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ABSTRACT
We prove that Simulated Annealing with an appropriate cool-

ing schedule computes arbitrarily tight constant-factor approxi-

mations to the minimum spanning tree problem in polynomial

time. This result was conjectured by Wegener (2005). More pre-

cisely, denoting by 𝑛,𝑚,𝑤max, and 𝑤min the number of vertices

and edges as well as the maximum and minimum edge weight of

the MST instance, we prove that simulated annealing with initial

temperature 𝑇0 ≥ 𝑤max and multiplicative cooling schedule with

factor 1 − 1/ℓ , where ℓ = 𝜔 (𝑚𝑛 ln(𝑚)), with probability at least

1 − 1/𝑚 computes in time𝑂 (ℓ (ln ln(ℓ) + ln(𝑇0/𝑤min))) a spanning
tree with weight at most 1 + 𝜅 times the optimum weight, where

1 + 𝜅 =
(1+𝑜 (1)) ln(ℓ𝑚)

ln(ℓ)−ln(𝑚𝑛 ln(𝑚)) . Consequently, for any 𝜀 > 0, we can

choose ℓ in such a way that a (1 + 𝜀)-approximation is found in

time𝑂 ((𝑚𝑛 ln(𝑛))1+1/𝜀+𝑜 (1) (ln ln𝑛 + ln(𝑇0/𝑤min))) with probabil-

ity at least 1− 1/𝑚. In the special case of so-called (1+ 𝜀)-separated
weights, this algorithm computes an optimal solution (again in time

𝑂 ((𝑚𝑛 ln(𝑛))1+1/𝜀+𝑜 (1) (ln ln𝑛 + ln(𝑇0/𝑤min)))), which is a signifi-

cant speed-up over Wegener’s runtime guarantee of 𝑂 (𝑚8+8/𝜀 ).
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1 INTRODUCTION
The theory of randomized search heuristics, mostly in the last 25

years, has considerably increased our understanding of this class of

algorithms. A closer look at this field shows that in the early years,

significant efforts were devoted also to simulated annealing (SA) [11,

12, 20, 22], whereas more recently these algorithms at most appear

in side results of works focused on other heuristics. Due to this

decline in attention, the gap between theory and practice, at least

as wide in heuristics as in classic algorithms, is even wider for SA.

Since we do not see a reducing interest in SA in practice [7],

with this first theoretical work solely devoted to SA after a longer

time, we aim at reviving the theoretical analysis of this famous

heuristic. To this aim, we revisit a classic problem, namely how SA

computes minimum spanning trees (MSTs) [22]. We are, of course,

not finally interested in using SA for this purpose – for this several

very efficient near-linear time algorithms are known –, but we use

this problem to try to understand the working principles of SA.

Wegener’s seminal work [22] is well-known for the construction

of an instance of the MST problem where the Metropolis algorithm

with any fixed temperature fails badly, but SA with a simple multi-

plicative cooling schedule computes an optimal solution efficiently.

Much less known, but equally interesting is another result in this

work, namely that SA with a suitable multiplicative cooling sched-

ule can efficiently find optimal solutions to the MST problem when

the edge weights are (1 + 𝜀)-separated.

Theorem 1.1 ([22]). Let 𝐺 = (𝑉 , 𝐸) with 𝑤 : 𝐸 → Z>0 be an
instance of the MST problem. Let 𝜀 > 0 be such that for all edges
𝑒1, 𝑒2 ∈ 𝐸, we have that𝑤 (𝑒1) > 𝑤 (𝑒2) implies𝑤 (𝑒1) ≥ (1+𝜀)𝑤 (𝑒2).
Assume further that 𝑤 (𝑒) ≤ 2

𝑚 for all 𝑒 ∈ 𝐸. Then SA with initial
temperature 𝑇0 = 2

𝑚 and cooling factor 𝛽 = (1 + 𝜀/2)−𝑚−7−8/𝜀 with
probability 1−𝑂 (1/𝑚) finds an optimal solution in at most 2 log

2
(1+

𝜀/2)−1𝑚8+8/𝜀 iterations.

Wegener [22] conjectured that his SA algorithm for general

weights instead of (1 + 𝜀)-separated ones computes (1 + 𝜀)-
approximate minimum spanning trees, that is, trees with weight

at most (1 + 𝜀) times the weight of a true minimum spanning tree.

While this conjecture is very natural, it was never proven.

Our main result is that Wegener’s conjecture is indeed true,

even though our proof does not confirm his statement that “it is

easy to generalize our result to prove that SA is always highly

successful if one is interested in (1 + 𝜀)-optimal spanning trees.”

More precisely, we show the following result (see Theorem 4.2 for

a slightly stronger, but more complicated version of this result).

https://doi.org/10.1145/3512290.3528812
https://doi.org/10.1145/3512290.3528812
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We note that SA cannot compute (1 + 𝜀)-approximations for sub-

constant 𝜀, see again [22], so in this sense our result is as good as

possible.

Let 𝜀 > 0 be a constant. Consider a run of SA with cooling factor
𝛽 = 1 − 1/ℓ , where ℓ = (𝑚𝑛 ln(𝑚))1+1/𝜀+𝑜 (1) , and 𝑇0 ≥ 𝑤max

on an instance of the MST problem. Then there is a time 𝑇 ∗ =

𝑂 ((𝑚𝑛 ln(𝑛))1+1/𝜀+𝑜 (1) (ln ln𝑛 + ln(𝑇0/𝑤min))) such that with
probability at least 1−1/𝑚, at all times 𝑡 ≥ 𝑇 ∗ the current solution
is a (1 + 𝜀)-approximation.
Due to the use of proof methods not available at that time, our

time bound is significantly better than Wegener’s. To compute a

(1 + 𝜀)-approximation, or to compute an optimal solution when the

edge weights are (1 + 𝜀)-separated (see Theorem 5.1), our runtime

guarantee is roughly 𝑂 ((𝑚𝑛 log𝑛)1+1/𝜀 log 𝑤max

𝑤min

) as opposed to

𝑂 (𝑚8+8/𝜀 ) in Theorem 1.1.

Mostly because of a different organization of the proof, our

result gives more insights into the influence of the algorithm pa-

rameters. Our result only applies to initial temperatures 𝑇0 that are

at least the maximum edge weight. This is very natural since with

substantially smaller temperatures, the heaviest edge cannot be

included in the solution with reasonable probability (this follows

right from the definition of the algorithm). It is also not difficult to

prove that once the temperature is somewhat below the smallest

edge weight, then no new edges will ever enter the solution (see

Lemma 4.4 for the precise statement of this result). This implies

that there is no reason to run the algorithm longer than roughly

for time log
1/𝛽 (𝑇0/𝑤min) = 𝑂 (ℓ log(𝑇0/𝑤min)), see Theorem 4.7

for the details. From the perspective of the algorithm user, this is

an interesting insight since it gives an easy termination criterion.

Also without understanding the precise influence of the cooling

factor 𝛽 on the approximation quality, this insight motivates to use

the algorithm for decreasing values of 𝛽 , say 𝛽𝑖 = 2
−𝑖
, always until

the above-determined time is reached, and follow this procedure

until a sufficiently good MST approximation is found.

The remainder of this paper is organized as follows. In Section 2,

we describe the most relevant previous works. We define SA and

the minimum spanning tree problem in Section 3. The core of this

work is our mathematical runtime analysis in Section 4. Afterwards,

in Section 5, we give the result carried out for the MST problem

with (1 + 𝜀)-separated weights. The paper ends with a conclusion

and a discussion of possible future works.

Due to space restrictions, not all proofs are available in this

paper; however, note that all detailed proofs can be found in the

preprint [5].

2 PREVIOUS WORK
As mentioned in the introduction, there are relatively few runtime

analyses for SA as discrete optimization algorithm, see also the

survey [10].

The first such result [20] proves that SA can compute good

approximations to themaximummatching problem. A closer look at

the result reveals that a constant temperature is used, that is, the SA

algorithm is in fact the special case of the Metropolis algorithm. It

has to be noted that to obtain a particular approximation quality, the

temperature has to be set suitably. In this light, the following result

from [8] shows a light advantage for evolutionary algorithms:When

running the (1 + 1) EAwith standardmutation rate on this problem,

then the expected first time to find a (1 + 𝜀)-approximation is

𝑂 (𝑚2 ⌈1/𝜀 ⌉ ). Note that in this result, the parameters of the algorithm

do not need to be adjusted to the desired approximation rate.

For a different problem, namely the bisection problem, it was

shown in [12] that SA, again with constant temperature, can solve

certain random instances in quadratic time.

Wegener’s above mentioned work [22] on the MST problem was

the first to show that for some non-artificial problem, a non-trivial

cooling schedule is necessary.

A runtime analysis of the Metropolis algorithm on the classic

benchmark OneMax was conducted in [11]. Not surprisingly, the

ability to accept inferior solutions is not helpful when optimizing

this unimodal function. The interesting side of this result, though,

is that the Metropolis algorithm is efficient on OneMax only for

very small temperatures of asymptotic order 𝑂 (log(𝑛)/𝑛).
A recent study [21] on the deceiving-leading-blocks (DLB) prob-

lem shows that here the Metropolis algorithm with a constant

temperature has a good performance, beating the known runtime

results for evolutionary algorithms by a factor of Θ(𝑛). We note

that the DLB problem, just as the MST problem, has many local

optima which all can be left by flipping two bits.

As side results of a fundamental analysis of hyper-heuristics,

two easy lower bounds on the runtime of the Metropolis algorithm

(that is, SA with constant temperature) are proven in [15]: (i) The

Metropolis algorithm needs time Ω̃(𝑛𝑑−1/2) on cliff functions with

constant cliff width 𝑑 and super-polynomial time when the cliff

width is super-polynomial. (ii) The Metropolis algorithm with a

temperature small enough to allow efficient hill-climbing needs

exponential time to optimize jump functions.

As part of a broader analysis of single-trajectory search heuris-

tics, it was found that the Metropolis algorithm can optimize all

weaklymonotonic pseudo-Boolean functions in at most exponential

time [2].

Some more results exist on problems designed for demonstrat-

ing a particular phenomenon. In [6], a problem called Valley is

designed that has the property the Metropolis algorithm with any

temperature needs at least exponential expected time, whereas

SA with a suitable cooling schedule only needs time 𝑂 (𝑛5 log𝑛).
In [11], examples are constructed where one of (1 + 1) EA and SA

has a small polynomial runtime and the other has an exponential

runtime. Also, a class of functions is constructed where both algo-

rithms have a similar performance despite dealing with the local

optimum in a very different manner. In [19], a class of problems

with tunable width and depths of a valley of low fitness is proposed.

It is proven that the performance of the elitist (1 + 1) EA is mostly

influenced by the width of the valley, whereas the performance

of the Metropolis algorithm and a similar non-elitist algorithm in-

spired from population genetics is mostly influenced by the depths

of the valley.

For evolutionary algorithms, for which the theory is more devel-

oped than for SA, there are a larger number of results showing that

they can serve as approximation algorithms for optimization prob-

lems, including NP-hard problems [18]. However, results describing

an approximation scheme where the user can provide a parameter 𝜀

to the evolutionary algorithm to compute a (1 + 𝜀)-approximation
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Algorithm 1 Simulated Annealing (SA) with starting temperature

𝑇0 and cooling factor 𝛽 ≤ 1 for the minimization of 𝑓 : {0, 1}𝑛 → R

Select 𝑥 (0) from {0, 1}𝑛 .
for 𝑡 ← 0, 1, . . . do

Create 𝑦 by flipping a bit of 𝑥 (𝑡 ) chosen uniformly at random.

if 𝑓 (𝑦) ≤ 𝑓 (𝑥 (𝑡 ) ) then
𝑥 (𝑡+1) ← 𝑦.

else
𝑥 (𝑡+1) ← 𝑦 with probability 𝑒 (𝑓 (𝑥

(𝑡 ) )−𝑓 (𝑦))/𝑇𝑡
and

𝑥 (𝑡+1) ← 𝑥 (𝑡 ) otherwise.
𝑇𝑡+1 B 𝑇𝑡 · 𝛽 .

are rare; apart from the maximum matching problem mentioned

above, we are only aware of related results for parallel (1+1) EAs,

(1+1) EAs with ageing and simple artificial immune systems on

the number partitioning problem [1, 23] and for an evolutionary

algorithm on the multi-objective shortest path problem [9]. Evolu-

tionary algorithms that approximate the optimum are also known

in the subfield of fixed-parameter tractability. While most of these

results prove an approximation within a constant factor or grow-

ing slowly with the problem dimension, there are also statements

similar to approximation schemes for the vertex cover problem

[16]. However, in general it is safe to say that there are only few

results in the literature that characterize very simple randomized

search heuristics like the (1 + 1) EA and SA as polynomial-time

approximation schemes for classical (non-noisy) combinatorial op-

timization problems.

Finally, we remark that the classical (1 + 1) EA and a variant of

randomized local search can solve the MST problem in expected

pseudo-polynomial time 𝑂 (𝑚2
log(𝑛𝑤max)) [17]. While SA in gen-

eral does not solve the problem in expected polynomial time, its

time bound to achieve a (1 + 𝜖)-approximation (see Theorem 4.2

below) can be smaller than the time bound for the (1 + 1) EA in

certain cases where𝑚 = 𝜔 (𝑛) and 𝜖 is a constant.

3 PRELIMINARIES
We now define the SA algorithm and the MST problem. Also, we

state a technical tool our main proof builds on.

Simulated annealing (SA) is a simple stochastic hill-climber first

proposed as optimization algorithm in [13]. Different from a true

hill-climber it may, with small probability, also accept inferior solu-

tions. Working with bit-string representations, we use the classic

bit-flip neighborhoods, that is, the neighbors of a solution are all

other solutions that differ from it in a single bit value. For the accep-

tance of inferior solutions, we use the widely accepted Metropolis
condition, that is, a solution with fitness loss 𝛿 over the current

solution is accepted with probability 𝑒−𝛿/𝑇 , where 𝑇 is the cur-

rent temperature. The temperature is usually not taken as constant,

but is reduced during the run of the algorithm. This allows the

algorithm to accept worsening moves easy in the early stages of

the run, whereas later worsening moves are accepted with smaller

probability, bringing the algorithm closer to a true hill-climber. The

choice of the cooling schedule is a critical decision in the design

of a SA algorithm. A popular choice, already proposed in [13], is

a multiplicative cooling schedule (also called geometric cooling

scheme). Here we start with a given temperature 𝑇0 and reduce

the temperature by some factor 𝛽 in each iteration. This common

variant of SA, see Algorithm 1 for the pseudocode, was regarded

also in the predecessor work of Wegener [22].

The minimum spanning tree (MST) problem is defined as follows.

We are given an undirected, connected, weighted graph𝐺 = (𝑉 , 𝐸).
We denote by 𝑛 its number of vertices and by𝑚 its number of edges.

Let the set of edges be 𝐸 = {𝑒1, . . . , 𝑒𝑚}. The weight of edge 𝑒𝑖 ,

where 𝑖 ∈ {1, . . . ,𝑚}, is a positive number 𝑤𝑖 . We write 𝑤min B
min{𝑤𝑖 | 𝑖 ∈ {1, . . . ,𝑚}} and 𝑤max B max{𝑤𝑖 | 𝑖 ∈ {1, . . . ,𝑚}}
for the minimum and maximum edge weight.

The task in the MST problem is to find a subset 𝐸 ′ ⊆ 𝐸 such

that (𝑉 , 𝐸 ′) is a spanning tree of 𝐺 having minimal total weight

𝑤 (𝐸 ′) = ∑
𝑒𝑖 ∈𝐸′ 𝑤𝑖 . We use the natural bit-string representation

for sets 𝐸 ′ of edges, that is, a bit string 𝑥 = (𝑥1, . . . , 𝑥𝑚) ∈ {0, 1}𝑚
represents the set 𝐸 (𝑥) = {𝑒𝑖 | 𝑥𝑖 = 1}. As objective function, we
use the sum of the weights of the selected edges when these form a

connected graph on 𝑉 and∞ otherwise:

𝑓 (𝑥) =
{
𝑤1𝑥1 + · · · +𝑤𝑚𝑥𝑚 if (𝑉 , 𝐸 (𝑥)) is connected,
∞ otherwise.

Here∞ can be replaced by an extremely large value without essen-

tially changing the result. To ensure that we start with a feasible

solution (one that has finite objective value), we assume that SA is

initialized with the all-ones string 𝑥 (0) = (1, . . . , 1). From this initial

string, SA canmove to solutions having fewer edges by flipping one-

bits; however, it will never accept solutions that are not connected

due to their infinitely high 𝑓 -value. We note that, similarly to the

analysis of the (1 + 1) EA on the MST problem [17], one could use

a more involved fitness function to penalize connected components

and thus lead the algorithm towards connected subgraphs when the

current solution is not connected. However, since we assume SA to

start from a connected solution and connected solutions will not be

replaced with disconnected solutions with the present definition

of 𝑓 , this would not provide new insights. Overall, our setup is the

same as the one used by Wegener [22].

When the temperature has become sufficiently low, it is likely

that SA has reached a solution describing a spanning tree. If this

spanning tree is suboptimal, improvements require a change of at

least 2 bits. Since SA only flips one bit per iteration, this is only

possible by temporarily including one more edge, i. e., closing a

cycle, and then removing another edge from the cycle in the next

iteration. This requires a temperature still being sufficiently high

for the temporary inclusion to be accepted.

Our measure of complexity is the first hitting time 𝑇 ∗ for a cer-
tain set of solutions 𝑆∗, e. g., globally optimal solutions or solutions

satisfying a certain approximation guarantee with respect to the

set of global optima. That is, we give bounds on the smallest 𝑡 such

that SA has found a solution in 𝑆∗. Due to the probabilistic nature

of the algorithm, we will usually give bounds that hold with high

probability, e. g., with probability 1− 1/𝑛. The expected value of𝑇 ∗
may be undefined since the cooling schedule may make it less and

less likely to hit the set 𝑆∗ when the algorithm has been unsuccess-

ful during the steps where a promising temperature held. This is

different from the analysis of, e. g., simple evolutionary algorithms,

where one often considers the so-called runtime as the first hitting
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time of the set of optimal solutions and bounds the expected run-

time. However, as described in detail by Wegener [22], there are

simple restart schemes for SA that guarantee expected polynomial

optimization times if there is a sufficiently high probability of a

single run being successful in polynomial time.

The proof of our main result uses multiplicative drift analysis

as state-of-the-art technical tool, which was not available to We-

gener [22]. The multiplicative drift theorem in Theorem 3.1 below

goes back to [4] and was enhanced with tail bounds in [3]. We give

a slightly generalized presentation that can be found in [14].

Theorem 3.1 (Multiplicative Drift, cf. [3, 4, 14]). Let (𝑋𝑡 )𝑡 ≥0,
be a stochastic process, adapted to a filtration F𝑡 , over a state space
𝑆 ⊆ {0} ∪ [𝑠min, 𝑠max], where 𝑠min > 0 and {0} ∈ 𝑆 . Suppose that
there exists a 𝛿 > 0 such that for all 𝑡 ≥ 0, we have

𝐸 (𝑋𝑡 − 𝑋𝑡+1 | F𝑡 ) ≥ 𝛿𝑋𝑡 .

Then the first hitting time 𝑇 := min{𝑡 | 𝑋𝑡 = 0} satisfies

𝐸 (𝑇 | F0) ≤
ln(𝑋0/𝑠min) + 1

𝛿
.

Moreover, Pr(𝑇 > (ln(𝑋0/𝑠min) + 𝑟 )/𝛿) ≤ 𝑒−𝑟 for any 𝑟 > 0.

4 SA AS APPROXIMATION SCHEME FOR THE
MINIMUM SPANNING TREE PROBLEM

In this section, we prove our main results on how well SA computes

approximate solutions for the MST problem. These results easily

imply improved bounds for the previously regarded special case of

(1 + 𝜀)-separated instances, see Section 5.

4.1 Main Results and Proof Outline
As outlined above in the introduction, this paper revisits We-

gener’s [22] analysis of SA on the MST problem. Our main result is

Theorem 4.1 below, proving that SA is a polynomial-time approxi-

mation scheme for the MST problem as originally conjectured by

Wegener. The statement of our main theorem describes the approx-

imation quality and the required time to reach it as a function of

the cooling factor, the desired success probability and of course

the instance parameters. Theorem 4.2 takes the dual perspective of

computing cooling schedules and running times that allow SA to

find a (1 + 𝜀)-approximation for a given 𝜀 with high probability.

We now present the main theorem and a variant of it, corre-

sponding to the two perspectives mentioned above for analyzing

the approximation quality.

Theorem 4.1. Let 𝛿 < 1. Consider a run of SA with multiplicative
cooling schedule with 𝛽 = 1 − 1/ℓ for some ℓ = 𝜔 (𝑚𝑛 ln(𝑚/𝛿)) and
𝑇0 ≥ 𝑤max on an instance of the MST problem. With probability

at least 1 − 𝛿 , at all times 𝑡 ≥ (ℓ/2) ln
(
ln(4(ℓ−1)/𝛿)𝑇0

𝑤min

)
the current

solution is a (1 + 𝜅)-approximation, where

1 + 𝜅 ≤ (1 + 𝑜 (1)) ln(ℓ/𝛿)
ln(ℓ) − ln(𝑚𝑛 ln(𝑚/𝛿)) .

Theorem 4.2. Let 𝛿 = 𝜔 (1/(𝑚𝑛 ln𝑛)) and 𝛿 < 1, 𝜀 > 0. Consider
a run of SA with 𝛽 = 1 − 1/ℓ for ℓ = (𝑚𝑛 ln(𝑚/𝛿))1+1/𝜀 and 𝑇0 ≥
𝑤max on an instance of the MST problem. With probability at least 1−
𝛿 , at all times 𝑡 ≥ (ℓ/2) ln

(
ln(4(ℓ−1)/𝛿)𝑇0

𝑤min

)
the current solution is a

(1 + 𝑜 (1)) (1 + 𝜀)-approximation.

The last theorem is stated in somewhat weaker, but simpler

form in the following corollary. In particular, it gives a concrete

time bound until SA has computed a (1 + 𝜀)-approximation with

probability at least 1 − 𝛿 , where 𝛿 and 𝜀 are chosen by the user.

Corollary 4.3. Let 𝜀 > 0 be a constant and 𝛿 = 𝜔 (1/(𝑚𝑛 ln𝑛)).
Consider a run of SA with 𝛽 = 1 − 1/ℓ , where

ℓ =

(
𝑚𝑛 ln

(𝑚
𝛿

))
1+1/𝜀+𝑜 (1)

,

and 𝑇0 ≥ 𝑤max on an instance of the MST problem. With probability

at least 1 − 𝛿 , at all times 𝑡 ≥ 𝑇 ∗ B (ℓ/2) ln
(
ln(4(ℓ−1)/𝛿)𝑇0

𝑤min

)
the

current solution is a (1 + 𝜀)-approximation. Moreover,

𝑇 ∗ = 𝑂

(
(𝑚𝑛 ln(𝑛))1+1/𝜀+𝑜 (1)

(
ln ln𝑛 + ln

(
𝑇0

𝑤min

)))
.

The idea of the proof of all results formulated above is to consider

phases in the optimization process, concentrating on different inter-

vals for the edge weights, with the size and center of the intervals

decreasing over time. In each phase, the number of edges chosen

from such an interval will achieve some close-to-optimal value with

high probability. After the end of the phase, the temperature of SA

is so low that basically no more changes occur to the edges with

weights in the interval.

In more detail, the proofs of Theorem 4.1 and its variant are

composed of several lemmas. We are now going to outline the main

ideas of these lemmas and how they relate to each other in the

roadmap of the final proof.

It is useful to formulate the main results in terms of a cooling

factor 𝛽 = 1 − 1/ℓ for some ℓ > 1 since ℓ carries the intuition of a

“half-life” for the temperature; more precisely, after ℓ iterations of SA

the temperature has decreased by the constant factor of (1−1/ℓ)ℓ ≈
𝑒−1. Lemma 4.4 is (on top of the usual graph parameters and the

starting temperature) based on ℓ , a weight𝑤 and some parameter 𝑎.

Intuitively, it describes a point of time 𝑡𝑤 after which edges of

weight at least𝑤 are no longer flipped in with high probability and

can be ignored for the rest of the analysis due to an exponential

decay in the probability of accepting search points of higher 𝑓 -

value. This probability depends on the parameter 𝑎 which will be

optimized later in the composition of the main proof.

While Lemma 4.4 will be used to show that edges above a cer-

tain weight are no longer included in the current solution after

the temperature has dropped sufficiently, Lemma 4.5, which is the

main lemma in our analysis, deals with the structure of the current

solution after edges of a certain weight𝑤 are no longer included. It

considers connected components that can be spanned by cheaper

edges and states that these connected components are essentially

connected in an optimal way in the whole solution up to multiplica-

tive deviations of a factor (1 + 𝜅) in the weights of the connecting

edges. Lemma 4.5 uses careful edge exchange arguments in its proof

and bounds the time to do these exchanges in a multiplicative drift

analysis. Moreover, it features another parameter called 𝛾 that will

be optimized later along with the above-mentioned 𝑎.

Lemma 4.6 puts together the previous two lemmas to consider

the run of SA over up to𝑛 phases depending on the weight spectrum

of the graph until the temperature has dropped to a value being

so small that no more changes are accepted. This will be the final

solution considered in the main proof. Essentially, having listed the
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weights of an MST decreasingly, the lemma will match the weights

of the final solution to the weights of the MST and show for each

element in the list that the final solution matches the weight of the

element up to a factor 1 + 𝜅. Its proof uses a bijection argument

proved by induction to apply Lemma 4.5 and is crucially different

from Wegener’s analysis.

The final lemma, Lemma 4.8, finds choices for the parameter 𝛾

to minimize the bound 1 + 𝜅 on the approximation ratio. Its proof

uses several results from calculus. Afterwards, Theorem 4.1 also

chooses the parameter 𝑎 carefully and arrives at the first statement

on the approximation ratio depending on ℓ , the desired success

probability 1 − 𝛿 , and the graph parameters, only. The second main

theorem, Theorem 4.2 then essentially translates parameters into

each other to compute ℓ and to express time bounds based on the

desired 𝜀. A weaker but simpler formulation of that theorem is

finally stated in Corollary 4.3.

4.2 Detailed Technical Analysis
In this subsection, we collect the technical lemmas and theorems

outlined above.

Let 𝑎 > 1 and 𝑡𝑤 be the earliest point of time when𝑇 (𝑡𝑤) ≤ 𝑤/𝑎.
In the following lemma, we state that the probability that SA accepts

edges of weight 𝑤 after 𝑡𝑤 is exponentially small with respect

to 𝑎. It shows that after the temperature becomes less than𝑤 , the

probability of accepting such an edge is sharply decreasing.

Lemma 4.4. Consider a run of SA with multiplicative cooling sched-
ule with 𝛽 = 1−1/ℓ and𝑇0 ≥ 𝑤max on an instance of theMST problem.
Let ℓ > 2, 1 < 𝑎 ≤ ℓ − 1 and for any𝑤 > 0, 𝑡𝑤 be the earliest point
of time when 𝑇 (𝑡𝑤) ≤ 𝑤/𝑎. It holds that no new edge of weight at
least𝑤 is included in the solutions after time 𝑡𝑤 with probability at
least

1 − 2(ℓ − 1)
𝑎𝑒𝑎

,

which is at least 1 − 𝛿/2 for 𝛿 < 1, if we set 𝑎 ≥ ln(4(ℓ − 1)/𝛿).

Proof. Let 𝑠 be an edge of weight at least𝑤 , which is not in the

solution at the beginning of the step 𝑡𝑤 . Let 𝑡 ∈ N≥0 and 𝐸 (𝑡𝑤+𝑡 )𝑠 be

the event of accepting the edge 𝑠 at step 𝑡𝑤 +𝑡 . This event happens if
the edge 𝑠 is flipped with probability 1/𝑚 and the algorithm accepts

this worse solution. Thus

Pr

(
𝐸
(𝑡𝑤 )
𝑠

)
=𝑚−1 · exp

(
−𝑤

𝑇 (𝑡𝑤)

)
≤ 𝑒−𝑎

𝑚
.

For all integers 𝑡 ≥ 0, we have 𝑇 (𝑡𝑤 + 𝑡) = 𝑇 (𝑡𝑤) (1 − 1/ℓ)𝑡 . Then

Pr

(
𝐸
(𝑡𝑤+𝑡 )
𝑠

)
=𝑚−1 exp

(
−𝑤

𝑇 (𝑡𝑤) (1 − 1

ℓ )𝑡

)
≤ 𝑚−1𝑒−𝑎 (1+

1

ℓ−1 )
𝑡

≤ 𝑚−1𝑒−𝑎 (1+
𝑡

ℓ−1 ) ,

where we used the inequality (1 + 𝑥)𝑟 ≥ 1 + 𝑟𝑥 for 𝑥 > −1 and

𝑟 ∈ N≥0.
Let 𝐸

≥𝑡𝑤
𝑠 be the event of accepting the edge 𝑒 of weight at least𝑤

after step 𝑡𝑤 at least once. Then, using the geometric series sum

formula, we get

Pr

(
𝐸
≥𝑡𝑤
𝑠

)
≤
∞∑︁
𝑡=0

Pr

(
𝐸
(𝑡𝑤+𝑡 )
𝑒

)
≤
∞∑︁
𝑡=0

𝑚−1𝑒−𝑎 (1+
𝑡

ℓ−1 )

=𝑚−1
𝑒−𝑎

1 − 𝑒−𝑎/(ℓ−1)
≤ 𝑚−1 𝑒−𝑎

1 − (1 − 𝑎
2(ℓ−1) )

=𝑚−1
2(ℓ − 1)
𝑎𝑒𝑎

,

where we have 𝑎 ≤ ℓ − 1 and use the inequality 𝑒−𝑥 ≤ 1 − 𝑥/2 for
0 ≤ 𝑥 ≤ 1.

Since there are𝑚 edges, with probability 1 − 2(ℓ−1)
𝑎𝑒𝑎 , there is no

inclusion of edges after their corresponding steps 𝑡𝑤 .

Moreover, if we set 𝑎 ≥ ln(4(ℓ − 1)/𝛿), the probability is at least

1 − 2(ℓ − 1)
ln(4(ℓ − 1)/𝛿) · 4(ℓ − 1)/𝛿 = 1 − 𝛿/2

ln(4(ℓ − 1)/𝛿) ≥ 1 − 𝛿

2

,

where we have ℓ > 2 and 𝛿 < 1. □

In the following lemma, we consider a time interval of length

4.21𝛾𝑚𝑛 ln(2𝑚2/𝛿) + 1 starting from 𝑡𝑤 (for fixed 𝑎) and prove that

at the end of this period, there are no edges of weight at least 𝑤

left that could be replaced by an edge of weight at most𝑤/(1 + 𝜅),
where 𝜅 depends on the algorithm parameter ℓ and parameters 𝛾

and 𝑎. We optimize these parameters later in this paper.

Lemma 4.5. Let 𝛾 > 1, 𝛿 < 1, ℓ > 2, 𝑎 > 1. Consider a run of SA
with multiplicative cooling schedule with 𝛽 = 1− 1/ℓ and𝑇0 ≥ 𝑤max

on an instance of the MST problem. Let 𝑡𝑤 be the earliest point of time
when 𝑇 (𝑡𝑤) ≤ 𝑤/𝑎, and assume that no further edges of weight at
least𝑤 are added to the solution from time 𝑡𝑤 . Let

1 + 𝜅 =

𝑎 exp

(
𝛾
4.21𝑚𝑛 ln(2𝑚2/𝛿)

ℓ−1

)
ln𝛾

.

Let 𝑛𝑤 be the number of connected components in the subgraph
using only edges with weight at most𝑤/(1 +𝜅) in𝐺 . After time 𝑡𝑤 +
4.21𝛾𝑚𝑛 ln(2𝑚2/𝛿), the number of edges in the current solution with
weight at least𝑤 is at most𝑛𝑤−1with probability at least 1−𝛿/(2𝑚).

Proof. Let 𝑇𝑏𝑎𝑠𝑒 = 4.21𝑚𝑛 ln(2𝑚2/𝛿). We analyze the steps

𝑡𝑤 , . . . , 𝑡𝑤 + 𝛾𝑇𝑏𝑎𝑠𝑒 . The temperature during this phase is at least

𝑇 (𝑡𝑤)
(
1 − 1

ℓ

)𝛾𝑇𝑏𝑎𝑠𝑒
≥ 𝑇 (𝑡𝑤)𝑒−

𝛾𝑇𝑏𝑎𝑠𝑒
ℓ−1 ,

so the probability to accept a chosen edge with weight at

most𝑤/(1 + 𝜅) in one step is bounded from below by

exp
©­« −𝑤/(1 + 𝜅)𝑇 (𝑡𝑤)𝑒−

𝛾𝑇𝑏𝑎𝑠𝑒
ℓ−1

ª®¬ = exp
©­«−𝑎𝑒

𝛾𝑇𝑏𝑎𝑠𝑒
ℓ−1

(1 + 𝜅)
ª®¬ = 𝛾−1

during this phase. By our assumption in the statement, we do not

include edges of weight at least𝑤 .

Let us partition the set of edges with weight at least 𝑤 in the

current solution 𝑥 , that is, the graph 𝐺𝑥 = (𝑉 , 𝐸 (𝑥)), into three

disjoint subsets. An edge 𝑒 = {𝑢, 𝑣} with weight at least𝑤 has one

of the following three properties,

(1) the edge 𝑒 lies on a cycle in 𝐺𝑥 ;

(2) the edge 𝑒 does not lie on a cycle, but there is at least one

edge 𝑒 ′ ∈ 𝐸 \𝐸 (𝑥) with weight at most𝑤/(1+𝜅) such that 𝑒

lies on a cycle in the graph (𝑉 , 𝐸 (𝑥) ∪ {𝑒 ′});
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(3) the edge 𝑒 has neither of the two properties. In this case,

we call this edge essential for the current and forthcoming

solutions.

As long as an edge with weight at least𝑤 is not essential, it can

either be removed from the current solution or become an essential

edge. When the edge disappears, since its weight is at least 𝑤 , it

will not appear again.

Also, when the edge becomes essential, it remains essential in the

solution to the end, because in order to create a cycle containing

this edge, an edge with weight at least 𝑤 has to appear, which

does not happen, and also removing this edge makes the graph

unconnected.

We claim that the number of essential edges does not exceed𝑛𝑤−
1. In order to prove this, we define the graph 𝐻 = (𝑉𝐻 , 𝐸𝐻 ) as
follows. There is a vertex in 𝑉𝐻 for each connected component of

the induced subgraph on the edges of weight at most 𝑤/(1 + 𝜅)
in 𝐺 , and there is an edge between two vertices 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉𝐻 if there

is an essential edge 𝑒 = {𝑢, 𝑣} in the solution that 𝑢 and 𝑣 belong to

the corresponding connected components 𝐶𝑖 and 𝐶 𝑗 respectively.

Formally, let 𝐶 = {𝐶1, . . . ,𝐶𝑛𝑤
} be the connected components of

the induced subgraph on the edges of weight at most 𝑤/(1 + 𝜅).
Then, 𝑉𝐻 = {𝑣1, . . . , 𝑣𝑛𝑤

} and

𝐸𝐻 =
{
{𝑖, 𝑗} | ∃ essential 𝑒 = {𝑢, 𝑣}, 𝑢 ∈ 𝐶𝑖 , 𝑣 ∈ 𝐶 𝑗

}
.

We claim that there is no essential edge with both endpoints

in the same 𝐶𝑖 . To prove this, we assume for contradiction that

there is such an edge 𝑒 = {𝑢, 𝑣}. Then, since 𝑒 is essential, it cannot
be on a cycle in the current solution. Let 𝑆𝑢 and 𝑆𝑣 denote the

sets of vertices connected to 𝑢 and 𝑣 respectively using edges in

the solution but 𝑒 . 𝑆𝑢 ∪ 𝑆𝑣 = 𝑉 (𝐺) because the solution is always

connected. Since 𝑒 is essential, there is no edge with weight at most

𝑤/(1 + 𝜅) in 𝐺 from 𝑆𝑢 to 𝑆𝑣 (see the property (2)), so there is

no such cheap edges in 𝐺 from 𝑆𝑢 ∩ 𝐶𝑖 to 𝑆𝑣 ∩ 𝐶𝑖 , which results

in that there is a partition of vertices of 𝐶𝑖 that are disconnected

in the subgraph using only edges with weight at most 𝑤/(1 + 𝜅)
in 𝐺 , which contradicts the definition of 𝐶𝑖 . Also, 𝐻 has to be a

forest since we also know that essential edges are not on a cycle.

Therefore, since there are 𝑛𝑤 connected components, there are at

most 𝑛𝑤 − 1 essential edges.
Now, in the next paragraphs, we state the number of steps needed

to remove edges with weight at least𝑤 or to make them essential.

We consider some epochs consisting of 2𝑚 iterations each and let

𝑋𝑡 be the random variable denoting the number of non-essential

edges with weight at least𝑤 whose exclusion is possible at epoch 𝑡 .

We claim that

Δ𝑡 (𝑠) B 𝐸 (𝑋𝑡 − 𝑋𝑡+1 | 𝑋𝑡 = 𝑠) ≥ 𝑠 · (1 − 𝑒
−3)𝑛−1
2𝛾

.

If no cycle with a non-essential edge 𝑒 = {𝑢, 𝑣} with weight at

least𝑤 exists, the probability of creating such a cycle by adding the

cheap edge considered in Case 2 between 𝑆𝑢 and 𝑆𝑣 in each step is

at least 1/(𝛾𝑚) and in𝑚 steps, is at least

1 −
(
1 − 1

𝛾𝑚

)𝑚
≥ 1 − 𝑒−1/𝛾 ≥ 1

2𝛾
,

where we have 1 + 𝑥 ≤ 𝑒𝑥 for all 𝑥 ∈ 𝑅 and the inequality 𝑒−𝑥 ≤
1 − 𝑥/2 for 0 ≤ 𝑥 ≤ 1.

Then, after the cycle is created in the first𝑚 iterations, or the

cycle already existed, the probability of the exclusion of such an

edge in𝑚 steps of the second half of the epoch is only (1− 𝑒−3)𝑛−1
because the probability of observing at least one edge from the cycle

of length 𝑘 in𝑚 steps is 1− (1−𝑘/𝑚)𝑚 ≥ 1− (1−3/𝑚)𝑚 ≥ 1−𝑒−3,
and the probability that the edge selected is 𝑒 equals 1/𝑛. Altogether,
the probability of excluding a non-essential edge with weight at

least 𝑤 is at least (1 − 𝑒−3)𝑛−1/(2𝛾), which results in decreasing

𝑋𝑡 by at least one because removing 𝑒 might also make some other

edges essential. Since there are 𝑠 non-essential edges, we have

Δ𝑡 (𝑠) ≥ 𝑠 · (1−𝑒−3)𝑛−1/(2𝛾). Since there can be at most𝑚 essential

edges at the beginning, we have 𝑋0 ≤ 𝑚. Assume 𝑌 denotes the

number of epochs needed to have only essential edges with weight

at least 𝑤 . Using the upper tail bound of multiplicative drift in

Theorem 3.1, we have

Pr

(
𝑌 >

ln(2𝑚/𝛿) + ln𝑋0

(1 − 𝑒−3)𝑛−1/(2𝛾)

)
≤ 𝑒− ln(2𝑚/𝛿) =

𝛿

2𝑚
.

Since each epoch consists of 2𝑚 iterations,

2𝑚 · 2(1 − 𝑒−3)−1𝑛𝛾 ln
(
2
𝑚2

𝛿

)
≤ 4.21𝛾𝑚𝑛 ln

(
2
𝑚2

𝛿

)
is sufficient to arrive at a solution where all edges of weight at

least𝑤 are essential. □

SA does with high probability not accept an inclusion of any

edge using Lemma 4.4 when the temperature is colder than𝑤min/𝑎
for some 𝑎 that is still a parameter chosen later. This is the time

from when the solution is invariant. Let 𝑡𝑤min
be the earliest time

when 𝑇 (𝑤min) ≤ 𝑤min/𝑎 and 𝑡
end
B 𝑡𝑤min

.

In the following lemma, we show that there is a bijective relation

between the edges of the solution at time 𝑡
end

and a MST such

that the ratio between the weights of corresponding edges is less

than (1 + 𝜅).

Lemma 4.6. Let 𝛿 < 1, 𝛾 > 1, ℓ = 𝜔 (1) and 𝑎 ≥ ln(4(ℓ − 1)/𝛿).
Let

1 + 𝜅 =

𝑎 exp

(
𝛾
4.21𝑚𝑛 ln(2𝑚2/𝛿)

ℓ−1

)
ln𝛾

.

Consider a run of SA with multiplicative cooling schedule with 𝛽 =

1 − 1/ℓ and 𝑇0 ≥ 𝑤max on an instance of the MST problem. Assume
that T ∗ is a minimum spanning tree and T ′ is the solution of SA at
time 𝑡

end
where 𝑇 (𝑡

end
) ≤ 𝑤min/𝑎.

For an arbitrary spanning tree T , let𝑤T = (𝑤T (1), . . . ,𝑤T (𝑛 −
1)) be a decreasingly sorted list of the weights on its edges, i. e.,
𝑤T ( 𝑗) ≥ 𝑤T (𝑖) for all 1 ≤ 𝑗 ≤ 𝑖 ≤ 𝑛 − 1. With probability at
least 1 − 𝛿 , we have

𝑤T∗ (𝑘) ≤ 𝑤T′ (𝑘) < (1 + 𝜅)𝑤T∗ (𝑘) for each 𝑘 ∈ [1..𝑛 − 1] .

Proof. We recall that 𝑡𝑤 is the earliest point of time when

𝑇 (𝑡𝑤) ≤ 𝑤/𝑎. With probability 1 − 𝛿/2, edges of weight𝑤 are not

included after their corresponding times 𝑡𝑤 via Lemma 4.4. Thus

conditional on this event, we can use Lemma 4.5 stating that with

probability at least 1− 𝛿/(2𝑚), the number of edges with weight at

least𝑤 is at most 𝑛𝑤 −1. This condition must hold for at most𝑚 dis-

tinct values, happening with probability at least 1−𝛿/2 according to
a union bound. Altogether, since the event in Lemma 4.4 must hap-

pen with probability 1 − 𝛿/2 and the condition in Lemma 4.5 must
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hold for all weights, with probability at least 1 − 𝛿 , the statement

in Lemma 4.5 is valid for all possible weights.

We use induction on the index 𝑘 . The case 𝑘 = 0 is trivial as

the basic step. Regarding the inductive step, assume that for all

0 ≤ 𝑘 ≤ 𝑖 − 1, the inequality is valid. If 𝑖 = 𝑛, the claim is proved.

Otherwise, let𝑤T∗ (𝑖) be the next unique largest weight and 𝑗 be

the largest index that𝑤T∗ ( 𝑗) = 𝑤T∗ (𝑖). In fact, we have

𝑤T∗ (𝑖 − 1) < 𝑤T∗ (𝑖) = · · · = 𝑤T∗ ( 𝑗) < 𝑤T∗ ( 𝑗 + 1) .

There are exactly 𝑗−𝑖+1 edges with weight𝑤T∗ (𝑖) in the minimum

spanning tree T ∗. The number of connected components in 𝐺

using only edges at most 𝑤T∗ (𝑖) is 𝑖 since they are connected

using 𝑖 − 1 edges in T ∗. Using Lemma 4.5 with𝑤 = (1 + 𝜅)𝑤T∗ (𝑖)
and considering 𝑛𝑤 = 𝑖 , there are at most 𝑖 − 1 edges with weight at

least (1 + 𝜅)𝑤T∗ (𝑖) in T ′, which means that the rest of the weight

values in T ′ are less than (1 + 𝜅)𝑤T∗ (𝑖). Since we know that the

graph cannot be connected using less than 𝑗 edges with weight at

least𝑤T∗ (𝑖), we can conclude that there are at least 𝑗 edges with

weight between𝑤T∗ (𝑖) and (1+𝜅)𝑤T∗ (𝑖). Therefore, for 𝑖 ≤ 𝑘 ≤ 𝑗 ,

the inequality suggested above holds. □

With the above lemmas at hand, we can prove the first theo-

rem. Given ℓ , Theorem 4.7 states the approximation ratio that the

algorithm with cooling schedule 𝛽 = 1 − 1/ℓ can obtain.

Theorem 4.7. Let 𝛿 < 1,𝛾 > 1 and ℓ = 𝜔 (1). Consider a run of SA
with multiplicative cooling schedule with 𝛽 = 1− 1/ℓ and𝑇0 ≥ 𝑤max

on an instance of the MST problem. For 𝑎 ≥ ln(4(ℓ − 1)/𝛿), with
probability at least 1 − 𝛿 , at all times 𝑡 ≥ (ℓ/2) ln(𝑎𝑇0/𝑤min) the
current solution is a (1 + 𝜅)-approximation where

1 + 𝜅 =

𝑎 exp

(
𝛾
4.21𝑚𝑛 ln(2𝑚2/𝛿)

ℓ−1

)
ln𝛾

.

Proof. We consider the time 𝑡
end

when 𝑇 (𝑡
end
) ≤ 𝑤min/𝑎 and

show the approximation result for the current solution of SA at

that time. Concretely, assume that T ∗ is a minimum spanning

tree and T ′ is the solution of the algorithm at time 𝑡𝑒𝑛𝑑 . Assume

𝑤 (T ) is the total weight of edges in the tree T . Using Lemma 4.6,

with probability 1 − 𝛿 , we have 𝑤T′ < (1 + 𝜅)𝑤T∗ (𝑘) for each
𝑘 ∈ [1..𝑛 − 1]. Thus, we have

𝑤 (T ′) =
𝑛−1∑︁
𝑖=1

𝑤T′ (𝑖) <
𝑛−1∑︁
𝑖=1

𝑤T∗ (𝑖) (1 + 𝜅) = (1 + 𝜅)𝑤 (T ∗).

To complete the proof, we only have to find the time 𝑡
end

from

when the temperature is less than𝑤min/𝑎, so after that, no edges

are included anymore via Lemma 4.4. Then 𝑡
end

satisfies

𝑇0

(
1 − 1

ℓ

)𝑡
end

=
𝑤min

𝑎
.

Then

𝑡
end

= log
1−1/ℓ

(
𝑤min

𝑎𝑇0

)
=

ln(𝑤min/(𝑎𝑇0))
ln(1 − 1/ℓ) .

Using the inequality 1 − 𝑥/2 ≥ 𝑒−𝑥 for 0 ≤ 𝑥 ≤ 1 with 𝑥 = 2/ℓ , we
can bound 𝑡

end
from above by

𝑡
end
≤ ln(𝑤min/(𝑎𝑇0))

−2/ℓ =

(
ℓ

2

)
ln

(
𝑎𝑇0

𝑤min

)
. □

The formula for 𝜅 , which we obtained in Theorem 4.7, holds for

all 𝛾 > 1. In the following lemma, we suggest a value for 𝛾 , leading

to the smallest value for 1 + 𝜅. With the help of that, we give also

some bounds on 1 + 𝜅 considering different cases for ℓ .

Lemma 4.8. Let 𝜅 be defined as in Theorem 4.7 and 𝑇𝑏𝑎𝑠𝑒 B
4.21𝑚𝑛 ln(2𝑚2/𝛿). Then the minimum value of 𝜅 is achieved by set-

ting 𝛾 = exp

(
𝑊

(
ℓ−1
𝑇𝑏𝑎𝑠𝑒

))
, where𝑊 is the Lambert𝑊 function. More-

over, if ℓ < 𝑒𝑇𝑏𝑎𝑠𝑒 + 1, 1+𝜅 ≥ 𝑒 (1/𝑒)−1𝑎. Otherwise, if ℓ ≥ 𝑒𝑇𝑏𝑎𝑠𝑒 + 1,

1 + 𝜅 ≤ 𝑎

exp

((
ln

(
ℓ−1
𝑇𝑏𝑎𝑠𝑒

)) 𝑒
𝑒−1 ln

−1
(

ℓ−1
𝑇𝑏𝑎𝑠𝑒

)
−1

)
ln

(
ℓ−1
𝑇𝑏𝑎𝑠𝑒

)
− ln ln

(
ℓ−1
𝑇𝑏𝑎𝑠𝑒

) .

For ℓ = 𝜔 (𝑇𝑏𝑎𝑠𝑒 ), the last fraction is (1 + 𝑜 (1)) 𝑎
ln(ℓ−1)−ln(𝑇𝑏𝑎𝑠𝑒 ) .

The proof of Lemma 4.8 uses the first derivative to find the

minimum value for 1 +𝜅 . This method gives us the minimum value

𝑎
𝑒𝑒

𝑊 (𝑏) /𝑏

𝑊 (𝑏) , (1)

appearing at 𝛾 = exp(𝑊 (𝑏)), where 𝑏 = ℓ−1
𝑇𝑏𝑎𝑠𝑒

. By considering

cases where 𝑏 ≥ 𝑒 and 𝑏 < 𝑒 and using some inequalities on the

Lambert𝑊 function, we obtain the results.

Finally, we give the proofs of the two main theorems in this

paper.

Proof of Theorem 4.1. Using Theorem 4.7, we have

1 + 𝜅 =

𝑎 exp

(
𝛾
𝑇𝑏𝑎𝑠𝑒
ℓ−1

)
ln𝛾

.

By setting 𝑎 = ln(4(ℓ − 1)/𝛿) and using the upper bound on (1 +𝜅)
obtained in Lemma 4.8 for ℓ = 𝜔 (𝑇𝑏𝑎𝑠𝑒 ) = 𝜔 (𝑚𝑛 ln(𝑚/𝛿)), we get

1 + 𝜅 ≤ (1 + 𝑜 (1)) ln(4(ℓ − 1)/𝛿)
ln(ℓ − 1) − ln(4.21𝑚𝑛 ln(2𝑚2/𝛿))

= (1 + 𝑜 (1)) · (1 + 𝑜 (1)) ln((ℓ − 1)/𝛿)
ln(ℓ) − ln(𝑚𝑛 ln(𝑚/𝛿))

≤ (1 + 𝑜 (1)) ln(ℓ/𝛿)
ln(ℓ) − ln(𝑚𝑛 ln(𝑚/𝛿)) . □

In Theorem 4.1, we only consider the case ℓ = 𝜔 (𝑇𝑏𝑎𝑠𝑒 ) since the
other cases for ℓ cannot lead to constant approximation ratios and

therefore are not interesting to study. More precisely, let us assume

ℓ = 𝜔 (1). In the case that ℓ < 𝑒𝑇𝑏𝑎𝑠𝑒 + 1, we have the lower bound
Ω(ln(4(ℓ − 1)/𝛿)) = 𝜔 (1) on 1 + 𝜅 from Lemma 4.8. Regarding the

case that ℓ ≥ 𝑒𝑇𝑏𝑎𝑠𝑒 + 1 and ℓ = 𝑂 (𝑇𝑏𝑎𝑠𝑒 ), it can be proved that

1+𝜅 = Ω(𝑎) = 𝜔 (1), since ℓ/𝑇𝑏𝑎𝑠𝑒 = 𝑂 (1) makes all terms constant

except 𝑎 in Equation (1). Then again for 𝑎 ≥ ln(4(ℓ − 1)/𝛿) and
ℓ = 𝜔 (1), the approximation ratio is 𝜔 (1).

Now, we give the proof of Theorem 4.2.
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Proof of Theorem 4.2. Let ℓ = (𝑚𝑛 ln(𝑚/𝛿))1+1/𝜀 . Via Theo-

rem 4.1, we have

1 + 𝜅 ≤ (1 + 𝑜 (1)) ln(ℓ/𝛿)

ln

(
ℓ

𝑚𝑛 ln(𝑚/𝛿)

)
= (1 + 𝑜 (1)) (1 + 1/𝜀) ln(𝑚𝑛 ln(𝑚/𝛿)) + ln(1/𝛿)

(1/𝜀) ln(𝑚𝑛 ln(𝑚/𝛿))

= (1 + 𝑜 (1))
(
1 + 1/𝜀
1/𝜀 + ln(1/𝛿)

(1/𝜀) ln(𝑚𝑛 ln(𝑚/𝛿))

)
≤ (1 + 𝑜 (1))

(
1 + ln(1/𝛿)

ln(𝑚𝑛 ln(𝑚/𝛿))

)
(1 + 𝜀) .

For 𝛿−1 = 𝑜 (𝑚𝑛 ln𝑛), the last expression can be bounded from

above by (1 + 𝑜 (1)) (1 + 𝜀). □

A more straightforward result of Theorem 4.2 is stated in Corol-

lary 4.3. In this corollary, we are aiming at expressing an asymptotic

time for the algorithm to find the approximation, and we assume

that 𝜀 is constant.

5 (1 + 𝜀)-SEPARATEDWEIGHTS
In this section, we revisit the case that the weights 𝑤1, . . . ,𝑤𝑚

are (1 + 𝜀)-separated, i. e., there is a constant 𝜀 > 0 such that

𝑤 𝑗 ≥ (1 + 𝜀)𝑤𝑖 if𝑤 𝑗 > 𝑤𝑖 for all 𝑖, 𝑗 ∈ {1, . . . , 𝑛}. As mentioned in

the introduction in Theorem 1.1, Wegener proves that SA with high

probability finds an MST for any instance with (1 + 𝜀)-separated
weights if𝑤max ≤ 2

𝑚
. More precisely, the proof of his theorem con-

siders a time span of𝑂 (𝑚8+8/𝜀 ) steps and shows that SA constructs

an MST within this time span with probability 1 −𝑂 (1/𝑚).
In the following, we improve this result in two ways. As ac-

knowledged by Wegener himself, he did not optimize the pa-

rameters in the final bound on the runtime. Therefore, we can

give an improved time bound of 𝑂 ((𝑚𝑛 ln(𝑛))1+1/𝜀+𝑜 (1) (ln ln𝑛 +
ln(𝑇0/𝑤min))), see Theorem 5.1 for the precise, more general result.

Moreover, we replace the assumption on the largest edge weight by

the parameter𝑤max. Essentially, we have done all work necessary to

show the following theorem already in the previous section, where

we proved an approximation result. Now, the (1 + 𝜀)-separation im-

plies that indeed an optimal solution is found with high probability.

Theorem 5.1. Let 𝛿 = 𝜔 (1/(𝑚𝑛 ln(𝑚))) and 𝛿 < 1, 𝜀 > 0

be a constant. Consider a run of SA with multiplicative cooling
schedule with 𝛽 = 1 − 1/ℓ for ℓ = (𝑚𝑛 ln(𝑚/𝛿))1+1/𝜀+𝑜 (1) and
𝑇0 ≥ 𝑤max on an instance of the MST problem with (1 + 𝜀)-separated
weights. With probability at least 1 − 𝛿 , at all times 𝑡 ≥ 𝑇 ∗ B

(ℓ/2) ln
(
ln(4(ℓ−1)/𝛿)𝑇0

𝑤min

)
the current solution is optimal. Moreover,

𝑇 ∗ = 𝑂

(
(𝑚𝑛 ln(𝑛))1+1/𝜀+𝑜 (1)

(
ln ln𝑛 + ln

(
𝑇0

𝑤min

)))
.

Proof. We first prove the result for (1 + 𝑜 (1)) (1 + 𝜀 ′)-separated
weights for some constant 𝜀 ′ > 0. Then we prove the result for

(1+ 𝜀)-separated weights such that (1+𝑜 (1)) (1+ 𝜀 ′) ≤ (1+ 𝜀) for 𝑛
large enough.

Using Lemma 4.6, with probability 1 − 𝛿 , we have 𝑤T∗ (𝑘) ≤
𝑤T′ (𝑘) < (1 + 𝜅)𝑤T∗ (𝑘) for each 𝑘 ∈ [1..𝑛 − 1]. The (1 + 𝜅)-
separated graphs do not have edge weight between 𝑤T∗ (𝑘) and

(1 + 𝜅)𝑤T∗ (𝑘) except 𝑤T∗ (𝑘). Therefore, the algorithm finds an

optimal solution.

We need to bound 1 + 𝜅 using the assumptions in the state-

ment. By setting 𝑎 = ln(4(ℓ − 1)/𝛿) and using Lemma 4.8 for ℓ =

(𝑚𝑛 ln(𝑚/𝛿))1+1/𝜀′ , we bound 1+𝜅 from above by (1+𝑜 (1)) (1+𝜀 ′)
similarly to the proof of Theorem 4.2. Since 𝜀 and 𝜀 ′ are constants
and we have 1/𝜀 ′ = 1/𝜀 + 𝑜 (1), we obtain the claim for (1 + 𝜀)-
separated weights.

Regarding 𝑇 ∗, since 𝜀 > 0 is constant, we have ln(ℓ) = 𝑂 ((1 +
1/𝜀 + 𝑜 (1)) ln(𝑚𝑛 ln(𝑚/𝛿))) = 𝑂 ((1 + 1/𝜀 + 𝑜 (1)) ln𝑛))) = 𝑂 (ln𝑛).
Moreover, ℓ = 𝑂 ((𝑚𝑛 ln(𝑛/𝛿))1+𝜀+𝑜 (1) ) = 𝑂 ((𝑚𝑛 ln(𝑛))1+𝜀+𝑜 (1) ).
Putting this together, we have

𝑇 ∗ = 𝑂

(
(𝑚𝑛 ln(𝑛))1+1/𝜀+𝑜 (1)

(
ln ln𝑛 + ln

(
𝑇0

𝑤min

)))
. □

6 CONCLUSIONS
We have shown that simulated annealing is a polynomial-time

approximation scheme for the minimum spanning tree problem,

thereby proving a conjecture by Wegener [22]. Our analyses use

state-of-the-art methods and have led to improved results in the

case of (1+𝜖)-separated weights, where simulated annealing yields

an optimal solution with high probability. Our main result is one

of the rare examples where simple randomized search heuristics,

with a straightforward representation and objective function, serve

as polynomial-time approximation scheme.

Since the runtime analysis of simulated annealing is still un-

derrepresented in the theory of randomized search heuristics, our

understanding of its working principles is still limited. In particular,

we do not have a clear characterization of the fitness landscapes

in which its non-elitism, along with a cooling schedule, is more

efficient than global search. The study of the Metropolis Algorithm

for the DLB problem in [21] and our analysis on the minimum span-

ning tree problem might indicate that landscapes with many, but

easy to leave local optima are beneficial; however, more research is

needed to support this conjecture.
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