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ABSTRACT Nowadays, the data used for decision-making come from a wide variety of sources which
are difficult to manage using relational databases. To address this problem, many researchers have turned
to Not only SQL (NoSQL) databases to provide scalability and flexibility for On-Line Analytical Process-
ing (OLAP) systems. In this paper, we propose a set of formal rules to convert a multidimensional data
model into a graph data model (MDM2G). These rules allow conventional star and snowflake schemas to fit
into NoSQL graph databases. We apply the proposed rules to implement star-like and snowflake-like graph
data warehouses. We compare their performances to similar relational ones focusing on the data model,
dimensionality, and size. The experimental results show large differences between relational and graph
implementations of a data warehouse. A relational implementation performs better for queries on a couple
of tables, but conversely, a graph implementation is better when queries involve many tables. Surprisingly
the performances of a star-like and snowflake-like graph data warehouses are very close. Hence a snowflake
schema could be used in order to easily consider new sub-dimensions in a graph data warehouse.

INDEX TERMS Data model, graph data warehouse, NoSQL, performance, relational data warehouse.

I. INTRODUCTION
The amount of digital data generated every day is expand-
ing rapidly. This phenomenon is labeled as ‘‘Big Data’’
which refers to large volumes of high velocity, complex
and heterogeneous data which require advanced techniques
and technologies to enable the capture, storage, distribution,
management, and analysis of the information [1]. Today,
a challenging issue is to design and build a decision sup-
port system (DSS) that enables access to big data and pro-
vides correct and fast answers to complex analytical queries.
Consequently, nowadays, many researchers from different
fields are working on the improvement of conventional
decision-making systems to address big data requirements.

Traditionally, a DSS incorporates all data relevant to the
management of an organization into a specific repository used
for analytical purposes named data warehouse. As defined
in [2], a data warehouse is a ‘‘subject-oriented, integrated,
time-variant and non-volatile collection of data in support of
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management’s decision-making process and business intel-
ligence’’. Generally, a data warehouse is designed using a
multidimensional data model that provides an understandable
business view of the database [3]. The implementation of a
data warehouse involves applying a specific approach to con-
vert its conceptual multidimensional data model into a target
logic model [4]. Several approaches have been proposed [3],
[5]–[7], the most popular being Relational Online Analytical
Processing (R-OLAP)which converts the conceptual multidi-
mensional model into a relational one [8] using a star schema
or a snowflake schema. In the context of relational databases,
the snowflake schema is known for being less efficient than
the star schema due to the high cost of join operators [9].

Undeniably, relational database management systems
(RDBMS) have dominated the database management land-
scape since the 1970s mainly for storing and retrieving
structured data. However, despite their maturity, the relational
databases are currently facing many challenges as they were
designed neither to provide good scalability and deal effi-
ciently with a huge amount of data [10], nor to cope with
unstructured data [11]. Hence, to meet these needs, a new
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range of database management systems labeled as NoSQL
(Not Only SQL), not based on relational models, has arisen.
NoSQL systems have been mainly introduced to integrate
large, unstructured and complex data generated frommultiple
sources such as social networks, interconnected devices, and
sensors in order to make better decisions. Generally, NoSQL
databases are defined through a set of features which are
mainly flexibility, high availability, scalability, and low-cost
requirements [12], [13]. NoSQL systems are commonly clas-
sified into four main types depending on their logical model:
key-value oriented stores, column-oriented stores, document-
oriented stores, and graph-oriented stores [14]–[16].
The emergence of NoSQL systems has enriched the database
management landscape. Consequently, the choice of which
database to use has become harder than before. Over the
last few years, many insightful research works have studied
the effectiveness of using NoSQL systems to implement
big data warehouses [17], [18]. Three major categories of
approaches have been considered: column-based approaches,
document-based approaches, and graph-based approaches.
These approaches allow transforming the conceptual multi-
dimensional model of a data warehouse to a target NoSQL
logical model using a set of transformation rules. Most
of the proposed approaches focused on column-oriented
[19]–[26] and document-oriented [27]–[29] NoSQL models.
Some of them provided a performance evaluation based
on some criteria such as read latency [19], [27] and write
latency [27], [28]. However, only few and recent stud-
ies considered the NoSQL graph-oriented model. They
focused either on the performances of graph versus relational
databases under various uses [30], [31], or on designing
graph data warehouses and defining graph OLAP operators
(G-OLAP) [32]–[35]. However, to the best of our knowl-
edge, the respective performances of graph implementations
of normalized (snowflake) versus denormalized (star) data
warehouses have not been evaluated yet.

In this paper, we present a new approach to convert a multi-
dimensional datamodel to a graph database (MDM2G)which
encompasses a set of transformation rules to convert star
and snowflake relationalmultidimensionalmodels to star-like
and snowflake-like graph data models. We provide a formal
definition for each model and we evaluate their performance
to figure out whether a snowflake-like model would be highly
time-consuming in the context of a graph database as it is
in a relational database. In addition, we compare the per-
formance of graph data warehouses to analogous relational
star and snowflake logical models to determine whether a
graph data warehouse could bemore efficient than a relational
one. Our motivation for investigating a graph database is its
performance when dealing with connected data compared to
relational databases and other NoSQL logical models [36].
In fact, the join mechanism of relational databases is time
consuming. Also, column-oriented and document-oriented
databases lack relationships and require adapting their mod-
els to store and query complex data. On the contrary, graph

databases store physical relationships that facilitate graph
traversals between entities.

The remaining of the paper is organized as follows:
section 2 gives an overview of the proposed approaches in
the literature for implementing NoSQL data warehouses;
section 3 describes our approach which enables modeling
data warehouses using graphs; section 4 details our experi-
ments; section 5 reports and analyses our results. Our con-
clusions and research perspectives are presented in section 6.

II. RELATED WORKS: NOSQL DATA WAREHOUSES
Most decision support systems are based on data warehousing
techniques to take advantage of data collected from hetero-
geneous sources. Data warehouses allow decision-makers to
have a global and synthetic view of the information circu-
lating in their companies. Generally, data warehouses orga-
nize data according to a multidimensional conceptual model
considering an analyzed subject as a point in a space which
could be observed through several dimensions [3]. Conceptu-
ally, a multidimensional model is composed of the concepts
of fact, dimensions and hierarchies. The fact is the entity
being analyzed. It consists of one or more measures. The
dimensions are the axis of analysis which allow the evalu-
ation of the fact. They contain one or more attributes that
are used to vary the measures of the analyzed activity. One
distinguishes between the parameters which are attributes
defining the levels of granularity and the weak attributes
which are informational attributes related to the parameters.
These different levels make it possible to respond to differ-
ent queries, depending on the analytical needs. A hierarchy
allows ordering the parameters of a dimension according to
their level of granularity or detail. Three approaches were
proposed to build logical models suitable for a data ware-
house: R-OLAP (Relational OLAP) [3], [5], M-OLAP (Mul-
tidimensional OLAP) [6] and H-OLAP (Hybrid OLAP) [7]
approaches. R-OLAP is the oldest and predominant storage
strategy. It makes it possible to transform the concepts of fact
and dimension of a multidimensional conceptual model into
relational tables.

Three multidimensional designs have been defined in this
approach to simulate a multidimensional structure in a rela-
tional database, namely: star, snowflake, and constellation
schema [37], [38]. A star schema includes a central fact
table and many dimensions tables. This model represents the
dimensions in a denormalized way. Each dimension table is
joined to the fact table using its primary key, transformed in
foreign key in the fact table. However, the dimensions are
not joined together. A snowflake schema is an extension of
the star schema in which some dimensions are hierarchical.
It consists of keeping the same fact table and normalizing the
dimension tables into sub-dimensions in order to allow amore
explicit representation of the hierarchy. So, the dimensions
are described through a succession of tables using foreign
keys. A constellation schema involves several star schemas.
Therefore, it contains many tables of fact and dimensions
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which could be shared or not. Obviously, a snowflake data
model is more complex than a star data model. In most
cases, this complexity impacts the performance of the data
warehouse as more join operations are required to answer
queries.

Since the arrival of NoSQL systems, many researchers
have compared it to relational systems based on different
requirements such as scalability [10], [30], [38], [39]. Further
research works have focused on proposing approaches to
allow data migration from relational databases to column
NoSQL stores [40], document NoSQL stores [41]–[43] or
graph NoSQL stores [30], [44], [45]. Recently, using NoSQL
database management systems to implement big data ware-
houses able to gather voluminous and heterogeneous data to
take better decisions have attracted researchers and organi-
zation. When looking at all the proposed approaches, three
major categories can be identified: column-based approaches,
document-based approaches, and graph-based approaches.

A. COLUMN-BASED APPROACHES
These approaches allow data warehouses to be implemented
under column-oriented NoSQL systems. In [20], [24] authors
have proposed a set of transformation rules to convert facts,
measures, dimensions, and attributes to columnar concepts.
More precisely, facts and dimensions are transformed into
column families where measures and attributes are stored in
columns. These studies considered the case of a star schema
and did not consider hierarchies. In [19], the authors proposed
three methods to enable the implementation of the colum-
nar data warehouse. The first method allows the storage of
facts and dimensions in the same column family. The second
method stores facts and dimensions separately. Each fact
table is transformed into a column family that contains mea-
sures as columns. The dimensions are also transformed into
column families having attributes as columns. This method
models and stores a star schema. The third method consid-
ers hierarchies. Each attribute of a dimension is stored in a
separate column family. The results of this work showed that
the storage of hierarchies in column-oriented stores is highly
time-consuming. The findings of [19] demonstrate also that
splitting the attributes of dimensions in different column fam-
ilies affects the performance of the columnar data warehouse.
In [46], authors focus on building OLAP columnar NoSQL
cubes and evaluate their performances.

B. DOCUMENT-BASED APPROACHES
Many approaches have been proposed to transform the con-
cepts of multidimensional conceptual model into document-
oriented model concepts. In [20], the authors proposed to
convert each fact into a collection of documents that con-
tains measures. Each dimension is also transformed into a
collection of documents that contains the different attributes
(parameter and weak attributes) in forms of documents.
In this work, hierarchies were not studied. In [47], the authors
proposed three methods. In the first method, facts and dimen-
sions are stored in the same collection of documents. In the

second method, each fact and related measures is stored in
a collection of documents. Each dimension and its related
attributes are stored a separate collection of documents. Hier-
archies were not studied in both these methods. The last
set of transformation rules enables the storage of fact and
measures in a collection of documents. Parameters of dimen-
sions are normalized in different collections of documents
having the weak attributes as embedded documents. This
study revealed that modeling and storing hierarchies using the
concept of embedded documents decreases significantly the
performance of queries that perform many joins. Regardless
of the data warehousing context, another research work [48]
reported a study on the impact of structuring data in forms of
embedded documents. Experiments demonstrated that query-
ing data stored at different levels in a collection of documents
require complex manipulation and more time to be executed.

C. GRAPH-BASED APPROACHES
Graph databases are composed of nodes and edges tagged
with labels. Both nodes and edges can store properties by
means of key/value pairs. In order to implement a graph data
warehouse, [32] proposed to transform facts into nodes. The
measures of each fact are stored as properties in the same
node. Also, dimensions are transformed into nodes. There
are two types of relations between nodes. The first type of
relationship is labeled FACT which links fact to dimensions.
The second type is labeled HIER which links the attributes
of dimensions. This work focused on adapting Cypher query
language to support OLAP operators mainly Slice, Dice and
Roll up ones. Some experimental tests have been conducted
to validate the proposed approach. However, the authors
considered only the case of snowflake schema and did not
study the effectiveness of the graph data warehouse especially
when queries get more complex or the database gets larger.
In [33], [34], the authors provide formal transformation rules
to convert a multidimensional conceptual model into NoSQL
graph-oriented model. Yet, the proposed data warehouses
were not evaluated. The performances of relational versus
graph databases were evaluated in [30], [31] but not from an
OLAP perspective with respect to normalized versus denor-
malized schemas.

In the absence of performance evaluation of graph data
warehouses and with increasing interests to graphs as a native
tool to answer complex queries, we provide in this paper a
new approach to convert a multidimensional data model to
graph database (MDM2G) that we evaluate based on two
metrics: write latency and read latency.

III. PROPOSED APPROACH: MULTIDIMENSIONAL DATA
MODEL TO GRAPH DATABASE (MDM2G)
The R-OLAP approach allows transforming the multidimen-
sional data model of a data warehouse into relational logical
models in the form of star or snowflake schemas. These
relational logical models are automatically generated from
conceptual models by applying a set of rules [49]. Using
these transformation rules in the context of big data has
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many weaknesses ascribed to the limitations of the relational
data model mainly when queries require multiple complex
aggregations. To address this problem, we propose converting
the multidimensional data model of a data warehouse to a
graph database (MDM2G) by mapping the concepts of the
multidimensional data model (facts, dimensions, etc.) into
graph concepts. We provide in this section a formal definition
of MDM2G transformation rules. These rules enable the
definition of two graph data warehouses having a star-like
schema or a snowflake-like schema.

A. MULTIDIMENSIONAL DATA MODEL
In order to define our rules, we first define the concepts of the
source data model which is the multidimensional conceptual
model.
Definition 1: A multidimensional model denoted MDM,

is formally defined [20], [50] by the triplet (FMDM, DMDM,
StarMDM) where:

• FMDM
={f1, . . . ,fn} is a finite set of facts,

• DMDM
={d1, . . . ,dm} is a finite set of dimensions,

• StarMDM: FMDM
−→ 2D

MDM
is a function that associates

each fact Fi∈ FMDM to a set of dimensions Di∈ DMDM.

Definition 2: A fact, denoted Fi ∈ FMDM, is defined by
(NameFi , MFi ) where:

• NameFi is the name of the fact,
• MFi={m1, . . . ,mpi} is a set of measures.

Definition 3: A dimension, denoted Di ∈ DMDM is defined
by (NameDi , ADi , HDi ) where:

• NameDi is the name of the dimension,
• ADi={a1, . . . ,ari} is a set of dimension attributes,
• HDi={h1, . . . ,hsi} is a set of hierarchies.

Definition 4: A hierarchy of the dimension Di, denoted
Hj ∈ HDi is defined by (NameHj , ParamHj , WeakHj ) where:

• NameHj is the name of the hierarchy,
• ParamHj={param1

Hj , . . . ,paramqj
Hj} is a set of attributes

called parameters of hierarchy,
• WeakHj is a function associating with each parameter
zero or more weak attributes.

For instance, in Figure 2, ‘‘Store_Sales’’ is a fact
having ‘‘ss_quantity’’ as a measure. ‘‘Date_Dim’’ and
‘‘Customer’’ are the dimensions of ‘‘Store_Sales’’. The
dimension ‘‘Customer’’ has a hierarchical structure made up
of ‘‘Customer_Demographics’’ and ‘‘Income_Band’’.

B. PROPERTY GRAPH DATA MODEL
The target model of our transformation rules is a prop-
erty graph model. Graph data models have arisen since the
eighties, but their popularity gradually decreased with the
emergence of other data models, especially the geographi-
cal, spatial, semi-structured and XML [51]. Recently, graph
databases have regained the attention of both academics and
business entities due to the ever-increasing need to store,
process, manage and analyze graph-like structures such as
social networks [52], [53], biological networks [54]–[56],

and document networks [57], [58]. Indeed, graph databases
are considered as one of the most useful structures and nat-
ural ways for modeling interactions between the objects of
a network [9]. Many graph database management systems
are available today such as Neo4j [36] and GraphDB [59].
A database schema as well as instances in this model are a
labeled directed graph, where the nodes represent objects and
edges represent the connections between them.Whereas rela-
tional databases require expensive join operations to answer
complex queries, graph databases consider the relationships
between entities as important as the entities themselves [60]
which facilitates the navigation between entities.
From a conceptual view, there are two graph data models:
the property graph (PG) allowing both nodes (vertices) and
edges to have any number of arbitrary properties and the
Resource Description Framework (RDF) originally designed
to represent information about resources on the World Wide
Web. The most used model is the property graph model [36].
Informally, a PG is a directed labeled graph where data is rep-
resented by means of nodes, edges, and properties (key-value
pairs). The nodes represent entities and the edges represent
relationships between them. Both nodes and edges can be
tagged with one or more labels and contain properties which
represent their features.
Let us define L, P and V such as:

• L={l1, . . . ,la} is an infinite set of labels,
• P={p1, . . . ,pb} is an infinite set of property names,
• V={v1, . . . ,vc} is a finite set of atomic values.

Definition 5: A property graph data model, namely G,
is formally defined [61] by (NG, EG, ρ G, λG, σ G) where:

• NG
={n1, . . . ,nj} is a finite set of nodes,

• EG
={e1, . . . ,ek} is a finite set of edges,

• ρ G: EG
−→ (NG

×NG) is a total function that associates
each edge in EG with a pair of nodes (source and target
nodes) in NG,

• λ G: (NG
∪ EG)−→ L is a partial function that associates

nodes and edges to a set of labels from L,
• σ : (NG

∪ EG)×P−→V is a partial function that asso-
ciates nodes and edges with properties, and for each
property it assigns a value from V.

C. MDM2G: STAR-LIKE SCHEMA
In the context of relational databases, the star design trans-
forms each fact of the multidimensional conceptual model
to a relational fact table. The fact table contains measures as
columns. In addition, each dimension is converted to a denor-
malized dimension table which contains all the attributes
(parameters and weak attributes) as columns. Each instance
of fact and dimension tables is stored in a specific row. In the
same way, we use the previously mentioned definitions of
multidimensional model and property graph concepts to pro-
pose our transformation rules which define a star-like graph
schema.
Transformation 1: Each multidimensional data model

MDM(FMDM, DMDM, StarMDM) is transformed into
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a multidimensional graph data model MGD(NMGD, EMGD,
ρ MGD, λMGD, σ MGD) where:
• NMGD

={n1, . . . ,nj} is a finite set of facts and dimen-
sions nodes,

• ρ MGD: EMGD
−→ (NMGD

×NMGD) is a total function
that associates each edge in EMGD with a source fact
node and a target parameter nodes in NMGD,

• λMGD: (NMGD
∪ EMGD)−→L is a partial function that

associates facts and dimensions nodes and edges to a set
of labels from L,

• σ : (NMGD
∪ EMGD)×P−→V is a partial function that

associates facts and dimensions nodes and edges with
properties, and for each property it assigns a value
from V.

Transformation 2: Each fact Fi(NameFi , MFi )∈ FMDM is
transformed into a set of fact nodes NFi∈N

MGD defined by
(NameFi

MGD
, MFiMGD

) where:
• NameFi

MGD
is the name of the fact Fi associated with the

function λMGD as a label to the fact nodes NFi ,
• MFiMGD

is a set of measures of the fact Fi associated with
the function σ MGD to the fact nodes NFi as properties.
The value of the measure is stored as a value of the
property.
This rule creates as many fact nodes as instances of
the fact. Figure 1 illustrates this transformation rule.
In our example, the fact ‘‘Store_Sales’’ turns into a set
of nodes with the same fact label ‘‘Store_Sales’’ hav-
ing ‘‘ss_ticket_number’’ and ‘‘ss_quantity’’ as measure
properties.

Transformation 3: Each dimension Di(NameDi , ADi ,
HDi )∈ DMDM is transformed into a set of dimension nodes
NDi∈N

MGD defined by (NameDi
MGD

, ADi
MGD

) where:
• NameDi

MGD
is a the name of the dimension Di associated

with the function λMGD as a label to the dimension nodes
NDi ,

• ADi
MGD

is a set of attributes (parameters and weak
attributes) of the dimension Di associated with the func-
tion σ MGD as properties in the parameter nodesNDi .
Hence, hierarchies are not taken into consideration,

• An edge is defined between each source fact node
NFi and target parameter nodesNDi using the the
function ρMGD.

This rule creates for each dimension as many nodes as
its instances. The figure 1 illustrates the transformation of
dimensions and their attributes. In our example, the dimen-
sion ‘‘Customer’’ is transformed into a set of nodes having
the same label ‘‘Customer’’. All the attributes which give
details about customers are transformed into properties in the
‘‘Customer’’ nodes. In this transformation, all the nodes of the
dimensions are directly linked to the fact nodes using edges.
Hence, the star-like schema allows querying the multidimen-
sional graph data model using one-level graph traversals.
In this case, the depth, which is the number of paths between
a fact node and a dimension node, is equal to one. Figure 1
shows the transformation of the joins between the fact table

FIGURE 1. MDM2G: Star-Like schema.

‘‘Store_Sales’’ and dimension table ‘‘Customer’’ into a set of
edges labelled ‘‘:BY_Customer’’.

D. MDM2G: SNOWFLAKE-LIKE SCHEMA
In contrast to the star data model where all the parameters
are grouped in a single denormalized dimension table, the
snowflake data model allows representing hierarchies using
several sub-dimensions which are smaller and normalized
relational tables. Hence, we propose a snowflake-like mul-
tidimensional schema based on graph databases. We keep the
first two transformation rules mentioned above and we add
two other rules which allow representing hierarchies in graph
databases as follows:
Transformation 4: Each dimension Di(NameDi , ADi ,

HDi ) ∈ DMDM is transformed into a set of dimension nodes
defined by (NameDi

MGD
, ADi

MGD
, HDi

MGD
) where:

• NameDi
MGD

is the name of the dimension Di associated
with the function λMGD as a label to the dimension
nodes NDi ,

• ADi
MGD

is a set parameters and weak attributes of the
dimension Di. Each parameter is transformed into a set
of nodes to allow representing hierarchies. Each weak
attribute of a parameter is transformed into a property in
parameter nodes.

• HDi
MGD

is a set of nodes representing hierarchies of the
dimension Di.

Transformation 5:Hierarchies (NameHj , ParamHj ,WeakHj )
are transformed into a set of linked nodes (ParamHj

MGD
,

WeakHj
MGD

) where:
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• ParamHj
MGD

is a set of parameters nodes. The func-
tion λMGD associates to these parameters nodes the
name of ParamHj as a label. For example, in Figure 2,
the ‘‘Customer’’, ‘‘Household_Demographics’’ and
‘‘Income_Band’’ turns into separate nodes.

• WeakHj
MGD

is a set of properties associated to the param-
eters nodes using the function σMGD.

• An edge is defined between the fact nodes NFi and
the lowest related parameter Paramk of each dimension
using the function ρMGD.

• Edges are defined between the neighbouring param-
eters of the same hierarchy using the function
ρMGD. For example, ‘‘Customer’’ and ‘‘House-
hold_Demographics’’ are related using the relationship
‘‘:Current_HDemo’’, and ‘‘Household_Demographics’’
nodes are connected to ‘‘Income_Band’’ nodes through
‘‘:Has’’ edges.

In this case, the depth, which is the number of edges
relating the fact node to parameter nodes, is greater than one.

IV. EXPERIMENTS
Our experiments have mostly three goals. The first one is
to validate our approach by applying the proposed trans-
formation rules to implement a star-like and snowflake-like
data warehouses. The second goal is to compare the perfor-
mance of the proposed graph data warehouses to analogous
relational data warehouses implemented using the traditional
R-OLAP approach: Intra-Model comparison. The third goal
is to evaluate the effectiveness of the star and snowflake
data designs in the context of graph warehouses to find out
whether a snowflake-like graph data model would be less
efficient than a star-like data model: Inter-Model comparison.
Our comparison is made while taking into account the data
model, data dimensionality and data size.

To achieve the above-mentioned goals, we use Neo4j
(version 3.5.0), a graph database written in Java. It is
queried through the cypher query language. We use Neo4j
to write our transformation rules and implement the star-
like and snowflake-like graph data warehouses. To compare
these latter to relational data warehouses, we use MariaDB
(version 10.1.38) as a relational database. These data ware-
houses were deployed under a virtual machine with 32 GB
of RAM and 8TB disk. The virtual machine runs under
the 64-bit Ubuntu-18.04.01 LTS operating system. No index
was added, in any DBMS, because we assume filtering can
concern all columns in an OLAP context, where the users
make new queries regularly. The caches were cleared before
each query in order to make sure the run time corresponds to
the first time a query is asked. In an OLAP context, the users
run new queries rather than repeating the same ones.

The evaluation between the graph data warehouses and
star data warehouses is based mainly upon two criteria which
are: write latency and read latency. These criteria have been
chosen to decide objectively, which DBMS is more efficient
when data get larger or queries get more complex.

FIGURE 2. MDM2G: Snowflake-like schema.

A. DATA GENERATION
The data has been generated from the reference bench-
mark TPC-DS which has been proposed to evaluate the
performance of DSS [62]. TPC-DS encompasses multiple
snowflakes schemas that model the activities of a product
supplier selling goods through three distribution channels:
store, catalog, and internet [63]. TPC-DS data model is com-
posed of 7 fact tables and 17 shared dimension tables. Each
fact table has a snowflake schema. One distinguishing charac-
teristic of the TPC-DS datamodel is the number of columns in
each table. The average number of columns is 18 [63], which
makes it possible to generate complex queries with predicates
applied on many columns.

In this work, we focus on the most used snowflake
schema [47], [64] which involves the fact table Store_Sales
of the store channel and its 10 dimensions: date, time, store,
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TABLE 1. Row counts per scale factor.

promotion, item, customer, customer demographics, house-
hold demographics, income band, and customer address. The
TPC-DS data generator named DSDGEN generates for each
entity (fact or dimension) a separate data file. These data files
scale by means of scale factors (SF) that represent the data
size in Gigabyte. In this work, we generated data according
to four different scale factors SF1, SF3, SF5 and SF7 which
are respectively 1GB, 3GB, 5GB, and 7GB. Whereas the
fact table scales linearly with the scale factor, the non-static
dimension tables scale sub-linearly. However, the data in
static dimension tables such as date and time dimensions are
loaded once and are not updated during the data maintenance
phase [63]. Table 1 shows the number of rows generated for
each table of the chosen snowflake schema.

B. DATA MODEL
As mentioned earlier, TPC-DS involves multiple snowflake
schemas. In the chosen snowflake schema, data related to
customers are hierarchically decomposed into different tables
related with one-to-many relationships. In order to compare
the performance of the snowflake design to the star design
in the context of a graph data warehouse, we denormalized
the dimension customer and its related tables using many
left-joins to obtain a large table named ‘‘Customer_Details’’
which contains all the details about customers (customer
demographics, household demographics, income band and
customer address). In addition, we slightly modified the data
model of TPC-DS to get pure snowflake and star designs as
shown in Figure 3. More precisely, we deleted the columns
that reference customer address, customer demographics and
household demographics in the table Store_Sales. For exam-
ple, we deleted the customer address at the time of sales
transactions, and we keep only the current address. Also,
we removed the columns that reference the date_dim dimen-
sion in the tables store, promotion, and customer.We dropped
also the reference of Item in the table Promotion.

C. QUERIES
TPC-DS query generator QGEN allows generating queries
according to different templates. In our experiments,
we selected nine different queries that belong to the chosen
snowflake (store sales channel). Theses nine queries can be
grouped into three main categories as presented in Table 2.

TABLE 2. Characteristics of the query set.

FIGURE 3. TPC-DS data model.

TABLE 3. Q3 - Non-hierarchical query.

The first category is made up of five non-hierarchical
queries that do not involve hierarchies. Therefore, it is obvi-
ous that the customer table is not used in these queries. More
precisely, all the tables queried are directly related to the fact
table Store_Sales. For instance, the query Q3, cf. Table 3,
computes the total rebate amount per item brand of the
manufacturer 427 for all sales that took place in November.
From a relational database perspective, this query requires
different joins to get data from the tables item, Store_Sales
and date_dim. However, in a graph database all these joins
are replaced with relationships.

In the same category, we also distinguish the query Q28
which is not only non-hierarchical but also flat since only the
fact table is used in this query and no dimension is queried.
As shown in Table 4, Q28 calculates the average list price,
the number of list prices and the number of distinct list prices
of six different sales buckets of the store sales channel. Each
bucket is defined by a range of distinct items and infor-
mation about list price, coupon amount and wholesale cost.
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TABLE 4. Q28 - Non-hierarchical query.

TABLE 5. Q7 - Hierarchical query.

The non-hierarchical category of queries is used to compare
performance of graph versus relational model since their star
and snowflakes variants are identical.

The second category consists of 2 hierarchical queries
which are executed to answer complex questions. These
queries go through more than five dimensions, up to a depth
of 2, and include hierarchies and aggregates. For example,
Q7, shown in Table 5, computes the average quantity, list
price, discount, and sales price for promotional items sold in
stores where the promotion is not offered by mail or a special
event. The results are restricted to a specific gender, marital
and educational status.

The third category contains hierarchical and cumulative
queries that are not only highly complex but also cumulative.

TABLE 6. Q13 - Hierarchical and cumulative query.

Those queries return a single row aggregating all selected
rows or nodes. For example, Q13, shown in Table 6, cal-
culates the average sales quantity, the average sales price,
the average wholesale cost ant the total wholesale cost for
store sales of different customer types including their house-
hold demographics, sales price and different combinations of
states and sales profit for a given year.

The purpose of the following experiments is to demonstrate
that we can implement a graph data warehouse using our
approach and apply a variety of queries on it. We evaluate
the performance of each approach based on the execution
time of the set of TPC-DS queries that we defined previously.
We report the execution time for queries adapted for star
schema and snowflake schema. Note that since Neo4j has its
own query language, the queries are translated into the query
language Cypher.

V. RESULTS
In this section, we report the performance evaluation results
of the relational and graph data warehouses based on two
metrics: write latency and read latency.

A. WRITE LATENCY
In graph databases, relationships between nodes are consid-
ered the first-class citizen [36]. While relational databases
rely on joins to answer complex queries, graph databases
store physically links between nodes. Consequently, writing
data on graph data warehouses is significantly longer than
relational data warehouses due to the time required to create
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relationships between nodes. This has been checked on the
experiments that we conducted. As shown in Figure 4, the
loading time of the relational data warehouse is up to fourteen
times faster than the graph data warehouse. In addition, unlike
relational databases where the time of creation of the star
and snowflake data warehouses is the same, the creation
of a graph data warehouse with a snowflake-like schema
takes more time than a graph data warehouse with a star-
like schema. Indeed, the snowflake-like graph datawarehouse
requires the creation of more relationships, which requires
more time.

FIGURE 4. Write latency.

B. READ LATENCY
We distinguish the three types of queries detailed in Table 2.

1) NON-HIERARCHICAL QUERIES
The run times of non-hierarchical queries Q3, Q28, Q42, Q52
and Q55 are shown respectively in Figures 5a, 5b, 5c, 5d and
5e. Queries Q3, Q42, Q52 and Q55 are very similar. Query
Q3 does not make a selection on the year, contrary to the
other queries, hence its execution time is higher. However,
the growth of the execution time as a function of the amount
of data to process remains similar. Query Q28 has a differ-
ent structure. It requires reading the table of facts several
times, keeping a large amount of information in memory,
hence the longer execution time. As previously mentioned
in Section IV-C, these queries do not involve hierarchies.
More precisely, the dimension customer and all its related
hierarchies are not present in these queries. Further, the query
is written in the same way for star and snowflake schemas.
Consequently, the response time of the normalized and denor-
malized data warehouses is the same. Thus, the curves of nor-
malized and denormalized data warehouses are superposed.
These experiments show that for these queries which are not
complex, not requiring to link a large number of different data
which would require several joins in the relational model,
relational databases are more efficient than graph databases
(up to ten times faster).

2) HIERARCHICAL QUERIES
The run times of queries Q7 and Q27 are shown respec-
tively in Figures 6a and 6b. Queries Q7 and Q27 are sim-
ilar. They are hierarchical queries, with a maximum depth

FIGURE 5. Read latency - non-hierarchical queries.

of 2, and include the computation of aggregates and a sort-
ing of the results. The execution times are therefore close.
For the second type of queries, our results show that the
snowflake schema is more time consuming than the star
schema in the case of relational data warehouses. However,
for graph databases, the curves of star and snowflake graph
data warehouses are superposed. Surprisingly, they have the
same performance. Additionally, the graph data warehouse is
significantlymore efficient than the relational data warehouse
(up tomore than twenty times faster). Also, when the data size
increases, the graph data warehouse becomes more and more
efficient than the relational one.

3) HIERARCHICAL AND CUMULATIVE QUERIES
The run times of queries Q13 and Q48 are shown in 7a and 7b
respectively. Both queries compute a few aggregates (average
and sum) on sales for one year and for conditions on vari-
ous sub-dimensions of customers: customer_demographics,
household_demographics, customer_address.
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FIGURE 6. Read latency - hierarchical queries.

FIGURE 7. Read latency - hierarchical and cumulative queries.

For this category, the performance of relational and graph
data warehouses is similar when the data size is small. How-
ever, for larger data sizes, graph data warehouses answer
queries faster than the relational ones (up to ten times faster).

C. DISCUSSION
The main drawback of the snowflake schema in a relational
implementation (R-OLAP) is that the additional levels of
depth for the dimensions require longer traversals to access
the information in the deeper dimensions. These traversals
result in joins in the relational model, and increase the exe-
cution time compared to the star schema. Reciprocally a
snowflake schema allows a more efficient storage than a
star schema, and the consideration of various sources, which
will add up to deeper dimensions. Our experiments on non-
hierarchical queries show that a relational implementation of
a star schema is more efficient than a graph implementation.
However, in the case of a snowflake schema, the increase
in the length of the paths in the queries has relatively little
impact on the performance of the graph-based data ware-
house. Graph-oriented data warehouses have been shown to
be effective for the second and third types of queries, those
involving many dimensions or hierarchies. Indeed, in graph-
based data warehouses, the relationships between the fact
and the dimension, and between the attributes of the same
dimension (hierarchies) are physically implemented. Thus,
in the case of an increase in the volume to be processed, when
queries go deeper in the dimensions, graph-based data ware-
houses are more efficient, and more robust to the increase in

complexity. This is because while relational databases crawl
all tables until data matching the search criteria is found,
graph databases crawl only those nodes that meet the criteria.
Therefore, both star and snowflake graphical data warehouses
are effective depending on the use case (normalized or non-
normalized data). The results show that it is possible to con-
sider the snowflake scheme for graph-based data warehouses
to easily add additional data connected to dimensions without
significant impact on query response time.

VI. CONCLUSION
This paper investigates the design, implementation, and eval-
uation of graph data warehouses. The goal of this study is to
determine whether a traditional relational data warehouse or
a graph data warehouse would be more effective. We have
proposed a set of transformation rules called MDM2G to
convert a multidimensional model of a data warehouse into
a graph database. These rules transform a multidimensional
model into a graph database using two schemas: star-like
and snow-like schemas. Experiments are conducted using
data generated from the TPC-DS benchmark. We generated
respectively data sets of size 1GB, 3GB, 5GB and 7GB. The
experimental setup shows the way OLAP systems can be
implemented with graph databases using Neo4j. This process
includes data transformation, data loading and performing
complex analytical queries. The entire process allows us to
compare the different approaches with each other. We also
compare the performance of graph data warehouses to similar
relational data warehouses. Results show that both of our
proposed graph data warehouses perform well, with denor-
malized schema being hardly more efficient for some queries.
The results of the experiments exhibit the advantage of the
use of graph NoSQL technologies for implementing OLAP
systems and answer complex questions. In this work, our
evaluation has been based on objective measures. However,
other subjective measures could be used such as the maturity,
ease of programming, security and flexibility. In our further
research works we will focus on the use of graph databases to
store and analyze biological networks in order to provide fast
answers for complex queries and predict hidden relationships
between proteins.
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