
HAL Id: hal-03797654
https://hal.science/hal-03797654

Submitted on 5 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a Fully Programmable Internet of Things
Amaury Bruniaux, Julien Montavont, Thomas Noël, Georgios Papadopoulos,

Nicolas Montavont

To cite this version:
Amaury Bruniaux, Julien Montavont, Thomas Noël, Georgios Papadopoulos, Nicolas Montavont.
Towards a Fully Programmable Internet of Things. WiMob 2022: 18th International Conference on
Wireless and Mobile Computing, Networking and Communications, Oct 2022, Thessaloniki, Greece.
pp.204-210, �10.1109/WiMob55322.2022.9941617�. �hal-03797654�

https://hal.science/hal-03797654
https://hal.archives-ouvertes.fr


Towards a Fully Programmable Internet of Things
Amaury Bruniaux

IMT Atlantique, IRISA
ICube Laboratory (CNRS)
University of Strasbourg

Rennes, France
amaury.bruniaux@imt-atlantique.fr

Julien Montavont
ICube Laboratory (CNRS)

University of Strasbourg
Strasbourg, France

montavont@unistra.fr

Thomas Noel
ICube Laboratory (CNRS)

University of Strasbourg
Strasbourg, France

noel@unistra.fr

Georgios Z. Papadopoulos
IMT Atlantique, IRISA

Rennes, France
georgios.papadopoulos@imt-atlantique.fr

Nicolas Montavont
IMT Atlantique, IRISA

Rennes, France
nicolas.montavont@imt-atlantique.fr

Abstract—The devices of Internet of Things (IoT) networks can
be deployed for extended period of time in inaccessible locations.
After their deployment, new features, bug fixes, or changes in the
client needs can require an update of the node’s behavior, and this
update has to be transmitted over the radio medium. Proposals
have been made in the literature to apply the Software Defined
Network (SDN) paradigm to wireless sensor networks but they
focus on the packet forwarding layer of the stack. In this work,
we propose to extend the programmability to the whole stack
with a fully programmable device architecture able to handle
the runtime programming of every protocol on any hardware.
We detail the use of extended finite-state machines (XFSM) on
which the architecture is based and their conversion to compact
executable bytecode that can be sent over radio. Simulations
demonstrate that this architecture can reproduce a protocol from
the literature and enable interoperability between programmable
nodes and legacy nodes.

Index Terms—Programmability, SDN, Wireless sensor networks,
XFSM

I. INTRODUCTION

Numerous communication and networking related protocols
have been designed to support the various services offered by
Internet of Things (IOT)-enabling technologies [1]. However,
selecting and tuning a protocol suite for one application
remain complex tasks, especially if the optimal values are
outside the range of recommended ones [2]. Unfortunately,
optimizing a configuration generally involves a fastidious trial
and error process as optimal parameters depend on the network
topology, the radio environment, and the traffic model, among
others. In addition, typically the IoT networks are time-variant,
meaning that a configuration may become invalid after some
time. As a result, a constant reconfiguration is required to
converge the network to the optimum performance.

In addition to these factors, the services offered over an IOT
network can be continuously customized and adapted to the
clients’ needs, or multiple service providers can share the same
infrastructure. We are shifting IoT from application-centric
deployment to IoT as a Service (IoTaaS) paradigm. The ability
to change on the fly the behavior (e.g., features, protocols, or

configuration) of the network devices - the programmability,
should be a key feature of IOT technology. However, IOT
devices are often hard to access once deployed, and human
interventions are costly, preventing on-site firmware flashing
from being a practical solution for device reprogramming at
large scale. We will employ the term programmability when
referring to the ability to modify the behavior of a device
through the wireless medium. Programmable networks have
different scales, ranging from solutions focusing on changing
the whole firmware of a node Over-The-Air (OTA) [3] to
solutions that make the data plane programmable [4].

OTA firmware update permits the distribution of software
updates to smart devices. However, firmware image size can be
large, and transmitting large quantities of bytes over a wireless
multi-hop network can be challenging. On the other hand,
Software Defined Network (SDN) is the de facto solution
for programming the data plane. The SDN paradigm was
first introduced in wired networks [5], and it consists in
removing the control plane, i.e., how frames or packets should
be handled, from the nodes to a logically-centralized entity
called the controller. As a result, the controller pushes simple
commands or rules to nodes for moving frames or packets
from sources to destinations. SDNs were first implemented to
remove human errors from network configuration and allow
simpler management, easier interoperability, and a faster pace
of innovation. However, wired-based networks often benefit
from point-to-point and reliable links, while wireless networks
manage a shared and rather a lossy medium. Therefore, the
Medium Access Control (MAC) layer is of crucial importance
for achieving the best performance. Current SDN approaches
for IOT are limited in the sense that most of the MAC layer
operations are still viewed as a monolithic block from the
controller. For example, the controller can modify a TSCH
schedule on the fly, as proposed in [4], but it has no control
over the intra-timeslot organization, retransmission, carrier
sense, etc.

In this context, we propose to push forward the SDN paradigm



with a novel device architecture enabling the programming of
the whole communication stack in IOT networks. This archi-
tecture brings the flexibility, reusability, and programmability
required to make IOT a key element of the future Internet. In
this paper, we propose to describe any communication protocol
with an Extended Finite State Machine (XFSM) [6] whose
transitions are based on a set of elementary abstractions. Our
architecture allows both stateless and stateful operations and
relies on devices being able to execute a provided XFSM
translated into bytecode. As a result, network nodes become
simple MAC/network processors that execute elementary com-
mands enforced by the controller. The specific contributions
of this paper include:

1) The design of a fully programmable device architecture;
2) The design of the machine interface language based on

elementary abstractions representing the actions, condi-
tions, and events expressing the behavior of the device;

3) The bytecode encoding and decoding, structuring the
XFSM and the implementation of those algorithms;

4) The proof of concept validation using OMNeT++, in-
cluding an interoperability test with the X-MAC proto-
col [7]. X-MAC is a well-known contention-based MAC
protocol using preamble sampling that is supported by
OMNeT++.

The rest of the article is organized as follows. A brief intro-
duction of SDN and programmable approaches is provided
in Section II. Section III presents our fully programmable
architecture and Section IV details our simulation campaign
to validate our approach. Finally, the article concludes in
Section V.

II. RELATED WORK

A. Software Defined Networks

SDN are networks where a centralized controller is in charge
of the control plane while the network nodes only take care
of the data plane [5]. The control plane refers to the functions
that determine how frames or packets should be processed.
By contrast, the data plane is the actual forwarding process.
Generally, the controller collects information about the cur-
rent network status (topology, link characteristics, application
requirements, etc.) and pushes actions to apply to incoming
frames or packets on network nodes via a southbound API.
Typical actions are discarding packets, forwarding packets
on specific egress interfaces, or encapsulating packets with
some extra headers. In IOT networks, removing the network
intelligence from network nodes makes sense, mainly because
of their computational power, memory, and energy constraints.

The actions defined in SDN-WISE [8] add the possibility to
match any sequence of bytes in packet headers instead of being
limited by the fields of well-known protocols. In addition,
it is a stateful solution in the sense that nodes can store
and use local variables as conditions, extending the action
space. However, it relies on a typical match/action pipeline
that prevents the controller from having complete control

of the communication stack of the nodes. SDN-TSCH [4]
allows a controller to define the TSCH schedule regarding the
application needs and guarantees flow isolation. However, this
solution is dedicated to scheduled networks and does not ex-
pose basic MAC/network primitives to the controller. Wireless
networks being time-variant, the control traffic exchanged over
the southbound API can be intense to maintain a global view
of the network on the controller. As a result, several SDN
solutions focus on optimizing this aspect. Atomic-SDN [9]
proposes a scheduling scheme that enables the controller to
configure the nodes with synchronous flooding. On the other
hand, IT-SDN [10] introduces source routing for flow table
entries coming from the controller, reducing the number of
packets necessary to install a routing path. Finally, VERO-
SDN [11] proposes a secondary communication channel (via
a second radio interface) dedicated to the traffic between the
nodes and the controller.

As we can see, current SDN solutions for IOT networks
are limited in several aspects. Actions are mainly triggered
by incoming packets, and more complex interactions with
hardware components, such as clocks, radios, interrupts, and
sensors are not considered. Even though some approaches are
stateful, they do not take advantage of the various metrics
available locally, such as link quality indicators, packet deliv-
ery ratios, or sensor measurements. Finally, SDN solutions for
IOT networks mainly focus on frame/packet forwarding and
disregard the diversity of ways of sending a frame/packet on
a shared wireless medium.

B. Over-the-air firmware updates

In order to add new features or fix security breaches, IOT
devices require frequent updates [3]. OTA firmware update
protocols enable a firmware image to be compiled, transmitted,
and installed from a base station in order to change the
behavior of an already deployed device. The images typically
consume dozens of kilobytes of memory, and sending a whole
image over a multi-hop wireless network is costly because it
mobilizes radio resources at the expense of data traffic. Efforts
have been made towards incremental programming schemes
that reduce the size of update packets, and make it possible
to reuse old images to create new ones. However, there are
still challenges to be addressed by OTA firmware update
protocols. IOT nodes have a limited memory size and may
not handle more than one image. In addition, the new features
can not be dynamically linked to the system and require a
reboot that takes time, forcing nodes to bootstrap again the
communication stack. Some approaches tackles those issues by
using in-place patching and memory space trampolines [12].
On the other hand, writable pieces of code can be stored in
RAM [13].

C. Programmable MAC

Tinnirello et al. [14] already paved the way toward a
programmable communication stack with a reprogrammable
MAC for wireless networks. Similar approaches can be clas-
sified under three categories of programmability [15]:



• monolithic implementations can only change the whole
MAC protocol at once;

• parametric implementations enable external entities to
change the values of intra-system parameters;

• modular implementations are the most flexible and can
rearrange independent software functions.

Modular designs rely on a set of abstracted functionalities
used as building blocks of a finite state machine that needs
to be represented in machine language to be run by the
devices. In [16], the MAC layer is described in a C-like
meta-language before being parsed and converted into a linked
list of actions that are executable by the nodes. In [14], an
XFSM representing a 802.11 MAC protocol is converted into
bytecode that is executed by the device. Such an approach is
the lightest and most natural way to describe a system with
a high degree of granularity and modularity. As a result, we
propose to extend the use of the XFSM representation to the
whole behavior of the device.

III. FULLY PROGRAMMABLE DEVICE ARCHITECTURE

A. Scope and objectives

We aim at designing the building blocks of a general pro-
grammable node that supports any hardware platform. An
architecture that provides a fully programmable protocol suite
should include the following properties:

• full programmability - the ability to program any behavior
that can be run by the physical components of nodes;

• compactness - the size of updates has to be as light as
possible;

• hotplugging - the possibility to link new functions at run-
time without interrupting the system, preventing service
interruptions;

• modularity - the ability to extend or modify parts of the
protocol stack running on network nodes.

This paper proposes an architecture that focuses on the two
first properties and opens the way to offer the two last
properties in the near future.

B. Architecture overview

We designed a general architecture adapted to XFSM based
devices regardless of their connected peripherals. This archi-
tecture contains two kinds of entities: physical components
(radios, clocks and data sources) and memory structures. The
architecture does not impose a specific implementation of the
control interface and of the memory management system as
long as it is interoperable with the interface and the various
data structures of the architecture are available.

C. Extended Finite State Machines

XFSMs are Turing-complete [6]. As a result, they can be
used to program any Turing machine, and more precisely any
communication protocol. XFSMs have been used by [14] to
run 802.11 networks with a programmable MAC layer. We
extend this work by going beyond a single layer and consider

a fully programmable communication stack. We also extend
the bytecode structure presented in [14] and add new concepts
such as templates, hosts, tables, and variable types. An XFSM
is a finite state machine in which transitions between states
are defined by event, condition, and action. It also includes
memory registers where variables can be stored or read. A
transition is only performed if the event occurs while all
the required conditions related to this transition are met. A
transition completes with commands sent to the entities in
charge of executing the specified actions. Fig. 1 illustrates the
XFSM of the sender part of the send and wait protocol.

Ready Wait

Event: Frame to send
Cond: None

Action: Tx frame; Start timer

Event: Rx ACK
Cond: None

Action: Stop timer

Event: Timeout
Cond: None
Action: ReTx frame;
Start timer

Fig. 1: Send and wait protocol in XFSM format

An event, such as the reception of a packet or the end of a
timer, consists of a signal sent by a physical component and
received by the XFSM engine. A condition takes the form
of a comparison expression using relational operators, such
as equal, greater than, or less than. Operands are variables
saved in the memory structures. Since every variable present
in the node can be accessible that way, we avoid the issue of
current IOT SDN whose statefulness only applies to artificial
variables. An action is a command to be executed by a
component and can take arguments detailing how to execute
the command. For example, the action that sets a new value
to a global variable takes as arguments the location of the
variable and the new value. All variables are identified by a
type that enables the XFSM engine to choose the proper way
to read the two bytes that describe them. Variable types are
reported in Table I.

TABLE I: Variable types defined in our XFSM

Type Detail
Global simple variable storing a value
Table array that links values to specific keys

Identifier number associated to a component that is used to send a
command to this component

Random random value between two values

Timer value that indicates if a timer has been started or has
expired

Access several variable types for various ways of pointing to a
specific byte in a buffer

D. Abstractions

The set of identified events, conditions and actions is summed
up in Table II. As long as conflicts of identifiers are avoided,



a device only needs to know the abstractions that it applies
to its hardware. Furthemore, new abstractions can be added
to the set to handle new hardware capacities without impact-
ing old devices, it is the responsibility of the controller to
only reference abstractions that target devices are capable of
handling. In some cases, an action is represented by several
action identifier, each representing a variation of the action; or
a combination of two subsequent actions can be merged into
a new action. For instance, an action REFRESH TIMER is a
sequence of STOP TIMER and START TIMER. This allows
to save space in the bytecode description of the XFSM.

Relying on a set of abstractions implies that all supporting
devices expose their set of abstractions to the engine running
the XFSM. While this is out of the scope of this paper,
we can imagine that the device communicates their available
abstractions to the controller so that it can accordingly design
a suitable program without including abstractions unknown of
the device.

States that are the source of transitions triggered by the event
VIRTUAL are virtual events, they are immediately left once
entered. This enables to skip the limitations of three transitions
with three actions each per state.

TABLE II: Abstractions defined in our XFSM

Events Actions
VIRTUAL START TIMER
TIMER EXPIRES STOP TIMER
CCA BUSY REFRESH TIMER
CCA FREE CCA
COLLISION SET VAR
RX COMPLETE ADD ROW
TX COMPLETE COPY PACKET
MEASURE COMPLETE DEQUEUE
TX MODE SWITCH MEASURE
RX MODE SWITCH SET FIELD
RADIO SLEEP SWITCH INCREASE VAR
Conditions RADIO TX MODE
NO CONDITION RADIO RX MODE
GREATER RADIO SLEEP MODE
EQUALS EMPTY RX BUFFER
QUEUE LONGER SEND PKT
QUEUE SHORTER PARSE PKT
RADIO MODE IS COPY TEMPLATE

E. Bytecode structure

The bytecode representing the XFSM is structured in five
regions, each containing several instances of smaller sequences
representing the abstractions composing the program. The
number of instances of each region is present at the very
beginning of the bytecode in order to delimit the end of
each region. We make many design choices, and one could
compress further the bytecode, but this first version is already
far more compact than OTA firmware images, as shown in
Section IV-A.
1) Transition region: this region contains all the transitions of
the XFSM grouped by exit state. For each state, a preliminary
byte specifies the number of transitions exiting the state and
the number of actions for each transition. This first byte is
followed by a transition sequence for each transition exiting

the state. A transition sequence contains an event ID, the
source of the event, a condition to verify (optional), the next
state to enter, and the list of IDs of the actions to execute.
Upon reception, a node first parses the bytecode and stores the
memory addresses of the head of each state so that potential
transitions can be evaluated quickly.
2) Action region: this region contains a description of each
action that can be triggered when performing a transition.
Actions are described with 6 bytes: the ID of the elementary
action and up to two variables, including their types. They
are similar to calling a function with two arguments in
typical programming language. Finally, two bytes describe
each variable.
3) Condition region: similarly to the action region, this region
contains a description of each condition that can be verified
when evaluating a transition. The format is exactly the same
as an action entry, except that ID refers to the elementary
condition.
4) Parameter region: this region details how many global
variables to store and the structure of the tables. Initial values
can also be set directly in the bytecode.
5) Template region: this region defines the packet structure,
meaning the organization of the various packet headers. A
template contains the number of fields, the size of each field,
and optional default values. Actions can set any field of a
template once it has been copied to a transmission buffer.

IV. VALIDATION

A. XFSM and bytecode size

We designed the XFSM of the XMAC protocol along with
a basic application protocol for simple data traffic by bas-
ing on its legacy implementation in OMNeT++. Transitions,
composed actions and conditions, and templates have been
arranged in CSV files that are read by our bytecode creator
script. A simplified version of the output of the creator is
displayed on Figure 2, with actions being removed or renamed
for clarity. Orange circles represent virtual states. Its size is
699 bytes, which means it could be handled by fragmentation
protocols such as the IPv6 over Low power Wireless Personal
Area Networks (6LOWPAN) protocol [17] and transmitted
to the devices by a controller. It is also much smaller than
other implementations of the protocol and images of OTA
protocols as shown in Table III. This is a significant advantage
of the XFSM representation, potentially avoiding long periods
of traffic load on IOT networks performing an image update.

TABLE III: Comparison of image sizes

Approach Implemented image Size in bytes
This paper XMAC based node behavior 699
[16] Monolithic XMAC 1242
[16] Toolchain XMAC 3326
[18] 6LoWPAN router 47772

B. Simulation

We implemented our bytecode engine in an OMNeT++ node,
an ran simulations on two networks: one of programmable



Fig. 2: XFSM representation of an XMAC-based device



(a) PDR for the programmable network (b) Latency for the programmable network

(c) PDR for the legacy network (d) Latency for the legacy network

Fig. 3: Performance indicators of the simulated networks

Fig. 4: Topology of the simulated networks

nodes and the other of legacy nodes from the inet package. We
set the topology shown in Figure 4 with the same parameters
in both networks and expected that they behave identically.
The protocol and simulation settings can be found in Table
IV and the performances of both networks are displayed on
Figure 3.

As expected, both the Packet Delivery Ratio (PDR) and the
latency are following the trend of respectively decreasing and
increasing with the number of hops between the source and
the destination. Despite some individual discrepancies like the
latency of the pair (6,10) or the PDR for the pair (3,1), the
confidence intervals are overlapping for each plot point and
we deduce that both networks have the same behavior.

TABLE IV: Simulation settings

Setting Value
Number of runs 8
Run duration 1000 minutes

Application traffic period
Uniformly randomized
between 16 and 30
seconds

Effective link quality 100%
Number of retransmis-
sions 0

V. CONCLUSION

In this work, we addressed the issue of programmability in
wireless sensor networks, and more specifically the challenge
of allowing a controller to have full control over the behav-
ior of the devices forming the network. Previous works on
programmability achieved either limited programmability or
relied on images of considerable size that entailed drawbacks
such as an increased traffic load during the updates. Our
architecture relying on XFSMs enables to design protocols
from scratch that can be run on any hardware running the
XFSM engine, and simulation results show an example of
protocol being run on this engine.

Our next steps are addressing the bootstrapping phase of the
network by including a controller responsible of providing



a brand new image to nodes that join the network; and
modularity: devices should not receive a whole bytecode when
only a portion of it is modified.

REFERENCES

[1] A. Kumar, M. Zhao, K. Wong, Y. Guan, and P. Chong, “A Com-
prehensive Study of IoT and WSN MAC Protocols: Research Issues,
Challenges and Opportunities,” IEEE Access, vol. 6, 2018.

[2] G. Anastasi, M. Conti, and M. Di Francesco, “A Comprehensive
Analysis of the MAC Unreliability Problem in IEEE 802.15.4 Wireless
Sensor Networks,” IEEE Transactions in Industrial Informatics, vol. 7,
no. 1, 2011.

[3] K. Arakadakis, P. Charalampidis, A. Makrogiannakis, and A. Fragki-
adakis, “Firmware Over-the-air Programming Techniques for IoT Net-
works - A Survey,” ACM Computer Survey, vol. 54, no. 9, 2022.

[4] F. Veysi, J. Montavont, and F. Théoleyre, “SDN-TSCH: Enabling
Software Defined Networking for Scheduled Wireless Networks with
Traffic Isolation,” in proc. of the IEEE Symposium on Computers and
Communications (ISCC), 2022.

[5] T. Luo, H. Tan, and T. Quek, “Sensor OpenFlow: Enabling Software-
Defined Wireless Sensor Networks,” IEEE Communications Letters,
vol. 16, no. 11, 2012.

[6] C. Wang and M. Liu, “A Test Suite Generation Method for Extended
Finite State Machines Using Axiomatic Semantics Approach,” in proc.
of the IFIP TC6/WG6.1 International Symposium on Protocol Specifi-
cation, Testing and Verification, 1992.

[7] M. Buettner, G. V. Yee, E. Anderson, and R. Han, “X-MAC: A Short
Preamble MAC Protocol for Duty-Cycled Wireless Sensor Networks,”
in proc. of the ACM International Conference on Embedded Networked
Sensor Systems (SenSys), 2006.

[8] L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo, “SDN-WISE:
Design, prototyping and experimentation of a stateful SDN solution
for WIreless SEnsor networks,” in proc. of the IEEE Conference on
Computer Communications (INFOCOM), 2015.

[9] M. Baddeley, U. Raza, A. Stanoev, G. Oikonomou, R. Nejabati,
M. Sooriyabandara, and D. Simeonidou, “Atomic-SDN: Is Synchronous
Flooding the Solution to Software-Defined Networking in IoT?” IEEE
Access, vol. 7, 2019.

[10] R. Alves, D. Oliveira, N. S. G.A., and C. Margi, “The Cost of Software-
Defining Things: A Scalability Study of Software-Defined Sensor Net-
works,” IEEE Access, vol. 7, 2019.

[11] T. Theodorou and L. Mamatas, “A Versatile Out-of-Band Software-
Defined Networking Solution for the Internet of Things,” IEEE Access,
vol. 8, 2020.

[12] C. Zhang, W. Ahn, Y. Zhang, and B. Childers, “Live code update for IoT
devices in energy harvesting environments,” in proc. of the Non-Volatile
Memory Systems and Applications Symposium (NVMSA), 2016.

[13] W. Dong, Y. Liu, C. Chen, L. Gu, and X. Wu, “Elon: Enabling
efficient and long-term reprogramming for wireless sensor networks,”
ACM Transactions on Embedded Computing Systems, vol. 13, no. 4,
2014.

[14] I. Tinnirello, G. Bianchi, P. Gallo, D. Garlisi, F. Giuliano, and
F. Gringoli, “Wireless MAC processors: Programming MAC protocols
on commodity Hardware,” in proc. of the IEEE International Conference
on Computer Communications (INFOCOM), 2012.

[15] P. Isolani, M. Claeys, C. Donato, L. Granville, and S. Latré, “A
Survey on the Programmability of Wireless MAC Protocols,” IEEE
Communications Surveys and Tutorials, vol. 21, no. 2, 2019.

[16] X. Zhang, J. Ansari, L. Martinez, N. Linio, and P. Mähönen, “Enabling
rapid prototyping of reconfigurable MAC protocols for wireless sensor
networks,” in proc. of the IEEE Wireless Communications and Network-
ing Conference (WCNC), 2013.

[17] G. Montenegro, N. Kushalnagar, and D. Culler, “Transmission of IPv6
Packets over IEEE 802.15.4 Networks,” IETF RFC 4944, Sep. 2007.

[18] H. Park, J. Jeong, and P. Mah, “Non-invasive rapid and efficient firmware
update for wireless sensor networks,” UbiComp 2014 - Adjunct Proceed-
ings of the 2014 ACM International Joint Conference on Pervasive and
Ubiquitous Computing, pp. 147–150, 09 2014.


