
HAL Id: hal-03797608
https://hal.science/hal-03797608v1

Submitted on 4 Oct 2022 (v1), last revised 30 Mar 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stagnation Detection meets Fast Mutation
Benjamin Doerr, Amirhossein Rajabi

To cite this version:
Benjamin Doerr, Amirhossein Rajabi. Stagnation Detection meets Fast Mutation. Evolutionary
Computation in Combinatorial Optimization (EvoCOP 2022), Apr 2022, Madrid, Spain. �10.1007/978-
3-031-04148-8_13�. �hal-03797608v1�

https://hal.science/hal-03797608v1
https://hal.archives-ouvertes.fr

Stagnation Detection meets Fast Mutation

Benjamin Doerr∗ Amirhossein Rajabi†

January 31, 2022

Abstract

Two mechanisms have recently been proposed that can signif-
icantly speed up finding distant improving solutions via mutation,
namely using a random mutation rate drawn from a heavy-tailed dis-
tribution (“fast mutation”, Doerr et al. (2017)) and increasing the
mutation strength based on stagnation detection (Rajabi and Witt
(2020)). Whereas the latter can obtain the asymptotically best prob-
ability of finding a single desired solution in a given distance, the for-
mer is more robust and performs much better when many improving
solutions in some distance exist.

In this work, we propose a mutation strategy that combines ideas
of both mechanisms. We show that it can also obtain the best possible
probability of finding a single distant solution. However, when sev-
eral improving solutions exist, it can outperform both the stagnation-
detection approach and fast mutation. The new operator is more than
an interleaving of the two previous mechanisms and it also outperforms
any such interleaving.

1 Introduction

Leaving local optima is a challenge for evolutionary algorithms. Mutation-
based approaches are challenged by the fact that the typical mutation rate
of p = 1/n rarely leads to offspring in a larger distance from the parent.
When using larger mutation rates, the choice of the mutation rate is critical
and small constant-factor deviations from the optimal rate can lead to huge
performance losses [DLMN17, Cor. 4.2].

∗Laboratoire d’Informatique (LIX), CNRS, École Polytechnique, Institut Polytechnique
de Paris, Palaiseau, France

†Technical University of Denmark, Kgs. Lyngby, Denmark

1

ar
X

iv
:2

20
1.

12
15

8v
1

 [
cs

.N
E

]
 2

8
Ja

n
20

22

Two ways to overcome this problem were proposed recently, namely
the use of a random mutation rate sampled from a power-law distribu-
tion [DLMN17] and the successive increase of the mutation rate when a
stagnation-detection mechanism indicates that the current rate is unlikely
to generate solutions not seen yet [RW20]. An improved version of this
stagnation-detection approach [RW21b], the so-called SD-RLS algorithm
based on k-bit mutation instead of standard bit mutation, can find a sin-
gle improving solution in distance m in expected time (1+o(1))

(
n
m

)
(without

knowing that the distance to the desired solution is m). Apart from lower
order terms, this is the same runtime that can be obtained via a repeated
use of the best unbiased mutation operator that is aware of m (which is,
naturally, flipping m random bits). It is faster than the fast (1 + 1) EA by
a factor of Ω(m).

While the SD-RLS algorithm thus is very efficient in finding a single de-
sired solution (and thus has very good runtimes on the classic jump functions
benchmark), this algorithm has a poor performance when there are several
improving solutions in distance m as now the stagnation detection approach
leads to too much time spent on too small mutation strength. Taking the
generalized jump function [BBD21] having a valley of low fitness of width δ,
δ ≥ 2 a constant, in distance n/4 from the optimum as extreme example,
we easily see that the SD-RLS takes an expected time of Ω(nδ−1) to traverse
the fitness valley, whereas the (1 + 1) EA both with the classic mutation
operator and with fast mutation does so in expected constant time.

Our results: Based on this insight that fast mutation and stagnation de-
tection have complementary strengths, we design a mutation-based approach
that takes inspiration from both approaches. We follow, in principle, the ba-
sic version of the improved stagnation-detection approach of [RW21b], that
is, we start with mutation strength r = 1 and increase r gradually. More
precisely, when strength r has been used for a certain number `r of itera-
tions without that an improvement was found, we increase r by one since
we assume that no improvement in distance r exists (we omit some technical
details in this first presentation of our approach, e.g., that we do not increase
r beyond n/2.1, and refer the reader to Algorithm 1 for the full details). Dif-
ferent from [RW21b], when the current strength is r, we do not always flip
r random bits as mutation operator, but we choose a random number Xr

of bits to flip. This number is equal to r with probability 1 − γ, where γ
is an algorithm parameter that is usually small (a small constant or o(1)).
With probability γ, however, Xr deviates from r by an amount following a
power-law distribution with exponent β. The precise definition of this case
(see again Algorithm 1) is not too important, so for this first exposition we
can assume that we sample D from a power-law distribution (with exponent

2

β) on the positive integers and then, each with probability 1/2, flip r + D
or r −D random bits (where we do nothing if this number is not between 1
and n).

Since with probability 1 − γ, we essentially follow the basic approach
of [RW21b], it is not surprising that we find a single closest improving solution
in distance m in an expected time of 1

1−γ (1 + o(1))
(
n
m

)
, again without that

the algorithm needs to know m (Theorem 5). If γ = o(1), this is again
the optimal time of (1 + o(1))

(
n
m

)
discussed above. We note, however, that

our algorithm is simpler than the solution presented in [RW21b]. The basic
SD-RLS algorithm proposed in [RW21b] obtains a runtime of (1 + o(1))

(
n
m

)
only with high probability and otherwise fails. To turn this algorithm into
one that never fails and has an expected runtime of (1 + o(1))

(
n
m

)
, a robust

version of the SD-RLS was developed in [RW21b] as well. This version repeats
previous phases as follows. When the `r uses of strength r have not led to an
improvement, before increasing the rate to r + 1, first another `i iterations
are performed with strength i, for i = r − 1, . . . , 1. In our approach, such
an additional effort is not necessary since the fast mutations automatically
render the algorithm robust.

The use of a heavy-tailed mutation rate also helps in situations where
the stagnation-detection mechanism takes too long to use larger mutation
strengths. Since in phases r = 1, . . . , 2m the probability to flip m bits is at
least γ/2 times the probability of this event in a run of the fast (1 + 1) EA,
it is not surprising that our algorithm finds an improvement in distance m is
at most 2/γ times the time of the fast (1 + 1) EA, which as discussed above
can be significantly faster than the SD-RLS. Such a result could also have
been obtained from a simple interleaving of SD-RLS and fast (1 + 1) EA
iterations. Since our heavy-tailed choices of the mutation strength, however,
take into account the current strength r, we often obtain better runtimes,
often better than both the SD-RLS and the fast (1 + 1) EA. Since the precise
statement of these results is technical, we defer the details to Section 4. As
a simple example showing the outperformance of our algorithm, we regard
the generalized jump function Jumpm,δ:=m−∆ for a constant value of ∆ ≥ 2
and m = ω(1). This jump function is similar to the classic jump function
Jumpm, but the valley of low fitness consists not of all search points in
positive distance at most m − 1 from the optimum, but only of those in
distance ∆ + 1, . . . ,m − 1. Consequently, from the local optimum there is
not a single improving solution, but Θ(n∆). Note that this is still relatively
few compared to the fitness valley of size essentially

(
n
m

)
. On this generalized

jump function, the expected runtimes of SD-RLS is O
((

n
δ−1

)
ln(R)

)
, the one

of the fast (1 + 1) EA is O
(
δβ−0.5(en/δ)δn−∆

)
, and the one of our algorithm

3

is at most O
((
n
δ

)
n−∆γ−1

)
(Corollary 11). Since it is also clear that any

interleaving of SD-RLS and fast (1 + 1) EA iterations cannot give a better
runtime than the one of the two pure algorithms, this result shows that our
algorithm can beat SD-RLS and fast EA (and any simple mix of them) when
there are several improving solutions in a given distance.

Structure of this paper: After reviewing the most relevant previous
works in Section 2, we introduce our new algorithm in Section 3. In Section 4,
we analyze via mathematical means how our algorithm finds an improvement
in distance m both when this is typically achieved in phase m (e.g., when
there is only one improving solution in distance m) and when this is achieved
earlier via the heavy-tailed rates. We use these results in Section 5 to prove
several runtime results, among others, for generalized jump functions. We
present some experimental results in Section 6. In Section 7, we discuss rec-
ommendations on how to set the parameters of our algorithm. We conclude
the paper with a short discussion of our results and a pointer to possible
future work in Section 8.

2 Previous Works

This work aims at combining the advantages of stagnation detection and
heavy-tailed mutation, so clearly these topics contain the most relevant pre-
vious works. Both integrate into the wider questions of how to optimally
set the mutation strength of evolutionary algorithms (for this we refer to
the recent survey [DD20]) and how evolutionary algorithms can leave local
optima (here we refer to [Doe20, Section 2.1] for a discussion of non-elitist
approaches and to the introduction of [DFK+18] for a discussion of crossover-
based approaches).

For elitist mutation-based approaches, it is clear that when the popu-
lation has converged to a local optimum the only way to leave this is by
mutating a solution from the local optimum into an at least as good solu-
tion outside this local optimum. It was observed in [DLMN17] (the earlier
work [Prü04] contains similar findings for the special case that the nearest
improving solution is in Hamming distance two or three) that standard-bit
mutation with mutation rate p = 1

n
, which is the most recommended way

of doing mutation, is not perfectly suitable to perform larger jumps in the
search space. In fact, when the nearest improving solution is in Hamming
distance m, then a mutation rate of p = m

n
is much better, leading to a

speed-up by a factor of order mΘ(m).
Since [DLMN17] also observed that missing the optimal rate by a small

constant factor leads to performance losses exponential in m, it was pro-

4

posed to use a mutation rate that is drawn from a (heavy-tailed) power-law
distribution. Without the need to know m, this approach led to runtimes
that exceed the ones obtained from the optimal rate p = m

n
by only a small

factor polynomial in m. This price for universality can be made as low as
Θ(m0.5+ε), but not smaller than Θ(

√
m). Various variants of heavy-tailed mu-

tation operators have been proposed subsequently, also heavy-tailed choices
of other parameters have been used with great success [FQW18,FGQW18b,
FGQW18a,WQT18,ABD20a,ABD20b,AD20,ABD21,DZ21,COY21].

A different way to cope with local optima was proposed in [RW20]. When
an algorithm is stuck on a local optimum for a sufficiently long time, then
with high probability it has explored all search points in a certain radius.
Consequently, it is safe to increase the mutation rate, which increases the
probability to generate more distant solutions. This is the main idea of a
series of works on stagnation detection [RW20, RW21a, RW21b]. As shown
in [RW20], this approach can save the polynomial price for universality of the
heavy-tailed approach and thus obtain runtimes of the same asymptotic order
as when using the optimal (problem-specific) mutation rate. By replacing
standard-bit mutation with m-bit flips, the time to find a particular solution
in Hamming distance m was further reduced to (1 + o(1))

(
n
m

)
, the same time

(apart from lower order terms) one would obtain with the best unbiased
mutation operator (which consists of flipping m random bits).

To be precise, two approaches are discussed in [RW21b]. The simple one,
obtained from just replacing standard-bit mutation in [RW20] by r-bit muta-
tion, obtains the desired runtimes with high probability, but fails completely
with some very small probability. For this reason, also a robust version of the
algorithm was proposed in [RW21b], which by cyclically reverting to smaller
mutation strengths overcomes the problem that, with small probability, a
given solution in distance m is not found in the phase which uses m-bit flips.
In [RW21a], a variation of SD-RLS was proposed that keeps the success-
ful strength after leaving local optima with the help of the radius memory
mechanism, which is beneficial on highly multimodal fitness landscapes. The
idea of stagnation detection has also be successfully used in multi-objective
evolutionary computation [DZ21].

3 Algorithm SD-FEAβ,γ,R

We propose the algorithm SD-FEAβ,γ,R for the maximization of pseudo-
Boolean functions f : {0, 1}n → R defined in Algorithm 1. The function
pow(β, u) makes a sample from a power-law distribution with exponent β on
[1..u] as defined in 1 below.

5

Algorithm 1: SD-FEAβ,γ,R for the maximization of f : {0, 1}n → R
1 Select x uniformly at random from {0, 1}n and set r1 ← 1;
2 u← 0;
3 for t← 1, 2, . . . do

4

Set s = rt with probability 1−γ or
s = rt + pow(β, n− rt) with probability γ/2 or
s = rt − pow(β,max{1, rt−1}) with probability γ/2;

5 Create y by flipping s bits in a copy of x uniformly;
6 u← u+ 1;
7 if f(y) > f(x) then
8 x← y;
9 rt+1 ← 1;

10 u← 0;

11 else if f(y) = f(x) and rt = 1 then
12 x← y;

13 if u ≥ `rt then
14 rt+1 ← min{rt + 1, b n

2.1
c};

15 u← 0;

16 else
17 rt+1 ← rt;

The general idea of this algorithm is that it increases the mutation
strength r to r + 1 when the improvement is not at the Hamming distance
smaller than r with at least a constant probability (with probability 1/R
roughly) using the stagnation detection mechanism. Meanwhile, where the
strength is r, called in phase r, the algorithm looks at larger or smaller Ham-
ming distances (with probability γ) besides the current strength r. The distri-
bution over the search distance to the current strength r follows a power-law
distribution. An integer random variable X follows a power-law distribution
with parameters β and u if

Pr[X = i] =

{
Cβ,ui

−β if 1 ≤ i ≤ u,

0 otherwise,
(1)

where Cβ,u := (
∑u

j=1 j
−β)−1 is the normalization coefficient. The func-

tion pow(β, u) used in Algorithm 1 returns an integer from 1 to u sampled
from the power-law distribution with parameters β and u.

The algorithm starts with a search point selected uniformly at random
from the search space {0, 1}n with the initial strength r = 1. There is

6

a counter u for counting the number of unsuccessful steps with finding a
strict improvement with the current strength. When the counter exceeds
the threshold `r, the strength r increases by one if not beyond n/2.1, and
when the algorithm makes progress, the counter and strength are reset to
their initial values. The mutation, which we call s-flip in the following,
flips exactly s bits randomly chosen as follows. With probability 1 − γ, the
algorithm flips exactly r bits in phase r. However, with probability γ, the
algorithm flips less or more bits than r with the same chance with the help of
power law distribution with parameter β. The distribution over s is analyzed
in Lemma 1 below.

Regarding the parameters, in this paper, we use

`r =

(
n

r

)
/(1− γ) ln(R). (2)

This threshold almost fits for the pseudo-Boolean fitness functions. For other
search spaces, the threshold should be `r = |Sr|/(1− γ) ln(R), where |Sr| is
the number of search points at the distance r from the current search point.
The threshold defined in equation (2) has a parameter R controlling the
probability of failing to find an improvement at the “right” strength. To prove
the theoretical results, R should be selected at least e1/γ. The parameter γ
denotes the probability of having deviation for the number of bits flipped
from the current strength r. In Section 7, we give some recommendations for
choosing these parameters.

The runtime or the optimization time of a heuristic algorithm on a fitness
function f is the first point of time t where a search point of maximal fitness
has been selected.

4 Analysis of the Algorithm SD-FEAβ,γ,R

In this paper, we call the fitness level gap of a point x ∈ {0, 1}n the maximum
of all individual gap sizes in the fitness level of x, where the individual gap is
the minimum Hamming distance to points with strictly larger fitness function
value, i. e.,

IndividualGap(x) := min{H(x, y) : f(y) > f(x), y ∈ {0, 1}n},
FitnessLevelGap(x) := max

{y|f(y)=f(x)}
IndividualGap(y).

If the algorithm creates a point at the Hamming distance FitnessLevelGap(x)
from the current search point x, with a positive probability, an improvement
can be found. Note that FitnessLevelGap(x) = 1 is allowed, so the definition

7

also covers search points that are not local optima. As long as a strict
improvement is not made, the FitnessLevelGap remains the same, although
the current search point might be replaced with another search point in the
fitness level in phase 1.

Let us define by the epoch of i the sequence of iterations with the search
points in fitness level i. We define by phase r all points of time where radius r
is used in the algorithm for an epoch. Let Er be the event of not finding the
optimum within phase r and for j ≥ i and Ej

i denote the event of not finding
a strict improvement for the strengths i to j. Formally, Ej

i = Ei ∩ · · · ∩ Ej.
Before computing the probabilities of these events, we need to know the

distribution of the offspring in an iteration. The following lemma will be used
throughout this paper, showing the distribution of the number of flipping
bits (i. e., the variable s in Algorithm 1) in each iteration. In phase r, with
a relatively large probability 1− γ, the algorithm flips r bits. However, with
probability γ, it uses power-law distributions to flip less or more than r bits.

Lemma 1. Let r be the current strength in a run of the algorithm
SD-FEAβ,γ,R. Let X be the integer random variable corresponding to the
variable s in Algorithm 1, that is, the number of bits that are flipped. Then

Pr[X = α] =

γ/2 · Cβ,r−1 · (r − α)−β 1 ≤ α < r,

1− γ α = r,

γ/2 · Cβ,n−r · (α− r)−β α > r.

Proof. It is immediately visible from Algorithm 1 that Pr[X = r] = 1− γ.
For 1 ≤ α < r, we have

Pr[X = α] = Pr[X < r] · Pr[X = α | X < r]

= Pr[X < r] · Pr[pow(β, r − 1) = r − α]

= γ/2 · Cβ,r−1(r − α)−β.

For α > r, we similarly obtain

Pr[X = α] = Pr[X > r] · Pr[X = α | X > r]

= Pr[X > r] · Pr[pow(β, n− r) = α− r]
= γ/2 · Cβ,n−r(α− r)−β.

The following lemma shows that the probability of reaching a phase r is
greater than the fitness gap size. In the statement of the lemma, recall that
the parameter R controls the length of the phase.

8

Lemma 2. Let x ∈ {0, 1}n be the current search point of SD-FEAβ,γ,R

with β > 1 on a pseudo-Boolean fitness function f : {0, 1}n → R, and
m = FitnessLevelGap(x). Then for m < r ≤ b n

2.1
c, we have

Pr[Er−1
1] ≤ R−1−γ/2·(ln(1.1)

β)
β
Cβ,n(r−m−1),

where Er−1
1 denotes the probability of not finding an improvement in phases 1

to r − 1.

Proof. Let pr be a lower bound on the probability of making progress in
phase r in one iteration. Then we have

Pr[Er−1
1] ≤ Pr[Em ∩ · · · ∩ Er−1] =

r−1∏
i=m

Pr[Ei] ≤
r−1∏
i=m

(1− pi)`i

≤ exp

(
−

r−1∑
i=m

pi`i

)
, (3)

where we use the inequality 1 + x ≤ ex for all x ∈ R.
In the following paragraphs, we aim at bounding pi`i from below.
For i = m, via Lemma 1 and since `r =

(
n
r

)
/(1− γ) ln(R), we have

pm`m ≥ (1− γ)

(
n

m

)−1

·
(
n

m

)
/(1− γ) ln(R) = ln(R).

For m < i ≤ n
2.1

, again using Lemma 1, we have

pi ≥ γ/2Cβ,i−1(i−m)−β
(
n

m

)−1

.

Then we bound pi`i from below by

pi`i ≥ γ/2 · Cβ,i−1

(
n
i

)
/(1− γ) ln(R)

(i−m)β
(
n
m

) ≥ γ/2 · Cβ,n
(
n
i

)
ln(R)

(i−m)β
(
n
m

) ,
where we have Cβ,n ≤ Cβ,i−1. The last expression is bounded from below by

γ/2 · Cβ,n
ln(R)

(i−m)β
·
(
n
i

)(
n
i−1

) · · · · · (n
m+1

)(
n
m

) ≥ γ/2 · Cβ,n
(1.1)i−m ln(R)

(i−m)β
,

where we have
(
n
k

)
/
(
n
k−1

)
= n−k+1

k
≥ 1.1 for k ≤ b n

2.1
c. Also, we claim that

1.1k/kβ ≥ (ln(1.1)/β)β for k ∈ N≥1. To prove, let f(x) = 1.1x/xβ. For x > 0,

9

its derivative, i. e., f ′(x), has only one root x̂ = β
ln 1.1

. Before and after this
point the function is decreasing and increasing, respectively, so f(x̂) is the
minimum value of the function for x > 0. We have

f(x̂) =
1.1β/ ln(1.1)

(β/ ln(1.1))β
≥
(

ln(1.1)

β

)β
.

Thus, the last expression is bounded from below by γ/2 ·
Cβ,n(ln(1.1)/β)β ln(R).

Finally, from Equation (3), we obtain

Pr[Er−1
1] ≤ exp

(
−

r−1∑
i=m

pi`i

)
≤ R−1−γ/2·(ln(1.1)

β)
β
Cβ,n(r−m−1).

The next lemma is used to estimate the number of iterations in phases
larger than the fitness level gap. With a good choice of the parameters γ
and R, the following result can be improved to o(1/sm), that is to say the
number of steps at larger strengths can be captured by the number of steps
at the phase m.

Lemma 3. Let x ∈ {0, 1}n be the current search point of SD-FEAβ,γ,R with
β > 1 and R ≥ e1/γ on a pseudo-Boolean function f : {0, 1}n → R. Assume
m = FitnessLevelGap(x) and m ≤ bn/2.1c. Let sm be a lower bound on the
probability that an improvement is found from search points in the fitness level
of x conditional on flipping m bits. Then, the expected number of iterations
spent in larger strengths than m, i. e., E[I>m], is at most

O

(
R−1γ−1 1

sm

)
.

Proof. Let Ir be the number of iterations spent in phase r. Then

E[I>m] =

b n
2.1
c−1∑

r=m+1

E[Ir] + E[Ib n
2.1
c].

With probability Pr[Er−1
1], the algorithm does not make progress with

strengths less than r. In phase r, the probability of finding an improvement
is Cβ,r−1γ/2(r − m)−β · sm in each iteration using Lemma 1. Thus, for all
strengths r > m, using the law of total probability, we have

E[Ir] = Pr
[
Er−1

1

]
E[Ir | Er−1

1] + Pr
[
Er−1

1

]
E
[
Ir | Er−1

1

]
≤ Pr[Er−1

1] · (Cβ,r−1)−12/γ · 1

sm
(r −m)β + 0.

10

Using Lemma 2 and since R ≥ e1/γ, we can bound

E[Ir] ≤ R−1−γ/2·(ln(1.1)
β)

β
Cβ,n(r−m−1)2/γ · 1

sm
(r −m)β

= O

(
R−1γ−1 1

sm

(r −m)β

e1/2·(ln(1.1)
β)

β
Cβ,n(r−m−1)

)
,

where we have (Cβ,r−1)−1 = O(1) for β > 1. This results in

b n
2.1
c−1∑

r=m+1

E[Ir] ≤ O

R−1γ−1 1

sm

b n
2.1
c−1∑

r=m+1

(r −m)β

e1/2·(ln(1.1)
β)

β
Cβ,n(r−m)

≤ O

(
R−1γ−1 1

sm

)
,

where we use

b n
2.1
c−1∑

r=m+1

(r −m)β

e1/2·(ln(1.1)
β)

β
Cβ,n(r−m)

=

b n
2.1
c−1∑

r=m+1

(r −m)β

eΘ(r−m)
= O(1).

Similarly, we have

E[Ib n
2.1
c] ≤ Pr[E

b n
2.1
c−1

1] · γ/2 · 1

sm
(b n

2.1
c −m)β ≤ O

(
R−1γ−1 1

sm

)
.

Altogether, we obtain

E[I>m] =

b n
2.1
c−1∑

r=m+1

E[Ir] + E[Ib n
2.1
c] = O

(
R−1γ−1 1

sm

)
,

as suggested.

In the following lemma, which has been taken from [RW21b], we have a
combinatorial inequality that will be used in the analyses of the algorithms
to count the number of iterations spent in smaller strengths than the fitness
level gap.

Lemma 4 (Lemma 1 in [RW21b]). For any integer m ≤ n/2, we have

m∑
i=1

(
n

i

)
≤ n− (m− 1)

n− (2m− 1)

(
n

m

)
.

11

We now present the first main result. In the following theorem, given
m ≤ n/2.1, we provide a rigorous upper bound on the escaping time from a
local optimum. We also prove a general bound on the expected time to leave
it for an arbitrary gap size.

Theorem 5. Let x ∈ {0, 1}n be the current search point. Define T as the
time SD-FEAβ,γ,R with β > 1 and R ≥ e1/γ takes to create a strict im-
provement on a pseudo-Boolean function f : {0, 1}n → R. Assume m =
FitnessLevelGap(x). If m ≤ n/2.1, we have

E[T] ≤
(
n

m

)(
1

1− γ
+O

(
m ln(R)

(1− γ)n
+R−1γ−1

))
.

Moreover, for all m ≤ n, we have

E[T] = O

(
2n ln(R) + 1/γ

(
n

m

)
|b n

2.1
c −m|β

)
.

Proof. Let Ir be the number of iterations spent in phase r. Using linearity
of expectation, we have

E[T] =

b n
2.1
c−1∑

r=1

E[Ir] + E[Ib n
2.1
c].

Regarding the first part, we have m ≤ n/2.1. If the phase is less than m,
i. e., r < m, we have that E[Ir] is at most the threshold value at phase r,
i. e., `r =

(
n
r

)
/(1− γ) ln(R). Thus, by using Lemma 4, we compute

m−1∑
r=1

E[Ir] ≤
m−1∑
r=1

(
n

r

)
ln(R)

1− γ

≤
(

n

m− 1

)
ln(R)

1− γ
· n− (m− 2)

n− (2m− 3)

=

(
n

m

)
ln(R)

1− γ
· m

n−m+ 1
· n− (m− 2)

n− (2m− 3)
.

Since m ≤ n
2.1

, the last expression is bounded from above by

m−1∑
r=1

E[Ir] = O

((
n

m

)
m ln(R)

(1− γ)n

)
.

When the strength is m, with probability 1 − γ, the algorithm flips ex-

actly m bits (Lemma 1). When m bits are flipped, with probability
(
n
m

)−1
,

12

an improvement is found. Regarding a truncated geometric distribution with

success probability (1−γ)
(
n
m

)−1
, within

(
n
m

)
/(1−γ) iterations in expectation,

we see that the algorithm finds a better point or the phase is terminated.
Thus,

E[Im] ≤
(
n
m

)
(1− γ)

.

For r > m, using Lemma 3 with sm ≥
(
n
m

)−1
, we obtain

E[I>m] =

b n
2.1
c−1∑

r=m+1

E[Ir] + E[Ib n
2.1
c] = O

(
R−1γ−1

(
n

m

))
.

Altogether, we have

E[T] =

b n
2.1
c−1∑

r=1

E[Ir] + E[Ib n
2.1
c]

=
m−1∑
r=1

E[Ir] + E[Im] +

b n
2.1
c−1∑

r=m+1

E[Ir] + E[Ib n
2.1
c]

≤
(
n

m

)(
1

1− γ
+O

(
m ln(R)

(1− γ)n
+R−1γ−1

))
.

Regarding the second part, since for r ≤ b n
2.1
c − 1, we have that E[Ir] is

at most the threshold value, we have

E[T] ≤
b n

2.1
c−1∑

r=1

`r + E[Ib n
2.1
c] =

b n
2.1
c−1∑

r=1

(
n

r

)
/(1− γ) ln(R) + E[Ib n

2.1
c].

In phase b n
2.1
c, the algorithm no longer increases the strength until finding

an improvement. Using Lemma 1, the improvement is found with probability
at least

Ω

(
γ/2 · |b n

2.1
c −m|−β ·

(
n

m

)−1
)

in each iteration. Using the geometric distribution with this success proba-
bility, we obtain

E[T] ≤
b n

2.1
c−1∑

r=1

(
n

r

)
/(1− γ) ln(R) +O

(
1/γ

(
n

m

)
|b n

2.1
c −m|β

)
= O

(
2n

ln(R)

1− γ
+ 1/γ

(
n

m

)
|b n

2.1
c −m|β

)
,

13

where we have
∑n

i=1

(
n
i

)
= 2n. The second part is proved as desired.

Theorem 5 provides a precise upper bound on the escaping time from
local optima where there are a few ways to leave them. However, it is not
practical when there are significantly more ways to jump over the valley
from the local optima. The following theorem considers such scenarios. The
constant r′ defined in the theorem basically represents the first phase that
the probability of finding one of the improvements is at least constant, and
its value is an integer between 1 and δ.

Theorem 6. Let x ∈ {0, 1}n be the current search point and sm be a lower
bound on the probability that a strict improvement is found from search
points in the fitness level of x conditional on flipping m bits. Define T
as the time SD-FEAβ,γ,R with β > 1 and R ≥ e1/γ takes to create a
strict improvement on a pseudo-Boolean function f : {0, 1}n → R. Assume
m = FitnessLevelGap(x). Then for m ≤ n/2.1, we have

E[T] ≤ 1

sm
· 1

γ
(δ − r′)β ·O

(
1 +

r′ ln(R)

(1− γ)n
+R−1

)
.

where r′ = min
{
δ, arg maxr

{(
n
r

)
≤ 1

sm
1
γ
(δ − r)β

}}
.

Proof. Let Ir be the number of iterations spent in phase r. using linearity of
expectation, we have

E[T] =

b n
2.1
c−1∑

r=1

E[Ir] + E[Ib n
2.1
c].

If the strength is less than r′, i. e., r < r′, we have that E[Ir] is at most
the threshold value at phase r. Thus, we have

r′−1∑
r=1

E[Ir] ≤
r′−1∑
r=1

(
n

r

)
/(1− γ) ln(R)

≤
(

n

r′ − 1

)
ln(R)

(1− γ)

n− (r′ − 2)

n− (2r′ − 3)

=
r′

n− r′ + 1
·
(
n

r′

)
ln(R)

(1− γ)

n− (r′ − 2)

n− (2r′ − 3)
.

Since r′ ≤ m ≤ n
2.1

, the last expression is bounded from above by

r′−1∑
r=1

E[Ir] = O

((
n

r′

)
r′ ln(R)

(1− γ)n

)
.

14

Using the definition of r′ described in the theorem statement, we get

r′−1∑
r=1

E[Ir] = O

(
1

sm
· 1

γ
(δ − r′)β · r

′ ln(R)

(1− γ)n

)
.

In the phases from r′ to m−1, the probability of finding an improvement is
at least sm ·γ/2Cβ,n−r′(δ−r′)−β (Lemma 1). Using the geometric distribution
with this success probability, the success happens within

O

(
1

sm
· 1

γ
(δ − r′)β

)
iterations in expectation.

In phase m, where the strength is m, exactly m bits are flipped with
probability 1−γ (Lemma 1), and an improvement is found with probability at
least s when m bits are flipped. Regarding a truncated geometric distribution
with success probability (1 − γ)sm, within 1/sm · 1/(1 − γ) iterations in
expectation, we observe that the algorithm finds an improvement or the
phase is terminated. Thus,

E[Im] ≤ 1

sm
· 1

(1− γ)
.

For r > m, using Lemma 3 with sm, we obtain

E[I>m] = O
(
R−1γ−1s−1

m

)
.

Altogether, we have

E[T] =

b n
2.1
c−1∑

r=1

E[Ir] + E[Ib n
2.1
c]

=
r′−1∑
r=1

E[Ir] +
m−1∑
r=r′

E[Ir] + E[Im] +

b n
2.1
c−1∑

r=m+1

E[Ir] + E[Ib n
2.1
c]

≤ O

(
1

sm
· 1

γ
(δ − r′)β · r

′ ln(R)

(1− γ)n
+

1

sm
· 1

γ
(δ − r′)β +

1

sm(1− γ)
+
R−1

γsm

)
≤ 1

sm
· 1

γ
(δ − r′)β ·O

(
1 +

r′ ln(R)

(1− γ)n
+R−1

)
.

15

After establishing some tools for obtaining upper bounds on the time re-
quired to escape from local optima, we aim to demonstrate the performance
of SD-FEAβ,γ,R on the sub-problems without local optima. On unimodal
functions, the gap of all search points in the search space (except for the
global optima) is 1, so the algorithm can make progress in phase 1. The
following benchmark functions OneMax and LeadingOnes have been ex-
tensively studied in the literature as unimodal problems.

OneMax(x1, . . . , xn) := ‖x‖1 and LeadingOnes(x1, . . . , xn) :=
n∑
i=1

i∏
j=1

xj,

where ‖x‖1 is the number of one-bits in the bit string.
In the following theorem, we state how SD-FEAβ,γ,R behaves on unimodal

functions compared to RLS using an upper bound based on the fitness-level
method [Weg01].

Theorem 7. Let f : {0, 1}n → R be a unimodal function and |Im(f)| be the
number of fitness values of the underlying function f . Let fi be the i-th fitness
value of an increasing order of all fitness values in f . We consider all fitness
levels A1, . . . , A|Im(f)| such that Ai contains search points with fitness value fi.
Let si be a lower bound on the probability that RLS finds an improvement from
the search points in fitness level Ai. Denote by T the runtime of SD-FEAβ,γ,R

with β > 1 and R ≥ e1/γ on f . Then

E[T] ≤
(

1

1− γ
+O

(
R−1γ−1

)) |Im(f)|−1∑
i=1

1

si
.

Proof. We define by I(i) the number of all iterations spent to leave the fitness
level i. using linearity of expectation, we have

E[T] =

|Im(f)|−1∑
i=1

E[I(i)].

Let I
(i)
r be the number of iterations spent in phase r after a search point

for Ai was found. Then we define

I(i) =

b n
2.1
c−1∑

r=1

I(i)
r + I

(i)
b n

2.1
c.

As long as the strength is 1, the algorithm flips exactly one-bit with
probability at least 1 − γ (Lemma 1). The worst-case time to leave fitness

16

level i is at most 1/(1−γ) ·1/si using the geometric distribution with success

probability si · (1 − γ). Hence, for each fitness level i, we bound I
(i)
1 from

above by 1/(1− γ) · 1/si, and for r > 1, we bound I
(i)
r from above by using

Lemma 3 with sm = si. Hence,

E[I
(i)
>1] = O

(
R−1γ−1 1

si

)
,

Altogether, we have

E[T] =

|Im(f)|−1∑
i=1

E[I(i)]

≤
|Im(f)|−1∑

i=1

(
1

si(1− γ)
+O

(
R−1γ−1 1

si

))

≤
(

1

1− γ
+O

(
R−1γ−1

)) |Im(f)|−1∑
i=1

1

si
.

The corollary below is a result of Theorem 7 applied on the unimodal
functions OneMax with si = (n− (i− 1))/n and LeadingOnes with si =
1/n.

Corollary 8. The expected runtime of the SD-FEAβ,γ,R with β > 1, γ = o(1)
and R ≥ Ω

(
e1/γ

)
on OneMax is at most (1 + o(1))n lnn and on Leading-

Ones is at most (1 + o(1))n2.

5 Analysis on Jumpk,δ

In this section, we use the results in the previous section to prove a bound
on a generalization of Jumpδ called Jumpk,δ with two parameters k and δ,
see Figure 1 for a depiction.

This function is based on the well-known Jump benchmark [DJW02], in
which the place of the jump with size δ starts at the Hamming distance k
from the global optimum. In other words, after the jump, there is a unimodal
sub-problem of length k− δ. The classical Jump function is a special case of
Jumpk,δ with k = δ, i. e., Jumpδ = Jumpδ,δ. Formally,

Jumpk,δ(x) =

{
‖x‖1 if ‖x‖1 ∈ [0..n− k] ∪ [n− k + δ..n],

−‖x‖1 otherwise.

17

Figure 1: The function Jumpk,δ.

We refer the interested reader to see [BBD21] for more information about
Jumpk,δ, where the performance of the (1 + 1) EA, the (1+1) FEAβ, and the
robust version of SD-RLS (SD-RLSr) are carefully analyzed. Also, Rajabi
and Witt [RW21a] independently define the jump function with an offset to
analyze the recovery time for the strength in the algorithm SD-RLS with
radius memory (SD-RLSm) after leaving the local optimum. Recently, Witt
in [Wit21] analyzes the performance of some other algorithms on the func-
tion Jumpk,δ (which is so-called JumpOffset in the paper).

We want to show that the algorithm SD-FEAβ,γ,R performs relatively
efficiently on Jumpk,δ in both cases when k = δ (i. e., Jumpδ) and k > δ.
In the first case, when basically, there are not many improving solutions,
SD-FEAβ,γ,R with γ = o(1) optimizes Jumpδ as efficient as SD-RLSr thanks
to Theorem 5. The result is formally proved in Theorem 9.

Theorem 9. The expected runtime E[T] of SD-FEAβ,γ,R with β > 1, γ =
o(1) and R = Ω

(
e1/γ

)
on Jumpδ with 2 ≤ δ = o(n/ ln(R)) satisfies

E[T] ≤
(
n

δ

)
(1 + o(1)).

Proof. Before reaching a local optimum with n−m one-bits, Jumpδ is equiv-
alent to OneMax. Thus, the expected time until SD-FEAβ,γ,R reaches the
local optimum is at most O(n lnn) via Theorem 7 with si = (n− (i− 1))/n.

For a local optimum x we have FitnessLevelGap(x) = δ according to the
definition of Jump. Hence, using Theorem 5, the algorithm finds the global

18

optimum from the local optimum within the expected time at most(
n

δ

)
(1 + o(1)).

This dominates the expected time of the algorithm before the local optimum.

It is also easy to see (similarly to the analysis of Theorem 9) that for
γ = Θ(1), the expected runtime of SD-FEAβ,γ,R is(

n

δ

)(
1

1− γ
+ o(1)

)
,

which is still asymptotically efficient.
We now present an upper bound on the optimization time of the proposed

algorithm on Jumpk,δ.

Theorem 10. The expected runtime E[T] of SD-FEAβ,γ,R with β > 1, R =
Ω(eγ) on Jumpk,δ with δ = o(n/ ln(R)) satisfies

E[T] = O

((
n

δ

)(
k

δ

)−1

(δ − r′)β · γ−1 + n lnn

)
,

where r′ = min
{
δ, arg maxr

{(
n
r

)
≤
(
n
δ

)(
k
δ

)−1 1
γ
(δ − r)β

}}
.

Proof. Until reaching the local optimum with n − k one-bits, Jumpk,δ is
equivalent to OneMax. Thus, the expected time until SD-FEAβ,γ,R reaches
the local optimum is at mostO(n lnn) via Theorem 7 with si = (n−(i−1))/n.

For a local optimum x, we have FitnessLevelGap(x) = δ according to the

definition of Jumpk,δ. Using Theorem 5 with s =
(
n
δ

)−1(k
δ

)
, the algorithm

finds an strict improvement with at least n − k + δ one-bits from the local
optimum within expected time at most

O

((
n

δ

)(
k

δ

)−1

(δ − r′)β · γ−1

)
.

After leaving the local optimum, Jumpk,δ is again equivalent to OneMax
on the second slope. Using the same arguments as in the beginning of the
proof, the expected time until SD-FEAβ,γ,R reaches the global optimum is at
most O(n lnn) via Theorem 7 with si = (n− (i− 1))/n.

19

In the following corollary, we see a scenario where we have r′ ≥ δ − c
for some constant c, resulting in the term (δ − r′)β disappearing from the
asymptotic upper bound. This is also an example where the SD-FEAβ,γ,R

can asymptotically outperform the (1+1) FEAβ.

Corollary 11. Let ∆ ≥ 2 be a constant. The expected runtime E[T] of
SD-FEAβ,γ,R with β > 1 and R = Ω(eγ) on Jumpk,δ with ω(1) = k ≤ lnn
and δ = k −∆ satisfies

E[T] = O

((
n

δ

)(
k

δ

)−1

· γ−1

)
.

Proof. We claim that r′ defined in Theorem 10 is at least k−2∆. We compute(
n

k−2∆

)
(n
k−∆)
(k∆)

γ−1∆β

≤ (en/(k − 2∆))k−2∆

nk−∆k−∆(k −∆)∆−k · γ−1∆β

= γ · e
k−2∆ · k∆ · (k −∆)∆

n∆∆β
·
(

1 +
∆

k − 2∆

)k−2∆

≤ γ · e
k−∆ · k∆ · (k −∆)∆

n∆∆β
= o(1),

where we use the assumption k ≤ lnn, the inequality (n/m)m ≤
(
n
m

)
≤

(en/m)m and 1 + x ≤ ex for all x ∈ R. For a large enough n, the last
expression results in(

n

k − 2∆

)
≤
(

n

k −∆

)(
k

∆

)−1

γ−1∆β,

which means that r′ ≥ k − 2∆. Therefore, using the result of Theorem 10
with r′ ≥ k − 2∆, we get

E[T] = O

((
n

δ

)(
k

δ

)−1

∆β · γ−1 + n lnn

)
= O

((
n

δ

)(
k

δ

)−1

γ−1

)
,

where O(n lnn) is captured by the first term according to our assumptions.

6 Experiments

In this section, we present the results of the experiments carried out to mea-
sure the performance of the proposed algorithm and several related ones on
concrete problem sizes.

20

Figure 2: Average number (over 200 runs) of fitness calls the mentioned
algorithms spent to optimize Jumpk,4 with different values for k.

We ran an implementation of SD-FEAβ,γ,R with β ∈ {1.25, 1.5, 2},
γ = 1/4 and R = 25 on the fitness function Jumpk,δ of size n = 100
with the jump size δ = 4 and k varying from 4 to 13. We recall that we
have the classical Jump function by setting k = 4. We compared our al-
gorithm with the classical (1 + 1) EA with standard mutation rate 1/n, the
(1+1) FEAβ from [DLMN17] with β = 1.5, the SD-(1+1) EA presented
in [RW20] with R = n2, and SD-RLSr from [RW21b] with R = n2. The
data presented in the figures is the average number of fitness calls over 200
runs. Considering the hypothesis of identical behavior, we use the Mann-

21

Whitney U-test between the algorithms, with the result that all p-values are
less than 10−3.

As can be seen in Figure 2, SD-RLSr outperforms the rest of the algo-
rithms where k = 4, i. e., there is only one improving solution for local optima.
Our SD-FEAβ,γ,R needs around (1 − γ)−1 times more fitness function calls
than that, but still significantly outperforms the (1+1) FEAβ, SD-(1+1) EA
and (1 + 1) EA. As k is increasing, the average running time of SD-RLSr

improves little and remains almost without change after k = 5; consequently,
this algorithm becomes less and less competitive for growing k. This is nat-
ural since this algorithm necessarily has to reach phase 4 to be able to flip 4
bits. All other algorithms, especially the (1+1) FEAβ, perform increasingly
better with larger k.

In a middle regime of k ∈ {5, 6, 7}, the SD-FEAβ,γ,R has the best average
running time among the algorithms regarded. Although both with k = 4
and for k ≥ 8, the SD-FEAβ,γ,R is not the absolutely best algorithm, but its
performance loss over the most efficient algorithm (SD-RLSr for k = 4 and
SD-(1+1) EA for k ≥ 8) is small. This finding supports our claim that our
algorithm is a good approach to leaving local optima of various kinds.

For a large k, such as 10 or 11, the good performance of the SD-(1+1) EA
and (1+1) FEAβ might appear surprising. The reason for the slightly weaker
performance of our algorithm is the relatively small width of the valley of
low fitness (δ = 4), where our algorithm cannot fully show its advantages,
but pays the price of sampling from the right heavy-tailed distribution only
with probability γ

2
.

7 Recommended Parameters

In this section, we use our theoretical and experimental results to derive some
recommendations for choosing the parameters β, γ, and R of our algorithm.
We note that having three parameters for a simple (1 + 1)-type optimizer
might look frightening at first, but a closer look reveals that setting these
parameters is actually not too critical.

For the power-law exponent β, as in [DLMN17], there is no indication
that using a value different from β = 1.5 can give significant performance
gains (in our experiments, β = 2 gave slightly better results, but we suspect
that for larger jump sizes – not done here for reasons of computation time
– this advantage vanishes). So clearly, this is the last parameter to try to
optimize.

Different from the previous approaches building on stagnation detection,
our algorithm also does not need specific values for the parameter R, which

22

governs the phase length `r = 1
1−γ

(
n
r

)
ln(R) and in particular leads to the

property that a single improving solution in distance m is found in phase
m with probability 1− 1

R
(as follows from the proof of Lemma 2). Since we

have the heavy-tailed mutations available, it is less critical if an improvement
in distance m is missed in phase m. At the same time, since our heavy-
tailed mutations also allow to flip more than r bits in phase r, longer phases
obtained by taking a larger value of R usually do not have a negative effect
on the runtime. For these reasons, the times computed in Theorem 5 depend
very little on R. Since the phase length depends only logarithmically on R,
we feel that it is safe to choose R as some mildly large constant, say R = 25.

The most interesting choice is the value for γ, which sets the balance
between the SD-RLS mode of the algorithm and the heavy-tailed mutations.
A large rate 1−γ of SD-RLS iterations is good to find a single improvement,
but can lead to drastic performance losses when there are more improving
solutions. Such trade-offs are often to be made in evolutionary computation.
For example, the simple RLS heuristic using only 1-bit flips is very efficient
on unimodal problems (e.g., has a runtime of (1 + o(1))n lnn on OneMax),
but fails on multimodal problems. In contrast, the (1 + 1) EA flips a single
bit only with probability approximately 1

e
, and thus optimizes OneMax only

in time (1 + o(1))en lnn, but can deal with local optima. In a similar vein, a
larger value for γ in our algorithm gives some robustness to situations where
in phase r other mutations than r-bit flips are profitable – at the price of a
slowdown on problems like classic jump functions, where a single improving
solution has to be found. It has to be left to the algorithm user to set
this trade-off suitably. Taking the example of RLS and the (1 + 1) EA as
example, we would generally recommend a constant factor performance loss
to buy robustness, that is, a constant value of γ like, e.g., γ = 0.25.

8 Conclusion

In this work, we proposed a way to combine stagnation detection with heavy-
tailed mutation. Our theoretical and experimental results indicate that our
new algorithm inherits the good properties of the previous stagnation detec-
tion approaches, but is superior in the following respects.

• The additional use of heavy-tailed mutation greatly speed up leaving
a local optimum if there is more than one improving solution in a
certain distance m. This is because to leave the local optimum, it is
not necessary anymore to complete phase m− 1.

23

• Compared to the robust SD-RLS, which is the fairest point of compar-
ison, our algorithm is significantly simpler, as it avoids the two nested
loops (implemented via the parameters r and s in [RW21b]) that orga-
nize the reversion to smaller rates. Compared to the SD-(1 + 1) EA,
our approach can obtain the better runtimes of the SD-RLS approaches
in the case that few improving solutions are available, and compared
to the simple SD-RLS of [RW21b], our approach surely converges.

• Again comparing our approach to the robust SD-RLS, our approach
gives runtimes with exponential tails. Let m be constant. If the robust
SD-RLS misses an improvement in distance m in the m-th phase and
thus in time O(nm) – which happens with probability n−Θ(1) for typi-
cal parameter settings –, then strength m is used again only after the
(m + 1)-st phase, that is, after Ω(nm+1) iterations. If our algorithm
misses such an improvement in phase m, then in each of the subse-

quent `m+1 = Ω(nm+1) iterations, it still has a chance of γ
2

(
n

m+1

)−1
to

find this particular improvement. Hence the probability that finding

this improvement takes Ω(nm+1) time, is only (1− γ
2

(
n

m+1

)−1
)Ω(nm+1) ≤

exp(−γ
2
Ω(n)).

As discussed in Section 7, the three parameters of our approach are not
too critical to set. For these reasons, we believe that our combination of
stagnation detection and heavy-tailed mutation is a very promising approach.

As the previous works on stagnation detection, we have only analyzed
stagnation detection in the context of a simple hillclimber. This has the
advantage that it is clear that the effects revealed in our analysis are truly
caused by our stagnation detection approach. Given that there is now quite
some work studying stagnation detection in isolation, for future work it would
be interesting to see how well stagnation detection (ideally in the combination
with heavy-tailed mutation as proposed in this work) can be integrated into
more complex evolutionary algorithms.

Acknowledgement

Amirhossein Rajabi was supported by a research grant by the Danish Council
for Independent Research (DFF-FNU 8021-00260B) and a travel grant from
the Otto Mønsted foundation.

24

References

[ABD20a] Denis Antipov, Maxim Buzdalov, and Benjamin Doerr. Fast
mutation in crossover-based algorithms. In Genetic and Evolu-
tionary Computation Conference, GECCO 2020, pages 1268–
1276. ACM, 2020.

[ABD20b] Denis Antipov, Maxim Buzdalov, and Benjamin Doerr. First
steps towards a runtime analysis when starting with a good
solution. In Parallel Problem Solving From Nature, PPSN 2020,
Part II, pages 560–573. Springer, 2020.

[ABD21] Denis Antipov, Maxim Buzdalov, and Benjamin Doerr. Lazy
parameter tuning and control: choosing all parameters ran-
domly from a power-law distribution. In Genetic and Evolution-
ary Computation Conference, GECCO 2021, pages 1115–1123.
ACM, 2021.

[AD20] Denis Antipov and Benjamin Doerr. Runtime analysis of a
heavy-tailed (1 + (λ, λ)) genetic algorithm on jump functions.
In Parallel Problem Solving From Nature, PPSN 2020, Part II,
pages 545–559. Springer, 2020.

[BBD21] Henry Bambury, Antoine Bultel, and Benjamin Doerr. General-
ized jump functions. In Genetic and Evolutionary Computation
Conference, GECCO 2021, pages 1124–1132. ACM, 2021.

[COY21] Dogan Corus, Pietro S. Oliveto, and Donya Yazdani. Automatic
adaptation of hypermutation rates for multimodal optimisation.
In Foundations of Genetic Algorithms, FOGA 2021, pages 4:1–
4:12. ACM, 2021.

[DD20] Benjamin Doerr and Carola Doerr. Theory of parameter control
for discrete black-box optimization: provable performance gains
through dynamic parameter choices. In Benjamin Doerr and
Frank Neumann, editors, Theory of Evolutionary Computation:
Recent Developments in Discrete Optimization, pages 271–321.
Springer, 2020. Also available at https://arxiv.org/abs/1804.
05650.

[DFK+18] Duc-Cuong Dang, Tobias Friedrich, Timo Kötzing, Martin S.
Krejca, Per Kristian Lehre, Pietro S. Oliveto, Dirk Sudholt,
and Andrew M. Sutton. Escaping local optima using crossover

25

https://arxiv.org/abs/1804.05650
https://arxiv.org/abs/1804.05650

with emergent diversity. IEEE Transactions on Evolutionary
Computation, 22:484–497, 2018.

[DJW02] Stefan Droste, Thomas Jansen, and Ingo Wegener. On the
analysis of the (1+1) evolutionary algorithm. Theoretical Com-
puter Science, 276:51–81, 2002.

[DLMN17] Benjamin Doerr, Huu Phuoc Le, Régis Makhmara, and Ta Duy
Nguyen. Fast genetic algorithms. In Genetic and Evolutionary
Computation Conference, GECCO 2017, pages 777–784. ACM,
2017.

[Doe20] Benjamin Doerr. Does comma selection help to cope with local
optima? In Genetic and Evolutionary Computation Confer-
ence, GECCO 2020, pages 1304–1313. ACM, 2020.

[DZ21] Benjamin Doerr and Weijie Zheng. Theoretical analyses of
multi-objective evolutionary algorithms on multi-modal objec-
tives. In Conference on Artificial Intelligence, AAAI 2021,
pages 12293–12301. AAAI Press, 2021.

[FGQW18a] Tobias Friedrich, Andreas Göbel, Francesco Quinzan, and
Markus Wagner. Evolutionary algorithms and submodu-
lar functions: Benefits of heavy-tailed mutations. CoRR,
abs/1805.10902, 2018.

[FGQW18b] Tobias Friedrich, Andreas Göbel, Francesco Quinzan, and
Markus Wagner. Heavy-tailed mutation operators in single-
objective combinatorial optimization. In Parallel Problem Solv-
ing from Nature, PPSN 2018, Part I, pages 134–145. Springer,
2018.

[FQW18] Tobias Friedrich, Francesco Quinzan, and Markus Wagner. Es-
caping large deceptive basins of attraction with heavy-tailed
mutation operators. In Genetic and Evolutionary Computation
Conference, GECCO 2018, pages 293–300. ACM, 2018.

[Prü04] Adam Prügel-Bennett. When a genetic algorithm outper-
forms hill-climbing. Theoretical Computer Science, 320:135–
153, 2004.

[RW20] Amirhossein Rajabi and Carsten Witt. Self-adjusting evolution-
ary algorithms for multimodal optimization. In Genetic and

26

Evolutionary Computation Conference, GECCO 2020, pages
1314–1322. ACM, 2020.

[RW21a] Amirhossein Rajabi and Carsten Witt. Stagnation detection in
highly multimodal fitness landscapes. In Genetic and Evolu-
tionary Computation Conference, GECCO 2021, pages 1178–
1186. ACM, 2021.

[RW21b] Amirhossein Rajabi and Carsten Witt. Stagnation detection
with randomized local search. In Evolutionary Computation
in Combinatorial Optimization, EvoCOP 2021, pages 152–168.
Springer, 2021.

[Weg01] Ingo Wegener. Theoretical aspects of evolutionary algorithms.
In Automata, Languages and Programming, ICALP 2001, pages
64–78. Springer, 2001.

[Wit21] Carsten Witt. On crossing fitness valleys with majority-vote
crossover and estimation-of-distribution algorithms. In Foun-
dations of Genetic Algorithms, FOGA 2021, pages 2:1–2:15.
ACM, 2021.

[WQT18] Mengxi Wu, Chao Qian, and Ke Tang. Dynamic mutation
based Pareto optimization for subset selection. In Intelligent
Computing Methodologies, ICIC 2018, Part III, pages 25–35.
Springer, 2018.

27

	1 Introduction
	2 Previous Works
	3 Algorithm SD-FEA,,R
	4 Analysis of the Algorithm SD-FEA,,R
	5 Analysis on Jumpk,
	6 Experiments
	7 Recommended Parameters
	8 Conclusion

