
HAL Id: hal-03797600
https://hal.science/hal-03797600

Submitted on 4 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

General Univariate Estimation-of-Distribution
Algorithms

Benjamin Doerr, Marc Dufay

To cite this version:
Benjamin Doerr, Marc Dufay. General Univariate Estimation-of-Distribution Algorithms. Parallel
Problem Solving from Nature (PPSN 2022), Sep 2022, Dortmund, Germany. �10.1007/978-3-031-
14721-0_33�. �hal-03797600�

https://hal.science/hal-03797600
https://hal.archives-ouvertes.fr

ar
X

iv
:2

20
6.

11
19

8v
2

 [
cs

.N
E

]
 2

5
Ju

n
20

22

General Univariate Estimation-of-Distribution

Algorithms

Benjamin Doerr1 and Marc Dufay2

1 LIX, CNRS, École Polytechnique, Institut Polytechnique de Paris, France
2 École Polytechnique, Institut Polytechnique de Paris, France

Abstract. We propose a general formulation of a univariate estimation-
of-distribution algorithm (EDA). It naturally incorporates the three clas-
sic univariate EDAs compact genetic algorithm, univariate marginal dis-

tribution algorithm and population-based incremental learning as well
as the max-min ant system with iteration-best update. Our unified de-
scription of the existing algorithms allows a unified analysis of these; we
demonstrate this by providing an analysis of genetic drift that immedi-
ately gives the existing results proven separately for the four algorithms
named above. Our general model also includes EDAs that are more effi-
cient than the existing ones and these may not be difficult to find as we
demonstrate for the OneMax and LeadingOnes benchmarks.

Keywords: Estimation of distribution algorithms · genetic drift · run-
ning time analysis · theory.

1 Introduction

Estimation-of-distribution algorithms (EDAs) are a class of iterated random-
ized search heuristics proposed first in the 1990s [21]. Different from genetic
algorithms (GAs), which evolve a set P (“population”) of good solutions for a
given problem, EDAs evolve a probability distribution (“probabilistic model”)
on the set of possible solutions, hopefully in the way that good solutions have
a higher probability assigned to them. Since it is clear that a set P of solutions
can be represented by a probability distribution (namely the uniform distribu-
tion on P), EDAs (with an appropriate probabilistic model) have a much richer
way of transporting information from one iteration to the next than genetic
algorithms.

Several results show that this theoretical advantage can be turned into a
true advantage when running the EDA in the right way. For example, it was
shown that the more cautious way of updating the probabilistic model of EDAs
(as opposed to the only alternatives of a GA, which are to accept or discard
a solution) can lead to a high robustness to noise [15,16]. The fact that EDAs
can sample with a larger variance was shown to be advantageous for leaving
local optima [18,5,8,39]. In [7], it was demonstrated that the probabilistic model
developed by an EDA allows to obtain much more diverse good solutions than
what can be achieved by population-based algorithms.

http://arxiv.org/abs/2206.11198v2

2 B. Doerr, M. Dufay

Due to their higher simplicity, the most studied form of EDAs are univariate
ones, which sample the variables of each solution independently. When restricting
ourselves to pseudo-Boolean optimization, that is, the solutions are bit-strings
of length n, then this means that the probabilistic model can be described by a
frequency vector p = (p1, . . . , pn) ∈ [0, 1]n such that a sample x ∈ {0, 1}n from
this model satisfies

Pr[xi = 1] = pi independently for all i ∈ [1..n] := {1, . . . , n}. (1)

The three classic univariate EDAs are population-based incremental learning
(PBIL) [2], the univariate marginal distribution algorithm (UMDA) [29], and
the compact genetic algorithm (cGA) [17]. As observed in [22], the max-min ant
system (MMAS) [36] with iteration-best pheromone update also is a univariate
EDA (when used for pseudo-Boolean optimization). We note that the UMDA
and this MMAS are special cases of PBIL. Unfortunately, with very few results
existing for the PBIL, this connection so far could not be exploited extensively.

So far, these four algorithms have mostly been discussed separately, and for
many aspects, only one or two of the four algorithms have been regarded. For
example, there are only two mathematical analysis on how EDAs cope with
Gaussian noise and these regards only the cGA [16] and the MMAS [15]. For
the question how EDAs cope with local optima, the existing runtime analyses
only regard the cGA [18,5,39] and the MMAS [3]. This leaves many questions
unanswered.

We also note that many arguments used in the past were specific to the
particular algorithm regarded. For example, the analyses in [18,5] exploit that
the cGA enjoys the property that if the sample with better fitness is closer
to the optimum, then the model update will reduce the expected distance of
the samples from the optimum. The MMAS does not have this property and
consequently, a different proof approach was necessary in [3].

Our results: In this work, we try to improve this situation by proposing a
simple, yet general class of EDAs that includes the four algorithms mentioned
above. Our hope is that by thus distilling the common features of these algo-
rithms, it becomes easier to find analyses that apply simultaneously to all four
algorithms. We demonstrate that this is indeed possible by proving a quantita-
tive statement on the genetic drift effect in our EDA class. This result contains
as special cases the results (separately) proven in [12].

Our second hope is that the large class of EDAs defined by our model also
contains algorithms with better performance than the four known algorithms.
With elementary non-rigorous arguments, we design such an EDA and show via
an experimental analysis that it is at least twice as fast at the cGA and UMDA
with optimized parameters on the OneMax benchmark. We note that this new
algorithm is in no way more complicated than the known special cases of our
general model – it just profits from wider ranges of allowed parameters.

General Univariate Estimation-of-Distribution Algorithms 3

2 Previous Work

For reasons of space and since several good surveys and textbooks are available,
we describe here only the works that are really close to ours. For a general intro-
duction to EDAs and details on applications, we refer to the surveys [19,25,32].

Our work, while not purely mathematical, nevertheless is regarding EDAs
more from a theoretical perspective. A very recent survey on the state of the art
of the theory of EDAs is [22], broader introductions to theoretical approaches
in evolutionary computation include [30,1,20,10]. As can easily be deduced from
this survey, the theoretical understanding of EDAs is far from complete and for
many basic questions, e.g., the runtime on the simple OneMax benchmark, a
complete answer is still missing. What can also be observed from this survey is
that essentially all previous works regard only a single univariate EDA. There
are few exceptions, e.g., in [37] both the cGA and the MMAS is analyzed, but
also in these cases the results for different algorithms are proven separately.

The only previous work we are aware of that undertakes an attempt towards
a unified treatment of univariate EDAs is [14]. There, the framework of an n-
Bernoulli-λ-EDA is defined. This framework is very general and includes not only
our EDA model, but in fact all univariate EDAs which sample a fixed number λ
of offspring according to (1) and then update the probabilistic model p via any
deterministic function φ that takes as arguments the current model and the off-
spring together with their fitness. Not surprisingly, in such an extremely general
model it is hard to prove meaningful results, and consequently, the particular re-
sults in [14] need non-trivial additional assumptions: To show that a stable EDA
is not balanced, in particular the additional assumption is made that whenever
the EDA optimizes a function with neutral i-th bit, then at all times t the sam-
pling frequency pi(t) satisfies Var[pi(t+1) | pi(t)] = −api(t)

2 +bpi(t)+c for suit-
able a, b, c ∈ R with 0 < a < 1, see [14, Theorem 10] (this notion has been relaxed
to the requirement that inf{Var[pi(t+1)+1[pi(t) /∈ [d, 1−d]] | pi(t)] | t ∈ N} > 0
for some d = o(1) in [23, Theorem 6.11]). Similarly, the runtime analysis on the
LeadingOnes benchmark relies on two specific assumptions how the frequen-
cies behave during the optimization process [14, Theorem 12]. There is no doubt
that also with these restrictions, the results in [14] are strong and impressive,
but the need for the restrictions suggests that the n-Bernoulli-λ-EDA model is
too general to admit strong results covering the whole model (and this is where
we hope that our more narrow model is more effective).

There have also been some attempts to encompass EDAs in a model even
wider. One of them is by defining these algorithms as model-based search algo-
rithms which rely on a parameterized probabilistic model as opposed to instance-
based search algorithms which rely on a population of solutions [40]. A model-
based search algorithm is described by its probabilistic model and the way it
updates its model and some parallels can be made between univariate EDAs
and gradient-based methods. Another approach described in [31] is by turning
existing EDAs into a continuous-time black-box optimization method using the
information-geometric optimization (IGO) method which can then be turned
back into algorithms using time discretization. Existing univariate algorithms

4 B. Doerr, M. Dufay

like cGA or PBIL can be retrieved using this method. However, these approaches
result in a model that is too general to obtain running time results or to obtain
ideas how to set the parameter of the algorithms.

3 Univariate EDA: Classic and New

In this section, we first describe briefly the four existing algorithms mentioned
in the introduction and then derive from these a general model encompassing
all four. We shall write x ∼ Sample(p) to denote that x ∈ {0, 1}n is sampled
according to the univariate model described by the frequency vector p ∈ [0, 1]n,
that is, that x satisfies (1). We assume that each call of this sampling procedure
is stochastically independent from all other samplings and possibly other random
decisions of the algorithm. When an algorithm optimizing a function f samples λ
individuals, we denote these by x[1], . . . , x[λ] and we denote by x̃[1], . . . , x̃[λ] the
sorting of these by decreasing (worsening) fitness f , with ties broken randomly.
All algorithms initialize the univariate model as p = (1

2 , . . . , 1
2), which gives the

uniform distribution on the search space {0, 1}n. In their main loop, all sample
a certain number of solutions und update the model based on the fitness of the
solutions. We first describe all algorithms in the basic version without artificial
frequency margins, then propose our general EDA model (also without frequency
margins), and finally discuss how to include such margins.

The compact genetic algorithm (cGA) [17] samples only two solutions and
modifies the frequency vector by a scalar multiple of the difference between the
better and the worse solution, that is, p ← p + 1

K (x̃[1] − x̃[2]). Here K is the
only algorithm parameter called hypothetical population size. In other words, a
frequency pi does not change if the two samples agree in the i-th bit, and it
moves by an additive term of 1

K towards the bit value of the better solution
otherwise. Usually, K is taken as an even integer since this automatically keeps
the frequencies in the range [0, 1]. For other values of K, one would need to cap
the frequencies after the update into the interval [0, 1].

The univariate marginal distribution algorithm (UMDA) [29] with parame-
ters λ, µ ∈ Z≥1 samples λ solutions and updates the model to the average of the
µ best solutions, that is, p← 1

µ

∑µ
i=1 x̃[i].

The max-min ant system (MMAS) [36] with iteration-best update besides
the sample size λ has the learning rate ρ ∈]0, 1] (pheromone evaporation rate
in the ant colony optimization language) as second parameter. Only the best
offspring is used for the model update and it enters the model with weight ρ,
that is, the model update is p← (1− ρ)p + ρx̃[1].

Population-based incremental learning (PBIL) [2] selects µ out of λ solutions
and combines their average weighted by ρ with the current model: p ← (1 −
ρ)p + ρ 1

µ

∑µ
i=1 x̃[i]. Consequently, PBIL has as special cases both the UMDA

(by taking ρ = 1) and the MMAS (by taking µ = 1).
The pseudocodes for these four algorithms are given in Algorithms 1 to 4. As

can easily be seen, in all four cases the new model is a linear combination of the
samples and the old model. This suggests the following general univariate EDA

General Univariate Estimation-of-Distribution Algorithms 5

model. Let λ ∈ Z≥1 the sample size and γ0, γ1, . . . , γλ ∈ R such that
∑λ

i=0 γi = 1.
The general univariate EDA in its main loop samples λ solutions and updates the
frequency vector to p ← γ0p +

∑λ
i=1 γix̃[i], where this is to be understood that

frequencies below zero or above one are replaced by zero or one. The complete
pseudocode is given in Algorithm 5.

Algorithm 1: The cGA with parameter K > 0, maximizing a given
function f : {0, 1}n → R.

1 p(0) =
(

1

2
, . . . , 1

2

)

∈ [0, 1]n

2 for t = 1, 2, . . . do

3 x[1] ∼ Sample(p(t − 1))
4 x[2] ∼ Sample(p(t − 1))
5 if f(x[1]) ≥ f(x[2]) then

6 p(t) = p(t − 1) + 1

K
(x[1] − x[2])

7 else

8 p(t) = p(t − 1) + 1

K
(x[2] − x[1])

9 p(t) = max(0, min(1, p(t)))

Algorithm 2: The UMDA with parameters λ ∈ Z≥1 and µ ∈ [1..λ].

1 p(0) =
(

1

2
, . . . , 1

2

)

∈ [0, 1]n

2 for t = 1, 2, . . . do

3 for i = 1, 2, . . . , λ do

4 x[i] ∼ Sample(p(t − 1))

5 Sort the individuals into x̃[1], . . . , x̃[λ] ordered by worsening fitness
6 %% Update the frequency

7 p(t) = 1

µ

∑µ

i=1
x̃[i]

We immediately see that the general univariate EDA contains the four al-
gorithms above as special cases. We obtain the cGA by taking λ = 2, γ0 = 1,
γ1 = 1

K , and γ2 = − 1
K . For the UMDA with parameters λ and µ, we use the

same λ and the weights γ0 = 0, γ1 = · · · = γµ = 1
µ and γµ+1 = · · · = γλ = 0.

The MMAS results from taking γ0 = 1 − ρ, γ1 = ρ, and γ2 = · · · = γλ = 0.
Finally, PBIL is the general EDA with γ0 = 1 − ρ, γ1 = · · · = γµ = ρ

µ , and
γµ+1 = · · · = γλ = 0.

6 B. Doerr, M. Dufay

Algorithm 3: The MMAS with parameters λ ∈ Z≥1 and evaporation
factor ρ ∈]0, 1].

1 p(0) =
(

1

2
, . . . , 1

2

)

∈ [0, 1]n

2 for t = 1, 2, . . . do

3 for i = 1, 2, . . . , λ do

4 x[i] ∼ Sample(p(t − 1))

5 Find an individual with the best fitness x̃[1]
6 %% Update the frequency

7 p(t) = (1 − ρ)p(t − 1) + ρx̃[1]

Algorithm 4: PBIL with parameters ρ ∈]0, 1], λ ∈ N and µ ∈ [1..λ].

1 p(0) =
(

1

2
, . . . , 1

2

)

∈ [0, 1]n

2 for t = 1, 2, . . . do

3 for i = 1, 2, . . . , λ do

4 x[i] ∼ Sample(p(t − 1))

5 Sort the individuals into x̃[1], . . . , x̃[λ] ordered by their fitness
6 %% Update the frequency

7 p(t) = (1 − ρ)p(t − 1) + ρ

µ

∑µ

i=1
x̃[i]

4 Genetic Drift

Genetic drift is the phenomenon that the sampling frequencies of the probabilis-
tic model move in some direction not because of the feedback from the fitness,
but by an unfortunate accumulation of the small random movements that occur
when there is no clear signal from the fitness. Genetic drift is problematic in
that it can move frequencies close to the boundary values 0 and 1, where they
tend to stay longer. This phenomenon and its drawbacks were first discussed in
the series of works [33,34,35]. After a long sequence of fundamental results such
as [4,13,14,24,27,37,38,12], mostly runtime analyses which only apply to a regime
with low genetic drift, we now understand this phenomenon quite well. For rea-
sons of completeness, we note that EDAs can also be successful in regimes with
genetic drift, see, e.g., the runtimes results [4,38] for the UMDA on OneMax

and LeadingOnes when the population size is logarithmic, but the general un-
derstanding is that genetic drift is dangerous and examples like the analyses of
the UMDA on the DLB problem [26,9] show that genetic drift can lead to drastic
performance losses.

The tightest quantitative statements on genetic drift were given in [12]. They
were proven via separate analyses for the cGA and PBIL (which imply the cor-
responding results for the UMDA and MMAS). With our general model for
univariate EDAs, we can now provide a unified analysis for these classic algo-
rithms (and all algorithms that will be defined in the future that fit into this
model).

General Univariate Estimation-of-Distribution Algorithms 7

Algorithm 5: Our general EDA algorithm defined by (γi)i=0,...,n such

that
∑λ

i=0 γi = 1.

1 p(0) =
(

1

2
, . . . , 1

2

)

∈ [0, 1]n

2 for t = 1, 2, . . . do

3 %%Sample the individuals

4 for i = 1, 2, . . . , λ do

5 %%Generate the i-th individual x[i]
6 xt[i] ∼ Sample(p(t − 1))

7 Sort the individuals into x̃t[1], . . . , x̃t[λ] by worsening fitness
8 %% Update the frequency

9 p(t) = max(0, min(1, γ0p(t − 1) +
∑λ

i=1
γix̃[i]))

Genetic drift is usually studied by regarding a neutral bit, that is, a bit that
has no influence on the fitness (note that such results imply similar results for
bits that are neutral only for a certain time as in the LeadingOnes benchmark
or bits that have a preference for one value as in monotonic functions, see [12]).
By symmetry, the expected value of the sampling frequency of a neutral bit
is always 1

2 (and in fact, the distribution of this frequency is also symmetric
around 1

2). Nevertheless, as discussed above, the random fluctuations stemming
from the updates of the probabilistic model will move this frequency towards the
boundary values 0 and 1, and this is the phenomenon of genetic drift. Genetic
drift can be quantified, e.g., via statements on the first time that the frequency
leaves some middle ground, e.g., the interval [1

3 , 2
3].

In the remainder of this section, let us assume that the first bit of our objec-
tive function f is neutral. Then this bit has no influence on the selection, and
consequently for all i ∈ [1..λ], we have x̃1[i] ∼ B (p1(t− 1)). For simplicity, we
write xi

t = x̃1[i], pt = p1(t) for all t ≥ 0, i ∈ [1..λ]. We will also assume that we
are not in a totally degenerate case, so there exists i ∈ [1..λ] such that γi 6= 0.

Lemma 1. The sequence
(pt(1−pt)

(1−
∑

λ

i=1
γ2

i
)t

)

t≥0
with respect to the filtration (pt)t≥0

is a martingale.

We note that this result is quite beautiful because it gives a good insight on
the behavior of a neutral bit and no approximation was needed, allowing us to
obtain a martingale and not a supermartingale or a submartingale like what is
usually the case. For reasons of space, the formal proof of this and the other
results of this paper had to be omitted in the conference version [6]. They can
be found in the appendix of this preprint.

Using this result, we can find an upper bound on the expected time for a
neutral bit frequency to move away from 1/2.

Lemma 2. Let TL = min{t ≥ 0, pt ≤ 1/3 or pt ≥ 2/3} be the first time for a

neutral bit to leave [1/3, 2/3]. Then E[TL] = O
(

1
∑

λ

i=1
γ2

i

)

.

8 B. Doerr, M. Dufay

To obtain a lower bound and more precise concentration results, we can use
a Hoeffding inequality in a way similar, but more general than what was done
in [12].

Lemma 3. For all T ∈ N and δ > 0, we have

P [∀t ∈ [0..T], |pt − 1/2| < δ] ≥ 1− 2 exp

(

−δ2

2T
∑λ

i=1 γ2
i

)

.

With T0 =

(
∑

λ

i=1
γ2

i

)

−1

4·36 log n and a union bound, we obtain the following guarantee
that neutral frequencies stay away from the boundaries.

Corollary 1. Assuming that all bits are independent and neutral, with high
probability, before iteration T0, all bits frequencies stay within the range
[1/3, 2/3].

As in [12, part VI], this result can be extended to bits with a preference.
For a fitness function f , we say that it is weakly preferring 1 in bit i if for all
(x1, . . . , xi−1, xi+1, . . . , xn) ∈ {0, 1}n−1 we have

f(x1, . . . , xi−1, 1, xi+1, . . . , xn) ≥ f(x1, . . . , xi−1, 0, xi+1, . . . , xn).

Many common fitness functions like OneMax or LeadingOnes are weakly pre-
ferring 1 in any bit.

Corollary 2. If the fitness function is weakly preferring a 1 on all of its bits,
then we have P [∀i ∈ [1..n], ∀t ∈ [0..T0], pt

i ≥ 1/3] = 1− o(1).

5 Optimizing the (γi)i

A second advantage of our general formulation of univariate EDAs, besides giving
unified proofs, could be that this broad class of algorithms contains EDAs that
are superior to the four special cases that have been regarded in the past. To
help finding such algorithms, we now discuss the influence on the γi on the
optimization progress. Since different γi might be profitable in different stages
of the optimization progress, we analyze their effect in a single iteration, that is,
we condition on the current frequency vector. To ease the notation, let us call
this frequency vector p (without any time index). Let x̃[1], . . . , x̃[λ] denote the
λ samples taking in this iteration, sorted already by decreasing fitness. Then,
ignoring the influence of frequency boundaries, the next frequency vector p′

satisfies p′ = γ0p +
∑λ

i=1 γix̃[i].
We would like to have an idea of what the optimal (γi) with respect to

minimizing the expected convergence time to reach the optimal solution would
look like. To do so, we look during a single iteration for the OneMax function
at the best distribution of (γi) while keeping the genetic drift minimal. During
iteration t, let X(t) be a random variable following distribution (pi(t))i, we want

General Univariate Estimation-of-Distribution Algorithms 9

to maximize E[f(X(t + 1))] knowing the previous distribution. OneMax being
linear, using the linearity of expectation on all the different bits, we have

E[f(X(t + 1))] = γ0E[f(X(t))] +
λ
∑

i=1

γiE[f(x̃[i])]

=

(

1−
λ
∑

i=1

γi

)

E[f(X(t))] +
λ
∑

i=1

γiE[f(x̃[i])]

= E[f(X(t))] +

λ
∑

i=1

γi (E[f(x̃[i])) − E[f(X(t))]) .

Let us assume that (γ̃i)i are optimal for the current iteration and let δ =
∑λ

i=1 γ̃2
i

be the genetic drift. Because this iteration maximizes the expected outcome of
the next distribution while minimizing the genetic drift, it is a solution to

Maximize: E[f(X(t))] +

λ
∑

i=1

γi (E[f(x̃[i])]− E[f(X(t))])

Subject to:

λ
∑

i=1

γ2
i ≤ δ

Both the function to optimize and the constraint are polynomial so differen-
tiable. Moreover the set solution to the constraint is bounded and closed, so it
is compact. Therefore an optimal solution exists and we can use the method of
Lagrange multipliers to find it: there exists a Lagrange multiplier α ≤ 0 such
that









E[f(x̃[1])]− E[f(X(t))]
E[f(x̃[2])]− E[f(X(t))]

. . .
E[f(x̃[λ])] − E[f(X(t))]









+ α









2γ̃1

2γ̃2

. . .
2γ̃λ









= 0.

So (γ̃i)i are proportional to (E[f(x̃[i])]− E[f(X(t))])i. Because (x̃[i]) are sorted
according to their fitness, (E[f(x̃[i])])i is decreasing so (γ̃i)i should also be de-
creasing.

6 Designing New Univariate EDAs

In this section, we propose two new univariate EDAs (that is, EDAs within our
framework with γi that do not lead to one of the four classical algorithms) and
analyze them via experimental means. Given the momentary state of the art
in mathematical runtime analysis of EDAs, it seems out of reach to conduct
a mathematical runtime analysis precise enough to make visible the influence
of the γi on the runtime. The main insight derived from this part of our work
is that with not much effort, one can find univariate EDAs which outperform

10 B. Doerr, M. Dufay

the classic univariate EDAs. We conduct this line of research for the two classic
benchmarks OneMax and LeadingOnes.

OneMax: Since univariate EDAs sample the bits independently and since in
the OneMax benchmark each bit contributes the same to the fitness, we expect
a somewhat regular behavior in a set of independent samples: Those with best
fitness will have many bits set correctly, those with lowest fitness with miss
many bit values. This, together with the considerations of the previous section,
suggests to give more weights to better samples in the frequency update, and to
do this in a somewhat continuous manner. One way of doing so is taking

γ0 = 1− β

λ
∑

i=1

(1 − i
λ/2) ≈ 1 and γi = β(1− i

λ/2) for i ∈ [1..λ], (2)

where β is a positive number still to be determined. While not perfectly sym-
metric, essentially here x̃[i] and x̃[λ− i] have weights of opposite sign, hence γ0

is essentially one.
We compare this new EDA with the two classic ones UMDA and cGA with

optimized parameters. We do not regard the other two classic EDAs since with
their learning rate ρ they are structurally quite different and it is less understood
what are good parameter settings for these. We note that there is no indication
in the literature that the MMAS or PBIL with their slightly cautious learning
mechanism could outperform the other two algorithms on a simple unimodal
benchmark such as OneMax.

For the UMDA and cGA, we determine good parameter values as follows. For
the UMDA, we chose to fix λ as ⌊log n

√
n⌋ since both theoretical and experimen-

tal results show that this leads to good performances [38]. We use the same value
of λ for our EDA. Still for the UMDA, we set µ = ⌊λ/3⌋ as this gave the best
expected runtimes in the experiments we conducted to opitmize the parameters
of the UMDA. For cGA, the only parameters that needs to be determined is the
hypthetical population size K. From [11, Figure 1], we know that the expected
runtime of the cGA on OneMax is roughly a unimodal function in K.3 Since β
in our algorithm plays a similar role as K in the cGA (namely it regulates the
strength of the model update), we expect a similar unimodal dependence on β
for our algorithms, which we confirm in experiments. For that reason, for each
problem size n we determined the optimal values for K and β via ternary search.

Figure 1 displays the average (in 200 runs) runtime of these three algorithms
for different problems sizes. These results show that our general algorithm with
a gamma distribution that was not used in previous algorithms is about twice as
fast as the optimized UMDA and cGA. This suggest that it is not too difficult to
find in our broad class of univariate EDAs new algorithms which are significantly
faster than the classic algorithms.

LeadingOnes: We undertook a similar work for the LeadingOnes bench-
mark. In this function, the bits do not contribute independently to the fitness, so

3 We know that [27] proved that the runtime of the cGA on OneMax is not unimodal
in K when n is large enough, but apparently this asymptotic results becomes relevant
only for very large population sizes.

General Univariate Estimation-of-Distribution Algorithms 11

100 500 750 1,000
0

0.5

1

1.5
·104

cGA
UMDA

General EDA with (γi)i

Fig. 1. Average running times (in fitness evaluations) of cGA (with optimized value of
K), UMDA (with fixed λ = ⌊log n

√
n⌋ and optimized value µ = λ/3), and our general

algorithm with fixed gamma as in (2) and β optimized, on the OneMax benchmark
with problem size between n = 100 and n = 1000.

our considerations valid in the design of the EDA above are not valid anymore.
More detailedly, search points with low fitness reveal very little information how
good solutions look like. For this reason, we design our new EDA in the way
that such solutions are not taken into account for the model update. Without
any optimizing, we set the cutoff for this regime at λ/3, that is, we have γ̃i = 0
for all i > λ/3. For the remaining samples, we expect some positive information
towards the optimum, and again we expect this to be stronger for better solu-
tions, so we take γ̃i proportional to ⌊λ/3⌋ − (i− 1). With no particular reason,
we decided to define an EDA resembling the UMDA, that is, we take γ̃0 = 0 and

γ̃i =
⌊λ/3⌋ − (i− 1)

∑⌊λ/3⌋
j=1 ⌊λ/3⌋ − (j − 1)

(3)

for all i ∈ [1..λ/3].
In Figure 2, we experimentally compare the EDA just designed, the EDA

designed in the previous subsection, and the UMDA with parameters optimized
(for LeadingOnes) as described in the previous subsection. As expected, the
running time of our general algorithm with the (γi)i chosen in the previous
subsection is not very good (roughly by 25% worse that the UMDA). The EDA
just designed, however, beats the UMDA with optimized parameters by roughly
20%. This again shows that with moderately effort, one can find superior EDAs
in the class of univariate EDAs defined in this work.

We admit that the OneMax and LeadingOnes benchmarks are well-
understood, so designing a better univariate EDA for a complicated real-world
problem will require more work. Nevertheless, we are optimistic that using in-
tuitive ideas such as the ones above, e.g., a continuous dependence of the γi on
the rank i, together with some trial-and-error experimentation can lead to good
EDAs (better than the classic ones) also for more complex problems.

12 B. Doerr, M. Dufay

50 100 200 300 400 500
0

1

2

3

4
·105

General EDA with (γi)i

UMDA
General EDA with (γ̃i)i

Fig. 2. Average running times (in fitness evaluations) over 200 runs of the classic
UMDA (with optimized parameters) and the two EDAs designed in this section, on
LeadingOnes with problem size between n = 50 and n = 500. The γ̃i chosen with
consideration of elementary properties of LeadingOnes clearly outperform the other
two algorithms.

7 Conclusion

In this work, we proposed a general formulation of a univariate EDA. It cap-
tures the three main univariate EDAs and the MMAS ant colony optimizer with
iteration-best update. Our formulation allows to phrase proofs, so far conducted
individually for the different algorithms, in a unified manner. We demonstrate
this for a recent quantitative analysis of genetic drift. We are optimistic that our
formulation also allows to conduct some of the existing runtime analyses in a
unified manner. This would be particularly interesting as here many results have
been shown only for some of the classic algorithms, e.g., the runtime analyses on
the OneMax and Jump benchmarks as well as the results on noisy optimiza-
tion. However, given the high complexity of the existing analyses for particular
algorithms, this might be a challenging task.

Our general formulation also allows to define new univariate EDAs, which
might turn out to be superior to the existing ones. With intuitive arguments,
we define such EDAs and show experimentally that they beat existing EDAs
for the OneMax and LeadingOnes benchmarks. We are optimistic that this
approach can be profitable also for other optimization problems.

Acknowledgment

This work was supported by a public grant as part of the Investissements d’avenir
project, reference ANR-11-LABX-0056-LMH, LabEx LMH.

General Univariate Estimation-of-Distribution Algorithms 13

References

1. Auger, A., Doerr, B. (eds.): Theory of Randomized Search Heuristics. World Sci-
entific Publishing (2011)

2. Baluja, S.: Population-based incremental learning: A method for integrating ge-
netic search based function optimization and competitive learning. Tech. rep.,
Carnegie Mellon University (1994)

3. Benbaki, R., Benomar, Z., Doerr, B.: A rigorous runtime analysis of the 2-MMASib

on jump functions: ant colony optimizers can cope well with local optima. In:
Genetic and Evolutionary Computation Conference, GECCO 2021. pp. 4–13. ACM
(2021)

4. Dang, D., Lehre, P.K., Nguyen, P.T.H.: Level-based analysis of the univariate
marginal distribution algorithm. Algorithmica 81, 668–702 (2019)

5. Doerr, B.: The runtime of the compact genetic algorithm on Jump functions. Al-
gorithmica 83, 3059–3107 (2021)

6. Doerr, B., Dufay, M.: General univariate estimation-of-distribution algorithms. In:
Parallel Problem Solving From Nature, PPSN 2022. Springer (2022)

7. Doerr, B., Krejca, M.S.: Bivariate estimation-of-distribution algorithms can find an
exponential number of optima. In: Genetic and Evolutionary Computation Con-
ference, GECCO 2020. pp. 796–804. ACM (2020)

8. Doerr, B., Krejca, M.S.: A simplified run time analysis of the univariate marginal
distribution algorithm on LeadingOnes. Theoretical Computer Science 851, 121–
128 (2021)

9. Doerr, B., Krejca, M.S.: The univariate marginal distribution algorithm copes well
with deception and epistasis. Evolutionary Computation 29, 543–563 (2021)

10. Doerr, B., Neumann, F. (eds.): Theory of Evolutionary Computation—Recent
Developments in Discrete Optimization. Springer (2020), also available at
http://www.lix.polytechnique.fr/Labo/Benjamin.Doerr/doerr_neumann_book.html

11. Doerr, B., Zheng, W.: From understanding genetic drift to a smart-restart
parameter-less compact genetic algorithm. In: Genetic and Evolutionary Compu-
tation Conference, GECCO 2020. pp. 805–813. ACM (2020)

12. Doerr, B., Zheng, W.: Sharp bounds for genetic drift in estimation-of-distribution
algorithms. IEEE Transactions on Evolutionary Computation 24, 1140–1149
(2020)

13. Droste, S.: A rigorous analysis of the compact genetic algorithm for linear functions.
Natural Computing 5, 257–283 (2006)

14. Friedrich, T., Kötzing, T., Krejca, M.S.: EDAs cannot be balanced and stable. In:
Genetic and Evolutionary Computation Conference, GECCO 2016. pp. 1139–1146.
ACM (2016)

15. Friedrich, T., Kötzing, T., Krejca, M.S., Sutton, A.M.: Robustness of ant colony
optimization to noise. Evolutionary Computation 24, 237–254 (2016)

16. Friedrich, T., Kötzing, T., Krejca, M.S., Sutton, A.M.: The compact genetic algo-
rithm is efficient under extreme Gaussian noise. IEEE Transactions on Evolution-
ary Computation 21, 477–490 (2017)

17. Harik, G.R., Lobo, F.G., Goldberg, D.E.: The compact genetic algorithm. IEEE
Transactions on Evolutionary Computation 3, 287–297 (1999)

18. Hasenöhrl, V., Sutton, A.M.: On the runtime dynamics of the compact genetic
algorithm on jump functions. In: Genetic and Evolutionary Computation Confer-
ence, GECCO 2018. pp. 967–974. ACM (2018)

http://www.lix.polytechnique.fr/Labo/Benjamin.Doerr/doerr_neumann_book.html

14 B. Doerr, M. Dufay

19. Hauschild, M., Pelikan, M.: An introduction and survey of estimation of distribu-
tion algorithms. Swarm and Evolutionary Compututation 1, 111–128 (2011)

20. Jansen, T.: Analyzing Evolutionary Algorithms – The Computer Science Perspec-
tive. Springer (2013)

21. Juels, A., Baluja, S., Sinclair, A.: The equilibrium genetic algorithm and the role
of crossover (1993), unpublished

22. Krejca, M., Witt, C.: Theory of estimation-of-distribution algorithms. In: Doerr,
B., Neumann, F. (eds.) Theory of Evolutionary Computation: Recent Develop-
ments in Discrete Optimization, pp. 405–442. Springer (2020), also available at
https://arxiv.org/abs/1806.05392

23. Krejca, M.S.: Theoretical Analyses of Univariate Estimation-of-Distribution Algo-
rithms. Ph.D. thesis, Universität Potsdam (2019)

24. Krejca, M.S., Witt, C.: Lower bounds on the run time of the Univariate Marginal
Distribution Algorithm on OneMax. Theoretical Computer Science 832, 143–165
(2020)

25. Larrañaga, P., Lozano, J.A. (eds.): Estimation of Distribution Algorithms. Genetic
Algorithms and Evolutionary Computation, Springer (2002)

26. Lehre, P.K., Nguyen, P.T.H.: On the limitations of the univariate marginal distribu-
tion algorithm to deception and where bivariate EDAs might help. In: Foundations
of Genetic Algorithms, FOGA 2019. pp. 154–168. ACM (2019)

27. Lengler, J., Sudholt, D., Witt, C.: The complex parameter landscape of the com-
pact genetic algorithm. Algorithmica 83, 1096–1137 (2021)

28. McDiarmid, C.: Concentration. In: Probabilistic Methods for Algorithmic Discrete
Mathematics, vol. 16, pp. 195–248. Springer, Berlin (1998)

29. Mühlenbein, H., Paass, G.: From recombination of genes to the estimation of dis-
tributions I. Binary parameters. In: Parallel Problem Solving from Nature, PPSN
1996. pp. 178–187. Springer (1996)

30. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization
– Algorithms and Their Computational Complexity. Springer (2010)

31. Ollivier, Y., Arnold, L., Auger, A., Hansen, N.: Information-geometric optimiza-
tion algorithms: A unifying picture via invariance principles. Journal of Machine
Learning Research 18, 1–65 (2017)

32. Pelikan, M., Hauschild, M., Lobo, F.G.: Estimation of distribution algorithms. In:
Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelli-
gence, pp. 899–928. Springer (2015)

33. Shapiro, J.L.: The sensitivity of PBIL to its learning rate, and how detailed balance
can remove it. In: Foundations of Genetic Algorithms, FOGA 2002. pp. 115–132.
Morgan Kaufmann (2002)

34. Shapiro, J.L.: Drift and scaling in estimation of distribution algorithms. Evolution-
ary Computing 13, 99–123 (2005)

35. Shapiro, J.L.: Diversity loss in general estimation of distribution algorithms. In:
Parallel Problem Solving from Nature, PPSN 2006. pp. 92–101. Springer (2006)

36. Stützle, T., Hoos, H.H.: MAX-MIN ant system. Future Generation Computer Sys-
tems 16, 889–914 (2000)

37. Sudholt, D., Witt, C.: On the choice of the update strength in estimation-of-
distribution algorithms and ant colony optimization. Algorithmica 81, 1450–1489
(2019)

38. Witt, C.: Upper bounds on the running time of the univariate marginal distribution
algorithm on OneMax. Algorithmica 81, 632–667 (2019)

https://arxiv.org/abs/1806.05392

General Univariate Estimation-of-Distribution Algorithms 15

39. Witt, C.: On crossing fitness valleys with majority-vote crossover and estimation-
of-distribution algorithms. In: Foundations of Genetic Algorithms, FOGA 2021.
pp. 2:1–2:15. ACM (2021)

40. Zlochin, M., Birattari, M., Meuleau, N., Dorigo, M.: Model-based search for com-
binatorial optimization: A critical survey. Annals of Operations Research 131,
373–395 (2004)

16 B. Doerr, M. Dufay

A Appendix

This appendix contains the mathematical proofs which had to be omitted in the
main paper for reasons of space. They are given here only in case a reviewer wants
to access them. The paper without this appendix is our submission to PPSN and
we feel that it is perfectly accessible without this appendix. Nevertheless, upon
acceptance, we will make a version including this appendix available on the arxiv
preprint server.

A.1 Proof of Lemma 1

Proof. It suffices to show that for all t ≥ 0, we have

E[pt+1(1 − pt+1) | pt] =

(

1−
λ
∑

i=1

γ2
i

)

pt(1− pt). (4)

Let t ≥ 0. Using the fact that (pt)t≥0 is a martingale, we have

E[pt+1(1− pt+1) | pt] = E[pt+1 | pt]− E[p2
t+1 | pt]

= E[pt+1 | pt]−
(

E[p2
t+1 | pt]− E[p2

t+1 | pt]
2 + E[p2

t+1 | pt]
2
)

= E[pt+1 | pt](1− E[pt+1 | pt])−Var(pt+1 | pt)

= pt(1− pt)−Var(pt+1 | pt).

Moreover, conditionally to the value of pt, the (xt
i)i∈[1..λ] are independent

Bernoulli random variable, each of parameter pt. Therefore

Var(pt+1 | pt) = Var

(

γ0pt +

λ
∑

i=1

γix
t
i | pt

)

= γ2
0Var(pt | pt) +

λ
∑

i=1

γ2
i Var(xt

i | pt)

= 0 +

λ
∑

i=1

γ2
i pt(1− pt).

Using the two previous equations, we obtain the desired result

E[pt+1(1 − pt+1) | pt] =

(

1−
λ
∑

i=1

γ2
i

)

pt(1− pt).

A.2 Proof of Lemma 2

Proof. For t ≥ 0, let

dt = min(pt, 1− pt).

General Univariate Estimation-of-Distribution Algorithms 17

For all t ≥ 0, we have dt ∈ [0, 1/2]. Thus dt ≤ 2pt(1− pt) and

E[dt] ≤ 2E[pt(1− pt)].

Using the previous lemma, because a martingale preserves the expectancy, we
have

E







pt(1− pt)
(

1−
∑λ

i=1 γ2
i

)t






= E







p0(1 − p0)
(

1−∑λ
i=1 γ2

i

)0







= 1/4.

Therefore

E[dt] ≤ 2E[pt(1− pt)]

=
1

2

(

1−
λ
∑

i=1

γ2
i

)t

.

Because we have the event inclusion {dt < 1/3} ⊂ {TL ≤ t} and using a Markov
inequality on TL, we obtain

P [TL ≤ t] ≥ P [dt < 1/3]

> 1− 3E[dt]

≥ 1− 3

2

(

1−
λ
∑

i=1

γ2
i

)t

.

Therefore we have P [TL ≥ t + 1] ≤ 3
2

(

1−∑λ
i=1 γ2

i

)t

. Because TL takes integer

values, we can obtain an upper bound on its expectancy

E[TL] =

+∞
∑

t=1

P [TL ≥ t]

≤
+∞
∑

t=0

3

2

(

1−
λ
∑

i=1

γ2
i

)t

=
3

2

1

1−
(

1−∑λ
i=1 γ2

i

)

=
3

2
(

∑λ
i=1 γ2

i

)

= O
(

1
∑λ

i=1 γ2
i

)

.

We note that we got this result using simple bounds and theorems. We can also
find a slightly stronger result by applying the log function to the martingale to
obtain a supermartingale then using Doob’s optional sampling theorem.

18 B. Doerr, M. Dufay

A.3 Proof of Lemma 3

We will use the following Hoeffding-Azuma inequality for maxima [28, Theorem
3.10 and (41)].

Lemma 4. Let a1, . . . , am ∈ R and S1, . . . , Sm+1 be a martingale with |Sk+1 −
Sk| ≤ ak for k ∈ [1..m]. Then for all δ ≥ 0, we have

P

[

max
k=1..m+1

|Sk − S1| ≥ δ

]

≤ 2 exp

(

− δ2

2
∑m

i=1 a2
i

)

.

Proof (of lemma 3). (pt) is a martingale, but the difference between two consec-
utive values (|pt+1− pt|) is too big to reach our result, instead we will construct
a new martingale sequence whose values are closer to each other. For t ≥ 0 and
k ∈ [0..λ], we set

qλt+k = pt

(

1−
k
∑

i=1

γi

)

+
k
∑

i=1

γix
i
t+1.

Even though qλ(t+1) = qλt+λ is defined in two different ways, these two def-
initions yield the same result. For t ≥ 0, we have qλt = pt. Also for all
t ≥ 0, k ∈ [1..λ], we have

|qλt+k − qλt+k−1| ≤ γk.

Moreover, q0 = 1/2 and we saw in the previous proof that (qi) is a martingale,
therefore we can apply lemma 4 on (qi). For all T ∈ N, δ ≥ 0

P [∃t ∈ [0..T], |pt − 1/2| ≥ δ] ≤ P

[

max
i=0..λt

|qi − q0| ≥ δ

]

≤ 2 exp

(

− δ2

2
∑T

k=1

∑λ
i=1 γ2

i

)

= 2 exp

(

− δ2

2T
∑λ

i=1 γ2
i

)

.

	General Univariate Estimation-of-Distribution Algorithms

