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Abstract 

In radiotherapy, patient-specific quality assurance is very time-consuming and causes machine 

downtime. It consists of testing (using measurement with a phantom and detector) if a modulated plan 

is correctly delivered by a treatment unit. Artificial intelligence and in particular machine learning 

algorithms were mentioned in recent reports as promising solutions to reduce or eliminate the patient-

specific quality assurance workload. Several teams successfully experienced a virtual patient-specific 

quality assurance by training a machine learning tool to predict the results. Training data are generally 
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composed of previous treatment plans and associated patient-specific quality assurance results. 

However, other training data types were recently introduced such as actual positions and velocities of 

multileaf collimators, metrics of the plan’s complexity, and gravity vectors. Different types of machine 

learning algorithms were investigated (Poisson regression algorithms, convolutional neural networks, 

support vector classifiers) with sometimes promising results. These tools are being used for treatment 

units’ quality assurance as well, in particular to analyse the results of imaging devices. Most of these 

reports were feasibility studies. Using machine learning in clinical routines as a tool that could fully 

replace quality assurance tests conducted by physics teams has yet to be implemented.    
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machine learning, radiotherapy, quality assurance 

Résumé 

En radiothérapie, le contrôle de qualité patient est une activité chronophage qui représente un temps 

important d’inactivité pour les machines de traitement. Il consiste à tester (en réalisant une mesure à 

l’aide d’un fantôme et d’un détecteur) si un plan de traitement modulé est correctement délivré par la 

machine de traitement. Il est généralement réalisé pour tous les patients d’un type de traitement donné. 

L’intelligence artificielle (et plus particulièrement le machine learning, est évoquée dans la littérature 

récente comme une solution qui pourrait permettre de réduire, voire de supprimer la charge de travail 

des contrôles de qualité patient. Plusieurs équipes ont implémenté avec succès un contrôle de qualité 

patient virtuel en entrainant un algorithme de machine learning à prédire les résultats des contrôles de 

qualité patient (afin de ne plus les réaliser). Les données d’apprentissage sont généralement composées 

de plans de traitement passés ainsi que des résultats des contrôles de qualité patient associés. D’autres 

types de données d’apprentissage ont récemment été introduits comme les positions réelles des lames 

du collimateur multilames, les indices de complexité du plan ou les vecteurs de gravité. Plusieurs 

algorithmes de machine learning ont été explorés (régression de Poisson, réseaux de neurones, support 

vector classifier) avec quelques résultats prometteurs. Ces outils commencent également à être utilisés 

pour le contrôle de qualité des machines de traitement, en particulier les dispositifs d’imagerie 

embarquée, à la fois pour l’étape d’acquisition mais également pour l’analyse des résultats. La 

majorité de ces travaux sont des études de faisabilité de ces outils et leur utilisation en routine clinique 

pour remplacer les tests de contrôle de qualité reste à mettre en œuvre.       

Mots clés 

Machine learning, Radiothérapie, Assurance qualité 

 



3 

 

1. Introduction 

Quality assurance in radiotherapy is mainly managed by physics teams in radiotherapy departments. 

Quality assurance tasks (management, preparation, delivery, analysis, and reporting) represent a 

significant workload for these teams but also important machine downtime (from one to two hours per 

day). However, quality assurance management is a key factor for the security and quality of patient 

treatment. Quality assurance of radiotherapy can be divided into three main types (we did not consider 

planning quality assurance in this study). 

First, machine quality assurance consists of assessing the performances of different radiotherapy 

medical devices: linear accelerators, electronic portal imaging devices, onboard imaging, and 

computed tomography (CT), among others. Image quality, mechanical and dosimetric properties must 

be regularly checked. Some of these tasks are mandatory and detailed in international and national 

reference texts. For example, in France, a decree describes the frequencies, tolerances, and modalities 

of different linear accelerator quality assurance tests (1).  

The second type of task is patient-specific quality assurance. Patient-specific quality assurance  is not 

mandatory for modulated plans but strongly recommended by international and national scientific 

societies. Among patient-specific quality assurance tasks, in vivo dosimetry should be evaluated when 

it is “technically available” according to Institut du cancer (INCa) (2), monitor units should be 

independently assessed, and dosimetric measurements of patient treatment plans must be achieved in 

phantoms using one of the following detectors: ion chamber matrix, films, or electronic portal imaging 

devices.  

The third type of radiotherapy quality assurance detects delivery errors generally based on log files 

produced during treatment. This quality assurance is less common than the two previously described 

types, but can be very useful and should soon be generalized. 

As with the other elements in the radiotherapy chain, artificial intelligence and in particular machine 

learning are being introduced to help teams with these quality assurance tasks, for example, by 

reducing their frequency or even removing them. Although these new algorithms seem very 

promising, distinguishing what they will really bring in practice remains difficult. For example, the 

function of deep learning raises new questions about its robustness and trustworthiness. 

This study proposes a literature review on what artificial intelligence brings or could bring to patient-

specific quality assurance (in the first section) and machine quality assurance (in the second section). 

We will not focus on the most technical aspects but instead on the results obtained and benefits 

anticipated.  
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2. Towards the elimination of the patient-specific quality assurance? 

One of the most desired objectives is the potential of decreasing the patient-specific quality assurance 

workload. In the literature, the term “virtual quality assurance” is used to describe a quality assurance 

test that is not actually conducted but for which the results are predicted by artificial intelligence. The 

main goal of the following studies was to teach a machine learning system to detect if a particular 

patient’s radiotherapy plan will pass a routine patient-specific quality assurance test. Patient-specific 

quality assurance that is generally achieved for patients treated undergoing intensity-modulated 

radiotherapy, volumetric-modulated arc therapy, or stereotactic radiotherapy (intra- or extracranial) is 

generally assumed to detect plans that are too complex to be correctly delivered by a linear accelerator. 

For example, the plan can use an excessive number of very small multileaf collimator segments or 

excessively high or low dose rates. Thus, the computed dose can differ from the patient-specific 

quality assurance measurement. Patient-specific quality assurance can also detect machine errors 

(generally due to the positions of multileaf collimator leaves) during delivery that can be random or 

systematic. Before the first patient session, a phantom patient-specific quality assurance is supposed to 

detect these two possible problems (due to machine delivery errors or the plan’s excessive complexity) 

and eventually leads to the creation of a new plan if necessary.  

Using their patient-specific quality assurance phantom, a Japanese team first controlled 161 intensity-

modulated radiation beams (from prostate plans) three times: with no errors, and then after introducing 

multileaf collimator errors either systematically (all leaves had the same shift) or randomly (shifts 

were different for each leaf and randomly applied). They used some of these measurements (375) to 

train a convolutional neural network and the rest (108) to test its capacity to classify the measurements 

into three groups (no errors, random, and systematic errors). The convolutional neural network’s 

specificity and sensitivity were always higher than 0.94 and 0.89, respectively. Thus, the convolutional 

neural network was better than the gamma index pass rate to analyse phantom measurements and 

classify errors, but did not avoid the measurement itself (3).  

To avoid patient-specific quality assurance, several approaches were tested using different machine 

learning tools to predict patient-specific quality assurance results without actually acquiring them. A 

first approach consisted of considering only the plan’s characteristics (complexity metrics) to train the 

machine learning systems. For example, in a study, using a Poisson regression with Lasso 

regularization, the complexity of 498 intensity-modulated radiotherapy plans was linked to the patient-

specific quality assurance results (using a bidimensional detector) (4). A global gamma index pass rate 

of 3%/3 mm was predicted with an error smaller than 3%. This model was successfully exported to 

other institutions (5). Using the same dataset, another team trained a convolutional neural network 

(instead of the Poisson regression) with comparable gamma index pass rate predictions (6). Another 

team obtained an impressive prediction of the gamma index pass rate using a 15-layer convolutional 
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neural network and a dataset containing the  plans’ complexity, the planning target volume and rectum 

volumes, and the monitor unit values (7).  

More recently, the specific performance of a linear accelerator (the results of machine quality 

assurance) was added to a treatment plan’s characteristics in a dataset that was used to train a machine 

learning tool. A support vector classifier was then used to predict the gamma index pass rate results 

(8). Using a similar methodology but with a random forest algorithm, Lam et al. obtained 98% of 

predictions within 3% of the measured 2%/2 mm gamma index pass rate (9).  

To go further than simply predicting the patient-specific quality assurance results, these predictions 

can be used to improve treatment planning system computations and thus no longer have failed 

patient-specific quality assurance tests. This interesting idea was investigated in the following study in 

which a dataset composed of 74 volumetric arctherapy plans from three separate institutes was pooled 

(10). The multileaf collimator’s delivery errors were labelled by comparing the planned positions and 

velocities of the leaves to the real positions and velocities during delivery (obtained in the linear 

accelerator’s dynalog files). These labelled data were used to train a machine learning system (random 

forest) to predict multileaf collimator errors. This prediction was incorporated into the treatment 

planning system dose computation (by introducing the predicted errors in the multileaf collimator 

sequence). The gamma index pass rate was assessed for these plans by comparing the measurements 

(in a phantom) to the computation including the prediction of multileaf collimator errors. The gamma 

index pass rate significantly improved (+4.7% for a gamma index pass rate of 1%/2 mm). A similar 

methodology was recently used by adding the gravity vector in the training data (depending on the 

gantry rotation) to improve the prediction of multileaf collimator errors (11). A few studies reported 

the feasibility of predicting the gamma index pass rate and classifying the results (pass/fail) using a 

random forest (12). In a similar approach, a convolutional neural network was also used to detect 

known multileaf collimator errors introduced into treatment plans when an electronic portal imaging 

devices gamma image was achieved (13). Again, these methods decreased the patient-specific quality 

assurance workload but did not dispense with them. Table 1 summarizes these different machine 

learning approaches for improving or removing patient-specific quality assurance.  

3. Applications for machine quality assurance 

Artificial intelligence and machine learning can also help physicists with machine quality assurance. 

For example, a team developed an automated analysis of the quality assurance of the onboard imaging. 

In this context, they used a support vector machine to automatically identify image artifacts (14). 

Another feasibility study used a similar approach based on electronic portal images to develop an 

automated quality assurance of gantry sag and multileaf collimator offset (15).  
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To go further, in a preliminary study, a team implemented a convolutional neural network to predict 

(using time-series modelling) the dosimetric symmetry of beams (16). In the same field, it was 

possible to simplify linear accelerator commissioning and quality assurance using machine learning: a 

team implemented a system that was able to predict dose profiles for different field sizes using only a 

10 x 10 cm2 field as input (17). 

Another artificial intelligence challenge is predicting and preventing the facility breakdowns. There is 

a large amount of data available for a radiotherapy unit. The data include machine quality assurance 

trends and a huge number of automatically recorded parameters stored by the manufacturer in different 

log files. A study showed that by visually analysing the data, a physicist might predict a linear 

accelerator’s trends to make proactive actions (18). They concluded that artificial intelligence should 

be more effective at analysing the data. This approach is already used in non-medical fields (19), and 

some preliminary studies were investigated in radiotherapy (20).  

4. Discussion 

As previously detailed, many studies have assessed artificial intelligence for radiotherapy quality 

assurance, and two important overview articles were recently published (21,22). Among these articles, 

there were mainly feasibility studies for machine- and patient-specific quality assurance. Using these 

technologies for clinical routine remains very rare. There are two main reasons. First, to implement 

and use these tools, very advanced skills in the fields of mathematics, computing science, and data 

science are needed. This knowledge is not very common in radiotherapy departments, particularly in 

France, because they are very new. This should change in the future, and the European Federation of 

Organizations for Medical Physics (EFOMP) recommends introducing these concepts in medical 

physics training (23). To the best of our knowledge, there are no commercial solutions to artificial 

intelligence for quality assurance. Moreover, even when artificial intelligence specialists are involved 

in the clinical implementation of such solutions, it is not obvious to understand the deep functioning of 

algorithms (in particular the algorithms of deep learning) that are often considered black boxes. In 

other radiotherapy fields (e.g., organs segmentation presented in a separate article), these machine 

learning tools’ output can be easily assessed by a physicist or physician. However, in the quality 

assurance field, one of the final goals is to eliminate some quality assurance tests. For example, to 

replace a patient-specific quality assurance test with a “virtual test” predicted by a machine learning 

tool, the algorithms must be valid and robust. This is probably why most transparent machine learning 

tools (Bayesian networks and regression models) are presently preferred to other approaches such as 

deep learning.  

To reduce medical teams’ doubts, an interesting issue is the quality assurance of these tools 

themselves, that is, testing the machine learning output (22). Machine learning users generally split the 

available data into three separate sets: training, validation, and testing sets. However, in medical 
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applications in which data are sometimes difficult to obtain, other approaches are preferred, such as 

“leave one out” that are riskier from a medical perspective.  

Thus, using machine learning for quality assurance in radiotherapy is very promising but still in its 

early stages. It is clearly not as advanced as it is in other medical fields such as radiology or 

segmentation. Other approaches to reduce the quality assurance workload are envisaged (e.g., using 

complexity metrics to decide if a patient-specific quality assurance test is needed). It is not obvious if 

these methods will be generalized in the future.  
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Table 1. Artificial intelligence for quality assurance in radiotherapy: different uses of machine 

learning for patient-specific quality assurance.  

 

Reference machine 

learning type 

Nature of training data Data 

quantity 

Expected outcome 

Kimura et al. (3) Convolutional 

neural 

network 

Three-dimensional 

patient-specific quality 

assurance results 

161 prostate 

plans 

Detection of errors in 

patient-specific quality 

assurance results 

Valdes et al. (4) Poisson 

regression  

Bidimensional patient-

specific quality 

assurance results  

Plan complexity 

metrics 

498 

intensity-

modulated 

radiotherapy 

plans 

Virtual patient-specific 

quality assurance 

(prediction of gamma 

index pass rate results) 

Interian et al. (6) Convolutional 

neural 

network 

Same data as (4) Same data as 

(4) 

Virtual patient-specific 

quality assurance 

(prediction of gamma 

index pass rate results) 

Tomori et al. (7) Convolutional 

neural 

network 

Bidimensional patient-

specific quality 

assurance results  

Plan complexity 

metrics 

Planning target 

volume and rectum 

volume 

60 prostate 

plans 

Virtual patient-specific 

quality assurance 

(prediction of gamma 

index pass rate results) 

Granville et al. 

(8) 

Support 

vector 

classifier 

Three-dimensional 

patient-specific quality 

assurance results  

Plan complexity 

metrics 

Linear accelerator 

performance metrics 

1620 

volumetric 

arctherapy 

plans 

Virtual patient-specific 

quality assurance 

(prediction of gamma 

index pass rate results) 

Lam et al. (9) Random 

forest 

Bidimensional patient-

specific quality 

assurance results 

182 

intensity-

modulated 

Virtual patient-specific 

quality assurance 

(prediction of gamma 



11 

 

Plan complexity 

metrics 

Linear accelerator 

performance metrics 

radiotherapy 

plans 

index pass rate results) 

Carlson et al. 

(10) 

Random 

forest 

Planned multileaf 

collimator positions 

and velocities 

Delivered multileaf 

collimator positions 

and velocities 

(dynalog)  

74 

volumetric 

arctherapy 

plans 

Incorporating predicted 

multileaf collimator 

errors into treatment 

planning system 

computations  

Chuang et al. 

(11) 

Several 

regression 

models 

Planned multileaf 

collimator positions 

and velocities 

Delivered multileaf 

collimator positions 

and velocities 

(dynalog) 

Gravity vector and 

gantry velocity 

142 

intensity-

modulated 

radiotherapy, 

125 

volumetric 

arctherapy 

Incorporating predicted 

multileaf collimator 

errors into treatment 

planning system 

computations 

 




