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Abstract—In a context of limited data availability, we consider
the supervised segmentation of glomerular structures in patches
of renal histopathological whole slide images. These structures
are complex, include multiple substructures, and exhibit great
variability in their shape, making their robust segmentation
challenging. In this context, using appropriate data augmentation
techniques is crucial to obtain more robust results. We investigate
data augmentation based on random spatial deformations and
conditional image synthesis for the training of a U-Net model.
We rely on a SPADE model to perform the synthesis, using label
maps built from the real patches available for training as input.
Synthesis from ground truth masks only results in noisy patches,
where substructures are absent, whereas additional structure
information yield more realistic patches. We show that the best
improvements of the segmentation performances are obtained
by mixing real patches with synthetic patches generated from
ground truth masks only, which yields an increase of up to 0.76 of
average dice score w.r.t. augmentation based on spatial deforma-
tions only. We conclude that, using conditional image synthesis,
patches synthesized with no additional structure information
better contribute to the robustness of glomeruli segmentation
than patches synthesized with structure information extracted
from available real patches.

Index Terms—Digital Histopathology, Glomeruli segmentation,
Data augmentation, Conditional image synthesis

I. INTRODUCTION

In the field of digital histopathology, Deep Learning aims at
bringing support to pathologists for faster and more accurate
diagnoses [1], [2]. Deep models based on Convolutional
Neural Networks (CNN), like e.g. U-Net for segmentation [3],
have the ability to learn patterns in images, which necessitates
large amounts of annotated data to prevent overfitting. This
requirement is a challenge, because manually segmenting
Whole Slide Images (WSIs) requires expert knowledge and
is extremely time-consuming and costly.

To circumvent the limitations related to small or imbalanced
datasets, a standard approach in Deep Learning is to perform
Data augmentation [4]. It consists in expanding the variety of
training data in an artificial manner, which may involve image
manipulations (spatial and colorimetric transformations, noise
injection, image mixing) or synthetic image generation. The
goal of synthetic image generation is to increase the diversity

Fig. 1. Top row: Examples of glomeruli in patches of WSIs, with variable
shapes (Periodic acid-Schiff staining); Bottom row: glomeruli ground truth
binary masks.

of training data by producing novel realistic-looking images.
State-of-the-art approaches rely on Generative Adversarial
Networks (GANs) [5], highly popular for their ability to learn
data distributions. While the image manipulation approach
raises the questions of the appropriate set of transformations
and parameter tuning (see e.g. [6]), synthetic image generation
raises the issue of the whole synthesis pipeline, and is itself
concerned by the size and balance of the available data [7]–
[9]. GAN-based image synthesis requires a large amount of
data for training [7]. To cope with limited data, augmen-
tations based on image manipulations [8] or regularization
techniques [9] have been proposed.

In the field of digital histopathology, GANs have been
successfully used for stain transfer or stain-to-stain transla-
tion [10], and also for the generation of tissue patches [11].
Previous works have addressed the synthesis of tissue patches
to improve the training of classifiers in the context of cancer
diagnosis [12]–[14], or improve cell nuclei segmentation [15],
with demonstrated benefits.

Renal histopathology is crucial in the study of kidney dis-
eases, and especially transplant rejection, that occurs with an
incidence of 7.9% in the first year [16]. In a context of limited
data, we consider the supervised segmentation of glomerular
structures in patches of renal WSIs. These complex ball-
shaped structures are responsible for blood filtration and con-



tain multiple substructures: membranes, capillaries, mesangial
and endothelial cells, podocytes. The appearance of glomeruli
thus exhibits great variability (Fig. 1), making their robust
segmentation challenging. The state-of-the-art approaches rely
on deep segmentation models such as U-Net [3], [17]–[20] or
SegNet [21], [22], possibly with a pre-trained backbone [23],
[24].

For improved generalizability, standard augmentation tech-
niques include geometric transformations as well as transfor-
mations related to staining variations [10], [19], [25]. Mu-
rali et al. [26] explored the usage of Deep Convolutional
GANs [27] to generate glomeruli images, accompanied by a
visual evaluation by experts. However, no evaluation in the
context of glomeruli segmentation has been performed. The
complexity of the glomerular structures makes their synthesis
a difficult task and classic methods either fail to reproduce fine
details or suffer from mode collapse.

In this paper, we study the mixing of random spatial
deformations and GAN-based conditional image synthesis as
a data augmentation technique in the context of glomeruli
segmentation in patches of renal WSI using a standard U-
Net. We use random spatial deformations to inject geometric
diversity in the training dataset, and conditional image syn-
thesis to introduce texture variations. We describe our method
and validation protocols in Section II and discuss the results
in Section III.

II. BASELINE AND PROPOSED METHOD

The segmentation task consists in separating glomerular
structures from surrounding tissue at pixel level in input
patches. Our baseline for training the U-Net model consists of
real glomeruli patches with ground truth binary segmentation
masks (see Fig. 1 for examples), such that each patch contains
either exactly one complete glomerulus, and possibly some
parts of other glomeruli. The training, validation and test
datasets are respectively composed of 660, 400 and 431
patches of size 256×256 The validation and test datasets will
remain the same for all experiments. The training dataset is
augmented live during training with rotations and flips with
a probability of 0.5. We propose to augment the training
dataset offline with random spatial deformations and synthetic
patches, and evaluate the impact on segmentation.

A. Spatial deformations
For random spatial deformations, we use grid-based random

deformations as suggested in the original U-Net paper [3], i.e.
a 3×3 regular grid of control points, random displacements
following a Gaussian distribution at control points, and cubic
spline interpolation of displacements between control points.
For our patches, we set the standard deviation of the displace-
ments to 20, which amounts to a local magnitude of up to 60
pixels. We use symmetric padding along the edges of the input
images for deformed locations that fall outside their bounds.

B. Patch synthesis
Architecture: We consider an image-to-image translation

approach – label map to image in our case, which is a

Fig. 2. Architecture of SPADE [28]. Top-left: The Spatially-Adaptive Nor-
malization layer; Top-right: The SPADE residual block; Bottom row: The
SPADE generator (images taken from [28]).

type of conditional synthesis, and employ the state-of-the-art
GAN-based SPADE model [28]. The SPADE design draws
its name from the ”Spatially-Adaptive Normalization”. While
the commonly used normalization layers tend to wash away
useful information from the inputs label maps [29], SPADE
redesigns the generator in such a way that the normalization
of the input is learned through convolutional layers (Fig. 2
top-left). The label maps are injected into SPADE ”residual
blocks” (Fig. 2 top-right) inserted between upsampling layers,
which allows to skip the contracting path used in previous
image-to-image translation architectures. The generator can
then take a random vector as input, which enables multi-modal
synthesis and reduces mode collapse (Fig. 2 bottom row).

Training and synthesis: We train the SPADE network
with adaptive discriminator augmentation, as introduced in
StyleGAN2-ADA [8]. The probability to use augmentations
evolves w.r.t. to the performance of the discriminator, prevent-
ing it to overfit and thus allowing for better results in the case
of small datasets. Our set of augmentations includes rotations,
flips and spatial deformations applied in the way described in
Section II-A. These transformations have the most significant
impact according to the authors [8]. The model is trained on
660 glomeruli patches, different from the training set of the
segmentation model.

We first train the model using ground truth binary segmenta-
tion masks as label maps. To generate new glomeruli patches,
we apply random spatial deformations (using the technique
described in Section II-A) to the segmentation training set
masks and use the results as inputs to SPADE. The gener-
ated images lack visual fidelity, with absent substructures, as
highlighted by Fig. 3. Lumina of vessels are lost, as well as
relevant placement of cell nuclei. This led us to consider the
construction of enriched label maps.

Label maps enrichment: We propose to enrich glomeruli
ground truth binary masks with additional structure informa-
tion extracted from glomeruli images to improve the guidance
of the SPADE generator. No tissue feature nor internal compo-
nents of glomeruli reflecting substructures can reliably be seg-
mented, since no corresponding ground truth is available. We
therefore chose to separate the non-textured areas (i.e. lumina
of vessels, urinary space, slide outer space) from textured areas



Fig. 3. Results obtained with the SPADE model trained with ground truth
binary masks only. Top row: Input glomeruli binary masks; Bottom row:
Synthesis results. Many details are lost and the images are noisy.

(glomeruli and surrounding tissue) in order to get structure
information reliably. To do so, we assume that non-textured
areas are not affected by stainings, nor important artifacts, and
correspond to the color of the microscope light, which is close
to white [30]. We convert glomeruli patches in HSV color
space and then perform thresholding on the S component to
obtain binary masks for textured areas. Fig. 4 shows examples
of binary texture masks for some real glomeruli patches. For
our datasets, we set the threshold to the absolute value of 0.1.
Next, we combine these texture masks with corresponding
glomeruli masks to produce 4-class label maps that we call
”structure label maps”.

Fig. 4. Binary masks separating textured and non-textured areas for the
glomeruli patches presented in Fig. 1.

Training and synthesis: We performed a new training
of the SPADE model using structured label maps obtained
as described above. We generate synthetic glomeruli images
by passing structure label maps extracted from the baseline
training dataset and spatially deformed with the method de-
scribed in Section II-A, as inputs to the generator. Fig. 5 shows
some artificial glomeruli patches synthesized with our method.
The enriched label maps enforce spatial constraints resulting
in generated glomeruli visually closer to real ones. However,
some fine texture details, like cell nuclei, do not appear as
sharp as in real patches.

C. Validation protocol

Our objective is to evaluate the impact of training a U-Net
segmentation network [3] by mixing augmentations based on
random spatial deformations and synthetic images obtained via
SPADE. As described earlier, we apply spatial deformations
to label maps provided as inputs to the SPADE generator, and
we evaluate our synthetic data against deformed real images.
We therefore created 5 datasets offline:

• ”Real”: our baseline dataset, with 10 random deforma-
tions applied to each images (6600 images).

Fig. 5. Results obtained with the SPADE model trained with 4-class
”structure” label maps. Top row: Input structure label maps; Bottom row:
Synthesis results. The synthesized images are visually closer to real images,
although the finest texture details are not reproduced.

• ”SPADE-GTMask”: SPADE-generated dataset, with 10
times randomly deformed ground truth binary masks from
the baseline as input (6600 images).

• ”SPADE-Structure”: SPADE-generated dataset, with 10
times randomly deformed structure label maps from the
baseline glomeruli patches as input (6600 images).

• ”Real + SPADE-GTMask”: baseline dataset, with 5 ran-
dom deformations applied to each images (3300 im-
ages) + SPADE-generated dataset, with 5 times deformed
ground truth binary masks from the baseline as input
(3300 images).

• ”Real + SPADE-Structure”: baseline dataset, with 5 ran-
dom deformations applied to each images (3300 images)
+ SPADE-generated dataset, with 5 times deformed struc-
ture label maps from the baseline glomeruli patches as
input (3300 images).

We train a U-Net network on each dataset 5 times and average
the results. A schematic view of our method workflow can be
found in Fig. 6.

III. RESULTS AND DISCUSSION

The glomeruli segmentation performance results of the U-
Net model are summarized in Table I for the training datasets
presented in Section II-C. The best average dice score is
obtained with the dataset that mixes real and synthetic images
generated with SPADE and the ground truth masks as label
maps. This score is 0.76 above the score obtained with the Real
dataset, and 0.85 above the score obtained with SPADE and
structure label maps. Our interpretation is that the patches of
SPADE-Structure remain too close from the real patches of the
training dataset, despite the texture variations. The noisy aspect
of the patches of SPADE-GTMask better contributes to make
the U-Net model more robust. We note that when training on
synthetic images alone, the SPADE-Structure dataset obtains
a score 2.47 above SPADE-GTMask, which supports our
claim that the SPADE-Structure patches are more realistic
than the SPADE-GTMask patches. It is also worth mentioning
that the lower standard deviations on the dice scores for the
datasets mixing real and synthetic patches support improved
segmentation robustness.

These results show that the visual fidelity of the synthetic
images is not necessarily crucial when a segmentation model
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Fig. 6. Workflow process. Step 1: A SPADE model is trained with pairs of glomeruli patches and label maps. Label maps are either ground-truth binary
masks (a) or structure label maps obtained by thresholding the S component of the glomeruli patches in HSV color space (b). Step 2: The U-Net segmentation
model is trained. First, random spatial deformations are applied to the real training dataset. The resulting images are fed to the SPADE models trained in Step
1, thus creating the datasets SPADE-GTMask (c) and SPADE-Structure (d), that we use to train the U-Net segmentation model.

TABLE I
AVERAGE DICE, PRECISION AND RECALL W.R.T. TRAINING DATASET FOR GLOMERULI SEGMENTATION.

Training dataset Dice Precision Recall
Real 93.31± 0.46 95.64± 0.42 91.10± 0.95
SPADE-GTMask 85.86± 1.67 96.77± 0.39 77.20± 2.84
SPADE-Structure 88.33± 1.46 93.70± 2.16 82.41± 5.40
Real + SPADE-GTMask 94.07± 0.17 94.85± 0.85 93.30± 0.79
Real + SPADE-Structure 93.22± 0.14 94.86± 0.44 91.64± 0.45

is trained with a mix of real and synthetic data. The small
obtained performance improvement also shows that the cho-
sen generative approach has a limited ability to expand the
diversity of the training dataset. The amount of beneficial ran-
domness in texture and geometry, and the question of how to
enable the emergence of novelty, deserve more investigations.

Future lines of research will include the exploration of
alternative ways to further increase the diversity of the training
dataset. This could be achieved by enabling and controlling
structure variations w.r.t. the baseline training set, rather than
relying on already seen structures. This would require to devise
a generative model with appropriate design to synthesize new
structure label maps to feed the conditional patch synthesis
model. Alternatives to the U-Net model, such as SegNet,
or pre-trained versions of such models [23], [24], will be
considered. Another line of research would be to explore
unconditional patch synthesis, using e.g. StyleGAN2-ADA [8],
that we did not consider in this study, and perform compar-
isons with conditional synthesis.
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