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ABSTRACT
Asphalt mixtures are complex multiphase materials showing a viscoelastic behavior.
In order to assess the mechanical response under traffic of these materials, a typical
practice is to perform a complex modulus test. An alternative to laboratory charac-
terization is to simulate numerically the complex modulus test by means of a discrete
approach. Classical discrete approaches are able to reproduce the mechanical per-
formances of asphalt mixtures, but show some difficulties to model non-spherical
particles. In this work, the complex modulus test is reproduced numerically for an
asphalt mixture by 3D simulations carried out with the LMGC90 code. A viscoelas-
tic contact law is used to handle the interaction between particles with irregular
shapes. The numerical aggregates were generated using the particle size distribu-
tion (PSD), the flakiness index (FI), and statistic data of actual aggregates, without
using complex imaging techniques. Experimental and numerical testing campaigns
were conducted for the complex modulus test on trapezoidal samples in a two-
point bending (2PB) configuration. The numerical model was able to reproduce the
mechanical performances obtained during the experimental tests, regarding the vis-
coelastic properties of the material. The influence on the mechanical performances
of particle shape considering irregular aggregate was analyzed. The proposed model
can be used to simulate the mechanical response of road surface layers under traffic
loading.

KEYWORDS
Discrete element approach, Contact Dynamics method, 2PB complex modulus
test, irregular particles, Burgers contact model.

1. Introduction

Hot mix asphalt is a complex multiphase system consisting of aggregates, mastic of
bitumen and air. In this mixture the solid phase, composed of crushed aggregates,
is binded with bitumen to ensure cohesion to the material. The aggregates can be
identified as a granular material, where solid particles interact between them. On the
other hand, the mastic phase shows a thermo-sensitive viscoelastic behavior. Thus,
the mechanical performances of the mixture are dependent on temperature and strain
rate. This macroscopic behavior is highly related to micro-scale behavior. Therefore,
to predict the behavior of the pavement on a macroscopic scale, it is necessary to
understand the micromechanical behavior of bituminous mixes.
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To quantify the viscoelastic properties of these mixtures, such as the norm of the
complex modulus |E∗| and the associate phase angle Φ, it is usual to carry out a
complex modulus test. These parameters are employed to compute the mechanical re-
sponse of asphalt concrete under traffic (Chabot, Chupin, Deloffre, & Duhamel, 2010).
Laboratory tests measure the macro-scale behavior of asphalt mixes at large-scale, but
this approach cannot identify the behavior at the particle-scale. Numerical methods
such as the Finite Element Method (FEM) use continuum mechanics approach to de-
scribe the macro-scale behavior of viscoelastic materials (Ameri, Mansourian, Khavas,
Aliha, & Ayatollahi, 2011; Bai, Cheng, Hu, Fuentes, & Walubita, 2020; Chazallon, Ko-
val, Hornych, Allou, & Mouhoubi, 2009; A. Collop, Scarpas, Kasbergen, & de Bondt,
2003; Dai & You, 2007; Fedele, Praticò, & Pellicano, 2019; He, Abdelaziz, Chen, &
Yin, 2019; Kim, Allen, & Little, 2007; Li, Wang, Xu, & Xie, 2017; Y. Lu & Wright,
1998; Masad & Somadevan, 2002). However, these numerical methods struggle as ex-
perimental approaches to provide mechanical information at the particle-scale.

One way to solve this problem is by performing numerical simulations by means
a discrete approach. This numerical method models the interaction of independent
rigid or deformable bodies in contact. In the last years, the Discrete Element Method
(DEM) has been broadly employed to simulate the mechanical performances of asphalt
mixes (Abbas, Masad, Papagiannakis, & Harman, 2007; Buttlar & You, 2001; Dondi
et al., 2014; Gao, Koval, & Chazallon, 2019; McDowell, Collop, & Wu, 2009; Nguyen,
Froiio, Cambou, Di Benedetto, & Sauzéat, 2016; Quezada, Sagnol, & Chazallon, 2017;
Yu & Shen, 2013; Zhou, Zhang, Li, Lu, & Chen, 2019).

In these studies, the mortar is simulated by a viscoelastic law interacting with
particles at contact. Nevertheless, most of the studies have modeled the aggregates
using spherical particles, simplifying the overall shape. In a granular material, the
particle shape plays a major role regarding fabric anisotropy, force transmission and
friction mobilization (Alonso-Marroquin & Herrmann, 2002; Azéma, Radjai, & Dubois,
2013; Azéma, Radjai, & Saussine, 2009; Cantor, Azéma, Sornay, & Radjai, 2017; Kim
& Aragão, 2013; M. Lu & McDowell, 2007; Quezada, Breul, Saussine, & Radjai, 2012;
Saint-Cyr et al., 2012; Souza, Kim, Souza, & Castro, 2012).

For the simulation of complex modulus properties, in most of numerical studies,
the mechanical properties of the contact laws were empirically adjusted to match
the macro-scale results from experimental data. This procedure results in using a
generalized set of values in the contact law for every contact within a sample, where the
variations of mechanical properties at the particle-scale are neglected. In some cases,
this approach shows some divergences between numerical and experimental results.

In this work, laboratory 2PB complex modulus tests were conducted on trapezoidal
samples to identify the viscoelastic properties of an asphalt mixture. Then, numerical
2PB tests were performed using a discrete approach with irregular particles. Finally,
the results from numerical complex modulus tests were compared with the experimen-
tal data to validate the numerical approach.

In the following, Section 2 introduces the experimental procedures concerning the
complex modulus tests performed in a 2PB configuration, the properties of the em-
ployed asphalt mixtures, the preparation protocol of experimental samples, the loading
conditions and the calculation of the viscoelastic properties. Then, Section 3 presents
the numerical procedures including the numerical method, preparation protocol, the
characteristic of the adopted contact model and the 2PB test modeling. Finally, Sec-
tion 4 measures the accuracy of the numerical results displaying the isotherms curves,
master curves and analyzing the asymptotic behaviors for numerical and experimental
data.

2



Table 1. Particle size distribution for the BBSG 0/10 Bréfauchet asphalt

Sieve size (mm) 12.5 10 8 6.3 4 2 1 0.5 0.25 0.125 0.063

PSD (%) 100 90 75 58 44 31 20 15 12 9 6.5

imposed sinusoidal

displacement z

z0

mobile plate

fixed plate

Figure 1. (a) Geometry and dimensions of the sample (“EN 12697-26: Bituminous mixtures. Test methods

for hot mix asphalt. Part 26: Stiffness.”, 2012). (b) Schema of the complex modulus test device.

2. Experimental procedures

2.1. Complex modulus test

The experimental campaign was conducted on trapezoidal samples, using a two point
bending (2PB) configuration according to the EN 12697-26:2012 specification (“EN
12697-26: Bituminous mixtures. Test methods for hot mix asphalt. Part 26: Stiffness.”,
2012).

For this campaign, four samples were manufactured using a Semi Coarse Asphalt
Concrete (BBSG) 0/10 with a bitumen 35/50 grade, saw-cut from slabs manufactured
in laboratory. Table 1 displays the particle size distribution (PSD) of the employed
aggregates. Each trapezoidal specimen is 250 mm height, 56 mm at the bottom, 25
mm at the top and 25 mm width (Fig. 1a), with a total mass M about 0.6 kg, a bulk
density of 2289 kg.m−3 and a void content of 4.7%.

For these experimental trials the frequency values tested were set at 3, 6, 10, 25
and 40 Hz, while the selected temperature values were -10, 0, 10, 15, 20 and 30 oC.
On each sample, a sinusoidal displacement z is applied at the target frequency, with a
peak displacement z0 of 63×10−6 m, corresponding to a strain amplitude of 50×10−6

at the top of the sample. The mass m of the mobile equipment overhead is 0.235 kg
(Fig. 1b). The maximum force F0 and the phase angle Φ were measured during the
last ten seconds of the test. The enclosure is piloted and the temperature remains
constant during the test.

To identify the viscoelastic properties of the asphalt mixture, first the real part E1

and the imaginary part E2 of the complex modulus E∗ must be calculated. These
values are given by the Eqs. 1 and 2:
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E1 = γ

(
F0

z0
cos(Φ) + 10−6µω2

)
(1)

E2 = γ
F0

z0
sin(Φ) (2)

where ω is the angular frequency, γ (mm−1) is a shape factor depending on the
dimensions of the specimen: B = 56 mm, b = 25 mm, e = 25 mm and h = 250 mm
(Fig. 1a) and µ is the mass factor, described by:

γ =
12h3

e(B − b)3

[(
2− b

2B

)
b

B
− 3

2
− ln

b

B

]
(3)

µ = 0.135M +m (4)

Finally, the dynamic properties can be determined as:

|E∗| =
√
E2

1 + E2
2 (5)

Φ = arctan(E2/E1) (6)

3. Numerical procedures

In this section, the Contact Dynamics (CD) method is briefly introduced, as a discrete
approach for the simulation of asphalt mixtures, as well as the numerical procedures
used for the preparation of the numerical samples, the proposed viscoelastic contact
model and its calibration.

3.1. Numerical method

The 2PB tests simulations were conducted using the LMGC90 software (LMGC90 ,
2021), which is dedicated to multiple physics simulation of discrete material and struc-
tures (Dubois & Jean, 2003). This software is based on the Contact Dynamics (CD)
method (Brogliato, 1999; Jean, 1999; J. Moreau, 1994; J. J. Moreau, 1988; Radjai &
Richefeu, 2009).

The CD method is a particle-based approach for the modeling of non-smooth me-
chanics in granular systems. The main difference between this approach and the dis-
tinct element method (Cundall, 1971, 1988; Cundall & Strack, 1979) or molecular
dynamics (Brilliantov, Spahn, Hertzsch, & Pöschel, 1996; Herrmann & Luding, 1998;
Pöschel & Buchholtz, 1995; Radjäı & Dubois, 2011) lies in the formulation of the
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(a) (c)(b)

Figure 2. Examples of created particles with different shapes : (a) sphere; (b) regular polyhedron; (c) irregular
polyhedron.

contact models as complementary relations between impulses and velocities at the
particle-scale. Here, the unilateral contact interactions and Coulomb friction law guar-
antee the non-interpenetration between perfectly-rigid particles.

The contact detection between two particles is carried out at two levels. First a
so-called coarse detection is carried out using the ”bounding box” algorithm in order
to identify the particles in the neighboring of a reference particle. When two particles
are close enough, a finer detection is performed using the ”common-plane” method
(Cundall, 1988).

3.2. Sample preparation

In the aim to perform the modeling campaign for the 2PB tests, four specimens for
three different particle shapes: spherical, regular and irregular polyhedra were pre-
pared numerically, considering the same dimensions displayed in Fig. 1a and the total
mass (0.6 kg) of samples used in experimental trials. This numerical campaign was
conducted for six temperatures and five frequencies.

To prepare the numerical samples, initially, about 10,000 spherical rigid particles
are created following the PSD of a BBSG 0/10 (Tab. 1) cut at 2 mm, in order to reduce
the total quantity of elements in the sample, where the fines are included in the mortar
phase. This numerical trick reduces the computational time in the simulations. This
approach can have an influence on the mechanical response of numerical samples.
Future work will be devoted to analyze the effect of the cut size on the mechanical
behavior of numerical tests. The initial bulk density of these particles is 2647 kg.m−3.
These particles are poured into a box composed of six plates with dimensions: 0.25
m length, 0.025 m width and 1.6 m height. Here, the coefficient of friction among all
elements is reduced to 0.1 to generate a dense initial sample.

From each original spherical sample, samples composed of regular and irregular
polyhedra were created (Fig. 2). For the case of regular polyhedra, each sphere is
replaced by a regular polyhedron composed of eight vertices and six faces (cubes),
where the original spheres circumscribe each polyhedron. On the other hand, in the
aim to reproduce realistic aggregates, irregular polyhedra were created, where the
shape and dimensions of each particle are based on the PSD, the flakiness index
of experimental aggregates and statistic data from actual aggregates. Each irregular
polyhedron is circumscribed by an ellipsoid surface defined by the following parametric
equations (Eq. 7):
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(a) (b)

Figure 3. (a) Actual aggregates used in the visual identification of the shape and the number of vertices. (b)

Snapshot of aggregates generated numerically.

 x = Sf × r cos(θ) cos(ϕ)
y = r cos(θ) sin(ϕ)
z = r sin(θ)/Sf

(7)

where the angles θ and ϕ vary in the ranges −π/2 ≤ θ ≤ π/2 and −π ≤ ϕ ≤ π,
r is the half dimension from the PSD and Sf is a shape factor. The Sf value was
varied randomly between 1.0 and 1.5. This factor reproduces the elongation and the
flakiness of experimental aggregates on the numerical particles, where the flakiness
index (FI) is equals to 17%. This procedure generates different ellipsoid surfaces, where
are placed randomly eight vertices. This vertex number was identified visually from
28 experimental aggregates (Fig. 3a) where the average number is equals to 7.77,
and the standard deviation is 0.916. This protocol creates convex polyhedrons, based
on simplified shapes of actual aggregates, without using complex imaging technics.
A snapshot of the numerically generated particles with this protocol is displayed in
Fig. 3b.

After the particle replacement stage, the generated numerical slab is cut to obtain
the same dimensions as the experimental samples. This procedure is conducted by
eliminating the particles where their barycenter is outside the trapezoidal volume
showed in Fig. 1a. Then each numerical sample is subjected to a rotation of 90 degrees
counter clockwise, changing the gravity direction. Afterwards, each sample is fixed to
a bottom and top plates. The latter models the mobile plate of 0.235 kg mass in the
experimental set-up.

To take into account the mortar phase surrounding the aggregates, the particle sizes
are reduced considering the binder content. For each particle, its radius (or vertex
coordinates for polyhedra) is multiplied by a reduction factor rf calculated as:

rf =

(
1− TL

ρS
ρL

)1/3

(8)

where TL is the binder content of 5.6% for experimental samples, ρS the initial bulk
density of particles equals to 2647 kg.m−3, and ρL the binder bulk density of 1030
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Figure 4. Comparison between the original PSD of aggregates, the cut PSD at 2 mm and the PSD shifted
by the reduction factor.

kg.m−3. After this procedure, the bulk density of particles is increased to an average
value of 3556 kg.m−3, to reach the experimental total mass of 0.6 kg. The variation
in the particle size generates a small shift regarding the original size distribution
(Fig. 4). This shift can induce a difference in the mechanical behavior of the sample
in comparison with the original PSD. At this stage, the particle-particle friction was
set to µ = 0.7 which is a common value employed for crushed aggregates.

Finally, a stabilization step is performed, where the sample is subject only to gravity
until reach the equilibrium state. One snapshot of resulting samples composed of
different particle shapes is provided in Fig. 5.

3.3. Contact model

At this stage, a viscoelastic contact law was applied between particles, based on the
Burgers model (Betten, 2008; Liu & You, 2009), which describes quite well the mechan-
ical performances of asphalt mixtures, such as relaxation, creep and dynamic response
(Cai, McDowell, & Airey, 2014; A. C. Collop, McDowell, & Lee, 2006; McDowell et al.,
2009; Quezada & Chazallon, 2020). This constitutive model is composed of a Maxwell
section and a Kelvin-Voigt section, in series. Four parameters describe its mechanical
behavior: the Maxwell’s stiffness and viscosity Em and ηm, and the Kelvin-Voigt’s
stiffness and viscosity Ek and ηk. Due to the Maxwell dashpot, this model is not
suitable for predicting the mechanical response at very low-frequencies, showing some
divergences regarding experimental data. This contact law manages the interaction of
rigid particles surrounded by a viscoelastic phase (Quezada & Chazallon, 2020).

From this macroscopic description the normal model parameters at the particle-scale
can be assessed as follows:

Kmn
=
πr2

min

l0
Em (9)

Cmn
=
πr2

min

l0
ηm (10)
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(a) (c)(b)

Figure 5. Snapshot of numerical samples after the preparation stage: (a) Spherical sample; (b) Regular

polyhedral sample; (c) Irregular polyhedral sample

Kkn =
πr2

min

l0
Ek (11)

Ckn =
πr2

min

l0
ηk (12)

whereKmn
, Cmn

,Kkn and Ckn are the normal stiffness and viscosities at the particle-
scale, rmin is the minimum radius of two particles at contact and l0 is the initial gap
between the mass center of these particles (see Fig. 6).

On the other hand, the tangential components of the contact model for both tan-

Figure 6. Contact law based on the Burgers model
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Figure 7. Representation of particles linked by the viscoelastic contact model within a spherical sample.

gential directions can be computed from the above normal parameters, considering an
isotropic behavior, as:

Kmt
=

Kmn

2(1 + ν)
(13)

Cmt
=

Cmn

2(1 + ν)
(14)

Kkt =
Kkn

2(1 + ν)
(15)

Ckt =
Ckn

2(1 + ν)
(16)

where ν is the Poisson’s ratio. For the sake of simplicity, this ratio was set to
0.35 (Cai et al., 2014; A. C. Collop et al., 2006). The temperature can modify the value
of the Poisson’s ratio, which can vary between 0.35 and 0.5 for asphalt mixes. Further
works will take into account the variation of the Poisson’s ratio with the temperature
and its effect on the mechanical performances of the model. This procedure creates
from only four macroscopic parameters a set of parameters at the particle-scale equals
to the total number of contacts within an asphalt mixture.

The proposed contact model links each particle with their neighbors. In order to
consider the viscoelastic contact between two particles, the gap between them must
be less than 1 mm, where this value corresponds to the minimal half dimension of
particles in the sample. This gap value was calibrated for the current particle sample,
where this is the minimal value that ensures a stabilization of the number of contact
of neighboring particles within the sample. With this procedure, an initial network of
viscoelastic contacts is created at the beginning of the simulation. An example of this
network is displayed in Fig. 7.
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3.4. Complex modulus test modeling

The numerical tests were performed by subjecting the top plate to a sinusoidal dis-
placement with amplitude A=63×10−6 m, as experimental trials, during five cycles.
The displacement and the total reaction at the top plate are measured throughout the
test. Then the peak force F0 and peak displacement z0 are identified to determine the
numerical values of |E∗| and Φ. The time step was set to 5×10−5 s in all simulations to
ensure the convergence of the numerical resolution. From this time step length, force
values gather in the same curve evolution (Quezada & Chazallon, 2020). The number
of time steps needed to perform five loading cycles varies from 3.33×104 to 2.5×103

for 3 Hz and 40 Hz respectively, where the computational time was comprises between
1.7 and 22 hours. The CPU time was 2×10−4 s per particle and per time step on a
Dell computer of speed 2.1 GHz.

3.4.1. Calibration of the numerical modeling

In the aim to calibrate the contact model parameters regarding the experimental data,
an analytical macroscopic approach was adopted, based on the constitutive Burgers
model. For the complex modulus test, the viscoelastic material properties can be de-
termined from the complex compliance:

|D∗| =
√
D′(ω)2 +D′′(ω)2 (17)

where D′ and D′′ correspond to the real and imaginary parts, respectively. Both real
and imaginary parts of the complex compliance can be calculated using the macro-
scopic Burgers model parameters as:

D′(ω) =
1

Em
+

Ek
E2
k + ω2η2

k

(18)

D′′(ω) =
1

ωηm
+

ωηk
E2
k + ω2η2

k

(19)

Based on these analytical expressions, it is possible to determinate the Burgers
model parameters to reproduce the evolution of |E∗| and Φ. The norm of the complex
modulus can be obtained by |E∗| = |D∗|−1 and the associated phase angle as Φ =
arctan(D′′/D′).

For the calibration of the Burgers model parameters, an iterative procedure was set
up for each temperature (Fig. 8), where each step is described as follows:

(1) First, a numerical simulation is performed using a set of initial Burgers
parameters for each loading frequency.

(2) Then, the numerical values for |E∗| and Φ are computed using the Eqs. 1 to 6.

(3) The numerical values obtained from this simulation are compared with those
assessed from the analytical model (Eqs. 17 to 19) with the same set of param-
eters. During the iteration process a difference for the predicted values between
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2PB test simulation

END

Initial set of Burgers parameters

Computation of |E*| and �

Correction of the analytical model 

to fit the numerical values

Curve fitting for the experimental data 

New set of Burgers model parametersNew set of Burgers model parametersNew set of Burgers model parameters

Number of 

iterations

reached?

yes

no

Figure 8. Flowchart for the calibration of Burgers parameters.
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Table 2. Average values for the

correction factors between analyti-

cal and numerical model.

Correction factor

Shape α β

Polyhedron 56.83 48.10
Sphere 50.64 61.18
Cube 27.51 28.55

the analytical model and the numerical modeling was observed. In order to com-
pensate this difference, a correction on the analytical expressions of the real and
imaginary part of the complex modulus is proposed as follows:

Ec1 = Ean cos(Φan)α (20)

Ec2 = Ean sin(Φan)β (21)

where Ec1 and Ec2 are the corrected values for the real and imaginary part
of the complex modulus, Ean and Φan correspond to the values obtained from
the fitting with the analytical model, and α and β are dimensionless correction
factors. These correction factor were calculated using a curve fitting by means
an optimization algorithm from Python programming language (Python Soft-
ware Foundation, 2021), performing a non-linear least squares method. The
obtained average values for the correction factors are displayed in Table 2 as a
function of the particle-shape. The correction factors from the analytical to the
numerical model seem to be a function of the size distribution and morphology
of the aggregates. Future works will focus specifically in the features linked to
aggregates morphology.

(4) The corrected analytical expressions are employed afterwards to fit the experi-
mental |E∗| and Φ values. Here, the curve fitting procedure provides the best-fit
parameters for each temperature. Using the corrected expressions from Eqs. 20
and 21 allows to estimate the values of the numerical model directly from the
experimental tests.

(5) Finally, the new set of parameters is used to perform a new calculation for the
next iteration step.

Table 3 displays the calibrated parameters obtained with the described procedure.
Five iteration steps were needed for each temperature and each sample to determinate
these Burgers model parameters. The parameter calibration of the Burgers model
makes it possible to represent also different types of mortar.
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Table 3. Macroscopic Burgers model parameters used in the

numerical simulations.

Burgers parameters

T (oC) Em (Pa) ηm (Pa.s) Ek (Pa) ηk (Pa.s)

-10 4.56×108 6.33×108 9.67×109 1.27×108

0 4.23×108 2.09×108 2.68×109 2.42×107

10 3.41×108 6.55×107 9.52×108 1.09×107

15 3.09×108 3.42×107 5.69×108 6.75×106

20 2.74×108 1.57×107 3.25×108 3.88×106

30 1.88×108 2.99×106 1.11×108 1.26×106

0 10 20 30 40 50
f [Hz]

0.5

1.0

1.5

2.0

2.5

3.0

|E
* |
 [M

Pa
]

1e4

-10oC exp
0oC exp
10oC exp
15oC exp
20oC exp
30oC exp
-10oC num
0oC num
10oC num
15oC num
20oC num
30oC num

Figure 9. Norm of complex modulus |E∗| isotherms for experimental and numerical polyhedral samples.

Here, the error bar is plotted using one standard deviation.

4. Validation of the numerical modeling

In the aim to validate the proposed numerical approach, Fig. 9 and 10 displays the
comparison between the experimental and numerical results for the norm of complex
modulus and phase angle isotherms for polyhedral samples. Numerical data of |E∗| and
Φ follow the experimental values, despite some fluctuations around the average values.
One can observe a larger variation in numerical |E∗| values for low-temperatures. For
Φ values, the fluctuations are larger for a frequency of 40 Hz, while a separation for
high-temperatures and low frequencies can be noticed.

To identify the effect of the particle shape on the sample viscoelastic performances,
the master curves were computed for both |E∗| and Φ values for all samples. To
build each master curve, a reference temperature Tref =15 oC was chosen. Then, the
translation of all isotherm curves is performed by calculating the reduced frequency
as: aT f = f × 10aT , where f corresponds to each frequency value in each curve and
aT is the shift factor. Figure 11 displays the shift factor values as a function of the
temperature. These values are obtained from the fit with the temperatures ones using
the Williams-Landel-Ferry (WLF) equation:
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Figure 10. Phase angle Φ isotherms for experimental and numerical polyhedral samples. Here, the error bar
is plotted using one standard deviation.

Table 4. Shift factor values for each temperature.

T (oC) -10 0 10 15 20 30

log(aT ) 3.8 2.3 0.65 0.0 -0.7 -1.85

log(aT ) =
−C1(T − Tref )

C2 + (T − Tref )
(22)

where C1 and C2 are 28 and 206.8 oC respectively, and T is the temperature. Fig-
ures 12 and 13 display the resulting curves for experimental and numerical results as
a function of the particle shape. It should be noted that the parameters of the Burgers
model (Table 3) can be determined from the master curves for the reference tempera-
ture of 15 oC. We can define a constant value for the Maxwell stiffness at 15 oC, which
has a purely elastic behavior, while for the other parameters, we can translate them
using the shift factor aT together with the reference temperature parameters. In other
words, the calibration process ensures indirectly the time-temperature superposition
principle (TTSP).

Regarding the |E∗| master curve, polyhedral samples show a good prediction of
|E∗| values, while for the samples composed of spheres, the values of the norm of the
complex modulus are slightly underestimated. On the contrary, for cubical samples
the |E∗| curve is completely shifted. Building a sample with cubic particles results in
a looser sample and with a lower number of contacting particles compared to samples
made up of spheres or irregular polyhedrons. This results in the generation of a weaker
contact network and consequently in a weaker mechanical response, regarding |E∗|.
For the case of Φ master curve values, the most part of the data collapse in the same
curve, regardless the particle shape. From these observations, it can be concluded that
the particle shape does not have a significant influence on the values of the phase angle.
On the other hand, the values of the norm of the complex modulus are more sensitive
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Figure 11. Shift factor values as a function of temperature.
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Figure 12. Complex modulus master curve for experimental tests and numerical simulations. (Tref =15oC).

to the change of the shape of the particles. This is due to the contact surface between
the particles and to the contact and force network generated inside each sample. A
more realistic particle shape achieves a more accurate estimation of the mechanical
performance of bituminous mixes.

To analyze the asymptotic behaviors of the studied asphalt material (low-
temperature/high-frequency or high-temperature/low-frequency), the Cole-Cole plan
and the Black diagram were plotted for polyhedral samples. Figure 14 displays the
Cole-Cole plane analysis where E2 values are plotted against E1 values. This graph
emphasizes the behavior of asphalt mixtures at low-temperature/high-frequency con-
ditions. In this curve numerical results show some fluctuations around the experimental
values in the curve. These variations are induced in part by the prediction of the phase
angle values Φ in isotherm curves (Fig. 13), where for the case of high-temperatures
the estimation of numerical data show some deviations regarding experimental values.
Despite these fluctuations, numerical results follow the average trend in experimental
data, showing a more accurate prediction towards the asymptotic values.

To study the behavior at high-temperature/low-frequency for the bituminous ma-
terial in this work, Fig. 15 shows the Black diagram. This graph was built by plotting
|E∗| values as a function of Φ values. In this figure is possible to observe the asymp-
totic behavior with the phase angle Φ equal to zero (|E∗| about 2.8×104 MPa. The
experimental and numerical data are in good agreement for Φ values less than 30o.
From this threshold, the numerical values fall.

In both figures, all data collapse in the same average trend and temperature influence
is not visible. Therefore, these results confirm the frequency-temperature superposition
principle regarding the equivalence of the effects of frequency and temperature on the
material behavior. The fluctuations observed between experimental and numerical
data may be induced by some limitations of the Burgers contact model.
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Figure 14. Cole-Cole plot for experimental tests and numerical simulations.
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5. Concluding remarks

In this paper discrete simulations of complex modulus tests in a 2PB configuration
were presented. The numerical specimens were prepared using spherical, regular and
irregular polyhedral particles. For the latter, the particle-generation procedure was
based on statistic criteria to reproduce the elongation, flakiness and the number of
vertices identified from actual aggregates, without using 3D scan or other imaging
technics. The mortar phase was modeled using a contact law between particles based
on the constitutive Burgers model. The numerical campaign reproduces the experi-
mental tests, where four trapezoidal samples were subjected to five frequencies and
six temperatures.

The main outcomes in this study are enumerated below:

• The numerical simulations with irregular polyhedral are able to reproduce the
complex modulus properties of bituminous materials. For different analysis
conducted in this paper, the numerical results of these simulations were in a
good agreement regarding experimental data.

• The iterative procedure used for the calibration of model parameters adapts the
analytical expressions for numerical samples, by using correction factors. These
corrected expressions allow the parameters of the Burgers contact model to be
obtained directly from the isotherm curves.

• For isotherm curves, numerical data of the norm of the complex modulus |E∗|
and the phase angle Φ values follow the trend of experimental values, despite
some fluctuations around the average values. Certain lack of accuracy in the
prediction of the experimental values may be due to the limitations of the
contact model. Future research will focus on the use of other contact models,
such as the generalized Maxwell model or the VENoL model (Coulon, Koval,
Chazallon, & Roux, 2021).
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• With respect to the master curves, for the case of Φ, all the numerical values
show a good agreement with the experimental values, regardless of the shape of
the particles that make up each sample. However, the influence of the particle
shape is more visible in the calculation of the |E∗| values, where a less realistic
shape leads to underestimate these numerical values. This difference could
come from the determination of the contact areas between particles and the
arrangement of the particles in the sample, where granular fabric is different. Fu-
ture works will focus specifically in the features linked to aggregates morphology.

• Regarding the Cole-Cole plan and Black diagram, the equivalence of the ef-
fects of frequency and temperature on material behavior was verified. Here, the
numerical data ensures indirectly the time-temperature superposition principle
(TTSP). Both numerical and experimental data can be represented as a single
curve, where asymptotic behavior can be identified where Φ values reach zero.

In conclusion, this preliminary work can be considered as encouraging for the vali-
dation of the proposed numerical approach for the study of asphalt mixtures features
such as creep, rutting and fatigue cracking performance.
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Azéma, E., Radjai, F., & Saussine, G. (2009, June). Quasistatic rheology, force transmission
and fabric properties of a packing of irregular polyhedral particles. Mechanics of Materials,
41 (6), 729–741.

Bai, T., Cheng, Z., Hu, X., Fuentes, L., & Walubita, L. F. (2020). Viscoelastic modelling of
an asphalt pavement based on actual tire-pavement contact pressure. Road Materials and
Pavement Design, 1–20.

Betten, J. (2008). Creep mechanics. Springer Science & Business Media.

19



Brilliantov, N. V., Spahn, F., Hertzsch, J.-M., & Pöschel, T. (1996). Model for collisions in
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Cantor, D., Azéma, E., Sornay, P., & Radjai, F. (2017). Numerical simulation of the compaction

of crushable grains in 3d. In Epj web of conferences (Vol. 140, p. 07016).
Chabot, A., Chupin, O., Deloffre, L., & Duhamel, D. (2010). Viscoroute 2.0 a: tool for the

simulation of moving load effects on asphalt pavement. Road Materials and Pavement
Design, 11 (2), 227–250.

Chazallon, C., Koval, G., Hornych, P., Allou, F., & Mouhoubi, S. (2009). Modelling of
rutting of two flexible pavements with the shakedown theory and the finite element method.
Computers and Geotechnics, 36 (5), 798–809.

Collop, A., Scarpas, A., Kasbergen, C., & de Bondt, A. (2003). Development and finite el-
ement implementation of stress-dependent elastoviscoplastic constitutive model with dam-
age for asphalt. Transportation Research Record: Journal of the Transportation Research
Board(1832), 96–104.

Collop, A. C., McDowell, G. R., & Lee, Y. W. (2006). Modelling dilation in an idealised
asphalt mixture using discrete element modelling. Granular Matter , 8 (3-4), 175–184.

Coulon, L., Koval, G., Chazallon, C., & Roux, J.-N. (2021). Analytical modelling of thixotropy
contribution during t/c fatigue tests of asphalt concrete with the venol model. Road Mate-
rials and Pavement Design, 22 (sup1), S536–S559.

Cundall, P. A. (1971). A computer model for simulating progressive, large scale movement in
blocky rock systems. In Symp. isrm, nancy, france, proc. (Vol. 2, pp. 129–136).

Cundall, P. A. (1988). Formulation of a three-dimensional distinct element model—part i. a
scheme to detect and represent contacts in a system composed of many polyhedral blocks.
In International journal of rock mechanics and mining sciences & geomechanics abstracts
(Vol. 25, pp. 107–116).

Cundall, P. A., & Strack, O. D. (1979). A discrete numerical model for granular assemblies.
Geotechnique, 29 (1), 47–65.

Dai, Q., & You, Z. (2007). Prediction of creep stiffness of asphalt mixture with micromechanical
finite-element and discrete-element models. Journal of Engineering Mechanics, 133 (2), 163–
173.

Dondi, G., Vignali, V., Pettinari, M., Mazzotta, F., Simone, A., & Sangiorgi, C. (2014). Mod-
eling the dsr complex shear modulus of asphalt binder using 3d discrete element approach.
Construction and building Materials, 54 , 236–246.

Dubois, F., & Jean, M. (2003). Lmgc90. In Actes du sixieme colloque national en calcul des
structures (Vol. 1, pp. 111–118).

En 12697-26: Bituminous mixtures. test methods for hot mix asphalt. part 26: Stiffness.
(AFNOR ed.) [Computer software manual]. (2012).
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