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Abstract

We prove that Simulated Annealing with an appropriate cooling schedule com-
putes arbitrarily tight constant-factor approximations to the minimum spanning
tree problem in polynomial time. This result was conjectured by Wegener (2005).
More precisely, denoting by n, m, wmax, and wmin the number of vertices and edges
as well as the maximum and minimum edge weight of the MST instance, we
prove that simulated annealing with initial temperature T0 ≥ wmax and multi-
plicative cooling schedule with factor 1 − 1/ℓ, where ℓ = ω(mn ln(m)), with prob-
ability at least 1 − 1/m computes in time O(ℓ(ln ln(ℓ) + ln(T0/wmin))) a span-
ning tree with weight at most 1 + κ times the optimum weight, where 1 + κ =

(1+o(1)) ln(ℓm)
ln(ℓ)−ln(mn ln(m)) . Consequently, for any ε > 0, we can choose ℓ in such a way that a

(1+ε)-approximation is found in time O((mn ln(n))1+1/ε+o(1)(ln ln n+ln(T0/wmin)))
with probability at least 1 − 1/m. In the special case of so-called (1 + ε)-
separated weights, this algorithm computes an optimal solution (again in time
O((mn ln(n))1+1/ε+o(1)(ln ln n+ln(T0/wmin)))), which is a significant speed-up over
Wegener’s runtime guarantee of O(m8+8/ε).

1 Introduction

The theory of randomized search heuristics, mostly in the last 25 years, has considerably
increased our understanding of this class of algorithms. A closer look at this field shows
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that in the early years, significant efforts were devoted also to simulated annealing (SA)
(Sasaki and Hajek, 1988; Jerrum and Sorkin, 1998; Wegener, 2005; Jansen and Wegener,
2007), whereas more recently these algorithms at most appear in side results of works
focused on other heuristics. Due to this decline in attention, the gap between theory and
practice, at least as wide in heuristics as in classic algorithms, is even wider for SA.

Since we do not see a reducing interest in SA in practice (Franzin and Stützle, 2019),
with this first theoretical work solely devoted to SA after a longer time, we aim at reviving
the theoretical analysis of this famous heuristic. To this aim, we revisit a classic problem,
namely how SA computes minimum spanning trees (MSTs) (Wegener, 2005). We are, of
course, not finally interested in using SA for this purpose – for this several very efficient
near-linear time algorithms are known –, but we use this problem to try to understand
the working principles of SA.

Wegener’s seminal work (Wegener, 2005) is well-known for the construction of an
instance of the MST problem where the Metropolis algorithm with any fixed temperature
fails badly, but SA with a simple multiplicative cooling schedule computes an optimal
solution efficiently. Much less known, but equally interesting is another result in this
work, namely that SA with a suitable multiplicative cooling schedule can efficiently find
optimal solutions to the MST problem when the edge weights are (1 + ε)-separated.

Theorem 1 (Wegener (2005)). Let G = (V, E) with w : E → Z>0 be an instance of the
MST problem. Let ε > 0 be such that for all edges e1, e2 ∈ E, we have that w(e1) > w(e2)
implies w(e1) ≥ (1 + ε)w(e2). Assume further that w(e) ≤ 2m for all e ∈ E. Then SA

with initial temperature T0 = 2m and cooling factor β = (1 + ε/2)−m−7−8/ε
with probability

1− O(1/m) finds an optimal solution in at most 2 log2(1 + ε/2)−1m8+8/ε iterations.

Wegener (Wegener, 2005) conjectured that his SA algorithm for general weights in-
stead of (1 + ε)-separated ones computes (1 + ε)-approximate minimum spanning trees,
that is, trees with weight at most (1 + ε) times the weight of a true minimum spanning
tree. While this conjecture is very natural, it was never proven.

Our main result is that Wegener’s conjecture is indeed true, even though our proof
does not confirm his statement that “it is easy to generalize our result to prove that
SA is always highly successful if one is interested in (1 + ε)-optimal spanning trees.”
More precisely, we show the following result (see Theorem 4 for a slightly stronger, but
more complicated version of this result). We note that SA cannot compute (1 + ε)-
approximations for sub-constant ε, see again (Wegener, 2005), so in this sense our result
is as good as possible.

Let ε > 0 be a constant. Consider a run of SA with cooling factor β = 1− 1/ℓ, where
ℓ = (mn ln(m))1+1/ε+o(1), and T0 ≥ wmax on an instance of the MST problem. Then there
is a time T ∗ = O((mn ln(n))1+1/ε+o(1)(ln ln n + ln(T0/wmin))) such that with probability
at least 1− 1/m, at all times t ≥ T ∗ the current solution is a (1 + ε)-approximation.

Due to the use of proof methods not available at that time, our time bound is sig-
nificantly better than Wegener’s. To compute a (1 + ε)-approximation, or to compute
an optimal solution when the edge weights are (1 + ε)-separated (see Theorem 11), our
runtime guarantee is roughly O((mn log n)1+1/ε log wmax

wmin
) as opposed to O(m8+8/ε) in The-

orem 1.
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Mostly because of a different organization of the proof, our result gives more insights
into the influence of the algorithm parameters. Our result only applies to initial temper-
atures T0 that are at least the maximum edge weight. This is very natural since with
substantially smaller temperatures, the heaviest edge cannot be included in the solution
with reasonable probability (this follows right from the definition of the algorithm). It
is also not difficult to prove that once the temperature is somewhat below the smallest
edge weight, then no new edges will ever enter the solution (see Lemma 6 for the precise
statement of this result). This implies that there is no reason to run the algorithm longer
than roughly for time log1/β(T0/wmin) = O(ℓ log(T0/wmin)), see Theorem 9 for the details.
From the perspective of the algorithm user, this is an interesting insight since it gives an
easy termination criterion. Also without understanding the precise influence of the cool-
ing factor β on the approximation quality, this insight motivates to use the algorithm for
decreasing values of β, say βi = 2−i, always until the above-determined time is reached,
and follow this procedure until a sufficiently good MST approximation is found.

The remainder of this paper is organized as follows. In Section 2, we describe the
most relevant previous works. We define SA and the minimum spanning tree problem
in Section 3. The core of this work is our mathematical runtime analysis in Section 4.
Afterwards, in Section 5, we give the result carried out for the MST problem with (1+ε)-
separated weights. The paper ends with a conclusion and a discussion of possible future
works.

2 Previous Work

As mentioned in the introduction, there are relatively few runtime analyses for SA as
discrete optimization algorithm, see also the survey Jansen (2011).

The first such result Sasaki and Hajek (1988) proves that SA can compute good ap-
proximations to the maximum matching problem. A closer look at the result reveals
that a constant temperature is used, that is, the SA algorithm is in fact the special case
of the Metropolis algorithm. It has to be noted that to obtain a particular approxima-
tion quality, the temperature has to be set suitably. In this light, the following result
from Giel and Wegener (2003) shows a light advantage for evolutionary algorithms: When
running the (1 + 1) EA with standard mutation rate on this problem, then the expected
first time to find a (1 + ε)-approximation is O(m2⌈1/ε⌉). Note that in this result, the
parameters of the algorithm do not need to be adjusted to the desired approximation
rate.

For a different problem, namely the bisection problem, it was shown
in Jerrum and Sorkin (1998) that SA, again with constant temperature, can solve certain
random instances in quadratic time.

Wegener’s above mentioned work (Wegener, 2005) on the MST problem was the first
to show that for some non-artificial problem, a non-trivial cooling schedule is necessary.

A runtime analysis of the Metropolis algorithm on the classic benchmark OneMax

was conducted in Jansen and Wegener (2007). Not surprisingly, the ability to accept
inferior solutions is not helpful when optimizing this unimodal function. The interesting
side of this result, though, is that the Metropolis algorithm is efficient on OneMax only
for very small temperatures of asymptotic order O(log(n)/n).
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A recent study (Wang, Zheng and Doerr, 2021) on the deceiving-leading-blocks (DLB)
problem shows that here the Metropolis algorithm with a constant temperature has a
good performance, beating the known runtime results for evolutionary algorithms by a
factor of Θ(n). We note that the DLB problem, just as the MST problem, has many
local optima which all can be left by flipping two bits.

As side results of a fundamental analysis of hyper-heuristics, two easy lower bounds
on the runtime of the Metropolis algorithm (that is, SA with constant temperature) are
proven in Lissovoi, Oliveto and Warwicker (2019): (i) The Metropolis algorithm needs
time Ω̃(nd−1/2) on cliff functions with constant cliff width d and super-polynomial time
when the cliff width is super-polynomial. (ii) The Metropolis algorithm with a tempera-
ture small enough to allow efficient hill-climbing needs exponential time to optimize jump
functions.

As part of a broader analysis of single-trajectory search heuristics, it was found that
the Metropolis algorithm can optimize all weakly monotonic pseudo-Boolean functions
in at most exponential time Doerr (2021).

Some more results exist on problems designed for demonstrating a particular phe-
nomenon. In Droste, Jansen and Wegener (2000), a problem called Valley is designed
that has the property the Metropolis algorithm with any temperature needs at least
exponential expected time, whereas SA with a suitable cooling schedule only needs
time O(n5 log n). In Jansen and Wegener (2007), examples are constructed where one
of (1 + 1) EA and SA has a small polynomial runtime and the other has an exponen-
tial runtime. Also, a class of functions is constructed where both algorithms have a
similar performance despite dealing with the local optimum in a very different manner.
In Oliveto et al. (2018), a class of problems with tunable width and depths of a valley
of low fitness is proposed. It is proven that the performance of the elitist (1 + 1) EA is
mostly influenced by the width of the valley, whereas the performance of the Metropolis
algorithm and a similar non-elitist algorithm inspired from population genetics is mostly
influenced by the depths of the valley.

For evolutionary algorithms, for which the theory is more developed than for SA,
there are a larger number of results showing that they can serve as approximation al-
gorithms for optimization problems, including NP-hard problems (Neumann and Witt,
2010). However, results describing an approximation scheme where the user can provide
a parameter ε to the evolutionary algorithm to compute a (1+ε)-approximation are rare;
apart from the maximum matching problem mentioned above, we are only aware of re-
lated results for parallel (1+1) EAs, (1+1) EAs with ageing and simple artificial immune
systems on the number partitioning problem (Witt, 2005; Corus, Oliveto and Yazdani,
2019) and for an evolutionary algorithm on the multi-objective shortest path problem
(Horoba, 2010). Evolutionary algorithms that approximate the optimum are also known
in the subfield of fixed-parameter tractability. While most of these results prove an
approximation within a constant factor or growing slowly with the problem dimension,
there are also statements similar to approximation schemes for the vertex cover problem
(Neumann and Sutton, 2020). However, in general it is safe to say that there are only few
results in the literature that characterize very simple randomized search heuristics like the
(1 + 1) EA and SA as polynomial-time approximation schemes for classical (non-noisy)
combinatorial optimization problems.
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Algorithm 1 Simulated Annealing (SA) with starting temperature T0 and cooling factor
β ≤ 1 for the minimization of f : {0, 1}n → R

Select x(0) from {0, 1}n.
for t← 0, 1, . . . do

Create y by flipping a bit of x(t) chosen uniformly at random.
if f(y) ≤ f(x(t)) then

x(t+1) ← y.
else

x(t+1) ← y with probability e(f(x(t))−f(y))/Tt and
x(t+1) ← x(t) otherwise.

Tt+1 := Tt · β.

Finally, we remark that the classical (1 + 1) EA and a variant of randomized local
search can solve the MST problem in expected pseudo-polynomial time O(m2 log(nwmax))
(Neumann and Wegener, 2007). While SA in general does not solve the problem in ex-
pected polynomial time, its time bound to achieve a (1+ǫ)-approximation (see Theorem 4
below) can be smaller than the time bound for the (1 + 1) EA in certain cases where
m = ω(n) and ǫ is a constant.

3 Preliminaries

We now define the SA algorithm and the MST problem. Also, we state a technical tool
our main proof builds on.

Simulated annealing (SA) is a simple stochastic hill-climber first proposed as opti-
mization algorithm in Kirkpatrick, Gelatt Jr and Vecchi (1983). Different from a true
hill-climber it may, with small probability, also accept inferior solutions. Working with
bit-string representations, we use the classic bit-flip neighborhoods, that is, the neighbors
of a solution are all other solutions that differ from it in a single bit value. For the ac-
ceptance of inferior solutions, we use the widely accepted Metropolis condition, that is, a
solution with fitness loss δ over the current solution is accepted with probability e−δ/T ,
where T is the current temperature. The temperature is usually not taken as constant,
but is reduced during the run of the algorithm. This allows the algorithm to accept
worsening moves easy in the early stages of the run, whereas later worsening moves are
accepted with smaller probability, bringing the algorithm closer to a true hill-climber.
The choice of the cooling schedule is a critical decision in the design of a SA algorithm. A
popular choice, already proposed in Kirkpatrick, Gelatt Jr and Vecchi (1983), is a mul-
tiplicative cooling schedule (also called geometric cooling scheme). Here we start with
a given temperature T0 and reduce the temperature by some factor β in each iteration.
This common variant of SA, see Algorithm 1 for the pseudocode, was regarded also in
the predecessor work of Wegener (Wegener, 2005).

The minimum spanning tree (MST) problem is defined as follows. We are given an
undirected, connected, weighted graph G = (V, E). We denote by n its number of vertices
and by m its number of edges. Let the set of edges be E = {e1, . . . , em}. The weight of
edge ei, where i ∈ {1, . . . , m}, is a positive number wi. We write wmin := min{wi | i ∈
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{1, . . . , m}} and wmax := max{wi | i ∈ {1, . . . , m}} for the minimum and maximum edge
weight.

The task in the MST problem is to find a subset E ′ ⊆ E such that (V, E ′) is a spanning
tree of G having minimal total weight w(E ′) =

∑

ei∈E′ wi. We use the natural bit-string
representation for sets E ′ of edges, that is, a bit string x = (x1, . . . , xm) ∈ {0, 1}m

represents the set E(x) = {ei | xi = 1}. As objective function, we use the sum of the
weights of the selected edges when these form a connected graph on V and∞ otherwise:

f(x) =







w1x1 + · · ·+ wmxm if (V, E(x)) is connected,

∞ otherwise.

Here ∞ can be replaced by an extremely large value without essentially changing the
result. To ensure that we start with a feasible solution (one that has finite objective
value), we assume that SA is initialized with the all-ones string x(0) = (1, . . . , 1). From
this initial string, SA can move to solutions having fewer edges by flipping one-bits;
however, it will never accept solutions that are not connected due to their infinitely high
f -value. We note that, similarly to the analysis of the (1 + 1) EA on the MST problem
(Neumann and Wegener, 2007), one could use a more involved fitness function to penalize
connected components and thus lead the algorithm towards connected subgraphs when
the current solution is not connected. However, since we assumme SA to start from
a connected solution and connected solutions will not be replaced with disconnected
solutions with the present definition of f , this would not provide new insights. Overall,
our setup is the same as the one used by Wegener (Wegener, 2005).

When the temperature has become sufficiently low, it is likely that SA has reached
a solution describing a spanning tree. If this spanning tree is suboptimal, improvements
require a change of at least 2 bits. Since SA only flips one bit per iteration, this is only
possible by temporarily including one more edge, i. e., closing a cycle, and then removing
another edge from the cycle in the next iteration. This requires a temperature still being
sufficiently high for the temporary inclusion to be accepted.

Our measure of complexity is the first hitting time T ∗ for a certain set of solutions S∗,
e. g., globally optimal solutions or solutions satisfying a certain approximation guarantee
with respect to the set of global optima. That is, we give bounds on the smallest t such
that SA has found a solution in S∗. Due to the probabilistic nature of the algorithm, we
will usually give bounds that hold with high probability, e. g., with probability 1− 1/n.
The expected value of T ∗ may be undefined since the cooling schedule may make it less
and less likely to hit the set S∗ when the algorithm has been unsuccessful during the steps
where a promising temperature held. This is different from the analysis of, e. g., simple
evolutionary algorithms, where one often considers the so-called runtime as the first
hitting time of the set of optimal solutions and bounds the expected runtime. However,
as described in detail by Wegener (Wegener, 2005), there are simple restart schemes
for SA that guarantee expected polynomial optimization times if there is a sufficiently
high probability of a single run being successful in polynomial time.

The proof of our main result uses multiplicative drift analysis as state-of-the-art tech-
nical tool, which was not available to Wegener (Wegener, 2005). The multiplicative drift
theorem in Theorem 2 below goes back to Doerr, Johannsen and Winzen (2012) and was
enhanced with tail bounds in Doerr and Goldberg (2013). We give a slightly generalized
presentation that can be found in Lehre and Witt (2021).
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Theorem 2 (Multiplicative Drift, cf. (Doerr, Johannsen and Winzen, 2012;
Doerr and Goldberg, 2013; Lehre and Witt, 2021)). Let (Xt)t≥0, be a stochastic process,
adapted to a filtration Ft, over a state space S ⊆ {0} ∪ [smin, smax], where smin > 0 and
{0} ∈ S. Suppose that there exists a δ > 0 such that for all t ≥ 0, we have

E(Xt −Xt+1 | Ft) ≥ δXt.

Then the first hitting time T := min{t | Xt = 0} satisfies

E(T | F0) ≤
ln(X0/smin) + 1

δ
.

Moreover, Pr(T > (ln(X0/smin) + r)/δ) ≤ e−r for any r > 0.

4 SA as Approximation Scheme for the Minimum

Spanning Tree Problem

In this section, we prove our main results on how well SA computes approximate solutions
for the MST problem. These results easily imply improved bounds for the previously
regarded special case of (1 + ε)-separated instances, see Section 5.

4.1 Main Results and Proof Outline

As outlined above in the introduction, this paper revisits Wegener’s (Wegener, 2005)
analysis of SA on the MST problem. Our main result is Theorem 3 below, proving
that SA is a polynomial-time approximation scheme for the MST problem as originally
conjectured by Wegener. The statement of our main theorem describes the approximation
quality and the required time to reach it as a function of the cooling factor, the desired
success probability and of course the instance parameters. Theorem 4 takes the dual
perspective of computing cooling schedules and running times that allow SA to find a
(1 + ε)-approximation for a given ε with high probability.

We now present the main theorem and a variant of it, corresponding to the two
perspectives mentioned above for analyzing the approximation quality.

Theorem 3. Let δ < 1. Consider a run of SA with multiplicative cooling schedule with
β = 1 − 1/ℓ for some ℓ = ω(mn ln(m/δ)) and T0 ≥ wmax on an instance of the MST

problem. With probability at least 1−δ, at all times t ≥ (ℓ/2) ln
(

ln(4(ℓ−1)/δ)T0

wmin

)

the current

solution is a (1 + κ)-approximation, where

1 + κ ≤ (1 + o(1))
ln(ℓ/δ)

ln(ℓ)− ln(mn ln(m/δ))
.

Theorem 4. Let δ = ω(1/(mn ln n)) and δ < 1, ε > 0. Consider a run of SA with
β = 1 − 1/ℓ for ℓ = (mn ln(m/δ))1+1/ε and T0 ≥ wmax on an instance of the MST

problem. With probability at least 1−δ, at all times t ≥ (ℓ/2) ln
(

ln(4(ℓ−1)/δ)T0

wmin

)

the current

solution is a (1 + o(1))(1 + ε)-approximation.
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The last theorem is stated in somewhat weaker, but simpler form in the following
corollary. In particular, it gives a concrete time bound until SA has computed a (1 +
ε)-approximation with probability at least 1− δ, where δ and ε are chosen by the user.

Corollary 5. Let ε > 0 be a constant and δ = ω(1/(mn ln n)). Consider a run of SA
with β = 1− 1/ℓ, where

ℓ = (mn ln(m/δ))1+1/ε+o(1),

and T0 ≥ wmax on an instance of the MST problem. With probability at least 1 − δ, at
all times t ≥ T ∗ := (ℓ/2) ln

(

ln(4(ℓ−1)/δ)T0

wmin

)

the current solution is a (1 + ε)-approximation.
Moreover,

T ∗ = O((mn ln(n))1+1/ε+o(1)(ln ln n + ln(T0/wmin))).

The idea of the proof of all results formulated above is to consider phases in the
optimization process, concentrating on different intervals for the edge weights, with the
size and center of the intervals decreasing over time. In each phase, the number of
edges chosen from such an interval will achieve some close-to-optimal value with high
probability. After the end of the phase, the temperature of SA is so low that basically
no more changes occur to the edges with weights in the interval.

In more detail, the proofs of Theorem 3 and its variant are composed of several
lemmas. We are now going to outline the main ideas of these lemmas and how they
relate to each other in the roadmap of the final proof.

It is useful to formulate the main results in terms of a cooling factor β = 1 − 1/ℓ
for some ℓ > 1 since ℓ carries the intuition of a “half-life” for the temperature; more
precisely, after ℓ iterations of SA the temperature has decreased by the constant factor
of (1− 1/ℓ)ℓ ≈ e−1. Lemma 6 is (on top of the usual graph parameters and the starting
temperature) based on ℓ, a weight w and some parameter a. Intuitively, it describes a
point of time tw after which edges of weight at least w are no longer flipped in with high
probability and can be ignored for the rest of the analysis due to an exponential decay
in the probability of accepting search points of higher f -value. This probability depends
on the parameter a which will be optimized later in the composition of the main proof.

While Lemma 6 will be used to show that edges above a certain weight are no longer
included in the current solution after the temperature has dropped sufficiently, Lemma 7,
which is the main lemma in our analysis, deals with the structure of the current solution
after edges of a certain weight w are no longer included. It considers connected compo-
nents that can be spanned by cheaper edges and states that these connected components
are essentially connected in an optimal way in the whole solution up to multiplicative
deviations of a factor (1+κ) in the weights of the connecting edges. Lemma 7 uses careful
edge exchange arguments in its proof and bounds the time to do these exchanges in a
multiplicative drift analysis. Moreover, it features another parameter called γ that will
be optimized later along with the above-mentioned a.

Lemma 8 puts together the previous two lemmas to consider the run of SA over up
to n phases depending on the weight spectrum of the graph until the temperature has
dropped to a value being so small that no more changes are accepted. This will be the
final solution considered in the main proof. Essentially, having listed the weights of an
MST decreasingly, the lemma will match the weights of the final solution to the weights
of the MST and show for each element in the list that the final solution matches the
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weight of the element up to a factor 1 + κ. Its proof uses a bijection argument proved by
induction to apply Lemma 7 and is crucially different from Wegener’s analysis.

The final lemma, Lemma 10, finds choices for the parameter γ to minimize the
bound 1 + κ on the approximation ratio. Its proof uses several results from calculus.
Afterwards, Theorem 3 also chooses the parameter a carefully and arrives at the first
statement on the approximation ratio depending on ℓ, the desired success probability 1−δ,
and the graph parameters, only. The second main theorem, Theorem 4 then essentially
translates parameters into each other to compute ℓ and to express time bounds based
on the desired ε. A weaker but simpler formulation of that theorem is finally stated in
Corollary 5.

4.2 Detailed Technical Analysis

In this subsection, we collect the technical lemmas and theorems outlined above.
Let a > 1 and tw be the earliest point of time when T (tw) ≤ w/a. In the following

lemma, we state that the probability that SA accepts edges of weight w after tw is
exponentially small with respect to a. It shows that after the temperature becomes less
than w, the probability of accepting such an edge is sharply decreasing.

Lemma 6. Consider a run of SA with multiplicative cooling schedule with β = 1 − 1/ℓ
and T0 ≥ wmax on an instance of the MST problem. Let ℓ > 2, 1 < a ≤ ℓ− 1 and for any
w > 0, tw be the earliest point of time when T (tw) ≤ w/a. It holds that no new edge of
weight at least w is included in the solutions after time tw with probability at least

1−
2(ℓ− 1)

aea
,

which is at least 1− δ/2 for δ < 1, if we set a ≥ ln(4(ℓ− 1)/δ).

Proof. Let s be an edge of weight at least w, which is not in the solution at the beginning
of the step tw. Let t ∈ N≥0 and E(tw+t)

s be the event of accepting the edge s at step tw + t.
This event happens if the edge s is flipped with probability 1/m and the algorithm accepts
this worse solution. Thus

Pr
(

E(tw)
s

)

= m−1 · exp

(

−w

T (tw)

)

≤ e−a/m.

For all integers t ≥ 0, we have T (tw + t) = T (tw)(1− 1/ℓ)t. Then

Pr
(

E(tw+t)
s

)

= m−1 exp

(

−w

T (tw)(1− 1/ℓ)t

)

≤ m−1e−a(1+ 1
ℓ−1

)t

≤ m−1e−a(1+ t
ℓ−1

),

where we used the inequality (1 + x)r ≥ 1 + rx for x > −1 and r ∈ N≥0.
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Let E≥tw
s be the event of accepting the edge e of weight at least w after step tw at

least once. Then, using the geometric series sum formula, we get

Pr
(

E≥tw
s

)

≤
∞
∑

t=0

Pr
(

E(tw+t)
e

)

≤
∞
∑

t=0

m−1e−a(1+ t
ℓ−1

)

= m−1 e−a

1− e−a/(ℓ−1)
≤ m−1 e−a

1− (1− a
2(ℓ−1)

)

= m−1 2(ℓ− 1)

aea
,

where we have a ≤ ℓ− 1 and use the inequality e−x ≤ 1− x/2 for 0 ≤ x ≤ 1.

Since there are m edges, with probability 1− 2(ℓ−1)
aea , there is no inclusion of edges after

their corresponding steps tw.
Moreover, if we set a ≥ ln(4(ℓ− 1)/δ), the probability is at least

1−
2(ℓ− 1)

ln(4(ℓ− 1)/δ) · 4(ℓ− 1)/δ
= 1−

δ/2

ln(4(ℓ− 1)/δ)
≥ 1− δ/2,

where we have ℓ > 2 and δ < 1.

In the following lemma, we consider a time interval of length 4.21γmn ln(2m2/δ) + 1
starting from tw (for fixed a) and prove that at the end of this period, there are no edges
of weight at least w left that could be replaced by an edge of weight at most w/(1 + κ),
where κ depends on the algorithm parameter ℓ and parameters γ and a. We optimize
these parameters later in this paper.

Lemma 7. Let γ > 1, δ < 1, ℓ > 2, a > 1. Consider a run of SA with multiplicative
cooling schedule with β = 1 − 1/ℓ and T0 ≥ wmax on an instance of the MST problem.
Let tw be the earliest point of time when T (tw) ≤ w/a, and assume that no further edges
of weight at least w are added to the solution from time tw. Let

1 + κ =
a exp

(

γ 4.21mn ln(2m2/δ)
ℓ−1

)

ln γ
.

Let nw be the number of connected components in the subgraph using only edges with
weight at most w/(1 + κ) in G. After time tw + 4.21γmn ln(2m2/δ), the number of
edges in the current solution with weight at least w is at most nw − 1 with probability at
least 1− δ/(2m).

Proof. Let Tbase = 4.21mn ln(2m2/δ). We analyze the steps tw, . . . , tw + γTbase. The
temperature during this phase is at least

T (tw)(1− 1/ℓ)γTbase ≥ T (tw)e−(γTbase)/(ℓ−1),

so the probability to accept a chosen edge with weight at most w/(1 + κ) in one step is
bounded from below by

exp

(

−w/(1 + κ)

T (tw)e−γTbase/(ℓ−1)

)

= exp

(

−
aeγTbase/(ℓ−1)

(1 + κ)

)

= 1/γ

10



during this phase. By our assumption in the statement, we do not include edges of weight
at least w.

Let us partition the set of edges with weight at least w in the current solution x, that
is, the graph Gx = (V, E(x)), into three disjoint subsets. An edge e = {u, v} with weight
at least w has one of the following three properties,

(a) the edge e lies on a cycle in Gx;

(b) the edge e does not lie on a cycle, but there is at least one edge e′ ∈ E \E(x) with
weight at most w/(1 + κ) such that e lies on a cycle in the graph (V, E(x) ∪ {e′});

(c) the edge e has neither of the two properties. In this case, we call this edge essential
for the current and forthcoming solutions.

As long as an edge with weight at least w is not essential, it can either be removed
from the current solution or become an essential edge. When the edge disappears, since
its weight is at least w, it will not appear again.

Also, when the edge becomes essential, it remains essential in the solution to the end,
because in order to create a cycle containing this edge, an edge with weight at least w
has to appear, which does not happen, and also removing this edge makes the graph
unconnected.

We claim that the number of essential edges does not exceed nw − 1. In order to
prove this, we define the graph H = (VH , EH) as follows. There is a vertex in VH for each
connected component of the induced subgraph on the edges of weight at most w/(1 + κ)
in G, and there is an edge between two vertices vi, vj ∈ VH if there is an essential
edge e = {u, v} in the solution that u and v belong to the corresponding connected
components Ci and Cj respectively. Formally, let C = {C1, . . . , Cnw} be the connected
components of the induced subgraph on the edges of weight at most w/(1 + κ). Then,
VH = {v1, . . . , vnw} and

EH = {{i, j} | ∃ essential e = {u, v}, u ∈ Ci, v ∈ Cj}.

We claim that there is no essential edge with both endpoints in the same Ci. To
prove this, we assume for contradiction that there is such an edge e = {u, v}. Then,
since e is essential, it cannot be on a cycle in the current solution. Let Su and Sv denote
the sets of vertices connected to u and v respectively using edges in the solution but e.
Su ∪ Sv = V (G) because the solution is always connected. Since e is essential, there is
no edge with weight at most w/(1 + κ) in G from Su to Sv (see the property (2)), so
there is no such cheap edges in G from Su ∩ Ci to Sv ∩ Ci, which results in that there is
a partition of vertices of Ci that are disconnected in the subgraph using only edges with
weight at most w/(1 + κ) in G, which contradicts the definition of Ci. Also, H has to be
a forest since we also know that essential edges are not on a cycle. Therefore, since there
are nw connected components, there are at most nw − 1 essential edges.

Now, in the next paragraphs, we state the number of steps needed to remove edges
with weight at least w or to make them essential. We consider some epochs consisting
of 2m iterations each and let Xt be the random variable denoting the number of non-
essential edges with weight at least w whose exclusion is possible at epoch t. We claim
that

∆t(s) := E(Xt −Xt+1 | Xt = s) ≥ s · (1− e−3)n−1/(2γ).

11



If no cycle with a non-essential edge e = {u, v} with weight at least w exists, the proba-
bility of creating such a cycle by adding the cheap edge considered in Case 2 between Su

and Sv in each step is at least 1/(γm) and in m steps, is at least

1−

(

1−
1

γm

)m

≥ 1− e−1/γ ≥ 1/(2γ),

where we have 1 + x ≤ ex for all x ∈ R and the inequality e−x ≤ 1− x/2 for 0 ≤ x ≤ 1.
Then, after the cycle is created in the first m iterations, or the cycle already existed,

the probability of the exclusion of such an edge in m steps of the second half of the epoch
is only (1−e−3)n−1 because the probability of observing at least one edge from the cycle of
length k in m steps is 1−(1−k/m)m ≥ 1−(1−3/m)m ≥ 1−e−3, and the probability that
the edge selected is e equals 1/n. Altogether, the probability of excluding a non-essential
edge with weight at least w is at least (1− e−3)n−1/(2γ), which results in decreasing Xt

by at least one because removing e might also make some other edges essential. Since
there are s non-essential edges, we have ∆t(s) ≥ s · (1 − e−3)n−1/(2γ). Since there can
be at most m essential edges at the beginning, we have X0 ≤ m. Assume Y denotes the
number of epochs needed to have only essential edges with weight at least w. Using the
upper tail bound of multiplicative drift in Theorem 2, we have

Pr

(

Y >
ln(2m/δ) + ln X0

(1− e−3)n−1/(2γ)

)

≤ e− ln(2m/δ) = δ/(2m).

Since each epoch consists of 2m iterations,

2m · 2(1− e−3)−1nγ ln(2m2/δ) ≤ 4.21mn ln(2m2/δ)

is sufficient to arrive at a solution where all edges of weight at least w are essential.

SA does with high probability not accept an inclusion of any edge using Lemma 6
when the temperature is colder than wmin/a for some a that is still a parameter chosen
later. This is the time from when the solution is invariant. Let twmin be the earliest time
when T (wmin) ≤ wmin/a and tend := twmin.

In the following lemma, we show that there is a bijective relation between the edges
of the solution at time tend and a MST such that the ratio between the weights of corre-
sponding edges is less than (1 + κ).

Lemma 8. Let δ < 1, γ > 1, ℓ = ω(1) and a ≥ ln(4(ℓ− 1)/δ). Let

1 + κ =
a exp

(

γ 4.21mn ln(2m2/δ)
ℓ−1

)

ln γ
.

Consider a run of SA with multiplicative cooling schedule with β = 1−1/ℓ and T0 ≥ wmax

on an instance of the MST problem. Assume that T ∗ is a minimum spanning tree and
T ′ is the solution of SA at time tend where T (tend) ≤ wmin/a.

For an arbitrary spanning tree T , let wT = (wT (1), . . . , wT (n− 1)) be a decreasingly
sorted list of the weights on its edges, i. e., wT (j) ≥ wT (i) for all 1 ≤ j ≤ i ≤ n − 1.
With probability at least 1− δ, we have

wT ∗(k) ≤ wT ′(k) < (1 + κ)wT ∗(k) for each k ∈ [1..n− 1].

12



Proof. We recall that tw is the earliest point of time when T (tw) ≤ w/a. With proba-
bility 1− δ/2, edges of weight w are not included after their corresponding times tw via
Lemma 6. Thus conditional on this event, we can use Lemma 7 stating that with proba-
bility at least 1− δ/(2m), the number of edges with weight at least w is at most nw − 1.
This condition must hold for at most m distinct values, happening with probability at
least 1− δ/2 according to a union bound. Altogether, since the event in Lemma 6 must
happen with probability 1− δ/2 and the condition in Lemma 7 must hold for all weights,
with probability at least 1− δ, the statement in Lemma 7 is valid for all possible weights.

We use induction on the index k. The case k = 0 is trivial as the basic step. Regarding
the inductive step, assume that for all 0 ≤ k ≤ i − 1, the inequality is valid. If i = n,
the claim is proved. Otherwise, let wT ∗(i) be the next unique largest weight and j be the
largest index that wT ∗(j) = wT ∗(i). In fact, we have

wT ∗(i− 1) < wT ∗(i) = · · · = wT ∗(j) < wT ∗(j + 1).

There are exactly j − i + 1 edges with weight wT ∗(i) in the minimum spanning tree T ∗.
The number of connected components in G using only edges at most wT ∗(i) is i since
they are connected using i − 1 edges in T ∗. Using Lemma 7 with w = (1 + κ)wT ∗(i)
and considering nw = i, there are at most i− 1 edges with weight at least (1 + κ)wT ∗(i)
in T ′, which means that the rest of the weight values in T ′ are less than (1 + κ)wT ∗(i).
Since we know that the graph cannot be connected using less than j edges with weight at
least wT ∗(i), we can conclude that there are at least j edges with weight between wT ∗(i)
and (1 + κ)wT ∗(i). Therefore, for i ≤ k ≤ j, the inequality suggested above holds.

With the above lemmas at hand, we can prove the first theorem. Given ℓ, Theorem 9
states the approximation ratio that the algorithm with cooling schedule β = 1− 1/ℓ can
obtain.

Theorem 9. Let δ < 1, γ > 1 and ℓ = ω(1). Consider a run of SA with multiplicative
cooling schedule with β = 1 − 1/ℓ and T0 ≥ wmax on an instance of the MST problem.
For a ≥ ln(4(ℓ− 1)/δ), with probability at least 1− δ, at all times t ≥ (ℓ/2) ln(aT0/wmin)
the current solution is a (1 + κ)-approximation where

1 + κ =
a exp

(

γ 4.21mn ln(2m2/δ)
ℓ−1

)

ln γ
.

Proof. We consider the time tend when T (tend) ≤ wmin/a and show the approximation
result for the current solution of SA at that time. Concretely, assume that T ∗ is a
minimum spanning tree and T ′ is the solution of the algorithm at time tend. Assume
w(T ) is the total weight of edges in the tree T . Using Lemma 8, with probability 1− δ,
we have wT ′ < (1 + κ)wT ∗(k) for each k ∈ [1..n− 1]. Thus, we have

w(T ′) =
n−1
∑

i=1

wT ′(i) <
n−1
∑

i=1

wT ∗(i)(1 + κ) = (1 + κ)w(T ∗).

To complete the proof, we only have to find the time tend from when the temperature
is less than wmin/a, so after that, no edges are included anymore via Lemma 6. Then tend

satisfies
T0(1− 1/ℓ)tend =

wmin

a
.
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Then

tend = log1−1/ℓ((wmin/a)/T0) =
ln(wmin/(aT0))

ln(1− 1/ℓ)
.

Using the inequality 1− x/2 ≥ e−x for 0 ≤ x ≤ 1 with x = 2/ℓ, we can bound tend from
above by

tend ≤
ln(wmin/(aT0))

−2/ℓ
= (ℓ/2) ln

(

aT0

wmin

)

.

The formula for κ, which we obtained in Theorem 9, holds for all γ > 1. In the
following lemma, we suggest a value for γ, leading to the smallest value for 1 + κ. With
the help of that, we give also some bounds on 1 + κ considering different cases for ℓ.

Lemma 10. Let κ be defined as in Theorem 9 and Tbase := 4.21mn ln(2m2/δ). Then the

minimum value of κ is achieved by setting γ = exp
(

W
(

ℓ−1
Tbase

))

, where W is the Lambert W

function. Moreover, if ℓ < eTbase + 1, 1 + κ ≥ e(1/e)−1a. Otherwise, if ℓ ≥ eTbase + 1,

1 + κ ≤ a

exp





(

ln
(

ℓ−1
Tbase

)) e
e−1

ln−1

(

ℓ−1
Tbase

)

−1





ln
(

ℓ−1
Tbase

)

− ln ln
(

ℓ−1
Tbase

) .

For ℓ = ω(Tbase), the last fraction is (1 + o(1)) a
ln(ℓ−1)−ln(Tbase)

.

Proof. From the definition of κ in Theorem 9, for γ > 1, we have

1 + κ = a
eγ/b

ln γ
, (1)

where b := ℓ−1
Tbase

.

Let f(x) = ex/b/ ln x for x > 1. Then its derivative is f ′(x) = ex/b

b ln(x)
− ex/b

x ln2(x)
. For x > 1,

we have the only root x = eW (b), where W is the Lambert W function. Therefore,
Equation (1) with γ = eW (b) gives us the minimum value for (1 + κ) and equals

a
eeW (b)/b

W (b)
. (2)

Now, we aim at finding some bounds on 1 +κ. We analyze Equation (2) for two cases
of b.

For b ≥ e, using the inequality

ln b− ln ln b +
ln ln b

2 ln b
≤W (b) ≤ ln b− ln ln b +

e

e− 1

ln ln b

ln b
,

from Hoorfar and Hassani (2008), we get

a
eeW (b)/b

W (b)
≤ a

exp
(

b−1eln(b)e− ln ln be
e

e−1
ln ln b

ln b

)

ln(b)− ln ln(b)

= a
exp

(

e− ln ln be
e

e−1
ln ln b

ln b

)

ln(b)− ln ln(b)

= a
exp

(

(ln b)−1+ e
(e−1) ln b

)

ln(b)− ln ln(b)
.
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For b = ω(1), the last expression equals a(1+o(1))
ln b−ln ln b

= (1 + o(1)) a
ln b

since

(ln b)−1+ e
(e−1) ln b =

e
e ln ln b

(e−1) ln b

ln b
≤

1

ln b
= o(1).

Regarding the case b < e, using the definition W (x)eW (x) = x, we have eW (x) = x
W (x)

.

By applying these inequalities on Equation (2), we obtain

a
eeW (b)/b

W (b)
= a

e( b
bW (b) )

W (b)
= a

e1/W (b)

W (b)
.

From the definition again, we have W (b)eW (b) = b. Since for x ≥ 0, we have ex ≥ 1, we
can conclude W (b) ≤ b, resulting in W (b) < e. Thus the last expression can be bounded
from below by

a
e1/e

e
= e(1/e)−1a.

Finally, we give the proofs of the two main theorems in this paper.

Proof of Theorem 3. Using Theorem 9, we have

1 + κ =
a exp

(

γ Tbase

ℓ−1

)

ln γ
.

By setting a = ln(4(ℓ−1)/δ) and using the upper bound on (1+κ) obtained in Lemma 10
for ℓ = ω(Tbase) = ω(mn ln(m/δ)), we get

1 + κ ≤ (1 + o(1))
ln(4(ℓ− 1)/δ)

ln(ℓ− 1)− ln(4.21mn ln(2m2/δ))

= (1 + o(1)) · (1 + o(1))
ln((ℓ− 1)/δ)

ln(ℓ)− ln(mn ln(m/δ))

≤ (1 + o(1))
ln(ℓ/δ)

ln(ℓ)− ln(mn ln(m/δ))
.

In Theorem 3, we only consider the case ℓ = ω(Tbase) since the other cases for ℓ cannot
lead to constant approximation ratios and therefore are not interesting to study. More
precisely, let us assume ℓ = ω(1). In the case that ℓ < eTbase +1, we have the lower bound
Ω(ln(4(ℓ−1)/δ)) = ω(1) on 1+κ from Lemma 10. Regarding the case that ℓ ≥ eTbase +1
and ℓ = O(Tbase), it can be proved that 1 + κ = Ω(a) = ω(1), since ℓ/Tbase = O(1)
makes all terms constant except a in Equation (2). Then again for a ≥ ln(4(ℓ − 1)/δ)
and ℓ = ω(1), the approximation ratio is ω(1).

Now, we give the proof of Theorem 4.
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Proof of Theorem 4. Let ℓ = (mn ln(m/δ))1+1/ε. Via Theorem 3, we have

1 + κ ≤ (1 + o(1))
ln(ℓ/δ)

ln
(

ℓ
mn ln(m/δ)

)

= (1 + o(1))
(1 + 1/ε) ln(mn ln(m/δ)) + ln(1/δ)

(1/ε) ln(mn ln(m/δ))

= (1 + o(1))

(

1 + 1/ε

1/ε
+

ln(1/δ)

(1/ε) ln(mn ln(m/δ))

)

≤ (1 + o(1))

(

1 +
ln(1/δ)

ln(mn ln(m/δ))

)

(1 + ε).

For δ−1 = o(mn ln n), the last expression can be bounded from above by (1 +
o(1))(1 + ε).

A more straightforward result of Theorem 4 is stated in Corollary 5. In this corollary,
we are aiming at expressing an asymptotic time for the algorithm to find the approxima-
tion, and we assume that ε is constant.

Proof of Corollary 5. Using Theorem 4, we will first prove the result for an approximation
ratio of (1 + o(1))(1 + ε′) for some constant ε′ > 0 and then bound this by a ratio of at
most 1 + ε such that (1 + o(1))(1 + ε′) ≤ 1 + ε for n large enough.

Note that ℓ = (mn ln(m/δ))1+1/ε′

and δ = ω(1/(mn ln n)) and invoke Theorem 4.
The asymptotic bound on T ∗ is obtained in the following way: we note that ln(n/δ) =
O(ln n) since 1/δ = nO(1) by assumption and m ≤ n2. Since ε′ > 0 is constant, we
have ln(ℓ) = O((1 + 1/ε′) ln(mn ln(m/δ))) = O((1 + 1/ε′) ln n))) = O(ln n). Moreover,
ℓ = O((mn ln(n/δ))1+ε′

) = O((mn ln(n))1+ε′

). Putting this together, we have

T ∗ = O((mn ln(n))1+1/ε′

(ln ln n + ln(T0/wmin))).

We have that 1/ε′ = 1/ε + o(1) since ε and ε′ are constants. Hence, we obtain the
statement of the corollary.

5 (1 + ε)-separated weights

In this section, we revisit the case that the weights w1, . . . , wm are (1 + ε)-separated, i. e.,
there is a constant ε > 0 such that wj ≥ (1 + ε)wi if wj > wi for all i, j ∈ {1, . . . , n}.
As mentioned in the introduction in Theorem 1, Wegener proves that SA with high
probability finds an MST for any instance with (1 + ε)-separated weights if wmax ≤ 2m.
More precisely, the proof of his theorem considers a time span of O(m8+8/ε) steps and
shows that SA constructs an MST within this time span with probability 1− O(1/m).

In the following, we improve this result in two ways. As acknowledged by Wegener
himself, he did not optimize the parameters in the final bound on the runtime. Therefore,
we can give an improved time bound of O((mn ln(n))1+1/ε+o(1)(ln ln n+ln(T0/wmin))), see
Theorem 11 for the precise, more general result. Moreover, we replace the assumption
on the largest edge weight by the parameter wmax. Essentially, we have done all work
necessary to show the following theorem already in the previous section, where we proved
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an approximation result. Now, the (1 + ε)-separation implies that indeed an optimal
solution is found with high probability.

Theorem 11. Let δ = ω(1/(mn ln(m))) and δ < 1, ε > 0 be a constant. Consider a run
of SA with multiplicative cooling schedule with β = 1−1/ℓ for ℓ = (mn ln(m/δ))1+1/ε+o(1)

and T0 ≥ wmax on an instance of the MST problem with (1 + ε)-separated weights. With

probability at least 1− δ, at all times t ≥ T ∗ := (ℓ/2) ln
(

ln(4(ℓ−1)/δ)T0

wmin

)

the current solution
is optimal. Moreover,

T ∗ = O((mn ln(n))1+1/ε+o(1)(ln ln n + ln(T0/wmin))).

Proof. We first prove the result for (1 + o(1))(1 + ε′)-separated weights for some con-
stant ε′ > 0. Then we prove the result for (1 + ε)-separated weights such that
(1 + o(1))(1 + ε′) ≤ (1 + ε) for n large enough.

Using Lemma 8, with probability 1−δ, we have wT ∗(k) ≤ wT ′(k) < (1+κ)wT ∗(k) for
each k ∈ [1..n−1]. The (1+κ)-separated graphs do not have edge weight between wT ∗(k)
and (1 + κ)wT ∗(k) except wT ∗(k). Therefore, the algorithm finds an optimal solution.

We need to bound 1 + κ using the assumptions in the statement. By setting a =
ln(4(ℓ − 1)/δ) and using Lemma 10 for ℓ = (mn ln(m/δ))1+1/ε′

, we bound 1 + κ from
above by (1 + o(1))(1 + ε′) similarly to the proof of Theorem 4. Since ε and ε′ are
constants and we have 1/ε′ = 1/ε + o(1), we obtain the claim for (1 + ε)-separated
weights.

Regarding T ∗, since ε > 0 is constant, we have ln(ℓ) = O((1 + 1/ε +
o(1)) ln(mn ln(m/δ))) = O((1 + 1/ε + o(1)) ln n))) = O(ln n). Moreover, ℓ =
O((mn ln(n/δ))1+ε+o(1)) = O((mn ln(n))1+ε+o(1)). Putting this together, we have

T ∗ = O((mn ln(n))1+1/ε+o(1)(ln ln n + ln(T0/wmin))).

6 Conclusions

We have shown that simulated annealing is a polynomial-time approximation scheme for
the minimum spanning tree problem, thereby proving a conjecture by Wegener (Wegener,
2005). Our analyses use state-of-the-art methods and have led to improved results in the
case of (1 + ǫ)-separated weights, where simulated annealing yields an optimal solution
with high probability. Our main result is one of the rare examples where simple random-
ized search heuristics, with a straightforward representation and objective function, serve
as polynomial-time approximation scheme.

Since the runtime analysis of simulated annealing is still underrepresented in the the-
ory of randomized search heuristics, our understanding of its working principles is still
limited. In particular, we do not have a clear characterization of the fitness landscapes in
which its non-elitism, along with a cooling schedule, is more efficient than global search.
The study of the Metropolis Algorithm for the DLB problem in Wang, Zheng and Doerr
(2021) and our analysis on the minimum spanning tree problem might indicate that land-
scapes with many, but easy to leave local optima are beneficial; however, more research
is needed to support this conjecture.
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