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Abstract 

Deep-learning (DL)-based auto-contouring solutions have recently been proposed as a 

convincing alternative to decrease workload of target volumes and organs-at-risk (OAR) 

delineation in radiotherapy planning and improve inter-observer consistency. However, 

there is minimal literature of clinical implementations of such algorithms in a clinical routine. 

In this paper we first present an update of the state-of-the-art of DL-based solutions. We 

then summarize recent recommendations proposed by the European society for therapeutic 

radiology and oncology (ESTRO) to be followed before any clinical implementation of 

artificial intelligence-based solutions in clinic. The last section describes the methodology 

carried out by three French radiation oncology departments to deploy CE-marked 

commercial solutions.  

Based on the information collected, a majority of OAR are retained by the centers among 

those proposed by the manufacturers, validating the usefulness of DL-based models to 

decrease clinicians' workload. Target volumes, with the exception of lymph node areas in 

breast, head and neck and pelvic regions, whole breast, breast wall, prostate and seminal 

vesicles, are not available in the three commercial solutions at this time. No implemented 

workflows are currently available to continuously improve the models, but these can be 

adapted/retrained in some solutions during the commissioning phase to best fit local 

practices. In reported experiences, automatic workflows were implemented to limit human 

interactions and make the workflow more fluid. Recommendations published by the ESTRO 

group will be of importance for guiding physicists in the clinical implementation of patient 

specific and regular quality assurances.   



Keywords: Deep-learning, auto-contouring, automatic delineation, clinical implementation, 

radiotherapy 

Résumé 

Les solutions de segmentation automatique basées sur l'apprentissage profond ont été 

proposées récemment comme une alternative intéressante pour les départements de 

radiothérapie pour réduire fortement la charge de travail liée à la définition des volumes 

cibles et des organes à risque dans la planification de traitement et améliorer la cohérence 

inter-experts. Peu de publications dans la littérature décrivent cependant la mise en œuvre 

clinique de ces algorithmes. Cet article vise à présenter dans un premier temps une mise à 

jour de l'état de l'art des solutions de segmentation automatique basées sur l’apprentissage 

profond. La deuxième partie résume les recommandations récentes publiées par la société 

européenne de radiologie thérapeutique et d’oncologie (ESTRO) à mettre en œuvre pour 

une implémentation sécurisée de solutions basées sur l'intelligence artificielle. La dernière 

partie décrit la méthodologie suivie par trois services de radiothérapie français pour le 

déploiement de trois solutions commerciales différentes. D'après les informations 

recueillies, la majorité des OAR proposés par les constructeurs sont retenus par les centres, 

validant l’apport des modèles basés sur l’apprentissage profond sur la diminution de la 

charge de travail des cliniciens. Les volumes cibles, à l'exception des aires ganglionnaires 

dans les régions du sein, de la tête et du cou et pelviennes, de la glande mammaire, de la 

paroi mammaire, de la prostate et des vésicules séminales, ne sont pas disponibles dans les 

trois solutions commerciales à l'heure actuelle. Aucune implémentation ne permet 

aujourd’hui d’améliorer les modèles en continu, mais ceux-ci peuvent être adaptés et 

réentraînés dans certaines solutions pendant la phase de mise en service pour mieux 



correspondre aux pratiques locales. Dans les expériences rapportées, la mise en œuvre est 

très automatisée et ne requiert quasiment aucune intervention humaine, rendant ainsi très 

fluide le flux de travail. Les recommandations publiées par l’ESTRO sont importantes pour 

guider les physiciens dans la mise en œuvre clinique de programmes spécifiques d’assurance 

qualité.   

Mots-clés : Apprentissage profond, segmentation automatique, délinéation automatique, 

implémentation clinique, radiothérapie. 

 

 

 

 

 

 

 

 

 

 

Introduction 



Workflow in radiation therapy consists of a succession of steps, some of which, such as 

defining target volumes and organs-at-risk (OAR), are very time-consuming for radiation 

oncologists. Atlas, multi-atlas and model-based solutions have been proposed first as an 

alternative to manual contouring to decrease physicians’ workload(1). However, clinical 

adoption has been limited, as the time required to correct automatic contours can take as 

long as manual contouring from scratch, especially for low-contrast structures or certain 

lymph node regions(2,3). The recent advent of graphics processing units (GPU) has led to 

many recent breakthroughs for deep-learning (DL) techniques and their translation to 

medicine(4). Radiation oncology has rapidly benefited from this trend for several reasons. 

Firstly, radiotherapy departments have large amounts of annotated retrospective data, 

which have been of great value in developing models based on artificial intelligence (AI). 

Delineation of target volumes and OAR, which is a mandatory step for every patient, is in 

addition highly dependent on the observer. Furthermore, it is an extremely time-consuming 

and labor-intensive procedure. Therefore, DL solutions provide many strong arguments for 

the harmonization of practices, which is becoming necessary at a time of millimetric-scale 

irradiations and image-guided radiotherapy. In this paper we first present an update of the 

state-of-the-art of DL-based solutions. We then summarize recent recommendations 

proposed by the European society for therapeutic radiology and oncology (ESTRO) to be 

followed before any clinical implementation of artificial intelligence-based solutions in clinic. 

The last section describes the methodology carried out by three French radiation oncology 

departments to deploy CE-marked commercial solutions. 

Litterature review 



A PubMed search based on the following keywords was conducted to summarize state-of-

the-art: "radiotherapy" and (("automatic" and "segmentation") or "auto-contouring" or 

"auto contouring" or "automatic contouring" or "autocontouring" or "auto-segmentation" or 

"auto segmentation" or "automatic segmentation" or "autosegmentation" or "automatic 

delineation") and "deep learning”. Table 1 summarizes the results of this search. It validates 

enthusiasm in this new area of research from 2018, however highlights a moderate number 

of studies detailing methodology or feedback regarding clinical experience. These few 

papers are briefly described here. In 2021, Cha et al. prospectively evaluated performance of 

an in-house auto-segmentation algorithm for MR-based prostate radiotherapy planning on a 

cohort of 173 patients, in which 85% of the patients were treated by stereotactic body 

radiation therapy (SBRT) at Memorial Sloan Kettering Cancer Center (New York, United 

States)(5). High performance was observed for the clinical target volumes (CTV) including the 

prostate and the seminal vesicles with a volumetric Dice-Sørensen coefficient (VDSC) equal 

to 0.89 (interquartile range: 0.83-0.95). For 43 patients, a survey was conducted and showed 

that 33% of auto-contours required major "clinically significant" adjustments, leading to 12 

minutes of time saved (30%) on the whole cohort compared to historic contouring time 

evaluations. A second evaluation was performed in the Department of Radiation Oncology, 

Groningen, The Netherlands from April 2019 to April 2020(6). In this experience, a 

commercial DL-based system (DLC Model, Mirada WorkflowBox 2.0, Mirada Medical Ltd, 

Oxford, UK) was tested for contouring of 26 OAR on 103 head and neck patients. Authors 

observed that the software had a tendency to under-estimate the volumes compared to the 

reference contours of all considered organs. They concluded that the study had allowed 

them to highlight deviations in manual contouring practices and identify a lack of clarity or 

uncertainties in guidelines. The latest work detailing a clinical implementation experience 



was carried out in the radiotherapy department in Utrecht, the Netherlands and was focused 

on magnetic resonance imaging-based OAR auto-contouring in prostate cancer(7). In this 

monocentric study, two 3D convolutional neural networks (CNN) called DeepMedic and 

dense V-net were trained to segment bladder, rectum and femurs on the first 48 patients. 

Considering geometric metrics and rating by one expert, the best algorithm, i.e. DeepMedic, 

was selected, retrained on 97 consecutive patients and implemented in clinical routine in 

August 2019. On the test set (53 patients), a mean surface Dice similarity coefficient of 

0.98±0.03, 0.92±0.05, 0.989±0.008 and 0.997±0.003 was obtained for bladder, rectum, left 

and right femurs respectively (τ = 2 mm). As detailed in Table 1, the majority of other papers 

were dedicated to network development and performance evaluation based either on 

monocentric (N = 36) or multicentric cohorts (N = 18). Head and neck (N = 21) and prostate 

(N = 10) were tumor locations encountering the main interest.  

ESTRO recommendations 

Following the 3rd ESTRO physics workshop on 

‘Implementation/commissioning/quality assurance (QA) of artificial intelligence 

techniques’ in Budapest (2019), recommendations were proposed by a group of 

seven medical physicists regarding implementation and quality assurance of artificial 

intelligence-based applications in radiotherapy(8). Concerning automatic 

segmentation tools, authors insist on the need to ask for details to the provider of the 

algorithm about the variability of the clinical data used to train the model, including 

variability in acquisition parameters/devices, with the objective to evaluate its 

generalizability. They set the minimal number of patients to be included in the local 

test set to 10, notifying this number should be increased in case of large variations in 



the similarity metrics considered for performance evaluation. Auto-contouring is quite 

easy to introduce in clinic given that every contour should be reviewed by a radiation 

oncologist. However, methods have been proposed in the literature to ease quality 

checks and rate confidence in the proposed contours and were mentioned by the 

authors as solutions to be implemented for case-specific QA. As an example, 

statistical models characterizing shape, volume or spatial location of the centroid of 

generated contours have been proposed(9). Use of a second auto contouring 

algorithm can be thought about too to identify outliers and generate warnings(10). 

Last option considers an architecture integrating a network for segmentation and 

another for QA(11). In this work, the second network predicted either categorial 

outputs indicating the quality level of each slice in terms of Dice similarity 

coefficient (DSC) or the DSC score directly. In terms of routine QA, authors 

recommended setting up a Quality Management Program (QMP) to ensure that the 

model does not vary with time even in case of software’s version update. A reference 

data set reflecting clinical practices should be selected for this purpose and 

automatically recontoured on a regular basis to identify and quantify changes. In 

addition, they suggested the idea of creating a repository of patient cases for which 

contouring was suboptimal to identify limitations of the proposed model and ease 

adjustments by the developers of the algorithm. If the acquisition parameters are 

changed or a new equipment is purchased, a new test set should be implemented 

and the performance of the model reassessed. 

 

 

Experiences of clinical implementation  



The present section describes the methodology of clinical implementation of different 

commercial software for auto-contouring performed in three French radiation 

oncology departments, i.e. Centre Léon Bérard (Lyon, France), Hôpital Européen 

Georges Pompidou (Paris, France) and Clinique Pasteur-ONCORAD (Toulouse, 

France). Table 2 summarizes models deployed in each center, numbers of OAR and 

target volumes automatically contoured for each model, and percentages of OAR and 

target volumes retained by the center. The second part of Table 2 describes the 

number of patient data used to construct the model by the provider (if known). Part 3 

details the local commissioning procedures, including the number of patients 

considered for each tumor location, and the metrics used for performance analysis. 

The last group of lines is focused on the case-specific QA and regular QA. 

Deployment of ART-Plan Annotate in Centre Léon 

Bérard (Lyon, France) 

ART-Plan Annotate (Therapanacea, Paris, France) is an automatic contouring 

CE/FDA-cleared solution based on an ensemble of deep learning models trained for 

contouring of 100+ organs at risk according to ESTRO guidelines on the basis of 

25,000 patients after anatomically preserving data augmentation(12).  

The solution was deployed one year ago in Centre Léon Bérard, Lyon, France (8 

treatment units, more than 3000 patients treated per year) for six tumor locations 

including male pelvis, abdominal cavity, thorax, breast, head and neck and brain 

cancers. Since then, approximately 500 prostate patients, 300 digestive patients 

(abdominal cavity), 386 lung patients, 694 breast patients, 215 head and neck 

patients, and 260 brain patients have benefitted from this technology. The software 



provides lymph node auto-contouring for pelvic, breast and head and neck tumor 

locations. However, it was not retained by the local medical staff for head and neck 

tumors. The trained models were directly made available to users, without specific 

training on local data. No further evolution of the model is currently planned on the 

basis of the prospective data acquired in clinical routine. 

The deployment timeline started with head and neck tumors, for which a first 

multicentric evaluation was carried out using data from the Centre Léon Bérard and 

Gustave Roussy (Villejuif, France). In this study, 100 patients were retrospectively 

selected in both centers (50 from each) and for each patient ART-Plan solution was 

used to generate full annotations of 14 OAR. After VSDC evaluation, the automatic 

contours were blended with those corresponding to the clinical experts (manual 

contours) in a blinded fashion. Each contour was then scored by 5 experts from both 

centers, as A/ clinically acceptable, B/ clinically acceptable after minor corrections, C/ 

not acceptable. Results showed that 96% of all manual contours were classified as 

clinically relevant (A + B). Values were equal to 98% for automatic contouring. The 

software had difficulty in delineating optical nerves and sub-mandibular glands. 

Following these positive results, deployment was pursued for pelvic and thoracic 

tumor locations, in five patients per location as a local test set. Five OAR were 

evaluated for the pelvic region and 6 OAR for the thoracic one. The comparison of 

the contours created by ART-Plan Annotate with the ones drawn by the clinical 

expert showed a mean Jaccard’s index of 86 % for the pelvic region and of 84 % for 

the thoracic region. Based on the Jaccard’s values, the contours that required the 

strongest corrections were identified to be the rectum in the pelvic region and the 

trachea in the thoracic area.   



Today, batch options, i.e. no human interaction is required, are implemented in order 

to launch automatically auto-contouring after Computed Tomography (CT) 

acquisition. As well, contours and associated CT images are sent automatically to the 

Treatment Planning System (TPS), where they are reviewed and edited when 

corrections are needed.    

Today, the integration of this software into clinical routine has led to significant 

changes in local practices with more OAR delineated for each patient and the 

delegation of delineation tasks distributed to dosimetrists. For example, for head and 

neck tumors, 13 OAR were previously delineated by physicians, including the 

parotids or the submandibular glands, which are now handled by dosimetrists. The 

introduction of automatic delineation in a clinical routine has finally allowed the 

harmonization of the nomenclatures of OAR and target volumes, which constitutes a 

step forward for the constitution of prospective databases, that is of upmost 

importance in the growing context of machine learning.    

Deployment of DLCExpert in Hôpital Européen 

Georges Pompidou (Paris) 

DLCExpert (Mirada Medical, Oxford, UK) exploits state-of-the-art DL technology to 

delineate automatically OAR and lymph node areas for head and neck, thorax, breast 

and prostate tumor locations. To provide high quality contours, training data 

integrates hundreds of patient datasets (at least 150 patient data per model), curated 

by clinical experts according to consensus guidelines. Based on diverse European 

collaborations, several models have been developed per anatomy, which allows the 

tool to be configured to fit local practices. Thus, institution can make the choice to 



keep model A for organ X and model B for organ Y. A post-processing tool is finally 

proposed by the provider to interact with the contours after they have been 

automatically inferred. For example, overlap management can be useful in cases 

where several models have been used for the contouring of different organs. 

The department of radiation oncology of Hôpital Européen Georges Pompidou (4 

treatment units, 1600 patients treated per year) is currently deploying DLCExpert for 

head and neck, male pelvis and breast cancers. However, this feedback focuses on 

breast cancer only, as the deployment of automatic contouring for this location is the 

most advanced, even still not used in clinical routine at the time of the writing of this 

article. For this tumor location, 6 OAR and 12 target volumes, including both breasts 

and 5 lymph node regions per side, are provided by the software and are all retained 

by the medical staff. Commissioning phase has evaluated quality of the contours for 

10 institutional patients based on the VDSC metric. Subjective rating by experts is in 

addition in progress using a 4-level scale (A/ no correction, B/ some missing slices at 

the lower or upper limits of the organ of interest, C/ a part of the organ of interest is 

missing, D/ a large part of the organ or the whole organ needs correction). In the 

short term, an evaluation of time saved is also envisaged by the center.  

The workflow has been designed so that it does not require human intervention. To 

this, a DICOM push is used to export the planning CT of the patient from the CT unit 

or the TPS to the DLCExpert server. The software then automatically identifies the 

model to be applied thanks to a dedicated DICOM tag. Auto-contours are finally 

automatically pushed to the TPS where they are retrieved by the user. No specific-

case QA is today envisaged. For regular QA, the center will identify test patients for 

which the automatic contouring will be relaunched at each major change in the 

workflow (change in the software version, CT device change, etc.).  



Questions are now open about the place this type of tool should have in the training 

of medical residents. 

Deployment of RayStation v9B automatic 

segmentation in Clinique Pasteur-ONCORAD 

(Toulouse) 

The Oncorad Garonne group is a private center located at the Pasteur Clinic 

(Toulouse, France) that treats approximately 2500 patients per year with 7 linear 

accelerators. The group is currently running the commissioning phase of the latest 

automatic segmentation solution RayStation v9B (RaySearch Laboratories, 

Stockholm, Sweden), based on fully-convolutional neural networks (FCNN). 

RayStation offers two alternatives to the users: either the use of its own models (RS 

models) or the possibility to train a new model (LOCAL model) based on local data. 

About 100 patients are needed to train RayStation’s DL-based models. Today, the 

Oncorad Group has selected RS models for 7 OAR (bladder, rectum, femoral heads, 

lungs, heart, esophagus and spinal cord) and the LOCAL models for target volumes 

(prostate, seminal vesicles and pelvic nodes) to better reproduce local practices. To 

evaluate the performance of the proposed solution, a first study was carried out, 

including 250 pelvic patients and 100 patients treated for a thoracic lesion. In this 

study, DL-based contours were compared to multi-atlas ones using physicians’ 

contours as references. VDSC, sensitivity and specificity metrics were quantified as 

performance metrics. In addition, a geometric study was conducted with the goal to 

evaluate the differences between the 3D coordinates of the barycenter of each 

organ. For pelvic location, shorter times were obtained for DL-based contours, with 



about one minute required to generate the OAR, compared to 6 minutes for the multi-

atlas solution. DL-based delineations always obtained better scores than the multi-

atlas ones with VDSC scores equal to 0.97, 0.87, and 0.88 for the bladder, rectum, 

and femoral heads respectively, to be compared with 0.71, 0.54 and 0.92 for the 

multi-atlas algorithm. Using the LOCAL models, VDSC scores of 0.89, 0.81 and 0.71 

were obtained for the prostate, seminal vesicles and pelvic nodes respectively. The 

mean differences between barycenter coordinates were less than 1 cm for all pelvic 

organs in the head-feet axis. In the right-left and anterior-posterior axes, the 

differences were all less than 0.4 cm, with a tendency to segment more slices for the 

LD-based solution than the medical doctors. 

The introduction of the use of the software in the clinical routine is underway for 

pelvic patients, especially those with lymph node involvement.  

Conclusion 

This article has summarized the recent literature on DL-based auto-contouring tools 

and identified the lack of shared experiences regarding clinical implementation. 

Based on three experiences, we have highlighted the clinical benefit of such tools, at 

least for the delineation of OAR and lymph node areas. Each center has deployed its 

own methodology for software implementation and quality assurance, highlighting the 

usefulness of recently published recommendations. Initial training must evolve rapidly 

to integrate this major change in practice and make physicians and physicists aware 

of the basics of AI at least in order to make communication with the industry critical 

and constructive.   
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  Centre Léon Bérard (Lyon, France) 
HEGP (Paris, 

France) 

Clinique 

Pasteur 

(Toulouse) 

Male pelvis Thorax Breast Head and neck Digestive Brain Breast Male pelvis 

OAR/Tar

get 

volumes 

Number of OAR 

automatically 

contoured by the 

model/accepted 

by the doctors (%) 

10/100% 12/67% 15/100% 33/85% 8/100% 14/100% 6/100% 4/100% 

Number of target 

volumes 

automatically 

contoured by the 

model/retained 

(%) 

3/100% 0/NA 12/100% 14/0% 0/NA 0/NA 12/100% 3/100% 

Model 

building 

and 

evolutivi

ty 

Number of data 

for model training 
1324 

information 

not received 
661 1655 1324 1655 > 200 

About 100 

patients data 

Continuous 

evolutivity of the 

model based on 

local data (yes/no) 

No No No No No No No  No 

Commis

sioning 

Number of 

patients 
5 5 5 150 

Used directly in 

clinical routine (> 

300 patients since 

implementation) 

Used directly in 

clinical routine (> 

250 patients 

since 

implementation) 

10 250 

Metrics for 

performances 

evaluation 

JI  

(Bladder, 

Rectum, Femoral 

heads, whole 

Patient) 

JI (Lungs, 

Heart, Trachea, 

Medullary 

canal, whole 

Patient) 

JI (Lungs, 

Heart, Trachea, 

Medullary 

canal, whole 

Patient) 

VDSC, Subjective 

rating, Time for 

correction 

JI (Lungs, Spinal 

Cord, Esophagus) 
- 

VDSC, Subjective 

rating, Time for 

correction 

VDSC, 

Sensitivity, 

Specificity, 

Coordinates of 

the barycenter 

Workflow description - 

Method of interfacing to 

scanner and TPS 

Automatic 

export and 

segmentation 

Automatic 

export and 

segmentation 

Automatic 

export and 

segmentation 

Automatic export 

and segmentation 

Automatic export 

and segmentation 

Automatic 

export and 

segmentation 

DICOM push from 

the TPS or CT 

device, automatic 

segmentation - 

application of the 

In progress 



right model via a 

DICOM Tag, 

application of 

post-processing, 

automatic export 

of the contours to 

the TPS 

Patient-specific QA - - - - - - - In progress 

Regular QA  - - - - - - 

Definition a test 

set for 

performance 

evaluation in case 

of major changes 

in the workflow 

In progress 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
        

 



Reference 
Organs of 

interest 

Imaging 

modality 
Tumor location 

Number of 

patients 
Objectives of the study 

Metrics used for performance 

evaluation 
Monocentric/Multicentric study 

Shi et al.(13) CTV CT Cervix 462 Network refinement 

DSC, comparison of 

performances to those of 3 

experts 

Muticentric validation 

Jenkins et al.(14) CTV ? Prostate 232 
Analysis of the correlations between 

contour variations and treatment outcome 
Local contour deviation Monocentric evaluation 

Liu et al.(15) OAR CT Head and neck 220 
New methodology based on unlabelled 

data 
DSC Muticentric validation 

Cha et al.(5) 
OAR + target 

volumes 
MRI Prostate 173 Clinical implementation 

 VDSC, SDSC, APL, time for 

corrections, rates on a 3-point 

protocol deviation scale 

Monocentric evaluation 

Hague et al.(16) OAR MRI Head and neck 

Training: 100 

MR data/ 621 

CT data - 38 

patients included 

in the test set in 

total  

Comparison of CT-based and MR-based 

OAR auto-contouring 
DSC, DTA Muticentric data 

Chung et al.(17) 
OAR + target 

volumes 
CT Breast  111 

Evaluation of performances of an house 

network 

DSC, HD, qualitative scoring by 

2 panels from 10 institutions, 

interobserver variability, 

delineation time, dosimetric 

impact 

Monomachine data 

Kim et al.(18) OAR CT Head and neck 100 
Evaluation of performances of an house 

network for adaptive RT 

DSC, FPD, FND, HD, MSD, 

Turing test, contouring time 
Monocentric evaluation 

Kieselmann et al.(19) Parotid glands MRI Head and neck 229 

Development of a two stage network for 

auto-contouring of MRI data from 

annotated CT data only 

DSC, HD, MSD Monocentric evaluation 

Zhang et al.(20) OAR CT Head and neck 
170 (20 in the 

test set) 

Evaluation of the performances of a two-

step segmentation model including a 

slice-classification step 

 DSC and HD Monocentric study 

Brouwer et al.(6) OAR CT Head and neck 103 
Evaluation of the manual adjustment of 

auto-contouring in routine  practice  

Range adjustments projected on 

a reference shape for each OAR 
Monocentric evaluation 

Brunenberg et al.(21) OAR CT Head and neck 

58 patients 

(independent 

test set) 

Evaluation of performances of a 

commercially available network on an 

independent test set 

 DSC and HD, Turing test Muticentric validation 



Oktay et al.(22) OAR CT 
Prostate, Head 

and neck cancer 

519 (pelvis) + 

242 (Head and 

neck) 

Multicentric evaluation of the 

performances of a modified U-Net 

DSC, Surface distance measures, 

delineation time  
Muticentric validation 

Kiljunen et al.(23) 
OAR + target 

volumes 
CT Prostate 30 

Retrospective evaluation of accuracy and 

efficiency gain  

DSC, SDSC, HD, differences in 

absolute and relative volumes, 

delineation time 

Muticentric evaluation 

Zhu et al.(24) OAR CT esophagus 19 
Evaluation of the dosimetric impact of 

autosegmentation on VMAT treatments 

DSC, MDA, Dosimetric 

evaluation 
Monocentric evaluation 

Sultana et al.(25) OAR CT 
Prostate, Head 

and neck cancer 

58 (Head and 

neck), 15 

(pelvis) - Test 

cohorts 

Proposition of a new segmentation 

strategy: two-step hierarchical CNN   
DSC Muticentric evaluation 

Chi et al.(26) OAR CT Head and neck 29 (test cohort) 
Proposition of a weakly supervised DL 

training approach 
DSC, HD, ASD Muticentric evaluation 

Jalalifar et al.(27) 
Target volume 

(metastasis) 
MRI Brain 106 

Evaluation of a cascaded Deep-Learning 

Framework 
DSC ? 

Chen et al.(28) 
Subtarget 

regions 
MRI Prostate 136 

Evaluate the performances of DL for 

subvolume dose escalation  
DSC Monocentric study 

Choi et al.(29) 
OAR + target 

volumes 
CT Breast  

76 including 14  

(+14 other 

patients) patients 

in the test set 

Comparison of atlas-based and DL-based 

segmentations 
DSC and HD Monocentric study 

Rhee et al.(30) 
OAR + target 

volumes 
CT Cervix > 2600  Evaluation of an in-house network 

DSC, mean surface, HD and 

expert rating 
Multicentric data 

Xue et al.(31) 
Target 

volumes 
CT Head and neck 150 

Evaluation of the performances of a 

sequential and iterative U-Net 
DSC, JI, ASD, HD Monocentric study 

Ke et al.(32) 
Target 

volumes 
MRI Head and neck > 4000 

To propose a dual task network for 

diagnosis and segmentation 
DSC Monocentric study 

Chen et al.(11) Target volume CT Breast  680 Proposition of a QA tool  
Balanced accuracy, F- score, 

ROC-AUC 
Monocentric study 

Savenije et al.(7) OAR MRI Prostate 

150 (53 included 

in final 

evalation) 

Investigation of the feasibility of clinical 

use of DL-based automatic OAR 

delineation on MR in a clinical workflow 

DSC, HD, and mean distances  Monocentric study 



Ermis et al.(33) 
Resection 

cavity 
MRI Brain 30 

Application of DL on brain post-

operative MR images  
DSC, volume Monocentric study 

Boursabarah et al.(34) 

Target 

volumes 

(metastasis) 

MRI Brain 
509 (40 patients 

in the test set) 

Evaluation of the performance of DL in 

automatic segmentation of brain 

metastases  

sensitivity, specificity, average 

false positive rate, DSC, Bland-

Altman analysis and  

concordance correlation 

coefficient 

Monocentric study 

Huang et al.(35) Target volume MRI Colorectal  64 
Proposition of a novel encoder-decoder-

based framework 
DSC ? 

Liang et al.(36) Target volume MRI Pancreas 
40 (13 in the test 

set) 

Proposition of an automatic segmentation 

method of the pancreatic GTV based on 

multi-parametric MRI  

DSC, HD, MSD Monocentric study 

Song et al.(37) 
OAR + target 

volumes 
CT Rectal cancer 199 

Evaluation of the performance of DL for 

rectum cancer 

Objective grading, time for 

manual correction 
Monocentric study 

Liu et al.(38) OAR CT Cervix 105 
Evaluation of the performance of DL for 

cervix cancer 
DSC and HD Monocentric study 

Xue et al.(39) 

Target 

volumes 

(metastasis) 

MRI Brain 
1652 (451 in the 

test set) 

Evaluation of the performances of an 

automatic DL-based detection and 

segmentation method for brain metastasis 

Sensitivity, specificity, and dice 

ratio 
Multicentric study 

Wong et al.(40) 
OAR + target 

volumes 
CT 

Head and neck, 

prostate, brain 
60 

Comparison of DL contouring to 

interobserver variability 
DSC and HD Monocentric study 

Van Dijk et al.(41) OAR CT Head and neck 
693 (104 in the 

test set) 

Comparison of atlas and DL-based 

segmentations 

DSC, absolute mean and max 

dose differences, contouring 

time, Turing test 

Monocentric study 

Elguindi et al.(42) 
OAR + target 

volumes 
MRI Prostate 

100 (50 in the 

test set) 

To evaluate the performances of a MRI-

based CNN network for MR-only RT 
VDSC and SDSC Monocentric study 

Vaassen et al.(43) OAR CT Lung 20 
Analysis of the correlations between 

quantitative metrics and time saving 

SDSC, APL, VDSC, HD, time 

saving 
Monocentric study 

Ahn et al.(44) OAR CT Liver 70 
Comparison of atlas and DL-based 

segmentations 

HD, DSC, VOE, and relative 

volume difference 
Monocentric study 



Li et al.(45) Target volume CT Head and neck 
502 (100 in the 

test set) 

Evaluation of performances of an in 

house model on head and neck data 

HD, DSC, VOE, and relative 

volume difference  
Monocentric study 

Dong et al.(46) OAR CT Prostate 140 
Proposition of a new strategy: generation 

of sMRI before multi-organ segmentation 
DSC and MSD Monocentric study 

Zhong et al.(47) 
OAR + target 

volumes 
CT Head and neck 

100 (20 in the 

test set) 

Proposition of a cascaded network 

structure 
DSC, HD, and VOE Monocentric study 

Rhee et al.(48) OAR CT Head and neck 

> 3500 (174 + 

24 in the test 

cohort) 

Proposition of a QA tool for a multi-atlas 

auto-contouring strategy used in clinic 

DSC, HD, detection of clinically 

unacceptable contours 
Multicentric study 

Schreier et al.(49) 

3 organs 

(breasts + 

heart) 

CT Breast  

251 (52 in the 

test set) + 64 

(independent 

test cohort) 

Proposition of a new architecture 
Average surface distance, HD, 

correction time 
Multicentric study 

Chan et al.(50) OAR CT Head and neck 
200 (20 in the 

test set) 
Comparison of network architectures DSC and RMSE Monocentric study 

Van der Heyden et 

al.(51) 
OAR DECT Brain  14 

Investigation of the performances of 

multi-atlas and DL auto contouring 

methods on DECT images 

DSC, HD,  center of mass 

displacement (∆CoM), scoring 

by experts 

Monocentric study 

Tappeiner et al.(52) OAR CT Head and neck 40 Proposition of a new DL strategy DSC and HD Challenge data - multicentric data 

Feng et al.(53) OAR CT Lung 90 

Development of a novel DCNN method 

for thoracic OAR segmentation using 

cropped 3D images 

DSC, MSD and HD, correction 

time 

Challenge data - multicentric data + 

internal cohort 

Dong et al.(54)  OAR CT Lung 35 Proposition of a new DL strategy DSC, MSD, dosimetric analysis Challenge data 

Trullo et al.(55) OAR CT Lung 60 

Proposition of a new DL strategy 

including a global localization 

information 

DSC Challenge data 

Fu et al.(56) OAR MRI Abdomen/Pelvis 
120 (100 in the 

test set) 

Proposition of a new strategy for MR-

based auto-contouring 
DSC and HD Monocentric study 

Yang et al.(57) OAR CT Thorax 
60 (12 in the test 

set) 
Thoracic Auto-Segmentation Challenge DSC, HD, and MSD Challenge data 



Tong et al.(58) OAR CT Head and neck 32 (no test set) 

Development of a novel method that 

combines a fully CNN with a shape 

representation model  

DSC, positive predictive value, 

sensitivity , ASD, and HD 
Public data - multicentric 

Men et al.(59) 
Target 

volumes 
CT Breast  800 

Evaluation of a  deep dilated residual 

network (DD-ResNet) 
DSC and HD Monocentric data 

Wang et al.(60) 
Target 

volumes 
MRI Rectal cancer 93 

Development of a DL-based 

autosegmentation algorithm 
HD, ASD, DSC, and JI Monocentric data 

Charron et al.(61) 

Target 

volumes 

(metastasis) 

MRI Brain 
182 (18 in the 

test set) 

Adaptation of a CNN for brain lesion 

segmentation 
Sensitivity, false positives, DSC Monocentric data 

Lustberg et al.(62) OAR CT Lung 20 (test set only) 
Comparison of atlas and DL-based 

segmentations 

DSC, HD, quality scoring, time 

saving 
Monocentric data 

Men et al.(63) 
Target 

volumes 
CT Head and neck 

230 (46 in the 

test set) 

Development of a DL-based 

autosegmentation algorithm 
DSC, HD Monocentric data 

Men et al.(64) 
OAR + target 

volumes 
CT Rectal cancer 

278 (60 for 

validation) 
Prosposition of a deep dilated CNN DSC Monocentric data 

 

Legends:  

Table 1 

Summary table of the properties of the CE-marked automatic contouring software deployed in the 3 radiotherapy departments and description of the 

methodology carried out for the clinical implementation of these algorithms.  

 

Table 2 

Studies on Deep-Learning-based auto contouring. The literature search was performed by one reader (see text). Pubmed was the only database queried. 

The literature search was performed up to April 2021. When available, information were extracted from the abstract of the article.  

CTV: Clinical Target Volume, OAR: Organ At Risk, CT : Computed Tomography, MRI: Magnetic Resonance Imaging, DSC: Dice similarity coefficient, VDSC: 

Volumetric Dice similarity coefficient, SDSC: Surface Dice similarity coefficient, APL: Added Path Length, DTA: Distance To Agreement, FPD: False-Positive 

DSC, FND: False-Negative DSC, HD: Hausdorff Distance, MSC: Mean Surface Distance, MDA: Mean Distance to Agreement, ASD: Average Surface Distance, JI: 

Jaccard Index, ROC-AUC: Area Under the Receiving Operator Characteristic Curve, VOE: Volume Overlap Error, RMSE: Root Mean Square Error 




