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A novel Fuzzy Cellular Automata is proposed to simulate bone degradation during osteoporosis. The initial 3D bone microstructure is obtained from computed tomography (CT) images. Cellular automata algorithm is implemented to the 3D lattice and a Sugeno Fuzzy inference system is designed with nine sets of fuzzy rules to simulate the degradation process. A distance vector parameter is defined to describe the number of neighborhood cells that each cell can have a connection with. It is shown that by increasing the value of this distance vector, the results converge towards a quasi-constant degraded microstructure. The obtained microstructure is considered to be the final result and compared to prediction of bone degradation of the literature based on phase exchange calculated from mechanical strain energy. It is shown that the Fuzzy Cellular Automata model predicts a more realistic bone degradation and microstructure distribution than the phase exchange method while having a model significantly simpler.

Introduction

Osteoporosis is one of the most common diseases among elderly people. Bone fractures are regular and often due to the patients' fall and weak bone structure. As such, good prediction of the bone microstructure evolution due to osteoporosis would be an asset. Bone is a continually renewed living material based on continuous bone remodeling through three types of cells [START_REF] Hardy | Bone loss in inflammatory disorders[END_REF][START_REF] Veni | Interaction between bone cells in bone remodelling[END_REF][START_REF] Florencio-Silva | Biology of bone tissue: structure, function, and factors that influence bone cells[END_REF]. The osteocytes cells [START_REF] Veni | Interaction between bone cells in bone remodelling[END_REF][START_REF] Florencio-Silva | Biology of bone tissue: structure, function, and factors that influence bone cells[END_REF][START_REF] Sugawara | Three-dimensional reconstruction of chick calvarial osteocytes and their cell processes using confocal microscopy[END_REF][START_REF] Hadjidakis | Bone remodeling[END_REF][START_REF] Klein-Nulend | Mechanosensation and transduction in osteocytes[END_REF] are mechanosensing the forces applied from external load and send biological signals to the osteoclasts cells, in charge of bone resorption, and osteoblasts cells, in charge of bone formation, which are both imbalanced at elder ages [START_REF] Sugawara | Three-dimensional reconstruction of chick calvarial osteocytes and their cell processes using confocal microscopy[END_REF][START_REF] Kumar | Orban's oral histology and embryology[END_REF]. Regarding the bone formation procedure, new bone is built based on applied mechanical load, so the density of bone increases through osteoblasts activation. Consequently, the strength of the bone would grow. On the other hand, in mechanically unloaded condition, the resorption process happens along with a bone density decrease and loss of strength through osteoclasts activation. The bone remodeling process during normal life conditions, and corresponding bone effective density, is the result of a competition, driven by the osteocytes, between the osteoblasts creating bone and osteoclasts resorbing it, under certain levels of applied mechanical loads. Wang and Thudium quantified that bone density variation depends directly on the rates of effective bone formation and resorption processes in the remodeling process [START_REF] Wang | Skeletal growth and peak bone strength[END_REF][START_REF] Thudium | Development of novel models for studying osteoclasts[END_REF]. Numerous works were developed to try modeling the bone density evolution as a function of time. One of the first was introduced by the well-known Wolff`s Law [START_REF] Wolff | Das gesetz der transformation der knochen[END_REF] on the structural optimization of the bone microstructure as a function of the applied mechanical loads, update lately (2012). Wolff was followed by many others such as for example Carter, Huiskes and Frost [START_REF] Carter | Mechanical loading histories and cortical bone remodeling[END_REF][START_REF] Carter | Relationships between loading history and femoral cancellous bone architecture[END_REF][START_REF] Huiskes | Adaptive bone-remodeling theory applied to prosthetic-design analysis[END_REF][START_REF] Frost | Bone "mass" and the "mechanostat": a proposal[END_REF] integrating the "lazy zone" for constant bone strain and the "mechanostat" proposal. Around macroscopic bone stimulus described generally in [START_REF] Hart | Bone modeling and remodeling: theories and computation[END_REF][START_REF] Giorgio | In-depth gaze of the astonishing mechanical behavior of bone: a review for designing bio-inspired hierarchical metamaterials[END_REF] applied to specific microstructured media [START_REF] Dell'isola | Advances in Mechanics of microstructured media and structures[END_REF], many researches include the range of adaptative response [START_REF] Hegedus | Bone remodeling II: small strain adaptive elasticity[END_REF][START_REF] Burr | Bone remodeling in response to in vivo fatigue microdamage[END_REF][START_REF] Weinans | The behavior of adaptive bone-remodeling simulation models[END_REF][START_REF] Ruimerman | A theoretical framework for strain-related trabecular bone maintenance and adaptation[END_REF], more physiological approaches [START_REF] Mullender | A physiological approach to the simulation of bone remodeling as a self-organizational control process[END_REF], optimal response [START_REF] Lekszycki | Modelling of bone adaptation based on an optimal response hypothesis[END_REF][START_REF] Lekszycki | Functional adaptation of bone as an optimal control problem[END_REF][START_REF] Pivonka | Model structure and control of bone remodeling: a theoretical study[END_REF], including viscous and diffusive phenomena [START_REF] Giorgio | Viscous second gradient porous material for bones reconstructed with bioresorbable grafts[END_REF][START_REF] Giorgio | On mechanically driven biological stimulus for bone remodeling as a diffusive phenomenon[END_REF], and cellular automata [START_REF] Tovar | Bone remodeling as a hybrid cellular automaton optimization process[END_REF]. Lately, Famouri et al. [START_REF] Famouri | Refining anticipation of degraded bone microstructures during osteoporosis based on statistical homogenized reconstruction method via quality of connection function[END_REF] and Bagherian et al. [START_REF] Bagherian | A New Statistical Descriptor for the Physical Characterization and 3D Reconstruction of Heterogeneous Materials[END_REF] developed a statistical function called Quality of Connection to predict more accurately the microstructure evolution of bone during osteoporosis based on its volume fraction. But the difficulty lies in the fact that the use of classical continuum mechanics fails when trying to model the local bone mechanobiological effects, particularly at a cellular level, since the continuity of the material is not realistic anymore [START_REF] Dell'isola | At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola[END_REF][START_REF] Abali | Theory and computation of higher gradient elasticity theories based on action principles[END_REF][START_REF] Dell'isola | Higher-gradient continua: The legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives[END_REF].

Recently, new multiphysics models were introduced trying to integrate biology in the bone remodeling models to enhance the importance of biology in the previously mentioned process along with the mechanical load [START_REF] Andreaus | Optimal bone density distributions: numerical analysis of the osteocyte spatial influence in bone remodeling[END_REF][START_REF] Bednarczyk | A novel mathematical model for growth of capillaries and nutrient supply with application to prediction of osteophyte onset[END_REF][START_REF] Lu | A novel coupled system of non-local integro-differential equations modelling Young's modulus evolution, nutrients' supply and consumption during bone fracture healing[END_REF][START_REF] Allena | Reaction-diffusion finite element model of lateral line primordium migration to explore cell leadership[END_REF][START_REF] Giorgio | A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials[END_REF][START_REF] George | Mechanobiological stimuli for bone remodeling: mechanical energy, cell nutriments and mobility[END_REF][START_REF] George | A multiphysics stimulus for continuum mechanics bone remodeling[END_REF][START_REF] George | Integrating molecular and cellular kinetics into a coupled continuum mechanobiological stimulus for bone reconstruction[END_REF][START_REF] Bagherian | A novel numerical model for the prediction of patient-dependent bone density loss in microgravity based on micro-CT images[END_REF][START_REF] Shahmohammadi | Computational modeling of degradation process on the mechanical performance of Poly-lactic acid/Magnesium composite[END_REF][START_REF] Van Scoy | A cellular automata model of bone formation[END_REF][START_REF] Kazempour | Numerical Simulation of Osteoporosis Degradation at Local Scale: A Preliminary Study on the Kinematic Loss of Mechanical Bone Stiffness and Microstructure[END_REF][START_REF] Sheidaei | Influence of bone microstructure distribution on developed mechanical energy for bone remodeling using a statistical reconstruction method[END_REF]. In one of the most recent bone degradation models introduced by Bagherian et al. [START_REF] Bagherian | A novel numerical model for the prediction of patient-dependent bone density loss in microgravity based on micro-CT images[END_REF], the numerical model was developed to predict the bone loss at the mesoscopic scale in microgravity condition. Hypogravity proposes a similar degradation trend to osteoporosis but with a different origin for the cellular activities. Osteoporosis is based on a deregulation between osteoclasts and osteoblasts when microgravity bone loss is based on a loss of mechanical stimulus. Generally, in a voxelbased model where each voxel is either bone or bone marrow in the finite element model, the voxels are degraded through equations only from the bone surfaces where bone voxels are directly in contact with the bone marrow in their neighborhood. For each element located on the border between bone and bone marrow, a phase exchange is defined. In consequence, both reconstruction and resorption phenomena, defining the remodeling, are feasible as a function of the intensity of the applied mechanical load on these surfaces. One of the most efficient methods to predict this degradation is the Cellular Automata algorithm. Recently, Shamohammadi et al. [START_REF] Shahmohammadi | Computational modeling of degradation process on the mechanical performance of Poly-lactic acid/Magnesium composite[END_REF] modeled the degradation of a biodegradable stent with cellular automata. This process can also be used to predict bone degradation. Van Scoy et al. [START_REF] Van Scoy | A cellular automata model of bone formation[END_REF] modeled the bone formation using cellular automata to simulate the in vitro characterization with the 2D SEM images.

We present below a novel method to simulate trabecular bone degradation at voxel scale. The initial CT images were extracted from real bone femur microstructures obtained from an 85-year-old woman [START_REF] Kazempour | Numerical Simulation of Osteoporosis Degradation at Local Scale: A Preliminary Study on the Kinematic Loss of Mechanical Bone Stiffness and Microstructure[END_REF]. To model bone degradation, the Cellular Automata method was implemented on this microstructure. The probability of degradation for each voxel was defined from the Sugeno Fuzzy inference system, and based on two input parameters being the neighborhood and the state of each voxel. This probability was estimated by trial and error. The results of the hereby-proposed model were compared to the results of previous works of the literature [START_REF] Bagherian | A novel numerical model for the prediction of patient-dependent bone density loss in microgravity based on micro-CT images[END_REF] and showed more realistic bone microstructure evolutions while the model itself is significantly simpler.

Cellular Automata algorithm and development

A Cellular Automata algorithm (CA) is an approach that has many applications in various domains such as computer science, economics, mathematics, biology, microstructure modeling, etc. This approach consists of a general lattice of cells, each in a given state, like 0 or 1. This lattice can be defined in any number of dimensions.

We consider an initial cell state at time t = 0. After a time increment (this time increment can have any value such as 1 second, 1 hour, or one year, etc.), a new cell state is defined through a given evolution rule representing the refreshing state of each cell between the current state of the cell and the state of the cells in its defined neighborhood. This neighborhood is defined for each cell and can change the state of that cell. It can be defined in any desired way. Two of the most common types of neighborhoods are the von Neumann neighborhood and the Moore neighborhood (see Fig. 1). Here, The Moore neighborhood with different sizes of neighborhood cells was used. With the distance vector of 1, each cell is environed by 26 cells (Fig. 1c). More generally, for different distance vectors, the number of neighborhoods for each cell is calculated from Eq. 1.

(1) Several distance vectors were used in the analyses to observe the convergence of the degradation scenario. This is presented in the results section.

Cellular Automata modeling of bone formation and degradation

The bone microstructure model of external size one cubic millimeter was defined using a stack of 50 CT images in which each image has a resolution of 50*50 pixels. The 3D lattice for the cellular automata simulation is then 50*50*50 cells. At the initial time step (t=0), each cell is defined using 0 for bone marrow or 1 for solid bone. As was mentioned previously, the evolution state of a cell in a cellular automata algorithm depends on the current state of the cell and the state of its neighborhood cells. These will therefore define the cell's input at the beginning of each time step.

At the first time-increment, the cells that represent bone (cell state=1) may have a decreasing value (bone density decrease) with a specified value. This value is calculated using a Fuzzy Inference System (FIS). The inputs of this system are cells' inputs, which were Cell state and Cell Neighborhood. We define the output of this system as a reducer parameter (α) which value is between 0 and 1. This parameter indicates the probability and the amount of value that is going to be reduced for each cell. The state of each cell after one time-step is calculated via Eq. 2.

{ } { } (2) 
In this equation, is a constant that adjusts the uniform rate of the value reduction. Alpha takes values between 0 and 1, so in each time step the value of each cell can reduce with the range from 0 to . An example of this process is presented in Fig. 2 on an arbitrary test case. Here, the initial condition Fig. 2a shows the white cells representing bone that have a cell state value of 1. After a certain amount of time, Fig. 2b shows the grey cell state value being lower than 1 but, in our simulation, not degraded completely. Generally, the rule for changing the state of cells does not change over time and is alike for all cells. However, for the bone degradation process, a lower threshold bone density is required to define the minimum value under which it is considered that bone is completely degraded. We define β as the parameter threshold for complete degradation. If the value of a cell goes below this threshold, the cell is considered to be completely degraded, and the value of the cell switches to 0. This is shown by Eq. 3.

{ } { } (3) 
At the end of a time step, a cell (being a lone voxel or a group of several voxels) may not be completely degraded but the surrounding of this cell is completely degraded. In this case, it is recognized as an island that is not connected to the remaining of the bone microstructure and we consider this cell to be fully degraded.

Fuzzy Inference rules

To create the Fuzzy Inference System, we defined three Gaussian membership functions for each input as presented in Fig. 3. Here we used the Sugeno Fuzzy Inference system and the output of alpha is determined as very low, low, medium, high and very high respectively, corresponding to a value between 0 and 1. To calculate the alpha value, we need to establish a couple of rules. This set of rules must determine the value of alpha based on two parameters. The first parameter is the Cell state. We expect that if this value is around 1 (bone) the likelihood of degradation is lower compared to a value being around 0 (marrow). The next parameter for each cell is its neighborhood. We assume that if a bone cell is completely surrounded by bone cells, the possibility of degradation is much lower compared to when this cell is surrounded by bone marrow. Based on these premises, the rules for this Fuzzy system are presented in Table 1. The flowcharts of our Fuzzy inference system and Cellular Automata are presented in Fig. 4 and Fig. 5 respectively. The degradation process starts with finding the neighborhood of a cell from the initial lattice, and then we obtain  parameter from Table 1 and calculate the new cell density (degradation analysis). Next, we check if the new density is below the minimum threshold to know whether this new value needs to be reset to zero and remove a possible existing island. Once this done, time is incremented and a new iteration starts with new neighborhoods and degradation process. The initial finite element bone sample (obtained from [START_REF] Sheidaei | Influence of bone microstructure distribution on developed mechanical energy for bone remodeling using a statistical reconstruction method[END_REF]) had, at the start of analysis, an initial volume fraction of 47.1 %. It contained 125000 cells. We ran our degradation model down to a volume fraction of 23 %. We used different values k of distance vectors and defined a degradation variation margin (DVM) as in Eq. 4.

∑ (| | | |) (4) 
where n is the total number of cells. The analysis is restricted to the 125000 cells of the model without accounting of neighboring cells outside the RVE. The DVM corresponds to the bone density difference over all voxels between two different vector distances. Hence, when this difference is small when increasing the distance vector, we assume convergence (i.e. there is no need to increase further the distance vector as no extra microstructure variation will be observed). We stopped the analyses when the DVM reduced to a value lower than 0.01 (below 1%) and compared the DVM values for each distance vector at the end of analyses.

Results and discussion

A notable advantage of the proposed method is its capacity to address easily complex degradation rules as based on Fig. 3. These can provide a graduated response of the bone volume fraction evolution as a function of time that can be close to the measure of the Houndsfield scale. As such, degradation time delay and microstructure influence from patient dependency can be evaluated separately. As an example, the degradation analysis was made on our test sample without optimizing the hyperparameters of the model. The volume fraction change with each time step is presented in Fig. 6. Here, it appears that almost no degradation occurs at the beginning of the analysis as it takes more time to start degrading bone cells of density value of 1. Once degradation has started (between time steps 20 and 30), then degradation kinetics accelerates. We observe that cell bone densities degrade from outside towards the inside taking different values of grey densities that could be related to the Houndsfield scale by optimizing the hyperparameters of the model (i.e. defining where, on which cells, the degradation rates are optimum). The second advantage of this optimization lies in the optimized value of  and , and the probability of the degradation scenario  to obtain a microstructure that will correspond to the real bone microstructure with a smaller number of time step compared to the phase exchange model [START_REF] Bagherian | A novel numerical model for the prediction of patient-dependent bone density loss in microgravity based on micro-CT images[END_REF]. This aspect is important so that the model parameters can be optimized with the degradation rates in order to fit with experimental data and so to predict more accurately the obtained bone microstructure at each given time of degradation.

With the fuzzy cellular automata model, we run analyses with increasing vector distances from 1 to 8 and the DVM convergence criteria (below 1% or 0.01) was reached for a vector distance of 8 with values much below 1%. Hence the vector distance of 7 was retained for all analyses. The DVM is presented in Table 2 for different vector distances. As an example, three test cases, based on the initial microstructure, are presented in Table 3 for different values of the hyperparameters. These cases are all modeled with the distance vector of 7 and the same Moore neighborhood over the volume of 125000 cells. The optimization of the hyperparameters depends on the real bone density degradation of elder persons. A good review for this is presented in the work of Troy et al. [START_REF] Troy | Review : Exercise Early and Often: Effects of Physical Activity and Exercise on Women's Bone Health[END_REF] and associated references where it is found that osteoporosis in elder people is not far from being linear as a function of age when age is above 60 years old. This is different from hypogravity conditions where bone degradation is non-linear as a function of time as presented by the phase exchange model [START_REF] Bagherian | A novel numerical model for the prediction of patient-dependent bone density loss in microgravity based on micro-CT images[END_REF]. The hyperparameters of the proposed models where then optimized to obtain a linear degradation rate. These correspond to case 1 in Table 3.

The prediction of the normalized bone density for osteoporosis degradation is presented as a function of time in Fig 7 together with literature results on hypogravity. The main reason for comparing bone degradation in these two real life applications is not from the interest of the physiology prediction as they both correspond to completely different phenomena. We want to show the similarities of the mechanical bone degradation kinetics while comparing the creation of bone islands (clusters) due to the degradation methodology fuzzy cellular automata and phase exchange model (see below). We see an almost linear evolution for osteoporosis degradation while limiting the microstructure clustering. When using the previous analyses based on phase exchange [START_REF] Bagherian | A novel numerical model for the prediction of patient-dependent bone density loss in microgravity based on micro-CT images[END_REF], several clusters were generated throughout the degradation process, which does not correspond to the physical reality. Bone degradation does not provide clustered bone with islands of solid bone disconnected from the main structure. With the cellular automata method, we obtain a bone structure that is fully able to sustain the body weight with one solid phase. This is mainly due to the degradation model proposed with the cellular automata method where the Moore neighborhood optimizes the degradation scenario on voxel localized on the border of the "weak" structure, whereas the phase exchange method degraded the microstructure everywhere (any voxels) the elastic energy commended (hence creating undesired clusters disconnected from the rest of the microstructure).

When changing the values of the hyperparameters in Table 3, we show the couplings (between the parameters) to obtain an optimized final result (i.e. changing one parameter imposes to change the others in order to remain close to the final converged microstructure) but the number of analysis steps is also influenced by this change. Nevertheless, several parameter sets can be found to be close to case 1 with near-linear degradation rate. Also, for different values of the stochastic hyperparameters, the final DVM remains below 0.01 and all the final microstructures are almost equivalent. It may occur that over all simulations, one cell (one voxel) will be either bone or bone marrow at the end of the simulation, but this number remains very small and has almost no influence over the overall final microstructure. Hence, when keeping the hyperparameters constant and running 10 Monte-Carlo simulations, results average and this variation tends to zero and so is the DVM.

In order to reach a more accurate result, we ran the 10 Monte Carlo simulations to obtain an average result for the bone degradation, considering the probable variability of our Fuzzy Cellular Automata. The obtained results for a degraded microstructure down to the volume fraction of 23 % are presented in We then compare the outcome of the cellular automata method with the phase exchange method published in [START_REF] Bagherian | A novel numerical model for the prediction of patient-dependent bone density loss in microgravity based on micro-CT images[END_REF]. We ran the new method with a vector distance of 1 corresponding to the Von Neumann neighborhood (Fig 1a, identical to phase exchange method) and compared the results with [START_REF] Bagherian | A novel numerical model for the prediction of patient-dependent bone density loss in microgravity based on micro-CT images[END_REF]. Then same analyses were run with the Moore Neighborhood (Fig 1c ) and a vector distance of 7. Fig. 9 and Fig. 10 show this comparison for a volume fraction of 23% and vector distances of 1 and 7 respectively. The microstructure distribution of the cellular automata method with a vector distance of 1 (Fig. 9) shows some differences to the final microstructure obtained with the phase exchange method for the same volume fraction but this is not too extensive. The DVM in this case as described in Eq. 4 for the cellular automata is 0.0455, which also means that the phase exchange method is not optimized as the DVM remains large. However, when the vector distance is increased to a value of 7 (Fig. 10) using Moore neighborhood, the cellular automata method shows larger differences with published results from [START_REF] Bagherian | A novel numerical model for the prediction of patient-dependent bone density loss in microgravity based on micro-CT images[END_REF]. In this case, the DVM of Eq. 4 goes down to 0.01. Although the volume fraction remains identical, we observe in this case large differences in the microstructure distribution. An interpretation of this difference is that the phase exchange method is based only on the surface of each voxel being in contact with bone marrow to drive the bone degradation process. For the cellular automata method the degradation process is driven, not only by the fuzzy rules, but also by the neighborhood of each cell (here Moore neighborhood), and the vector distance that defines how the degradation kinetics occur. This explains why, over long times, the final microstructure distribution is different between the two methods. The current model shows improved results with almost no clustering of the degraded microstructure compared to the phase exchange method. This seems to show that the proposed model is able to simulate bone density loss more accurately with a significantly simpler solution based on nine fuzzy rules.

Fig. 11 presents with different orientations the final bone microstructures at the end of the degradation process for a volume fraction of 23%. A comparison is made between the cellular automata method with a vector distance of 7 and the phase exchange method [START_REF] Bagherian | A novel numerical model for the prediction of patient-dependent bone density loss in microgravity based on micro-CT images[END_REF]. The comparison of the final obtained microstructures between the phase exchange method and the cellular automata show several aspects. Even with a converged analysis with a vector distance of 7 for the cellular automata degradation, and even if the final density over the whole sample is close, the microstructure degradation remains different. This is mainly due to the degradation rule mechanism and on the fact that cellular automata is influenced by the neighbouring cells whereas the phase exchange model is not. Neighbouring and inner voxel degradation of the cellular automata model drives a different kinetic degradation than the phase exchange model. This is particularly visible between cases (i,l) where a hole was developed inside the structure (case l) which is not visible on the phase exchange model (case i).

The specific interest of using the cellular automata approach is its simpler application compared to the phase exchange method. However, the degradation rules (Fuzzy rules) and the hyperparameters of the model need to be optimized to fit with patients experimental observations. This needs to be addressed at a later stage with more experimental data available.

Conclusion

In this paper, we present a new method to predict bone density loss during osteoporosis. The model applies 3D Cellular automata with nine sets of fuzzy rules. Real bone CT image was used as initial conditions with a resolution of 50*50 pixels. For the degradation process, we define a distance vector parameter to make the microstructure converge towards a stable solution. The distance parameter accounts for the neighboring voxels around the one being calculated. We show that by increasing this parameter, more complex microstructure connectivity is accounted for and better results obtained. We show that with a distance vector of 7, converged optimum results can be found with this degradation process and a degradation variation margin lower than 0.01. We also show that by calibrating the hyperparameters of the proposed model, results can be adapted to fit different microstructure degradation scenario to get closer to experimental microstructures. The proposed method is significantly simpler than other methods and showed more accurate than a previous published method based on phase exchange. It shows only one solid bone cluster over the whole bone sample where the other method, several clusters were generated throughout the degradation process. The availability of more experimental data will enable the use of adaptive neuro-fuzzy inference system (ANFIS) to calibrate the parameters of the Cellular Automata. Better prediction can then be obtained for the distribution of bone microstructure in a specific time period.
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 1 Fig. 1. Cellular automata neighborhoods, (N= Number of neighborhood) : (a) 3D von Neumann neighborhood (N =6), (b) 3D plane neighborhood (N = 18), and (c) 3D Moore neighborhood (N = 26), (d) 3D Moore neighborhood (N = 124).
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 2 Fig. 2. A cut section of microstructure a) binary image which each cell is either bone (white cells) or marrow b) grayscale image which shows the cell state value for each bone cell. The grey bone cells have started to degrade.
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 3 Fig. 3. Membership functions for both Cell state and Neighborhood
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 45 Fig. 4. Fuzzy system to calculate
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 6 Fig 6. The evolution of bone volume fraction with each time step on arbitrary test case.
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 7 Fig. 7. Prediction of the bone microstructure degradation over a period of 12 years.
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 8 Fig. 8. Bone microstructure distributions: a) initial bone microstructure at 43.1% volume fraction, b) bone microstructure with 41% volume fraction, c) bone microstructure with 30% volune fraction, d) bone microstructure with 23% volume fraction
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 910 Fig.9. Degraded bone microstructure with 23% volume fraction with a) phase exchange method[START_REF] Bagherian | A novel numerical model for the prediction of patient-dependent bone density loss in microgravity based on micro-CT images[END_REF] and b) Fuzzy Cellular Automata method with the distance vector of 1.

Fig. 11 .

 11 Fig. 11. Final bone microstructures for 23% volume fraction for: (i) the phase exchange method (a, b, c, g, h, i) and (ii) cellular automata with a distance vector of 7 (d, e, f, j, k, l). The comparisons are made by couples (a,d), (b,e), (c,f), (g,h), (h,k), and (i,l).

  

Table 1 .

 1 Fuzzy rules for finding the degradation rate  to implement in the Cellular Automata algorithm.

	Input	Neighborhood Low	Low	Low	Medium Medium Medium	High	High	High
	(connection = and)	Cell state	High Medium	Low	High	Medium	Low	High	Medium Low
	Output		Very low	Low	Medium	Low	Medium	High	Medium	High	Very High

Table 2 .

 2 DVM with different distance vectors

	Distance vector	1	2	3	4	5	6	7
	DVM	0.0330	0.0223	0.0176	0.0170	0.0148	0.0112	0.0099

Table 3 .

 3 The results of simulation with different hyperparameters.

			Parameters		Results	
	case	μ : uniformity of degradation rate	 : probability of degradation scenario	β : degradation threshold	Time steps needed to degrade	DVM with case 1
	1	0.05	0.5	0.5	68	0
	2	0.08	0.4	0.6	72	0.0094
	3	0.03	1	0.55	53	0.0023
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