].
Apart from these, GPU acceleration has been applied to tasks such
as LiDAR point cloud filtering [11], LiDAR data reduction [23] and
simulated LiDAR scanning [16]. To the best of our knowledge, there
are no existing works dedicated to GPU-accelerated (non-deep)
feature extraction for topographical point cloud data.

Next, we review existing works on feature extraction for topo-
graphical data. There exist studies that exploit end-to-end deep
neural networks for feature learning [8, 10, 13]. Though, these
works are beyond the scope of our paper. Surprisingly, to the best
of our knowledge, the only work on feature extraction for topo-
graphical point cloud data is [2], where Brodu and Lague proposed
a PCA-based approach for feature extraction. We will discuss this
approach in more detail in Section 4.2.

3 PRELIMINARIES
3.1 Sequential Feature Extraction Framework

for Gridded Topographical Data
In PARKER, we rely on cross validation (CV) to evaluate the rele-
vance of a specific feature extraction method. That is, we form a
dataset with examples from Earth and Mars, and apply a classifier
to predicting which planet each example comes from, using feature
extracted by the feature extraction method. The more accurate the
predictions, the more relevant the features. Beginning with a hand-
ful of large regions of interest (ROIs) from Earth and Mars which is
common practice in geoscience, we prepare the data to be fed into
the classifier using a two-level division scheme shown in Fig. 2.

On the top level of the division, we break the ROIs down to
sub-regions which will serve as training and testing examples in
CV. The reason why we do not use entire ROIs as examples is that
there are so few ROIs that they would fail to populate the dataset
for meaningful CV. Specifically, we obtain the examples with a
square sliding window, which moves upwards and rightwards from
the bottom-left corner of the grid [Fig. 2 (a)]. This requires two
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Figure 2: Two-level division of an ROI. (a) Dividing an ROI of
size 91× 84 into examples of size 42× 42with an example step
of 25. For each example, further dividing it into patches of
(b) size 18 × 18 with a feature step of 18, and (c) size 6 × 6 with
a feature step of 9. Note that this is merely a toy example.
Actual ROIs and examples are hundreds or thousands of
times larger than what is shown here.

parameters: the example scale 𝑒𝑥𝑆𝑐𝑎𝑙𝑒 which is the edge size of the
sliding window (i.e. that of the examples), and the example step
𝑒𝑥𝑆𝑡𝑒𝑝 which is the stride of the window.

On the bottom level, we further divide each example into square
𝑝𝑎𝑡𝑐ℎ𝑒𝑠 of different edge sizes call feature scales, on which we will
conduct feature extraction. The reason why we do not directly
conduct feature extraction on the entire example is that the same
topographical semantics can be exhibited across multiple scales,
and it is crucial to simultaneously consider all of them [2]. We obtain
the patches with multiple sliding windows on each example [Fig. 2
(b)(c)]. Again we adopt two parameters: the feature scales 𝑓 𝑆𝑐𝑎𝑙𝑒𝑠
which are the edge sizes of the windows (i.e. those of the patches),
and the feature steps 𝑓 𝑆𝑡𝑒𝑝𝑠 which are the strides of the windows.

With the data divided, we now obtain feature vectors for each
example in two steps. First comes raw feature extraction, where
we apply a pre-defined feature extraction method called the core
method to the patches in it. Note again that we are extracting multi-
scale features as the patch sizes vary. Also note that the core method
is user-defined, hence the customizability of our framework.

Second comes feature aggregation, where we aggregate the raw
patch-level features to form the final feature vectors of the examples.
The reason why we do not directly use the raw features is that they
can lead to excessively long feature vectors that are susceptible
to curse of dimensionality [12] in CV. To aggregate the features,
we first group all patches in each example by their feature scales.
For patches of each scale, note that their raw feature vectors share
the same dimensionality. On each dimension, we aggregate the
feature values of all these patches using 9 statistics: mean, variance,

skewness, kurtosis, minimum (min), first quartile (Q1), median,
third quartile (Q3), maximum (max). The final feature vector for
each example comprises of the 9 statistics for all dimensions of
patch-level features under all feature scales.

Before moving on, we discuss parameter settings for the two-
level division scheme. The first parameter to set is 𝑓 𝑆𝑐𝑎𝑙𝑒𝑠 as this
is solely decided by user knowledge about on what scales the
core method is most likely to produce high-quality features. With
𝑓 𝑠𝑐𝑎𝑙𝑒𝑠 fixed, the choice of 𝑒𝑥𝑆𝑐𝑎𝑙𝑒 , 𝑒𝑥𝑆𝑡𝑒𝑝 and 𝑓 𝑆𝑡𝑒𝑝 are essen-
tially trade-offs of quantity and quality: The larger 𝑒𝑥𝑆𝑐𝑎𝑙𝑒 is, the
more patches an example can hold, and the more robust its ag-
gregated features are likely to be. However, this also means fewer
examples, which can limit the performance of the CV classifier. Simi-
larly, the larger 𝑓 𝑆𝑡𝑒𝑝 and 𝑒𝑥𝑆𝑡𝑒𝑝 are, the smaller inter-dependency
between adjacent patches or examples is, which improves robust-
ness. However, this also means fewer patches or examples. The user
needs to carefully consider such trade-offs to set the parameters.
Especially, we strongly recommend against setting 𝑒𝑥𝑆𝑡𝑒𝑝 smaller
than 𝑒𝑥𝑆𝑐𝑎𝑙𝑒 , as this will cause examples to overlap, breaking the
minimal level of independence between examples. However, this
does not extend to the setting of 𝑓 𝑆𝑡𝑒𝑝𝑠 as overlaps of patches in
an example does not violate independence of the example.

3.2 CUDA-based GPU Acceleration
In this work, we adopt CUDA-based GPU acceleration to boost
the efficiency of feature extraction. CUDA [22] is a widely-used
general purpose parallel computing platform and programming
model for NVIDIA GPUs, which are especially suitable to pro-
cess multiple data slices in parallel with a single set of operations,
thanks to their single-instruction-multiple-threads (SIMT) architec-
ture, Specifically, a GPU has massive numbers of threads running
in parallel on multiple streaming multiprocessors (SMs), and each
thread executes the same operations on one data slice. These threads
are grouped into blocks, which are assigned to SMs to be executed
independently from each other.

An important feature of CUDA is its memory hierarchy. Specifi-
cally, each GPU thread has its registers, all threads in a block can
access per-block shared memory, and all threads in all blocks can
access the same global memory. To process data with CUDA, it
must first be loaded into global memory, and then be fetched to
registers or shared memory by individual threads. The memory size
increases in order of per-thread registers, per-block shared memory
and global memory, with the size of the latter far greater than the
former two. By contrast, accessing registers and shared memory is
much faster than accessing global memory, thus global memory ac-
cesses should be avoided whenever possible. Rather, when handling
data that cannot be fitted into registers, it is advisable to cache it
in shared memory Moreover, all data in the shared memory of a
block can be accessed by all threads in that block, which provides
an effective way of intra-block coordination. Also, CUDA offers the
__syncthreads() function which serves as an intra-block synchro-
nization barrier where any thread must wait till all other threads
in the block have reached the barrier to proceed. See [22] for more
information on CUDA programming.
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4 GPU-BASED FEATURE EXTRACTION
Our sequential feature extraction workflow can often be inefficient
due to the following reason: While the number of ROIs is usually
limited, they can often cover large areas. Therefore, for each of them,
both the number of examples and the number of patches in each
example can be huge. For example, in our studies (see Section 6.1
for the parameter settings we use), the LiDAR data covering area
surrounding the Borku drainage system (which is a modest-sized
geo-object) on Earth can be divided into 280 examples, while the
area of OlympusMons (the largest mountain in the Solar system) on
Mars encompasses 76396 examples. Each of these examples can be
further divided into tens or even hundreds of patches. Looping over
all of these can be highly time-consuming (in a matter of several
days for PARKER, see Section 6.1 for more). In response, we draw on
the SIMT architecture of the GPU (Section 3.2) ‘to conduct the same
feature extraction operations for multiple patches and examples in
parallel. Next, we will mainly present our POPS framework for raw
feature extraction, and then discuss parallel feature aggregation.

4.1 Raw Feature Extraction With POPS
4.1.1 Main Challenges. We begin our discussion on GPU-based
raw feature extraction by identifying its two main challenges:

Challenge 1: multi-scale features.Given the two-level ROI division
scheme shown in Fig. 2, it is intuitive to let each GPU block handle
one example, and let each thread in the block handle one patch
in the example. The former is advisable as all examples have the
same size with the same number of patches, thus the workloads
across all blocks are balanced. However, the same cannot be said
for allocating one patch to each thread: As the number of threads
in each block is limited to 1024 [22] which is often surpassed by the
number of patches, it is often required that each thread iteratively
process multiple patches. As we adopt multiple feature scales, a
naïve way for iterative processing is to go through each feature
scale one by one, letting each thread process one or more patches
for each scale. However, this comes with the problem of idle threads.
Suppose we have a 10000 × 10000 example, with 𝑓 𝑆𝑐𝑎𝑙𝑒𝑠 being 250,
500, 1000 and 𝑓 𝑆𝑡𝑒𝑝𝑠 the same as the corresponding feature scales
for all three of them, thus the number of patches for each scale is
1600, 400, 100. To process the first scale with 1600 patches using
1024 threads, we need two iterations, in the second of which only
1600−1024 = 576 are busy, while nearly half of the available threads
sit idle. For the scales of 500 and 1000, only 400 and 100 threads are
busy, resulting in even greater waste of computational resources.
It is thus highly desirable to allow different scales to be processed
simultaneously to keep as many threads busy for as long as possible.

Challenge 2: limited share memory. Our multi-scale setting dic-
tates that many data points in an example will be accessed multiple
times, and directly accessing them from the global memory is highly
inefficient. Thus, we leverage shared memory for faster access, yet
the example is often too large to be completely fitted into the shared
memory. This calls for a method that can both accommodate limited
memory space and simultaneous multi-scale processing.

4.1.2 The POPS Framework. We now describe POPS, our GPU-
based feature extraction framework that addresses both the chal-
lenges mentioned above. As mentioned earlier, each GPU block is
assigned to a single example. Raw feature extraction is performed

in a pseudo-one-pass sweep (POPS) (we will explain the name-
sake later) of the example. Concretely, we introduce the concept
of superpatches, which are rectangular areas in the example that
can be fitted into the shared memory, with maximum edge sizes
of 𝑠𝑝𝑆𝑐𝑎𝑙𝑒𝑋 and 𝑠𝑝𝑆𝑐𝑎𝑙𝑒𝑌 on the 𝑥- and 𝑦-axes. The general idea
of POPS is to use several superpatches to sequentially cover all
patches in the example, letting threads in the block extract features
for the covered patches while the latter reside in shared memory.
Note that throughout this process, all superpatches reside in only
one chunk of shared memory with a fixed size.

For instance, in Fig. 3 we attempt to extract features for the
example that is divided into patches as shown in Fig. 2 bottom).
With 𝑠𝑝𝑆𝑐𝑎𝑙𝑒𝑋 and 𝑠𝑝𝑆𝑐𝑎𝑙𝑒𝑌 being both 21, the first superpatch
(Superpatch 0) is initiated at the bottom-left corner of the example.
This can be done by letting each thread in the block transfer one
or several data points from global memory to the chunk of shared
memory allocated to the superpatch. Starting here, we iteratively
conduct the following two steps.

Step 1: apply the core method to all patches of all scales in the
current superpatch. Here we let each thread extract features for
one or several patches. For example, in Fig. 3, Superpatch 0 covers
Patches A-0, B-0, B-1, B-5, B-6 in Fig. 2 (b)(c). Suppose we have 3
threads, then we let each thread execute the core method on A-0,
B-0, B-1, and also let the first 2 threads handle the B-5, B-6. Note
that we allow different threads to handle patches of different feature
scales simultaneously, thus avoiding the aforementioned waste of
resources issue with sequential processing of each feature scale.

Step 2: move to the next superpatch in one of two ways: One
is the go-right move, namely move to the next superpatch in the
same row along the 𝑥-axis. The 𝑥-coordinate of the leftmost points
in the next superpatch is that of the first patch in this row that the
current superpatch fails to cover. For example, in Fig. 3, the first
patches that Superpatch 0 fails to cover on the 𝑥-axis are A-1 and
B-2 which share the same leftmost 𝑥-coordinate of 18, which is
that of Superpatch 1. Go-right moves continue till the last possible
superpatch in the current row, namely Superpatch 2.

For the go-right move, we can use a simple incremental data
transfer strategy to negate the need for repeated global memory
access. Specifically, we store the data points in each superpatch in
a column-first (i.e. the 𝑦-coordinates of contiguous points change
faster) manner in the shared memory. This means that when we
perform a go-right move, if the next and the current superpatches
have any overlap (i.e. the first few columns of data points in the
new superpatch also form the last few columns in the previous one),
these data points already reside in a contiguous sub-chunk of the
chunk of shared memory allocated to the superpatches. Hence, we
do not need to re-fetch these points from global memory. Rather,
we can simply move the starting index of the new superpatch in the
shared memory to where these data points reside. For example, Fig.
4 shows the incremental data transfer for move from Superpatch
0 to 1. In Fig. 3, the first 3 columns of Superpatch 1 are also the
last 3 columns of Superpatch 0, and are already in a sub-chunk of
shared memory with the starting index of 18 × 21 = 378. Thus, we
simply move the starting position of Superpatch 0 to 378 without
reloading these 3 columns. For the rest of the new superpatch, we
append these data points to the end of the existing ones. If we hit
the end of the chunk of shared memory for superpatches, we simply
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Figure 3: An illustration of our pseudo-one-pass sweep (POPS) framework. For the example that is divided into patches in Fig. 2
(b)(c), we use superpatches with a maximum size of 21 × 21 to moving over all patches in it, fetching data points from global
memory to shared memory. Within each superpatch, the green regions indicate data points that have not been covered by any
previous superpatches. The regions indicate data points that have been covered by the last superpatch in the same row, but
have not by any superpatches in a previous row; by incremental data transfer (Fig..

Figure 4: An illustration of shared memory usage for Super-
patches 0-1 under incremental data transfer. Green indicates
new data points that require global memory access. Grey
indicates data that are already in shared memory. Red arrow
indicates where the first point in the superpatch is stored.

re-use the indices from the beginning of the chunk. For example,
for Superpatch 1, the columns other than the first 3 ones are stored
in the positions with indices 0 to 18 × 21 − 1 = 377.

The second way of moving is the go-up move. When a go-right
move hits the end of a row, we re-initiate the superpatch at the
leftmost position of the next row. The 𝑦-coordinate of the points at
the bottom of the current row is the minimum 𝑦-coordinate among
the points in patches that have not been covered by previous rows.
For example, in Fig. 3, when moving from Superpatch 2 to 3, this
minimum 𝑦-coordinate is 18, which is that of the points at the
bottom of Patches A-2, A-3, B-10, B-11, B-12, B-13, and B-14. Thus,
Superpatch 3 starts at 18 on the𝑦-axis. After the go-upmove, we can
again perform the go-right move. The iterative process of "go-right,
then go-up" stops when all patches have been processed.

Looking back on the entire pseudo-one-pass sweep, we reach a
point where we can explain its namesake. By one-pass, wemean that
unlike the aforementioned naïve approach where we scan the global

memory multiple times for all feature scales, we can now logically
perform only one scan with the superpatches for multi-scale feature
extraction. By pseudo we mean while it is logically possible to scan
only once, in practice we need repeated global memory access for
overlapping data points in superpatches from different rows (the
purple regions in Fig. 3). However, the number of such points are
usually very limited compared to the total number of points in the
example. Also, our incremental data transfer strategy ensures that
no repeated global memory access is required for a single row, which
can greatly reduce the total number of repeated accesses. Also, from
amethodological perspective, faced with multi-scale patches, rather
than simply group them by their scale, POPS achieves a memory-
aware grouping with superpatches, thus achieving a higher degree
of parallelism under limited shared memory resources.

Before we move on, we discuss the setting of the superpatch
size parameters 𝑠𝑝𝑆𝑐𝑎𝑙𝑒𝑋 and 𝑠𝑝𝑆𝑐𝑎𝑙𝑒𝑌 . The idea is to make the
superpatch as large as possible given a fixed-sized chuck of shared
memory to hold it. This can be done by making 𝑠𝑝𝑆𝑐𝑎𝑙𝑒𝑋 and
𝑠𝑝𝑆𝑐𝑎𝑙𝑒𝑌 as large as possible while keeping their difference as
small as possible. That is, if the chunk of memory can hold up to
𝑁 datas points, we let 𝑠𝑝𝑆𝑐𝑎𝑙𝑒𝑋 and 𝑠𝑝𝑆𝑐𝑎𝑙𝑒𝑌 to be roughly

√
𝑁 .

Also, note that a superpatch must be larger than the largest of all
patches sizes, which poses a limitation on the setting of 𝑓 𝑆𝑐𝑎𝑙𝑒𝑠
as under the largest scale, the number of points in the patch must
be smaller than 𝑠𝑝𝑆𝑐𝑎𝑙𝑒𝑋 × 𝑠𝑝𝑆𝑐𝑎𝑙𝑒𝑌 . However, we find this limi-
tation to have little impact in PARKER (Section 6.1) where 𝑓 𝑆𝑐𝑎𝑙𝑒𝑠
are set by expert knowledge.
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4.2 Memory-efficient Core Method
Implementation

As mentioned in Section 3.1, our feature extraction framework
allows for user-defined core method. On the CPU where memory
resources are usually abundant, there are few limitations to the
choice of core method. We now show that this also holds on the
GPU where memory space is relatively scarce. Recall that we let
each thread execute the core method for a single patch at a time. The
patch itself, which holds the raw gridded data, already resides in
shared memory. Thus, the only remaining concern is assigning the
overhead workspace memory needed by the core method to process
the raw data. Given the limited size of per-thread registers, we need
to relegate the workspace to shared or global memory. Modern
GPUs have tens of GBs of global memory, which allows the vast
majority of (if not all) core methods to be run on the GPU with their
workspace in global memory. However, as global memory is slow
to access, we opt to assign the workspace within the registers (and
a small chunck of the shared memory as needed). This requires the
workspace to be of 𝑂 (1) size, regardless of the number of points in
raw data. As it turns out, in many cases, this is achievable.

To illustrate, we look into two core methods we use in PARKER,
and show how they can be implemented with𝑂 (1) workspace with
low time complexity.

Core method 1: PCA. In [2], Brodu and Lague proposed to
use the explained variance ratios of the first two PCA components
of a given patch as its features. This entails 3 steps: 1) Obtain the
covariance matrix C of the patch. Suppose the patch contains 𝑛
raw points, each being a 3D coordinate, then the patch can be
represented as an 𝑛 × 3 matrix M = [mT

0 ,m
T
1 ,m

T
2 ] where mT

𝑖
=

[𝑚𝑖,1,𝑚𝑖,2, . . . ,𝑚𝑖,𝑛] (𝑖 = 1, 2, 3) are columns of M, and C is a 3 × 3
matrix where the element at position (𝑖, 𝑗) is

𝑐𝑖, 𝑗 =

∑𝑛
𝑘=1𝑚𝑖,𝑘𝑚 𝑗,𝑘

𝑛 − 1
(1)

Note that 𝑐𝑖, 𝑗 can be obtained in 𝑂 (𝑛) time with 𝑂 (1) space as we
only need to keep one 𝑚𝑖,𝑘 and one 𝑚 𝑗,𝑘 in the workspace at a
time. As there are 3 × 3 = 𝑂 (1) elements in C, it takes 𝑂 (𝑛) time
and𝑂 (1) space to obtain C. 2) Obtain the eigenvalues _1, _2 and _3
of C, which takes 𝑂 (1) time and space as the size of C is constant.
3) Obtain the explained variance ratios which are _1

_1+_2+_3 and
_2

_1+_2+_3 , which can also be obtained in 𝑂 (1) time and space. Thus
the entire process takes 𝑂 (1) workspace and 𝑂 (𝑛) time.

Core method 2: STAT. The same statistics used for feature
aggregation (Section 3.1) can also be used as raw features when
applied to the elevation (namely 𝑧) values in a patch (rather than
to the raw features of the patch as in feature aggregation). Sup-
pose the set of elevation values are {𝑧𝑖 | 1 ≤ 𝑖 ≤ 𝑛}. Among the
aforementioned statistics, mean, variance, skewness and kurtosis
(denoted as `, 𝜎2, ˜̀3 and ˜̀4) can be calculated as follows:

` =

∑
𝑖 𝑧𝑖

𝑛
(2)

𝜎2 =

∑
𝑖 𝑧

2
𝑖

𝑛
− `2 (3)

˜̀3 =
∑

𝑖 𝑧
3
𝑖
− 3`

∑
𝑖 𝑧

2
𝑖
+ 3`2

∑
𝑖 𝑧𝑖 − 𝑛`3

𝑛𝜎3 (4)

˜̀4 =
∑

𝑖 𝑧
4
𝑖
− 4`

∑
𝑖 𝑧

2
𝑖
+ 6`2

∑
𝑖 𝑧

2
𝑖
− 4`3

∑
𝑖 𝑧𝑖 + 𝑛`4

𝑛𝜎4 − 3 (5)

We can obtain the sums
∑
𝑖 𝑧𝑖 ,

∑
𝑖 𝑧

2
𝑖
,
∑
𝑖 𝑧

3
𝑖
,
∑
𝑖 𝑧

4
𝑖
in these equa-

tions in 𝑂 (𝑛) time and 𝑂 (1) workspace, as we only need to keep
the sum so far and the next 𝑧𝑖 value in the workspace at a time.
With these obtained, the 4 statistics can be trivially computed in
O(1) time and space. Thus, it takes 𝑂 (1) workspace and 𝑂 (𝑛) time
in total.

For min and max, we can obtain them in O(1) workspace and
O(n) time with a one-pass scan of the patch to fetch the minimum
and maximum 𝑧 values. For Q1, median and Q3, we can obtain them
using some selection algorithm which usually comes with a space-
time trade-off. In our implementation, we use the basic algorithm
proposed in [20], which uses 𝑂 (1) workspace and 𝑂 (𝑛𝑙𝑔𝑛) time.
This is fast enough in most cases where the patch sizes are limited.
In the rare cases where this is too slow, Munro and Raman [20] pro-
vided faster methods with slightly higher workspace requirement.
We omit discussion of these methods for brevity.

5 GPU-BASED FEATURE AGGREGATION
We now discuss GPU-based feature aggregation, which entails
calculation of the statistics mentioned in Section 3.1 over the raw
features. For mean, variance, skewness and kurtosis, similar to what
we did for STAT in Section 4.2, we can first obtain the 4 sums and
then trivially calculate these statistics. The sums can be obtained by
CUDA-based parallel reduction [9]. For min, Q1, mean, Q3 and max,
we sort each dimension of the patch-level features and obtain them
trivially, using the CuPy [21] library for GPU-based sorting. After
pre-computing the sums and the sorted raw features, we let each
GPU thread handle the (trivial) calculation of a single aggregated
statistic, thus completing feature aggregation.

6 EXPERIMENTAL EVALUATION
For experiments, we first showcase the utility of the proposed
algorithms in our PARKER project. Then, we zoom in on our POPS
framework and see how different grid configurations and parameter
settings can affect its efficiency. Unless otherwise stated, all CPU-
based experiments were run on a Ubuntu 18.04 server with 1 AMD
EPYC 7402P 24-core CPU @2.8GHz and 125GB memory, while
all GPU-based experiments were run on a laptop computer with
1 GeForce GTX 1660 Ti GPU and Windows 10 OS. The idea is to
show that even on a laptop computer, our GPU-based algorithms
can still be much faster than CPU-based ones on a dedicated server.
All CPU-based code is written in Python 3, while all GPU-based
code is written in CUDA-C [22] and linked to the Python code
using PyCUDA [14]. The number of threads per GPU block is 256
throughout the experiments. All results are averaged over 10 runs.

6.1 Utility in PARKER
As mentioned in Section 3.1, to find potential topographical sig-
natures of terrestrial life, we compare the topographical features
extracted from Earth with other planets. Currently, we are inter-
ested in comparing PCA and STAT on their abilities to find features
that can distinguish between the Earth andMars. To do so, we select
20 ROIs (11 from the Earth, 9 from Mars) from the GEDI [7] and
MOLA [26] repositories which contain point clouds of both planets
respectively. Using 5 interpolation methods to preprocess the raw
data, we end up with a dataset of 100 data grids with a total number
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Core
method

Raw feature extraction time (s) Feature aggregation time (s)
CPU MPI POPS-NMS POPS CPU MPI GPU

PCA 6.2 × 104±
1.1 × 103

3.2 × 103±
2.7 × 102

4.9 × 101±
6.7 × 10−2

3.8 × 101±
1.2 × 10−1

4.6 × 103±
3.3 × 102

2.7 × 102±
1.9 × 101

6.7 × 101±
2.1 × 10−1

STAT 1.4 × 105±
8.0 × 102

7.1 × 103±
6.8 × 102

3.0 × 103±
1.6 × 100

1.6 × 103±
4.4 × 100

1.8 × 104±
1.3 × 102

1.1 × 103±
8.9 × 101

1.6 × 102±
1.6 × 101

Total 2.0 × 105 1.0 × 104 3.1 × 103 1.6 × 103 2.3 × 104 1.4 × 103 2.2 × 102

Table 1: Running time on PARKER data (mean ± std)
Figure 5: Critical difference diagram of
cross validation results in PARKER.

of 702,223,010 data points. The resolution (i.e. distance between
adjacent grid points on 𝑥- and 𝑦-axes) of the grids is 60 m.

Under the guidance of a geoscientist, we pinpoint 3 groups of
𝑓 𝑆𝑐𝑎𝑙𝑒𝑠 on which characteristic features likely exist into the data:
the small scales of (300m, 400m, 500m), themedium scales of (700m,
800m, 900m), and the large scales of (1100m, 1200m, 1300m). Then,
following the trade-off of example (feature) quantity and quality
mentioned in Section 3.1, we set 𝑒𝑥𝑆𝑐𝑎𝑙𝑒 and 𝑒𝑥𝑆𝑡𝑒𝑝 to be both
2000m and 𝑓 𝑆𝑡𝑒𝑝𝑠 to be half of 𝑓 𝑆𝑐𝑎𝑙𝑒𝑠 . We run both 𝑃𝐶𝐴 and
𝑆𝑇𝐴𝑇 using this setting with the following frameworks: 1) CPU
which is the sequential framework; 2)MPI which is used for parallel
processing with 20 cores, each core handling some of the examples
in the current ROI. 3) POPS, running under two hardware settings:
the laptop-based GTX 1660 Ti GPU for efficiency evaluation only,
and a server-based Quadro RTX 6000 GPU which we actually used
in PARKER. 4) POPS-NMSwhich is POPSwith simultaneous process-
ing of multi-scale features disabled by the _syncthreads() function,
also run on the two different GPUs. For feature aggregation, we con-
sider CPU-based sequential aggregation, MPI-based aggregation
with 24 cores, and GPU-based aggregation on both hardwares.

The running times on the 100 grids are shown in Table 1. For raw
feature extraction, MPI is about 20x faster than CPU as 20 cores
were used, yet it is still no match for our POPS, which is over 1600x
and 80x as fast as CPU and MPI for PCA, and over 85x and 4x as
fast for STAT. The smaller gain on STAT is likely because we used
an 𝑂 (𝑛𝑙𝑔𝑛) algorithm [20] to calculate Q1, median and Q3, rather
than an𝑂 (𝑛) one that is relatively easy to implement on CPU. Still,
our acceleration is substantial, despite running on merely a laptop
computer. Also, POPS is almost 2x as fast as POPS-NMS, which can
make a great difference when the absolute running time is long,
such as the case with STAT. Finally, for feature aggregation, our
method is over 100x and 6x as fast as CPU and MPI.

In Table 1, we deliberatedly ran our GPU-based algorithms on
a laptop to highlight their efficiency. In PARKER, we use a server
with a Quadro RTX 6000 GPU instead, leading to about 592s for raw
feature extraction and 6.52s for aggregation; in particular, for PCA,
the times are 1.31s and 1.30s which are near instant. This makes
near real-time analytics of large topographical data possible, which
to the best of our knowledge has never been achieved before. By
near real-timewemean providing results within a matter of seconds
or minutes, as such delays are negligible when compared to data
collection time and cause minimal inconvenience to researchers.
Such near real-time processing enables us to efficiently compare
the abilities of PCA and STAT to distinguish between Earth and
Mars under the 3 aforementioned 𝑓 𝑆𝑐𝑎𝑙𝑒𝑠 settings. Specifically, we
perform the comparison using cross validation (CV) with a range of
settings for train-test split, data balancing and classifier, using the
Cohen’s kappa coefficient [4] as the evaluation metric. Following

the practice of Bagnall et al. [1], we conduct Wilcoxon signed rank
tests to validate the significance of the CV results, which are shown
in Fig. 5 in a critical difference diagram [5]. Here, methods to the
right of the diagram perform better, and a bold black bar will be
used to group two or more methods together if they do not have
statistically significant differences (this is not present in Fig. 5). As
is shown, PCA under the small 𝑓 𝑆𝑐𝑎𝑙𝑒𝑠 (300m, 400m, 500m) out-
perform all other methods, and PCA is generally superior to STAT .
This is also validated by visualization studies. For example, Fig. 6
visualizes the aggregated features of the Socompa Landslide on
Earth [7] using the t-SNE [27] method, with all three groups of
𝑓 𝑆𝑐𝑎𝑙𝑒𝑠 concatenated into one feature vector for each example. As
is shown, the data distribution for PCA is denser and more regular.

The potential of POPS does not end here. Due to its generic na-
ture, it allows us to efficiently test new feature extraction methods
and compare Earth with other align worlds than Mars in the next
phase of PARKER , which may finally answer the question: is there
a topographical signature of life on earth?

6.2 Experiments on Simulated Data
As is shown in Table 1, the bulk of the total feature extraction time
for both CPU- and GPU-based solutions is spent on raw feature
extraction, thus we further evaluate our POPS raw feature extrac-
tion framework on simulated data grids. For the first simulation,
as the choice of feature scales 𝑓 𝑒𝑎𝑡𝑆𝑐𝑎𝑙𝑒𝑠 is of great geoscientific
importance in our PARKER project, we examine how POPS handles
different settings of 𝑓 𝑒𝑎𝑡𝑆𝑐𝑎𝑙𝑒𝑠 with varying number of examples
and number of points in each example. Specifically, we generate a
grid with 30000 × 30000 = 9 × 108 points. Fixing 𝑒𝑥𝑆𝑡𝑒𝑝 to be the
same as 𝑒𝑥𝑆𝑐𝑎𝑙𝑒 , we set different values for 𝑒𝑥𝑆𝑐𝑎𝑙𝑒 and thus differ-
ent numbers of examples in the grid. For 𝑓 𝑒𝑎𝑡𝑆𝑐𝑎𝑙𝑒𝑠 , we consider
three options: 𝑠𝑚𝑎𝑙𝑙 where the patches have 5-10 points along each
of the two edges,𝑚𝑒𝑑𝑖𝑢𝑚 with 15-20 points, and 𝑙𝑎𝑟𝑔𝑒 with 25-30
points. Note that these numbers are NOT the number of points in
the patch (which is the square of the former), and are NOT the same
as the 𝑠𝑚𝑎𝑙𝑙 ,𝑚𝑒𝑑𝑖𝑢𝑚 and 𝑙𝑎𝑟𝑔𝑒 settings in the previous section, al-
though the former do mimic the latter to simulate real-world cases.
With 𝑓 𝑒𝑎𝑡𝑆𝑡𝑒𝑝𝑠 fixed to half of 𝑓 𝑒𝑎𝑡𝑆𝑐𝑎𝑙𝑒𝑠 which is the same as our
real-world configuration, we run POPS under these 3 settings and
record the running times.

The results are shown in Fig. 7. First of all, similar to what was
observed on real data, 𝑆𝑇𝐴𝑇 is much slower than 𝑃𝐶𝐴 due to its
higher time complexity. As with the 𝑓 𝑒𝑎𝑡𝑆𝑐𝑎𝑙𝑒𝑠 settings, both 𝑠𝑚𝑎𝑙𝑙
and𝑚𝑒𝑑𝑖𝑢𝑚 leads to relatively short running time while 𝑙𝑎𝑟𝑔𝑒 is
significantly slower. This reveals a weakness of our POPS methods:
It only allows one thread per patch, no matter how large the patch
is, thus it is relatively inefficient at processing large feature scales.
In particular, despite its optimizations for multi-scale scenarios, this
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Figure 6: Visualization of aggregated fea-
tures of the Socompa Landslide on Earth.

Figure 7: Running time of POPS on a sim-
ulated grid with 30000 × 30000 points.

Figure 8: Raw feature extraction time on
simulated grids with different sizes. Note
that the time axis is in log scale.

yields limited gains when all the scales are large. That being said,
POPS is still reasonably efficient under the 𝑙𝑎𝑟𝑔𝑒 setting. Another
interesting phenomenon is the zig-zag pattern of the running time
curve for 𝑙𝑎𝑟𝑔𝑒 . This is likely the combined effect of two competing
factors: As the number of points in each example increases, so
does the number of patches per example and thus the per-example
processing time. On the other hand, the number of examples drops
as they grow larger, which decreases the overall running time.

Next we consider the effect of the grid size on raw feature extrac-
tion time. Similar to what we did on real data, here we consider the
following three methods: CPU, POPS-NMS, POPS. Fixing the num-
ber of points in each example to 300 and letting 𝑒𝑥𝑆𝑡𝑒𝑝 = 𝑒𝑥𝑆𝑐𝑎𝑙𝑒 ,
we let 𝑓 𝑒𝑎𝑡𝑆𝑐𝑎𝑙𝑒𝑠 to be the union of the 𝑠𝑚𝑎𝑙𝑙 ,𝑚𝑒𝑑𝑖𝑢𝑚 and 𝑙𝑎𝑟𝑔𝑒
settings in the previous experiment and keep 𝑓 𝑒𝑎𝑡𝑆𝑡𝑒𝑝𝑠 as being
half of 𝑓 𝑒𝑎𝑡𝑆𝑐𝑎𝑙𝑒𝑠 . Then we set different grid sizes and record the
running time. Note that we set a timeout threshold of 3h (10800s).

The results are shown in Fig. 8. For the CPU-based solution, it
is much slower than the GPU-based frameworks, running out of
time for 𝑃𝐶𝐴 and 𝑆𝑇𝐴𝑇 before reaching a grid size of 92 × 106 =

8, 100, 000 points. Also, in terms of the trend of the curves for GPU-
based solutions and the CPU-based one, for 𝑃𝐶𝐴 the trend are
similar. However, for 𝑆𝑇𝐴𝑇 , the difference between the two are
relatively small at the beginning, yet gradually grows as the grid
gets larger. This is likely because when the grid is small, the power
of parallelism relatively weaker at offseting the disadvantage we
have in terms of per-patch time complexity. However, as the grid
becomes larger, the power of parallelism gradually surpasses the
effect of higher time complexity, thus leading to greater advantage
on our side. Finally, in the vast majority of cases (especially when
the grid is larger), POPS is able to beat POPS-NMS thanks to the
optimizations for multi-scale features.

7 CONCLUSIONS
In this paper, in the context of the ongoing PARKER project where
we search for topographical signatures of life on Earth, we pro-
posed POPS, an original and generic framework for GPU-based
feature extraction for 3D data and applied it to planetary LiDAR
data on both the Earth and Mars. POPS is optimized for multi-scale
feature extraction with limited GPU memory resources, and scales
to massive LiDAR datasets. We showcased its customizability by
demonstrating how to instantiate it efficiently with two core meth-
ods PCA and STAT. We also proposed a method for GPU-based
feature aggregation. Extensive experiments have demonstrated the
efficiency of our algorithms, which allow for the first time near
real-time analytics of massive planetary LiDAR data. With POPS,
we were able to compare the abilities of PCA and STAT to distin-
guish between Earth and Mars, where we found PCA the superior
method. POPS will also help us test new feature extraction methods
and extend to new alien worlds in the next phase of PARKER. Also,
it is worth noting that our algorithms are also applicable to non-
planetary LiDAR data. Essentially, they are suitable for any gridded
data in the 3D space that supports the two-level division scheme
introduced in Section 3.1. For example, it can also be used to extract
features from airborne Radar data of the Earth surface, and analyze
data from a neutrino telescopes which has an underwater array of
gridded sensors in the 3D space.
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