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Abstract

In this survey article, we present the authors’ main results concerning the Complex Dimensions
of the Weierstrass Curve, along with their links with the associated fractal cohomology, as developed
in our previous papers [DL22b], [DL22c]. Our results shed new light on the theory and the inter-
pretation of Complex Fractal Dimensions, insofar as we envision the fractal Complex Dimensions
as dynamical quantities, which evolve with the scales. Accordingly, we define the Complex Dimen-
sions of the Weierstrass Curve as the set of the Complex Dimensions of the sequence of Weierstrass
Iterated Fractal Drums which converge to the Curve. By means of fractal tube formulas, we then
obtain the associated Weierstrass fractal zeta functions, whose poles yield the set of possible Com-
plex Dimensions. In particular, we show that the Complex Dimensions are periodically distributed
along countably many vertical lines, with the same oscillatory period. As expected, the Minkowski
(or box-counting) dimension is the Complex Dimension with maximal real part, and zero imaginary
part. We then show how those Dimensions are connected to the cohomological properties of the
Curve: the elements of the cohomology groups related to the Curve are obtained, by induction, as
sums indexed by the cohomological Complex Dimensions. We explicitly determine both the infinite
sequence of prefractal cohomology spaces and the corresponding inductive limit, the fractal (or to-
tal) cohomology space of the Weierstrass Curve. In particular, we show that the elements of these
cohomology spaces – viewed as suitable continuous functions on the Curve – admit a fractal power
series expansion taken over the cohomological Complex Dimensions, that are akin to Taylor-like
expansions.
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1 Introduction

The Weierstrass Function is mainly known as one of those so-called “pathological objects”, continu-

ous everywhere, while nowhere differentiable. Given λ ∈ ]0, 1[, and an odd integer b such that λ b > 1 +
3π

2
,

it has been introduced by K. Weierstrass [Wei75], as the sum of the uniformly convergent trigonometric
series

x ∈ R↦
∞

∑
n=0

λ
n

cos (π bn x) .

We refer to [Tit39] (pages 351–353) for an exposition of the original proof, which was then com-
pleted by G. H. Hardy [Har16], in the more general case, where b is any real number such that λ b > 1.

Yet, beyond this property of nowhere differentiability, the associated Curve is also of great interest,
due to its self-similarity properties: the Curve is a fractal, as evoked, for instance, by Benôıt Mandel-
brot in his famous books [Man77], [Man83]. Impressively, Mandelbrot guessed, in a purely intuitive

way, the exact value of the associated Hausdorff dimension, i.e., DW = 2 +
lnλ

ln b
, thereby joining the

cohort of the great mathematical conjectures. “Comment certains mathématiciens sont parvenus à
une conjecture, cela s’apparente à un saut dans le vide ” – “How some mathematicians came to a con-
jecture is akin to a leap into the void”, as stated by the French mathematician Martin Andler [Cul20].

From this perspective, the main topic that interested the mathematical community has long been
the determination of the box-counting dimension – or Minkowski dimension, of the Curve, as it can
be found in the existing literature on the subject, from discussions in Falconer’s book [Fal86], or
results by J.-L. Kaplan, J. Mallet-Paret and J. A. Yorke [KMPY84], involving Fourier analysis and
tools from the theory of dynamical systems. One should also cite the works of F. Przytycki and
M. Urbański [PU89], T.-Y. Hu and K.-S. Lau [HL93], followed, in the case of the Hausdorff di-
mension, by B. Hunt [Hun98], who also examined the random case. Further results concerning the
Hausdorff dimension have been obtained by K. Barańsky, B. Bárány and J. Romanowska [BBR14],
then, by W. Shen [She18] (in the general case), and G. Keller [Kel17].

The specific question of the box-counting dimension is of importance. It has been considered from
a geometric point of view by the first author in [Dav18], in the case when b = Nb is an integer, where,
by contrast to existing work, it is proposed that it can be obtained in a simple way, without requiring
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theoretical background in the theory of dynamical systems. More recently, Mandelbrot’s conjecture
– interpreted in terms of the box-counting dimension or, equivalently, of the Minkowski dimension of
the Weierstrass Curve – has been rigorously established in [DL23b] (announced in [DL23a]), building
on loc. cit. and using new methods relying on suitable polyhedral neighborhoods of the Curve. This
is not all. It appears to be deeply linked to the non-differentiability property of the function. One
might then want to go further, and question the operators at stake: maybe there is a way to obtain
new ones, fitted to this singular object, that would make differentiation possible?

This is where the theory of Complex Dimensions comes into play. Developed for many years now by
M. L. Lapidus and his collaborators, for example in [Lap91], [Lap92], [Lap93], [LP93], [LM95], [LP06], [Lap08], [LPW11], [LvF06],
[LvF13], [LRŽ17a], [LRŽ17b], [LRŽ18], [Lap19], [HL21], [Lap24], it makes the connection between the
geometry of an object and its differentiability properties. This is done by means of geometric (or
fractal) zeta functions, which stand for the trace of the differential operator at a complex order s.
The Complex Dimensions are obtained as the poles of those fractal zeta functions. They account, in
particular, for the maximal order of differentiation, which coincides with the Minkowski dimension of
the compact set under study. Usually, the Minkowski (or box-counting) dimension) coincides with the
maximum value of the associated real parts.

With regard to fractals, the determination of the Complex Dimensions of the Weierstrass Curve
was, until now, an open problem (see [LRŽ17b], Problem 6.2.24, page 560), that we recently solved
in [DL22b] (and further investigated from a polyhedral point of view in [DL23b]). The required geo-
metric zeta functions are local and global fractal tube zeta functions, obtained by means of so-called
Weierstrass Iterated Fractal Drums; i.e., tubular neighborhoods of prefractal polygonal approxima-
tions of the Curve. The main difficulty was to handle the nonlinear features at stake, since, contrary
to classical fractals such as, for instance, the Koch Curve, the Weierstrass Curve is obtained by means
of a suitable nonlinear and noncontractive iterated function system (i.f.s.); see [Dav18]. The i.f.s. is
essential: fractals are usually obtained as limits of so-called prefractals, i.e., a sequence of finite graphs
that converge towards them. In our case, nonlinearity makes the geometry especially complicated; in
particular, one cannot obtain the exact values of the underlying elementary lengths and angles.

In order to deal with those difficulties, we had to rely on geometrical properties that had never
been obtained previously:

i. Explicit lower and upper bounds for the elementary lengths, in relation with the Hölder and
anti-Hölder (or reverse Hölder) properties of the Weierstrass function.

ii. Nonincreasing property for the sequence of geometric angles.

iii. Conditions under which there exist reentrant angles.

Regarding the Complex Dimensions, in the case when b = Nb is an integer, we have obtained the
following key results:

i. In Corollary 2.5, on page 9 and Theorem 2.7, on page 10 along with Corollary 2.3, on page 10,
where we prove the sharp Hölder continuity, and sharp local reverse Hölder continuity, with
optimal Hölder exponent

2 −DW = αW =

ln 1
λ

lnNb
∈ (0, 1)

for the Weierstrass function.
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ii. For a suitable sequence of very small values of the positive parameter ε, called the cohomology
infinitesimal (see Definition 3.1, on page 11) the expression of the ε-neighborhood of the Curve
– a Weierstrass Fractal Tube Formula, which involves an expansion of the form

∑
α real part of a Complex Dimension

ε
2−α

Gα (lnNb
(1
ε)) , (⋆)

where, for any real part α of a Complex Dimension, Gα denotes a continuous and periodic func-
tion. Furthermore, for α = αmax = DW , the Minkowski dimension of the Curve – i.e., for α being
the maximal real part of the Complex Dimensions – Gαmax

is nonconstant, as well as bounded
away from zero and infinity. See Theorem 4.2, on page 19, and Theorem 4.5, on page 24.

iii. The values of the possible Complex Dimensions of the Weierstrass Curve (or, rather, of the
associated Weierstrass iterated fractal drum), defined as the poles of the associated tube zeta
function. In particular, we show that the Complex Dimensions different from −2 are periodi-
cally distributed along countably many vertical lines, with abscissae DW − k (2 −DW), 1 − 2 k,
where k in N is arbitrary. (Here, and hencefort, N = {0, 1, 2, . . .}.) Furthermore, all of the Com-

plex Dimensions (different from −2) have the same oscillatory period p =
2π

lnNb
. Moreover, −2

is also a possible Complex Dimensions. See Theorem 4.4, on page 24.

iv. The existence of the global effective tube zeta function and the determination of the corre-
sponding exact intrinsic Complex Dimensions (Definition 4.3, on page 24, and Theorem 4.4, on
page 24).

v. The nondegeneracy, in the Minkowski sense (see [LRŽ17b], but still with a suitable adaptation
here), of the Curve, which comes from the fact that the lower and upper Minkowski contents of
the Curve are respectively positive and finite. See Theorem 4.6, on page 27, along with Corol-
lary 4.7, on page 28.

vi. As a corollary, the fact that the number DW is a Complex Dimension of the Curve, and coincides
with the Minkowski dimension (which then exists) of the Curve, and takes the expected value, as

given by Mandelbrot’s conjecture; namely,DW = 2 −
ln 1

λ

lnNb
∈ (1, 2), whereNb = b ∈ N⋆ = N \ {0}.

See Corollary 4.7, on page 28.

vii. The fractality of the Weierstrass Curve, in the sense of [LvF00], [LvF06], [LvF13],
[LRŽ17b], [Lap19]; i.e., the existence of nonreal Complex Dimensions (with real part DW) giving
rise to geometric oscillations, in the Fractal Tube Formula obtained in [DL22b]. In the terminol-
ogy of [LvF13] and [LRŽ17b], the Weierstrass Curve is fractal in countably many dimensions dk,
with dk → −∞, as k →∞.

Beyond these results, we have studied the links with a fractal cohomogy, a natural feature, in so far
as discrete differences are deeply connected with differentiation (see the paper on h-Cohomology [DL23d]).
We place ourselves within a completely different framework from the one that can be found, for in-
stance, in the work by Marius Ionescu, Luke G. Rogers and Alexander Teplyaev in [IRT12], and which is
based on the construction of Fredholm modules. Along the lines of previous results obtained or conjec-
tured about fractal cohomology by the second author and his collaborators in [LvF00], [LvF06], [Lap08],
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[LvF13], [CL17], [Lap19] and [Lap24], we have obtained the following key results:

i. In Theorem 5.3, on page 32, where we prove that the cohomology groups associated to the
Weierstrass Curve consist of continuous functions on the Weierstrass Curve, satisfying fractal
expansions expressed as sums indexed by the underlying (cohomological) Complex Dimensions.
Such a result had not been established (or even expected) before.

ii. In Theorem 5.4, on page 36 which gives the total cohomology of the Weierstrass Curve, in terms
of Taylor-like expansions, again indexed by the underlying (cohomological) Complex Dimensions.

The aim of the present paper, which is a survey article, is to present those results in a summa-
rized form. Hence, we will not give detailed proofs, which can be found in the original texts [DL22b],
and [DL22c].

Section 2 is devoted to the geometric framework. The next one, Section 3, gives the expression of
the tubular neighborhood of the Curve, from which one deduces, in Section 4, the tube zeta function,
and the values of the possible Complex Dimensions. The fractal cohomology is discussed in Section 5,
where we also show, as could be expected, that the Weierstrass function W belongs to the total
cohomology of the Weierstrass Curve.

2 Geometric Framework

Henceforth, we place ourselves in the Euclidean plane, equipped with a direct orthonormal frame.
The usual Cartesian coordinates are denoted by (x, y). The horizontal and vertical axes will be re-
spectively referred to as (x′x) and (y′y).

Notation 1 (Set of all Nonnegative Integers, and Intervals). As in Bourbaki [Bou04] (Ap-
pendix E. 143), we denote by N = {0, 1, 2, . . .} the set of all nonnegative integers, and set N⋆ = N \ {0}.

Given a, b with −∞ ⩽ a ⩽ b ⩽ +∞, ]a, b[ = (a, b) denotes an open interval, while, for exam-
ple, ]a, b] = (a, b] denotes a half-open, half-closed interval.

Notation 2 (Wave Inequality Symbol). Given two positive-valued functions f and g, defined on
a subset I of R, we use the following notation, for all x ∈ I: f(x) ≲ g(x) when there exists a strictly
positive constant C such that, for all x ∈ I, f(x) ⩽ C g(x).

Notation 3 (Weierstrass Parameters).

In the sequel, λ and Nb are two real numbers such that

0 < λ < 1 , Nb ∈ N⋆ and λNb > 1 .

Note that this implies that Nb > 1 (i.e., Nb ⩾ 2).

Definition 2.1 (Weierstrass Function, Weierstrass Curve). We consider the Weierstrass func-
tion W, defined, for any real number x, by

W(x) =
∞

∑
n=0

λ
n

cos (2πNn
b x) .

We call the associated graph the Weierstrass Curve.
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Due to the periodic properties of the W function, from now on, we restrict our study to the
interval [0, 1[= [0, 1) (or, equivalently, to [0, 1]). Accordingly, the Weierstrass Curve ΓW is viewed as
a compact subset of R2

.

Notation 4 (Logarithm). Given y > 0, ln y denotes the natural logarithm of y, while, given a > 1, lna y =
ln y

ln a
denotes the logarithm of y in base a; so that, in particular, ln = lne.

Notation 5. For the parameters λ and Nb satisfying the indicated hypotheses earlier in this section,
we denote by

DW = 2 +
lnλ

lnNb
= 2 − lnNb

1

λ
∈ ]1, 2[

the box-counting dimension (or Minkowski dimension) of the Weierstrass Curve ΓW , which happens
to be equal to its Hausdorff dimension [KMPY84], [BBR14], [She18],
[Kel17]. Our later results in [DL23b], [DL23a] also provide a direct and rigorous proof of the fact
that DW , the Minkowski dimension (or box-counting dimension) of ΓW , exists and takes the above
value.

Convention (The Weierstrass Curve as a Cyclic Curve)
In the sequel, we identify the points (0,W(0)) and (1,W(1)) = (1,W(0)). This is justified by the

fact that the Weierstrass function W is 1-periodic, since Nb is an integer.

Remark 2.1 (Nonlinear and Noncontractive Iterated Function System (i.f.s.)). Following
our previous work [Dav18], we approximate the restriction ΓW to [0, 1[×R, of the Weierstrass Curve,
by a sequence of finite graphs, built via an iterative process. For this purpose, we use the nonlinear
iterated function system of the family of C

∞
maps from R2

to R2
denoted by

TW = {T0, . . . , TNb−1} ,

where, for any integer i belonging to {0, . . . , Nb − 1} and any point (x, y) of R2
,

Ti(x, y) = (x + i
Nb

, λ y + cos (2π (x + i
Nb

))) .

We point out that those maps are not contractions (see [Dav19]). Yet, they correspond, in a sense,
to the composition of a contraction of ratio rx in the horizontal direction, and a dilatation of factor ry
in the vertical one, with

rx ry < 1 .

Proposition 2.1 (Attractor of the i.f.s. [Dav18], [Dav19]).

The Weierstrass Curve is the attractor of the i.f.s. TW :

ΓW =

Nb−1

⋃
i=0

Ti(ΓW) .

Notation 6 (Fixed Points).

For any integer i belonging to {0, . . . , Nb − 1}, we denote by:

Pi = (xi, yi) = ( i

Nb − 1
,

1

1 − λ
cos ( 2π i

Nb − 1
))

the unique fixed point of the map Ti; see [Dav19].
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Definition 2.2 (Sets of Vertices, Prefractals).

We denote by V0 the ordered set (according to increasing abscissae), of the points

{P0, . . . , PNb−1} .
The set of points V0 – where, for any i of {0, . . . , Nb − 2}, the point Pi is linked to the point Pi+1 –

constitutes an oriented graph, according to increasing abscissae, that we will denote by ΓW0
. Then, V0

is called the set of vertices of the graph ΓW0
.

For any positive integer m, i.e., for m ∈ N⋆, we set Vm =

Nb−1

⋃
i=0

Ti (Vm−1).

The set of points Vm, where two consecutive points are linked, is an oriented graph, according to
increasing abscissae, called them

th W-prefractal (orm
th

prefractal approximation to ΓW). Then, Vm
is called the set of vertices of the m

th
prefractal graph ΓWm

; see Figure 1, on page 44.

Definition 2.3 (Adjacent Vertices, Edge Relation). For anym ∈ N, them
th

prefractal graph ΓWm

is equipped with an edge relation ∼
m

, as follows: two vertices X and Y of ΓWm
, i.e. two points be-

longing to Vm are said to be adjacent (i.e., neighboring or junction points) if and only if the line
segment [X,Y ] is an edge of ΓWm

; we then write X ∼
m
Y . Note that this edge relation depends on m,

which means that points adjacent in Vm might not remain adjacent in Vm+1.

Proposition 2.2. [Dav18]
For any m ∈ N, the following statements hold :

i. Vm ⊂ Vm+1 .

ii. #Vm = (Nb − 1) Nm
b + 1 .

iii. The m
th

prefractal graph ΓWm
has exactly (Nb − 1) Nm

b edges.

iv. The consecutive vertices of the prefractal graph ΓWm
are the vertices of N

m
b simple polygons Pm,k.

For any integer m ∈ N⋆, the junction point between two consecutive polygons is the point

Pm,k ∩ Pm,k+1 = {( (Nb − 1) k
(Nb − 1)Nm

b

,W ( (Nb − 1) k
(Nb − 1)Nm

b

))} , 1 ⩽ k ⩽ N
m
b − 1 .

Hence, the total number of junction points is N
m
b − 1. For instance, in the case Nb = 3, one gets

triangles; see Figure 2, on page 45.

In the sequel, we will denote by P0 the initial polygon, whose vertices are the fixed points of
the maps Ti, 0 ⩽ i ⩽ Nb − 1, introduced in Definition 2.2, on page 7, i.e., {P0, . . . , PNb−1}.

Definition 2.4 (Vertices of the Prefractals, Elementary Lengths, Heights and Angles).

Given a strictly positive integer m, we denote by (Mj,m)0⩽j⩽(Nb−1)Nm
b

the set of vertices of

the prefractal graph ΓWm
. One thus has, for any integer j in {0, . . . , (Nb − 1)Nm

b },

Mj,m = ( j

(Nb − 1)Nm
b

,W ( j

(Nb − 1)Nm
b

)) .

We also introduce, for any integer j in {0, . . . , (Nb − 1)Nm
b − 1}, the following quantities:
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i. the elementary horizontal lengths:

Lm =
1

(Nb − 1)Nm
b

;

ii. the elementary lengths:

lj,j+1,m = d (Mj,m,Mj+1,m) =
√
L2
m + h

2
j,j+1,m ,

where hj,j+1,m is defined in iii. just below.

iii. the elementary heights:

hj−1,j,m =

»»»»»»»»
W ( j

(Nb − 1)Nm
b

) −W ( j − 1

(Nb − 1)Nm
b

)
»»»»»»»»
,

hj,j+1,m =

»»»»»»»»
W ( j + 1

(Nb − 1)Nm
b

) −W ( j

(Nb − 1)Nm
b

)
»»»»»»»»
;

iv. the minimal height:

h
inf
m = inf

0⩽j⩽(Nb−1)Nm
b −1

hj,j+1,m , (1)

along with the maximal height:

hm = sup
0⩽j⩽(Nb−1)Nm

b −1

hj,j+1,m , (2)

v. the geometric angles:

θj−1,j,m = ̂((y′y), (Mj−1,mMj,m)) , θj,j+1,m = ̂((y′y), (Mj,mMj+1,m)) ,

where (y′y) denotes the vertical axis, which yield the following value of the geometric angle
between consecutive edges, namely, [Mj−1,mMj,m,Mj,mMj+1,m], with arctan = tan

−1
:

θj−1,j,m + θj,j+1,m = arctan
Lm

hj−1,j,m
+ arctan

Lm
hj,j+1,m

.

(Note that, of course, θj−1,j,m = arctan
Lm

hj−1,j,m
and θj,j+1,m = arctan

Lm
hj,j+1,m

.)

Proposition 2.3 (Scaling Properties of the Weierstrass Function [DL22b]). For any strictly
positive integer m and any j in {0, . . . ,#Vm},

W ( j

(Nb − 1)Nm
b

) = λmW ( j

(Nb − 1)) +
m−1

∑
k=0

λ
k

cos( 2πN
k
b j

(Nb − 1)Nm
b

) .

Proposition 2.4 (Explicit Lower and Upper Bounds for the Elementary Heights [DL22b]).

For any strictly positive integer m, and any j in {0, . . . , (Nb − 1)Nm
b },

Cinf L
2−DW
m ⩽ ∣W ((j + 1)Lm) −W (j Lm)∣

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
hj,j+1,m

⩽ Csup L
2−DW
m ,

where the finite and positive constants Cinf and Csup are given by
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Cinf = (Nb − 1)2−DW min
0⩽j⩽Nb−1,W( j+1

Nb−1
)≠W( j

Nb−1
)

»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»

and

Csup = (Nb − 1)2−DW ( max
0⩽j⩽Nb−1

»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»
+

2π

(Nb − 1) (λNb − 1)) .

One should note, in addition, that these constants Cinf and Csup depend on the initial polygon P0.

Corollary 2.5 (of Proposition 2.4). For any strictly positive integer m and any integer j in {0, . . . , (Nb − 1)Nm
b − 1},

one then has, for the elementary heights,

hj−1,j,m = L
2−DW
m O (1) ,

where Cinf ⩽ O (1) ⩽ Csup.
Proposition 2.6 ([DL22b]). Given any strictly positive integer m, we have the following properties:

i. For any j in {0, . . . ,#Vm}, the point

( j

(Nb − 1)Nm
b

,W ( j

(Nb − 1)Nm
b

))

is the image of the point

( j

(Nb − 1)Nm−1
b

− i,W ( j

(Nb − 1)Nm−1
b

− i)) =

= (j − i (Nb − 1)Nm−1
b

(Nb − 1)Nm−1
b

,W (j − i (Nb − 1)Nm−1
b

(Nb − 1)Nm−1
b

))

under the map Ti, for each integer i such that 0 ⩽ i ⩽ Nb − 1.

Consequently, for 0 ⩽ j ⩽ Nb − 1, the j
th

vertex of the polygon Pm,k, 0 ⩽ k ⩽ N
m
b − 1, i.e.,

the point

((Nb − 1) k + j
(Nb − 1)Nm

b

,W ((Nb − 1) k + j
(Nb − 1)Nm

b

)) ,

is the image of the point

⎛
⎜
⎝
(Nb − 1) (k − i (Nb − 1)Nm−1

b ) + j
(Nb − 1)Nm−1

b

,W
⎛
⎜
⎝
(Nb − 1) (k − i (Nb − 1)Nm−1

b ) + j
(Nb − 1)Nm−1

b

⎞
⎟
⎠
⎞
⎟
⎠
,

which is also the j
th

vertex of the polygon Pm−1,k−i (Nb−1)Nm−1
b

. Therefore, there is an exact
correspondance between vertices of the polygons at consecutive steps m − 1, m.

ii. Given j in {0, . . . , Nb − 2} and k in {0, . . . , N
m
b − 1}, we have that

sgn (W (k (Nb − 1) + j + 1

(Nb − 1)Nm
b

) −W (k (Nb − 1) + j
(Nb − 1)Nm

b

)) =

= sgn (W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)) .
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Theorem 2.7 (Sharp Local Discrete Reverse Hölder Properties of the Weierstrass Func-
tion [DL22b]). For any natural integer m, let us consider a pair of real numbers (x, x′) such that:

x =
(Nb − 1) k + j
(Nb − 1)Nm

b

= ((Nb − 1) k + j) Lm ,

x
′
=

(Nb − 1) k + j + `
(Nb − 1)Nm

b

= ((Nb − 1) k + j + `) Lm ,

where 0 ⩽ k ⩽ N
m
b − 1, and

i. if the integer Nb is odd,

0 ⩽ j <
Nb − 1

2
and 0 < j + ` ⩽

Nb − 1

2

or

Nb − 1

2
⩽ j < Nb − 1 and

Nb − 1

2
< j + ` ⩽ Nb − 1 ;

ii. if the integer Nb is even,

0 ⩽ j <
Nb

2
and 0 < j + ` ⩽

Nb

2

or

Nb

2
+ 1 ⩽ j < Nb − 1 and

Nb

2
+ 1 < j + ` ⩽ Nb − 1 .

This means that the points (x,W(x)) and (x′,W(x′)) are vertices of the polygon Pm,k (see Propo-
sition 2.2, on page 7), both located on the left side of the polygon, or both located on the right side (see
Figure 3, on page 45).

Then, one has the following reverse-Hölder inequality, with sharp Hölder exponent −
lnλ

lnNb
= 2 −DW ,

Cinf ∣x′ − x∣2−DW
⩽

»»»»»W(x′) −W(x)»»»»» .

Remark 2.2. It is clear that, for any natural integer m, and any pair ((x,W(x)) , (x′,W(x′))) of
adjacent vertices of the finite prefractal graph ΓWm

, the same following (discrete, local) Hölder and

reverse-Hölder inequality, with sharp Hölder exponent −
lnλ

lnNb
= 2 −DW , holds; i.e., still with Cinf

and Csup given as in Proposition 2.4, on page 8 above, we have that

Cinf ∣x′ − x∣2−DW
⩽

»»»»»W(x′) −W(x)»»»»» ⩽ Csup ∣x
′
− x∣2−DW .

Remark 2.3. Thus far, no such reverse Hölder estimates had been obtained for the Weierstrass func-
tion. The fact that they are discrete ones is natural, since the Weierstrass Curve is approximated by
a sequence of polygonal prefractal graphs.

Corollary 2.8 (Optimal Hölder Exponent for the Weierstrass Function [DL22b]). The
local reverse Hölder property of Theorem 2.7, on page 10, in conjunction with the Hölder condition
satisfied by the Weierstrass function (see [Zyg02], Chapter II, Theorem 4.9, page 47), shows that the

Codimension 2 −DW = −
lnλ

lnNb
is the best (i.e., optimal) Hölder exponent for the Weierstrass function.
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Corollary 2.9 (Coming from Proposition 2.6, on page 9). Thanks to Proposition 2.4, on page 8,
and Corollary 2.5, on page 9, one may now write, for any strictly positive integer m and any integer j
in {0, . . . , (Nb − 1)Nm

b − 1}:

i. for the elementary heights:

hj−1,j,m = L
2−DW
m O (1) ; (3)

ii. for the elementary quotients:

hj−1,j,m

Lm
= L

1−DW
m O (1) , (4)

and where

0 < Cinf ⩽ O (1) ⩽ Csup .

Corollary 2.10 (Nonincreasing Sequence of Geometric Angles). For the geometric an-
gles θj−1,j,m, 0 ⩽ j ⩽ (Nb − 1)Nm

b , m ∈ N, we have the following property:

θj−1,j,m > θj−1,j,m+1 and θj−1,j,m+1 ≲ L
DW−1
m .

3 Iterated Fractal Drums and Tubular Neighborhood of the Weier-
strass IFD

We introduce here the notion of an iterated fractal drum (IFD), which is well suited to the present
setting – and, as we expect, to many other complicated examples of fractal curves and of their higher-
dimensional analogs. As we will see, it is defined in terms of a suitably adapted sequence of tubular
neighborhoods, which can be thought of as a sequence of scales.

Notation 7 (Euclidean Distance).

In the sequel, we denote by d the Euclidean distance on R2
.

Our results on fractal cohomology obtained in [DL22c] have highlighted the part played by specific
threshold values for the number ε > 0 at any step m ∈ N of the prefractal graph approximation;
namely, the m

th
cohomology infinitesimal introduced in Definition 3.1, on page 11 just below.

Definition 3.1 (m
th

Cohomology Infinitesimal [DL22b], [DL22c] and m
th

Intrinsic Co-

homology Infinitesimal [DL23b], [DL23a]). From now on, given any m ∈ N, we will call m
th

cohomology infinitesimal the number ε
m
m > 0 which also corresponds to the elementary horizontal

length introduced in part i. in Definition 2.4, on page 7; i.e., ε
m
m = (εm)m =

1

Nb − 1

1

Nm
b

.

Observe that, clearly, εm itself – and not just ε
m
m – depends on m.

In addition, since Nb > 1, ε
m
m satisfies the following asymptotic behavior,

ε
m
m → 0 , as m→∞,

which, naturally, results in the fact that the largerm, the smaller ε
m
m. It is for this reason that we call ε

m
m

– or rather, the sequence (εmm)∞m=0 of positive numbers tending to zero as m→∞, with ε
m
m = (εm)m,

for each m ∈ N – an infinitesimal, more specifically, the cohomology infinitesimal. Note that this m
th

11



cohomology infinitesimal is the one naturally associated to the scaling relation of Proposition 2.3, on
page 8.

In the sequel, it is also useful to keep in mind that the sequence of positive numbers (εm)∞m=0 itself
satisfies

εm ∼
1

Nb
, as m→∞ ;

i.e., εm →
1

Nb
, as m→∞. In particular, εm /→ 0, as m→∞, but, instead, εm tends to a strictly

positive and finite limit.
We also introduce, given anym ∈ N, them

th
intrinsic cohomology infinitesimal, denoted by ε

m
> 0,

such that

ε
m
=

1

Nm
b

,

where

ε =
1

Nb
.

We call ε the intrinsic scale, or intrinsic subdivision scale.

Note that

ε
m
m =

ε
m

Nb − 1

and that the m
th

intrinsic cohomology infinitesimal ε
m

is asymptotic (when m tends to ∞) to the m
th

cohomology infinitesimal ε
m
m.

Remark 3.1 (Addressing Numerical Estimates). From a practical point of view, an important
question is the value of the ratio

Cohomology infinitesimal

Maximal height
=
ε
m
m

hm
;

see relation (2), on page 8.

Thanks to the estimates given in relation (4), on page 11, we have that

ε
m
m

hm
= L

1−DW
m O (1) = εm (1−DW)

m O (1) ,

with
0 < Cinf ⩽ O (1) ⩽ Csup .

Given q ∈ N⋆, we then have

1

10q
Cinf ⩽

ε
m
m

hm
⩽

1

10q
Csup

when

Cinf
10q

⩽ e
(1−DW) lnLm

⩽
Csup
10q

,

or, equivalently, when

12



−
1

lnNb
ln((Nb − 1) (

Csup
10q

)
1

1−DW ) ⩽ m ⩽ −
1

lnNb
ln((Nb − 1) (

Cinf
10q

)
1

1−DW ) .

Numerical values for Nb = 3 and λ =
1

2
yield:

i. For q = 1: 2 ⩽ m ⩽ 3.

ii. For q = 2: 7 ⩽ m ⩽ 9.

iii. For q = 3: 13 ⩽ m ⩽ 15.

Hence, when m increases, the ratio decreases, and tends to 0. This numerical – but very practical
and explicit argument – also accounts for our forthcoming neighborhoods, of width equal to the
cohomology infinitesimal.

Definition 3.2 (Iterated Fractal Drums (IFDs)).

Let us consider a fractal curve F ⊂ R2
, obtained by means of a suitable IFS TF (consisting, in

particular, of a family of C
∞

maps from R2
to R2

). For each m ∈ N, we denote by Fm the m
th

pre-
fractal approximation to the fractal F . We restrict ourselves to the case when there exists a natural
scaling relation associated to the sequence (ΓFm

)m∈N, involving a sequence of elementary lengths (or
cohomology infinitesimals) (εmm,F)

m∈N, and, as in Definition 3.1, on page 11 above.

We then call Iterated Fractal Drum (in short, IFD), and denote by FI
, the sequence of ordered

pairs (Fm, εmm,F)
m∈N, where, for each m ∈ N, Fm is the m

th
prefractal (graph) approximation asso-

ciated with the fractal F .

Definition 3.3 (Weierstrass Iterated Fractal Drum (Weierstrass IFD)). We call Weierstrass

Iterated Fractal Drum (in short, Weierstrass IFD), and denote by Γ
I
W , the sequence of ordered

pairs (ΓWm
, ε
m
m)m∈N where, for each m ∈ N, ΓWm

is the m
th

prefractal approximation to the Weier-

strass Curve ΓW , as introduced in Definition 2.2, on page 7, and where ε
m
m is the m

th
cohomology

infinitesimal, as introduced in Definition 3.1, on page 11 above. Note that the m
th

prefractal graph
approximation (viewed as an oriented curve) determines the m

th
prefractal curve (viewed as an ori-

ented polygonal curve), and conversely. Indeed, the line segments of which the latter polygonal curve
is comprised are nothing but the edges of the former prefractal graph.

Notation 8 (Integer to Cohomology Infinitesimal Map). Given m ∈ N⋆, we heerafter intro-
duce the map

ε
m
m ↦ m(εmm) = [− lnNb

((Nb − 1) εmm)] ,
where [.] denotes the integer part. Note that this map is only applied for the m

th
cohomology in-

finitesimal ε
m
m = (εm)m =

1

Nb − 1

1

Nm
b

, introduced in Definition 3.1, on page 11.

For notational simplicity, we temporarily set x = − lnNb
((Nb − 1) εmm).

Proposition 3.1 ((m,εmm)-Neighborhood [DL22b]).

Given a nonnegative integer m, and a point M ∈ R2
, we denote by d (M,ΓWm

) the Euclidean

distance from M to ΓWm
. Then, the (m, εmm)-neighborhood of the m

th
prefractal approximation ΓWm

to the Weierstrass Curve,

D (ΓWm
, ε
m
m) = {M = (x, y) ∈ R2

, d (M,ΓWm
) ⩽ εmm}

(see Figure 4, on page 46), is obtained by means of:
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i. (Nb − 1)Nm
b upper and lower overlapping rectangles (see Figure 5, on page 47),

of length `j−1,j,m, 1 ⩽ j ⩽ N
m
b − 1, and height ε

m
m.

One of the difficulties is, then, to compute and substract the area counted twice, which correspond
to parallelograms, of height ε

m
m and basis

ε
m
m cotan (π − θjk−1,jk,m − θjk,jk+1,m) ,

and extra outer triangles, the area of which is of the form

1

2
ε
m
m (bj`−1,j`,m + bj`,j`+1,m) ,

and where, for the sake of simplicity, we have denoted by jk and j` the corresponding indices.

ii. Upper and lower wedges, the area of which are of the form

1

2
(π − θjl−1,jl,m − θjl,jl+1,m) (εmm)2

, 1 ⩽ jl ⩽ N
m
b − 2 .

The number of wedges is determined by the shape of the initial polygon P0, and the existence of
reentrant angles.

iii. Two extreme wedges (respectively located at the abscissae x = 0 and x = 1), each of area equal

to
1

2
π (εmm)2

.

The small positive number ε
m
m will be referred to as the width of the (m, εmm)-neighborhood D (ΓWm

, ε
m
m).

Thus far, we have considered the sequence of tubular neighborhoods associated to the prefractal
sequence of graphs (ΓWm

)m∈N, which approximate the Weierstrass Curve ΓW . In Proposition 3.2,
on page 14 just below, we explain the connections between the aforementioned sequence of tubular
neighborhoods, and the tubular neighborhood of the Weierstrass Curve ΓW itself. Such a result is
all the more important when it comes to determining the poles of the tubular zeta function obtained
by means of the aforementioned sequence of tubular neighborhoods associated to the prefractal se-
quence (ΓWm

)m∈N. One intuitively understands that we cannot explicitly compute the volume of the
tubular neighborhood of ΓW .

Proposition 3.2 (Tubular Neighborhood of the Weierstrass Curve).

Given a small positive number δ, we define the δ-neighborhood of the Weierstrass Curve ΓW by

D (ΓW , δ) = {M = (x, y) ∈ R2
, d (M,ΓW) ⩽ δ} .

Then, there exists an integer m0(δ) ∈ N such that,

∀m ⩾ m0(δ) ∶ D (ΓWm
,
δ

2
) ⊂ D (ΓW , δ) ⊂ D (ΓWm

, 2 δ) .

Hence, the sequence of tubular neighborhoods associated to the prefractal sequence of graphs (ΓWm
)m∈N

can also be interpreted as a sequence of tubular neighborhoods of ΓW , in the sense that, for m large
enough, any tubular neighborhood of ΓWm

contains a tubular neighborhood of ΓW . Even if the widths
involved are not the same, we have a form of equivalence between a tubular neighborhood of ΓWm

,
for m ∈ N sufficiently large, and a tubular neighborhood of ΓW . In our present setting, if we de-

note by Vm (δ
2
), Vm (2 δ) and V (δ) the respective volumes (i.e., areas) of D (ΓWm

,
δ

2
), D (ΓWm

, 2 δ)
and D (ΓW , δ), we can write
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Vm (2 δ) = V (δ) +Rm (δ) = Vm (δ
2
) + R̃m (δ

2
) ,

where Rm (δ) and R̃m (δ
2
) denote strictly positive error terms, and are such that

lim
m→∞

Rm (δ) = 0
+

and lim
m→∞

R̃m (δ
2
) = 0

+
.

Proof. In this proof, for the sake of simplicity, we will write M⋆,m, m ∈ N, for the points Mj,m,
with 0 ⩽ j ⩽ #Vm − 1, of the prefractal graph ΓWm

.

i. Because of the density of the set V
⋆
= ⋃
n∈N

Vn in the Weierstrass Curve ΓW , there exists an inte-

ger m1(δ) ∈ N such that

∀m ⩾ m1(δ) ∶ d (ΓWm
,ΓW) ⩽ δ ,

with

d (ΓWm
,ΓW) = inf

M⋆,m ∈ΓWm ,M ∈ΓW
d (M,M⋆,m) > 0 .

Now, given a point M ∈ D (ΓW , δ), for m ⩾ m1(δ), we denote by MW ∈ ΓW the closest point
of M in ΓW . By the triangle inequality, we then have that

d (M,ΓWm
) ⩽ d (M,MW) + d (ΓWm

,ΓW) ⩽ 2 δ .

This implies that

M ∈ D (ΓWm
, 2 δ) ,

from which we then deduce the desired result; i.e.,

∀m ⩾ m1(δ) ∶ D (ΓW , δ) ⊂ D (ΓWm
, 2 δ) .

ii. At the same time, and also because of the density of the set V
⋆
= ⋃
n∈N

Vn in ΓW , there exists an

integer m2(δ) ∈ N such that

∀m ⩾ m2(δ) ∶ d (ΓWm
,ΓW) ⩽ δ

2
.

For m ⩾ m2(δ), given a point M ∈ D (ΓWm
,
δ

2
), we then have that

d (M,ΓW) ⩽ d (M,ΓWm
) + d (ΓWm

,ΓW) ⩽ δ ,
from which we then deduce the expected result, i.e.,

∀m ⩾ m2(δ) ∶ D (ΓWm
,
δ

2
) ⊂ D (ΓW , δ) .

iii. In order to conclude, we simply choose m0(δ) = max {m1(δ),m2(δ)}.

Remark 3.2. Note that, in Proposition 3.2, on page 14, we have that

m0 = m0(δ)→∞ , as δ → 0
+
.
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Proposition 3.3 (Staggered Sequence of (m,εmm)-Neighborhoods).

Given any integer m ∈ N, there exists an integer km ∈ N such that, for each integer k ⩾ km,
the (m + k, εm+kn

m+k)-neighborhood of the Weierstrass Curve (where ε
m+k
m+k is the (m + k)th cohomol-

ogy infinitesimal introduced in Definition 3.1, on page 11),

D (ΓWm+k
, ε
m+k
m+k) = {M = (x, y) ∈ R2

, d (M,ΓWm+k
) ⩽ εm+km+k} ,

is contained in the (m, εmm)-neighborhood of the Weierstrass Curve (with ε
m
m denoting, this time,

the m
th

cohomology infinitesimal),

D (ΓWm
, ε
m
m) = {M = (x, y) ∈ R2

, d (M,ΓWm
) ⩽ εmm} ;

namely,

D (ΓWm+k
, ε
m+k) ⊂ D (ΓWm

, ε
m
m) .

Proof. This proof is based on the fact that the sequence of sets of vertices (Vm)m∈N is increasing (see
part i. of Proposition 2.2, on page 7), and that V

⋆
= ⋃
n∈N

Vn is dense in the Weierstrass Curve ΓW , along

with the fact that the prefractal graph sequence (ΓWm
)m∈N converges to the Weierstrass Curve ΓW

(for example, in the sense of the Hausdorff metric on R2
).

Given a nonnegative integer m ∈ N, there exists an integer k0,m ∈ N such that, for each inte-
ger k ⩾ k0,m, we have that

d (ΓWm
,ΓWm+k

) = inf
0 ⩽ j ⩽#Vm − 1

0 ⩽ j
′
⩽#Vm+k − 1

{d (Mj,m,Mj ′,m+k) , Mj,m ∈ Vm , Mj ′,m+k ∈ Vm+k \ Vm}

⩽ ε
m
m .

We then deduce that for all k ⩾ k0,m,

ΓWm+k
⊂ D (ΓWm

, ε
m
m) .

At the same time, since, for any (m, k) ∈ N2
,

ε
m+k
m+k ⩽ ε

m
m ,

along with the fact that, for any m ∈ N,

lim
k→∞

ε
m+k
m+k = 0 ,

we can find another integer k1,m ∈ N such that, for each integer k ⩾ k1,m, we have that

D (ΓWm+k
, ε
m+k
m+k) ⊂ D (ΓWm

, ε
m
m) .

The desired result is obtained by letting km = max {k0,m, k1,m}.

Remark 3.3 (Connection Between Fractality and the Cohomology Infinitesimal – Weier-
strass Iterated Fractal Drums). As is mentioned in [DL22c], the cohomology infinitesimal (or,
equivalently, the elementary length) – which obviously depends on the magnification scale (i.e., the
chosen prefractal approximation) – can be seen as a transition scale between the fractal domain and
the classical one. In fact, we could say that the system is fractal below this scale, and classical above
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(for the level of magnification considered). In the limit when the integer m associated with the pre-
fractal approximation tends to infinity, the system is fractal below the cohomology infinitesimal (i.e.,
at small scales) and is classical beyond (i.e., on large scales). Note that this is in perfect agreement
with what is suggested by the French physicist Laurent Nottale in [Not98] about scale-relativity.

The Complex Dimensions of a fractal set characterize their intrinsic vibrational properties. Thus
far, the values of the Complex Dimensions were obtained by studying the oscillations of a small neigh-
borhood of the boundary, i.e., of a tubular neighborhood, where points are located within an epsilon
distance from any edge; see, e.g., [LvF00], [LvF06], [LvF13], in the one-dimensional case (i.e., for
fractal strings) and, in the higher-dimensional case, [LRŽ17a], [LRŽ17b], [LRŽ18]. In the present case
of our fractal Weierstrass Curve ΓW , which is, also, the limit of the sequence of (polygonal) prefrac-
tal graphs (ΓW)m∈N, it is natural – and consistent with the result of Proposition 3.3, on page 16,
above – to envision the tubular neighborhood of ΓW as the limit of the (obviously convergent) se-

quence (D (ΓWm
, ε
m
m))m∈N of ε

m
m-neighborhoods of ΓWm

, where, for each integer m ∈ N, ε
m
m is the m

th

cohomology infinitesimal introduced in Definition 3.1 above.

We note that, in a sense, this amounts to using a sequence of what we call Weierstrass Iterated
Fractal Drums (in short, Weierstrass IFDs), by analogy with the relative fractal drums involved, for
instance, in the case of the Cantor Staircase, in [LRŽ17b], Section 5.5.4, and in [LRŽ18]. In our
present setting, the Weierstrass IFDs – i.e., the sets D (ΓWm

, ε
m
m), for all m ∈ N sufficiently large

– contain the Weierstrass Curve ΓW , and are sufficiently close to ΓW , so that we can expect their
Complex Dimensions to be the same.

Things change if we consider the fractal Complex Dimensions as dynamical quantities, which
evolve with the scales: to each prefractal approximation ΓWm

of ΓW , we can associate specific values
of the Complex Dimensions, as is proved in [DL22c]. In this light, it is natural to define the Complex
Dimensions of the Weierstrass Curve as the set of Complex Dimensions of (ΓWm

)m∈N, obtained by
means of the sequence of IFDs (D (ΓWm

, ε
m
m))m∈N, as is done in Section 4.

4 Weierstrass Tube Zeta Function, and Associated Complex Dimen-
sions

In this section, we discuss the results of [DL22b] in which we obtained the fractal tube formulas
associated with the Weierstrass iterated fractal drums (Weierstrass IFDs, for short), and deduced
from it the fractal (i.e., the tube and distance) zeta functions and hence, also, the associated Complex
Dimensions (i.e., the poles of these fractal zeta functions). We also discuss the geometric consequences
of these results for the Weierstrass IFDs and Curve – concerning, especially, the Minkowski nondegen-
eracy, the Minkowski measurability, the existence of the average Minkowski content, and the value of
the Minkowski dimension (which is positive and is also the largest real part of the Complex Dimen-
sions).

We first need the following useful, technical result.

Proposition 4.1 (Fourier Series Expansion of the 1-Periodic Map x↦N
−{x}
b

[LvF06], [DL22b]).

The fractional part map {.} is one-periodic. Hence, it is also the case of the map x↦ N
−{x}
b , which

admits, with respect to the real variable x ∈ R \ Z, the following Fourier Series expansion:

N
−{x}
b =

Nb − 1

Nb
∑
`∈Z

e
2 i πmx

lnNb + 2 i ` π
=
Nb − 1

Nb
∑
`∈Z

(Nb − 1)−i `p (εmm)−i `p

lnNb + 2 i ` π
,
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where the exponential Fourier coefficients c` have been obtained through

c` = ∫
1

0
N
−t
b e

−2 i π ` t
dt = ∫

1

0
e
−t lnNb e

−2 i π ` t
dt

= −
1

lnNb + 2 i ` π
[e−t lnNb e

−2 i π ` t]
1

0

=
1

lnNb + 2 i ` π
[1 −

1

Nb
] = Nb − 1

Nb

1

lnNb + 2 i ` π
.

Thus, for any x ∈ R \ Z and any integer m ∈ N sufficiently large,

N
−{x}
b =

Nb − 1

Nb
∑
`∈Z

e
2 i π ` x

lnNb + 2 i ` π
.

Since x = − lnNb
((Nb − 1) εmm), one has, for every ` ∈ Z,

e
2 i π ` x

= e
−2 i π ` lnNb((Nb−1) εmm)

= e
−2 i π `

ln((Nb−1)ε
m
m)

lnNb .

Definition 4.1 (Oscillatory Period). Following [LvF00], [LvF06], [LvF13], [LRŽ17b], we introduce
the oscillatory period of the Weierstrass Curve:

p =
2π

lnNb
.

Definition 4.2 (Natural Tubular Volume Extension Formula – Effective Distance and

Tube Zeta Functions Associated to an Arbitrary IFD of R2
). Let FI

be an iterated fractal
drum of R2

; i.e., given a cohomology infinitesimal εF = (εmm,F)
m∈N, as introduced in Definition 3.2,

on page 13, and Definition 3.1, on page 11, FI
is a sequence of ordered pairs (F

m
, ε
m
m,F)

m∈N, where,

for each m ∈ N, Fm is the m
th

prefractal approximation to a fractal curve F .

We are assuming here that (εmm,F)
m∈N is a decreasing sequence of positive numbers tending to 0

as m→∞.

We hereafter consider the ε
m
m,F -neighborhood (or ε

m
m,F -tubular neighborhood) of Fm,

D (Fm, εmm,F) = {M ∈ R2
, d (M,Fm) ⩽ εmm,F} , (5)

of tubular volume (i.e., area) denoted Vm,Fm
(εmm,F).

We then introduce, for all sufficiently large m ∈ N⋆, Ṽm,Fm
as the continuous function defined

for all t ∈ [0, εmm,F] by substituting t for ε
m
m,F in the expression for Vm,Fm

(εmm,F) to be obtained in
relation (10) of Theorem 4.2, on page 19. As is explained in [DL22b] (in the case of the ordinary Eu-

clidean volume), one can think of Ṽm,Fm
(t) as being the effective tubular volume of the m

th
prefractal

approximation to the IFD. (Note that, for the Weierstrass IFD, the corresponding fractal power series
is still convergent for all t ∈ [0, εmm].)

Indeed, in our present context, when it comes to obtaining the associated fractal tube zeta function,
we cannot, as in the case of an arbitrary bounded subset of R2

(see [LRŽ17b], Definition 2.2.8,
page 118), directly use an integral formula of the form

ζ̃m,Fm
(s) = ∫

ε
m
m,F

0
t
s−3 Vm,Fm

(t) dt = ∫
ε
m
m,F

0
t
s−2 Vm,Fm

(t) dt
t
, (6)
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since the prefractal tube formulas that we will obtain in Theorem 4.2 below, on page 19, can only be
expressed in an explicit way at a cohomology infinitesimal.

We can then obtain the resulting m
th

effective local tube zeta function ζ̃
e
m,F – a generalization to

IFDs of the usual definition referred to just above – defined for all s in C with sufficiently large real
part (in fact, for Re(s) > Dm,Fm

, where Dm,Fm
is the abscissa of convergence of ζ̃m,Fm

), by

ζ̃
e
m,Fm

(s) = ∫
ε
m
m,F

0
t
s−3 Ṽm,Fm

(t) dt = ∫
ε
m
m,F

0
t
s−2 Ṽm,Fm

(t) dt
t
. (7)

For the sake of simplicity, given m ∈ N, we will from now on call the m
th

natural volume exten-
sion, the volume extension function Ṽm,Fm

associated with Vm,Fm
. Alternatively, as was mentioned

earlier, Ṽm,Fm
will be called the m

th
effective tubular volume.

Remark 4.1. As is explained in Remark 4.2 below, on page 19, in the present case of the Weiertrass
IFDs, we stress the fact that ζ̃

e
m,Fm

does not coincide with the usual tube zeta function ζ̃Fm
associated

with them
th

polygonal prefractal approximation Fm ⊂ R2
to the fractal curve F , given, as in [LRŽ17b],

for all s ∈ C with Re(s) sufficiently large, by

ζ̃Fm
(s) = ∫

ε
m
m,F

0
t
s−3 Vm,Fm

(t) dt = ∫
ε
m
m,F

0
t
s−2 Vm,Fm

(t) dt
t
.

This entire comment applies, in particular, to the Weierstrass IFD, which is the central object of
this paper.

Remark 4.2. The reason why ζ̃m,Fm
cannot coincide with ζ̃

e
m,Fm

– or, equivalently, why ζm,Fm
cannot

coincide with ζ
e
m,Fm

– is that, otherwise, the abscissa of convergence of ζ̃m,Fm
would coincide with that

of ζ̃
e
m,Fm

(or, equivalently, for ζm,Fm
and ζ

e
m,Fm

) (in the present case of the Weierstrass IFD) which
would imply an impossible conclusion: in light of Theorem 4.2, on page 19, the Minkowski dimension
of the m

th
prefractal approximation – namely, 1, of course – must coincide with the Minkowski

dimension (i.e., here, the common abscissa of convergence of ζ̃
e
m,Fm

and ζ
e
m,Fm

) of the fractal curve ΓW ,

namely, DW = 2 −
ln 1

λ

lnNb
> 1, an obvious contradiction.

From now on, unless explicitly mentioned otherwise, we will only work with the Weierstrass IFD.

Theorem 4.2 (Prefractal Tube Formula for The Weierstrass Iterated Fractal Drums [DL22b]).

Given m ∈ N⋆ sufficiently large, the m
th

total contribution to the tubular volume Vm,ΓWm
(εmm), or

two-dimensional Lebesgue measure of the ε
m
m-neighborhood of the m

th
prefractal approximation ΓWm

,

D (εmm) = {M = (x, y) ∈ R2
, d (M,ΓWm

) ⩽ εmm} , (8)

where ε = (εmm)m∈N is the cohomology infinitesimal, as introduced in Definition 3.1, on page 11, is
given by

Ṽm,ΓWm
(εmm) =

= Ṽm,ΓWm ,Rectangles
(εmm) + Ṽm,ΓWm ,wedges

(εmm)

+Ṽm,ΓWm ,extra outer triangles (εmm) + Ṽm,ΓWm ,parallelograms (εmm) ;

(9)

i.e.,

Ṽm,ΓWm
(εmm) =
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= CRectangles ∑
k ∈N, `∈Z

(
1
2

k
)
N

1−k (2−DW)
b − 1

N
1−k (2−DW)
b

(Nb − 1)−i `p (εmm)2−DW+k (2−DW)−i `p

(1 − k (2 −DW)) lnNb + 2 i ` π

+C1
wedges ∑

`∈Z

(Nb − 1)−i `p (εmm)3−i `p

lnNb + 2 i ` π
+ π (εmm)2

−
π (εmm)4

2

−C2
wedges ∑

k ∈N, `∈Z

(−1)k
2 k + 1

N
((2 k+1)DW−2 k)
b − 1

N
((2 k+1)DW−2 k)
b

(N ((2 k+1)DW−2 k)
b − 1)−i `p (εmm)2 k+1−i `p

((2 k + 1)DW − 2 k) lnNb + 2 i ` π

+C3
wedges ∑

k ∈N, `∈Z

(−1)k
2 k + 1

N
(2 k+1) (DW−1)
b − 1

N
(2 k+1) (DW−1)
b

(N (2 k+1)DW−2 k+1
b − 1)−i `p (εmm)5+2 k−i `p

((2 k + 1)DW − 2 k + 1) lnNb + 2 i ` π

− (Ctriangles + Cparallelograms) ∑
`∈Z

(N2−3DW
b − 1)

−i `p

(2 − 3DW) lnNb + 2 i ` π
(εmm)2−i `p

,

(10)

where Crectangles, C
`
wedges, ` = 1, 2, 3, Ctriangles, and Cparallelograms denote strictly positive and finite con-

stants respectively, which depend on m, but are uniformly bounded away from 0 and ∞ (in m ∈ N⋆

large enough); see [DL22b].

Also, recall from Definition 4.2, on page?18, that, by construction,

Ṽm,ΓWm
(εmm) = Vm,ΓWm

(εmm) .

Actually, this identity follows from the corresponding identity for each of the terms on the right-
hand side of relation (9), on page 19.

For the sake of clarity, and in order to highlight the role played by the one-periodic functions (with

respect to the variable lnNb
(εmm)−1

, see Proposition 4.1, on page 17), one can exchange the sums over k
and m, which enables one to obtain an expression of the following form:

Ṽm,ΓWm
(εmm) =

= ∑
k ∈N, `∈Z

fk,`,Rectangles (εmm)2−DW+k (2−DW)−i `p

+ ∑
k ∈N, `∈Z

(fk,`,wedges,1 (εmm)3−i `p
+ fk,`,wedges,2 (εmm)1+2 k−i `p

+fk,`,wedges,3 (εmm)5+2 k−i `p )

+ ∑
k ∈N, `∈Z

fk,`,triangles, parallelograms (εmm)2−i `p
+ π (εmm)2

−
π (εmm)4

2
,

(11)

where the notation fk,`,Rectangles, fk,`,wedges,`′, 1 ⩽ `
′
⩽ 3, and fk,`,triangles, parallelograms, respectively ac-

count for the nonzero coefficients associated to the sums corresponding to the contribution of the
rectangles, wedges, triangles and parallelograms, respectively given by:
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fk,`,Rectangles = CRectangles (
1
2

k
)
N

1−k (2−DW)
b − 1

N
1−k (2−DW)
b

(Nb − 1)−i `p
(1 − k (2 −DW)) lnNb + 2 i ` π

; (12)

fk,`,wedges,1 = C
1
wedges

(Nb − 1)−i `p
lnNb + 2 i ` π

; (13)

fk,`,wedges,2 = −C2
wedges

∞

∑
k=0

(−1)k
2 k + 1

N
((2 k+1)DW−2 k)
b − 1

N
((2 k+1)DW−2 k)
b

(N ((2 k+1)DW−2 k)
b − 1)−i `p

((2 k + 1)DW − 2 k) lnNb + 2 i ` π
;

(14)

fk,`,wedges,3 = C
3
wedges

(−1)k
2 k+1

N
(2 k+1) (DW−1)
b − 1

N
(2 k+1) (DW−1)
b

(N (2 k+1)DW−2 k+1
b − 1)−i `p

((2 k + 1)DW − 2 k + 1) lnNb + 2 i ` π
; (15)

fk,`,triangles, parallelograms = − (Ctriangles + Cparallelograms)
(N2−3DW

b − 1)
−i `p

(2 − 3DW) lnNb + 2 i ` π
. (16)

Note that those coefficients do not depend on ε
m
m, and satisfy the following uniform estimates

(independent of m ∈ N⋆ sufficiently large):

∣fk,`,Rectangles∣ ⩽ CRectangles (
1
2

k
) 1

2 ` π
; (17)

∣fk,`,wedges,1∣ ⩽
C

1
wedges

2 ` π
; (18)

∣fk,`,wedges,2∣ ⩽
C

2
wedges

2 k + 1

1

2 ` π
; (19)

∣fk,`,wedges,3∣ ⩽
C

3
wedges

2 k + 1

1

2 ` π
; (20)

∣fk,`,triangles, parallelograms∣ ⩽ (Ctriangles + Cparallelograms) . (21)

Finally, each of the double sums in formulae (10), on page 20, and (11), on page 20, is absolutely
convergent (and hence, convergent).

Remark 4.3. Following (as well as adapting) [LRŽ17b], we define the tube zeta function of the sequence
of Weierstrass IFDs associated to the cohomology infinitesimal by

ζ̃Wm
(s) = ∫

ε
m
m

0
t
s−3 Vm(t) dt = ∫

ε
m
m

0
t
s−2 Vm(t) dt

t
,

for all s in C, with Re (s) sufficiently large, and, optimally, for Re (s) > DWm
= DW .

Theorem 4.3 (Local and Global Tube Zeta Function for the Weierstrass Iterated Fractal

Drums [DL22b], [DL23b]). Given m ∈ N⋆ sufficiently large, we denote by ζ̃
e,exact
m,ΓWm

the exact expres-

sion for the m
th

local effective tube zeta function, which corresponds to the expression Ṽe,exactm,ΓWm
(εmm) = Ṽem,ΓWm

(εmm)
where Ṽem,ΓWm

(εmm) is given by relation (9), on page 19, and not by the approximate expression given
in relation (10), on page 20. We then set, for any s ∈ C:
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ζ̃
e,strict
m,ΓWm

(s) = ζ̃e,exactm,ΓWm
(s) −

π (εmm)s
s +

π (εmm)s+2

4 (s + 2) ,

since the contribution of the m
th

prefractal approximation ΓWm
to ζ̃

e
W , the global effective tube zeta

function of the Weierstrass IFD, is obtained by excluding the (artificial) terms
π (εmm)s

s and −
π (εmm)s+2

4 (s+2)
coming from the extreme wedges.

The global effective tube zeta function of the Weierstrass IFD admits a (necessarily unique) mero-
morphic continuation to all of C, and is given, for any s ∈ C, by the following expression (see [DL23b]
and [DL23a] for the proof of the existence of the limit, which is locally uniform on C):

ζ̃
e
W(s) = lim

m→∞
ζ̃
e,strict
m,ΓWm

(s) . (22)

Note that, in light of Definition 4.2, on page 18, and for all integers m ∈ N⋆ sufficiently large, ζ̃
e,strict
m,ΓWm

is a (tamed) Dirichlet-type integral (in the sense of [LRŽ17b], Appendix A) and hence, admits an
abscissa of (absolute) convergence. This fact can also be double-checked directly, by simply using
the convergent fractal power series on the right-hand side of relation 10, on page 20, once the vari-
able t ∈ [0, εmm] has been substituted for ε

m
m and ζ̃

e
m,ΓWm

calculated accordingly (as in [DL22b]).

Furthermore, the abscissa of convergence of ζ̃
e
W is equal to

DW = 2 +
lnλ

ln b
= 2 − lnb

1

λ
.

Remark 4.4 (About the excluded poles 0 and −2). We do not include the (artificial) terms
coming from the extreme wedges. Indeed, due to the periodicity of the Weierstrass function, we have
restricted our study to the values of the abscissa x ∈ [0, 1]. In a sense, this amounts to cut the Curve,
so that the poles arising because of this cut do not have to be taken into account. More precisely,

given m ∈ N⋆ sufficiently large, the terms −
π (εmm)4

2
and π (εmm)2

in the expression for Ṽm,ΓWm
(εmm)

given in relation (10), on page 20, are the terms which give rise to the terms
π (εmm)s

s and −
π (εmm)s+2

2 (s + 2)
in the expression for the associated m

th
local effective tube zeta function.

Sketch of the proof.
Note that, in this sketch of the proof, we will not use the approximate expression in relation (9),

on page 19, which is not required here.

In [DL23b] (and since lim
m→∞

ε
m
m = 0), we have proved that, given m ∈ N⋆ sufficiently large, the m

th

strict effective tubular volume

Ṽe,strictm,ΓWm
(εmm) = Ṽe,exactm,ΓWm

(εmm) +
π (εmm)4

2
− π (εmm)2

can be connected to the m
th

effective polyhedral volume ṼP
m (εmm) by means of the following relation:

ṼP
m (εmm) = Ṽstrictm,ΓWm

(εmm) + R̃m , (23)

where R̃m is a suitable error term such that the associated zeta function Zm,R, given by

s↦ ∫
ε

0
t
s−3 R̃m(t) dt ,
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(where ε =
1

Nb
is the intrinsic scale, as introduced in Definition 3.1, on page 11) locally, uniformly

on C, converges to 0:

lim
m→∞

∫
ε

0
t
s−3 R̃m(t) dt = 0 .

We then obtain that (locally, uniformly on C)

lim
m→∞

ζ̃
e,strict
m,ΓWm

(s) = lim
m→∞

ζ̃
P,e
m,ΓWm

(s) = ζ̃eΓW (s) ,

where, for all m ∈ N⋆, ζ̃
P,e
m,ΓWm

is the effective fractal zeta function associated with the sequence of

polyhedral neihborhoods of the Weierstrass IFD (and called the m
th

local polyhedral effective zeta
function).

We then prove, in [DL23b], that the (uniform) limit fractal zeta function ζ̃
e
W , is meromorphic on

all of C.

We note that both sequences of local effective zeta functions (ζ̃ P,e
m,ΓWm

)
m∈N

and (ζ̃e,strictm,ΓWm
)
m∈N

thus

have the same limit, the global fractal zeta function ζ̃
e
W of the Weierstrass IFD. As was mentioned

above, an interesting comment to be made is that we do not pass to the limit in the expression for

the strict tubular zeta function ζ̃
e,strict
m,ΓWm

defined in Theorem 4.3, on page 21 (and which cannot be

obtained by using Theorem 4.2, on page 19, along with Definition 3.3, on page 13), for the following
reasons:

i. Givenm ∈ N⋆, we only have an unexplicit expression for them
th

effective tubular volume Ṽm,ΓWm
(εmm).

ii. The expected result only depends on the definition of them
th

effective tubular volume Ṽm,ΓWm
(εmm),

given in Theorem 4.2, on page 19, along with relation (23) above, on page 22.

Hereafter, a (complex-valued) meromorphic function f is viewed as a continuous function with
values in the Riemann sphere (or complex projective line) P1(C), equipped with the chordal metric,
and such that, for any pole ω of f , f(ω) takes the value ∞ (for instance, as in [LvF13], Section 3. 4
and Appendix C).

We can show that, for the chordal metric, defined, for all (z1, z2) ∈ (P1(C))2
by

∥z1, z2∥ =
∣z1 − z2∣√

1 + ∣z2
1∣

√
1 + ∣z2

2∣
, if z1 ≠∞ and z2 ≠∞ ,

and

∥z1,∞∥ = 1√
1 + ∣z2

1∣
, if z1 ≠∞ ,

we have, thanks to the local uniform convergence on C,

lim
m→∞

ÂÂÂÂÂζ̃
e,strict
m , ζ̃

e
W
ÂÂÂÂÂ = 0 .

Indeed, for any η > 0 and any compact set K ⊂ C, we can choose m1 ∈ N⋆ such that, for all
integers m ⩾ m1 and all s ∈ K, we have that

»»»»»ζ̃
e,strict
m (s) − ζ̃eW(s)»»»»» ⩽ η ,

and hence, still for m ⩾ m1 and all s ∈ K,

ÂÂÂÂÂζ̃
e,strict
m (s), ζ̃eW(s)ÂÂÂÂÂ ⩽

»»»»»ζ̃
e,strict
m (s) − ζ̃eW(s)»»»»» ⩽ η .
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Remark 4.5. The fact that the global zeta function ζ̃
e
W admits a meromorphic continuation to all

of C is proved in [DL23b], where ζ̃
e
W is obtained as the (uniform) limit sum of a (locally) normally

convergent series of functions.

Definition 4.3 (Intrinsic Complex Dimensions of the Weierstrass Curve).

The intrinsic Complex Dimensions of the Weierstrass Curve ΓW (or, rather, of the Weierstrass
IFD) are the poles of the global effective zeta function ζ̃

e
W , introduced in Theorem 4.3, on page 21.

Theorem 4.4 (Intrinsic Complex Dimensions of the Weierstrass Curve [DL22b]). The
intrinsic Complex Dimensions of the Weierstrass Curve (or, equivalently, of the Weierstrass IFD) are
all simple, exact, and given as follows:

DW − k (2 −DW) + i `p , with k ∈ N , ` ∈ Z , both arbitrary.

Consequently, the Weierstrass Curve is fractal, in the sense of the theory of Complex Dimen-
sions developed in [LvF00], [LvF06], [LvF13], [LRŽ17b] and [Lap19], since it admits nonreal Complex
Dimensions. In fact, in the terminology of [LRŽ17b], it is principally fractal because it is fractal in
dimension DW ( i.e., it has nonreal Complex Dimensions with real part DW , the Minkowski dimension
of ΓW).

Proof. This directly comes from the result obtained in [DL23b] for the global polyhedral effective zeta
function, which is equal to the global effective zeta function ζ̃

e
W .

Remark 4.6 (Possible Interpretation [DL22b]). Figure 6, on page 48, gives the distribution of the
intrinsic Complex Dimensions of the Weierstrass IFD – and hence also, in practice, of the Weierstrass
Curve itself.

Theorem 4.5 (Condensed Prefractal Tube Formula for the Weierstrass IFD (Corol-
lary of Theorem 4.2, on page 19). Given m ∈ N sufficiently large, the tubular effective vol-
ume Ṽm,ΓWm

(εmm) of the ε
m
m-neighborhood D (εmm) of the Weierstrass IFD, can be expressed in the

following manner:

Ṽm,ΓWm
(εmm) =

∞

∑
k=0

(εmm)2−(DW−k (2−DW))
Gk,DW (lnNb

( 1

εmm
))

+
∞

∑
k=0

(εmm)2−(1−2 k)
Gk,1 (lnNb

( 1

εmm
)) + π (εmm)2

−
π (εmm)4

2
,

(24)

where, for any fixed (but arbitrary) k ∈ N, Gk,DW and Gk,1 denote, respectively, continuous one-

periodic functions (with respect to the variable lnNb
(εmm)−1

, see Proposition 4.1, on page 17) respec-
tively associated to all of the Complex Dimensions of real parts DW − k (2 −DW) and the poles 1 − 2 k.
Furthermore, all of the Fourier coefficients of the periodic functions Gk,DW (for any k ∈ N) and G0,1

are nonzero. In particular, these periodic functions are not constant. Moreover, the functions G0,DW
and G0,1 are bounded away from zero and infinity.

This amounts to an expression of the form

Ṽm,ΓWm
(εmm) =
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= ∑
α real part of a Complex Dimension

α ∉ {−2, 0}

(εmm)2−α
Gα (lnNb

( 1
εm

)) + π (εmm)2
−
π (εmm)4

2
, (25)

where, for any real part α of a Complex Dimension, Gα denotes a continuous and one-periodic function.

Naturally, it follows that the expression for Ṽm,ΓWm
(εmm) is obtained by simply removing the last

two terms on the right-hand side of relation 24, on page 24, or, equivalently, of relation 25, on page 25

In the spirit of the remainder of this section, the definition of (upper, lower) Minkowski contents and
dimensions, for example, will be given in terms of the cohomology infinitesimal (εmm)∞m=0, viewed as a
sequence of positive scales tending to zero, as m→∞. So will the notions of Minkowski nondegeneracy
and Minkowski measurability, as well as that of effective average Minkowski content.

Definition 4.4 (Lower and Upper r-Dimensional Minkowski Contents – Lower and Up-

per Minkowski Dimensions, and Minkowski Dimension of an IFD). Let FI
be an arbitrary

iterated fractal drum of R2
; see Definition 3.2, on page 13. More precisely, we hereafter consider the

sequence of ordered pairs (F
m
, ε
m
F ,m)

m∈N, where, for each m ∈ N, Fm is the m
th

prefractal approxi-

mation to a fractal set F , and where ε
m
F ,m is the associated m

th
cohomology infinitesimal.

Then, given r ⩾ 0, m ∈ N, and the ε
m
F ,m-neighborhood (or tubular neighborhood) of Fm,

DFm
(εmF ,m) = {M ∈ R2

, d (M,Fm) ⩽ εmF ,m} , (26)

of tubular volume Vm,Fm
(εmF ,m), we define, much as in [LRŽ17b], the lower r-dimensional Minkowski

content (resp., the upper r-dimensional Minkowski content) of the IFD as

M⋆
r (FI) = lim inf

m→∞

Vm,Fm
(εmF ,m)

(εmF ,m)2−r (resp., M⋆,r (FI) = lim sup
m→∞

Vm,Fm
(εmF ,m)

(εmm)2−r ) . (27)

Recall that lim
m→∞

ε
m
F ,m = 0; see Definition 3.2, on page 13, along with Definition 3.1, on page 11,

for the special case of the Weierstrass IFD, for which we also have (in the present notation),

Vm,Fm
(εmF ,m) = Ṽm,Fm

(εmF ,m) ,
for all m ∈ N.

Note that, by definition, we have that

0 ⩽M⋆
r (FI) ⩽M⋆,r (FI) ⩽∞ . (28)

We then define the lower Minkowski dimension (resp., the upper Minkowski dimension) of the IFD
by

D (FI) = inf {r > 0 , M⋆
r (FI) <∞} (29)

(resp., D (FI) = inf {r > 0 , M⋆r (FI) <∞}) . (30)

As usual, by definition, the Minkowski dimension DFI = D (FI) of the IFD exists if
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D (FI) = D (FI) , (31)

in which case, of course, we have that

DFI = D (FI) = D (FI) = D (FI) . (32)

Definition 4.5 (Minkowski Nondegeneracy and Minkowski Measurability of an IFD).

Let FI
be an arbitrary IFD. Assume that its Minkowski dimension DFI exists, in the sense of Defi-

nition 4.4, on page 25 just above.

Then, with the same notation as in Definition 4.4, on page 25, the IFD FI
is said to be Minkowski

nondegenerate if the lower and upper Minkowski contents,

M⋆
DFI (FI) = lim inf

m→∞

Vm,Fm
(εmF ,m)

(εmF ,m)2−DFI

and

M⋆,DFI (FI) = lim sup
m→∞

Vm,Fm
(εmF ,m)

(εmF ,m)2−DFI
,

are respectively positive and finite. Recall that the inequalities in (28), on page 25 always hold.

Finally, the IFD FI
is said to be Minkowski measurable if it is Minkowski nondegenerate and

M⋆
DFI (FI) =M⋆,DFI (FI) ; (33)

i.e., if the following limit exists in ]0,+∞[ (and necessarily equals this common value, denoted

by MDFI (FI)):

MDFI (FI) = lim
m→∞

Vm,Fm
(εmF ,m)

(εmF ,m)2−DFI
. (34)

Then, MDFI (FI) is called the Minkowski content of the IFD.

Definition 4.6 (Average Lower and Upper Minkowski Contents of an IFD).

We hereafter use the same notation as in Definition 4.4, on page 25, and in Definition 4.5, on
page 26 just above, where FI

denotes an arbitrary iterated fractal drum of R2
.

Then, by analogy with what can be found in [LRŽ17b], Definition 2.4.1, on page 178, we define,

for all m ∈ N sufficiently large, the m
th

effective average lower-dimensional Minkowski content (resp.,

the m
th

effective average upper-dimensional Minkowski content) of Fm as

M̃ Dm,e
⋆ (Fm) = lim inf

r→+∞

1

ln r
∫
ε
m
F,m

1
r

t
Dm−3 Ṽm,Fm

(t) dt (35)

(resp., M̃ ⋆,Dm,e (Fm) = lim sup
r→+∞

1

ln r
∫
ε
m
F,m

1
r

t
Dm−3 Ṽm,Fm

(t) dt) , (36)

where Ṽm,Fm
is the natural volume extension of FI

(or m
th

effective tubular volume of Fm; see Defi-

nition 4.2, on page 18), and where Dm denotes the abscissa of convergence of the m
th

local effective
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tube zeta function ζ̃
e
m,Fm

. Recall from Theorem 4.3, on page 21, that, for all sufficiently large m, we
have that Dm = DW , in the case of the Weierstrass IFD.

In the case when both of these values coincide, their common value, denoted by M̃ Dm,e (Fm), is

called the m
th

local effective average Minkowski content of Fm, which is then said to exist. Accordingly,

M̃ Dm,e (Fm) = lim
r→+∞

1

ln r
∫
ε
m
F,m

1
r

t
Dm−3 Ṽm,Fm

(t)(t) dt . (37)

Remark 4.7. Henceforth, in the case of the Weierstrass IFD associated with the sequence of polygo-
nal prefractal approximation (ΓWm

)m N to ΓW , we use exactly the same terminology and definitions
(adapted in the obvious way) as in Definitions 4.4–4.6 above.

Furthermore, we respectively denote by DW , M⋆
DW (ΓW), M⋆,DW (ΓW) and M̃ DW (ΓW) the as-

sociated Minkowski dimension, lower and upper Minkowski contents, as well as the average Minkowski
content of the Weierstrass IFD.

Note that DW also coincides with the Minkowski dimension of the Weierstrass Curve ΓW .

In some definite sense, the Weierstrass IFD (iterated fractal drum) is a natural geometric realization
of – and substitute for – the Weierstrass Curve ΓW .

We can now state several new geometric consequences of our above results, especially, Theorem 4.2,
on page 19.

Theorem 4.6 (Lower, Upper and Average DW-Dimensional Minkowski Contents of the
Weierstrass IFD [DL22b]). For any m ∈ N, let us denote by Dm the abscissa of convergence of

the m
th

local effective tube zeta function ζ̃
e
m,W . Then, the Minkowski dimension of the Weierstrass

IFD Γ
I
W exists and equals Dm = DW , for any sufficiently large m ∈ N⋆, where DW = 2 − lnNb

1

λ
∈ ]1, 2[

is the Minkowski dimension of the Weierstrass Curve; see Theorem 4.3, on page 21 above. Moreover,
the lower and upper DW-dimensional Minkowski contents of the Weierstrass IFD Γ

I
W , respectively

M⋆
Dm (Γ

I
W) =M⋆

DW (Γ
I
W) and M⋆,Dm (Γ

I
W) =M⋆,DW (Γ

I
W) ,

take strictly positive and finite values; more specifically, they are such that

0 <
CRectangles

Nb
<M⋆

Dm (Γ
I
W) <M⋆,Dm (Γ

I
W) ⩽ CRectangles <∞ , (38)

where CRectangles denotes the strictly positive and finite constant involved in Theorem 4.2, on page 19.

Recall that CRectangles may depend on m ∈ N⋆, but is uniformly bounded away from 0 and infinity
(with bounds independent of m ∈ N⋆ large enough). Hence, the same is true of

M⋆
Dm (Γ

I
W) =M⋆

DW (Γ
I
W) and M⋆,Dm (Γ

I
W) =M⋆,DW (Γ

I
W) ,

where Dm = DW , for all sufficiently large m ∈ N⋆.

In addition, the values of M⋆
DW (Γ

I
W) and M⋆,DW (Γ

I
W) are respectively equal to the minimum

and maximum value of the one-periodic function GDW = G0,DW introduced in Theorem 4.5, on page 24,
associated to Dm in the expression of the fractal tube formula given in the same theorem (recall that

the periodicity is with respect to the variable lnNb
(εmm)−1

, see Proposition 4.1, on page 17).
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Finally, for all sufficiently large m ∈ N⋆, the m
th

local effective average Minkowski content exists
and is given by the mean value of the one-periodic function GDm

= GDW , as well as by the residues

of ζ̃
e
m,ΓWm

at s = Dm = DW :

M̃ Dm,e (ΓWm
) = ∫

1

0
GDW (x) dx = res (ζ̃em,ΓWm

, Dm) =
res (ζem,ΓWm

, Dm)
2 −Dm

, (39)

where ζ̃
e
m,ΓWm

is the m
th

effective local distance zeta function.

Hence, M̃Dm,e (ΓWm
) is nontrivial; in fact,

0 <M⋆
Dm (Γ

I
W) < M̃ Dm,e (ΓWm

) <M⋆,Dm (Γ
I
W) <∞ .

More specifically, still for all m large enough and thus, with Dm = DW , the m
th

local effective
average Minkowski content M̃ Dm,e (ΓWm

) may depend on m ∈ N⋆, but is uniformly bounded away
from 0 and ∞ (with bounds independent of m ∈ N⋆ large enough).

Corollary 4.7 ((of Theorem 4.6, on page 27) Minkowski Dimension – Minkowski Non-
degeneracy). The Weierstrass Curve ΓW is Minkowski nondegenerate. Furthermore, the num-

ber DW = 2 − lnNb

1

λ
is a simple Complex Dimension of ΓW , and it coincides with the Minkowski

Dimension of ΓW , which must also exist. Moreover, ΓW is not Minkowski measurable. In addition,
the same statement holds for the Weierstrass IFD.

Remark 4.8 (Generalization to the Non-Integer Case [DL22b]). An interesting question is the
generalization of our previous results to the non-integer case, i.e., when the Weierstrass function W is
defined, for any real number x, by

W(x) =
∞

∑
n=0

λ
n

cos (2π bn x) ,

where the real number b > 1 does not belong to the set of natural integers.

We plan to provide the details in a later work, but for now limit ourselves to a few comments.

From the geometric point of view, one cannot handle things in the same way. For instance, one
cannot resort to a finite IFS, and the Weierstrass function, apart from its parity, has no periodicity
property.

Yet, since the associated graph is the attractor of the infinite set of maps (Ti)i∈Z such that, for

any integer i and (x, y) in R2
,

Ti(x, y) = (x + i
b

, λ y + cos (2π (x + i
b

))) ,

it is natural to consider the associated infinite IFS (IIFS). As a consequence, the resulting prefractal
graphs are infinite ones.

As for the tubular neighborhood, due to the polygonal approximation induced by the prefractals,
it is still obtained by means of rectangles and wedges.

In the integer case, extra terms coming from overlapping rectangles vanished, thanks to the symme-

try with respect to the vertical line x =
1

2
. In the non-integer case, one simply replaces this symmetry

with the one with respect to the vertical axis x = 0, thanks to the parity of W.
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In this light, it is expected to lead to a fractal tube formula of the same type as the one obtained
in the last part of Theorem 4.2, on page 19, where the powers of the corresponding cohomology
infinitesimal ε

m
m are, respectively, and as previously,

(εmm)2−DW+k (2−DW)−i `p
, (εmm)3−i `p

, (εmm)1+2 k−i `p
,

(εmm)5+2 k−i `p
, (εmm)2−i `p

,

which would yield the same results concerning the possible Complex Dimensions, and the upper and
lower Minkowski contents.

As in the integer case, the terms involving (εmm)2−DW+k (2−DW)−i `p
come from the contribution

of the rectangles. The one-periodic functions (with respect to the variable lnb (εmm)−1
this time),

respectively associated to the values DW − k (2 −DW), k ∈ N, are thus nonconstant, with all of
their Fourier coefficients being nonzero. Hence, as in Theorem 4.4, on page 24, for each k ∈ N
and ` ∈ Z, DW − k (2 −DW) + i `p, are all simple Complex Dimensions of the Weierstrass Curve
(or, of the Weierstrass IFD); i.e., they are simple poles of the tube (or, equivalently, of the distance)
zeta function.

5 Fractal Cohomology

We next discuss the fractal cohomology of the Weierstrass Curve ΓW – or rather, perhaps, of
the Weierstrass function W – building on the ideas, definitions and results of [DL23d] – as well as
providing a concrete geometric (and topological) realization of the number-theoretic and analytic
work and conjectures about fractal cohomology in [LvF00], [LvF06], [Lap08], [LvF13], [CL17], [Lap19]
and [Lap24].

Definition 5.1 ((m,p)-Fermion).

By analogy with particle physics, given a pair of positive integers (m, p), we will call (m, p)-fermion

on Vm, with values in C, any antisymmetric map f from V
p+1
m to C, where V

p+1
m denotes the (p + 1)th

fold Cartesian product space of Vm by itself. Note that these maps are not assumed to be multilinear.

A (0, p)-fermion (p ∈ N⋆) on Vm (or a 0-fermion, in short) is simply a map f from Vm to C. We
adopt the convention according to which a 0-fermion on Vm is a 0-antisymmetric map on Vm.

In the sequel, we will denote by Fp (Vm,C) the C-module (i.e., the complex vector space) of (m, p)-
fermions on Vm, with values in C, which makes it an abelian group with respect to the addition, with
an external law from C × Fp (Vm,C) to Fp (Vm,C).

In order to understand how things go, one may look at the initial polygon P0: this polygon has
exactly Nb vertices, which means, in terms of potential topological invariants (under the form of a
complex-valued function f defined on the whole set of vertices V

⋆
= {Mj,m ∶ 0 ⩽ j ⩽ #Vm − 1, m ∈ N}),

a number which will – or not – be conserved when switching to ΓW1
.

This can be achieved by examining the following quantities (see Figure 7, on page 48):

f (Pj) − f (M1,1) + f (M2,1) . . . + (−1)Nb−1
f (Pj+1) ,with 0 ⩽ j ⩽ Nb ,

where the points Pj , for 0 ⩽ j ⩽ Nb − 1, are the vertices of P0.

One thus deals with alternate (i.e., antisymmetric) expressions with Nb + 1 terms.
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When reaching the m
th

prefractal graph, with m ⩾ 1, one will have to examine quantities of the
following form (see Figure 8, on page 48):

f (Mi,m−1) − f (Mj,m) + f (Mj+1,m) . . . + (−1)Nb−1
f (Mi+1,m−1) ,

for 0 ⩽ i ⩽ #Vm−1 − 1, and where

Mi,m−1 ∼
m
Mi+1,m−1 ,

while, at the same time,

Mi,m−1 ∼
m−1

Mj,m , Mj,m ∼
m−1

Mj+1,m , . . . ,

which means that the points Mi,m−1 and Mi+1,m−1 are consecutive vertices of Vm−1, and that the set of
consecutive vertices of Vm located strictly betweenMi,m−1 Mi+1,m−1 consists of the pointsMj,m,Mj+1,m;
and so on.

Definition 5.2 ((m − 1,m)-Path).

Given a strictly positive integerm, and two adjacent verticesXm−1,k,Xm−1,k+1 in Vm, for 0 ⩽ k ⩽ #Vm−1,
we call (m − 1,m)-path between Xm−1,k, Xm−1,k+1 the ordered set of vertices

Pm−1,m (Xm−1,k, Xm−1,k+1) = {Xm,` , 0 ⩽ ` ⩽ Nb} ,
where

Xm,` = Xm−1,k and Xm,`+Nb
= Xm−1,k+1 ;

see Figure 8, on page 49.
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Definition 5.3 ((m − 1,m)-Differential).

Given a strictly positive integer m, we define the (m − 1,m)-differential δm−1,m from F0 (Vm,C)
to FNb+1 (Vm,C), for any f in F0 (ΓW ,C) and any

(Mi,m−1,Mi+1,m−1,Mj+1,m, . . . ,Mj+Nb−2,m) ∈ V
Nb+1
m

such that

Mi,m−1 =Mj,m and Mi+1,m−1 =Mj+Nb,m ,

by

δm−1,m(f) (Mi,m−1,Mi+1,m−1,Mj+1,m, . . . ,Mj+Nb−1,m) = cm−1,m (
Nb

∑
q=0

(−1)q f (Mj+q,m)) ,

where cm−1,m denotes a suitable positive constant. Note that as one only handles differentials in this
paper, one does not need to know – or fix – the values of this constant. It becomes of importance when
operators involving the differentials, such as the Laplacian, are involved; see, for instance, Section 6
of [DL23d].

By induction, we can, equivalently, consider the (0, 1)-differential δ0,1 from F0 (V0,C) to FNb+1 (V1,C),
then, the (1, 2)-differential δ1,2 from FNb+1 (V1,C) to

FN
2
b +1 (V2,C), and so on, which means that the (m − 1,m)-differential δm−1,m is defined from FN

m−1
b +1 (Vm−1,C)

to FN
m
b +1 (Vm,C). In fact, at a given step m ⩾ 0, between two vertices of Vm, there are Nb − 1

consecutive vertices of Vm+1 \ Vm. Hence, this amounts to Nb − 1 + 2 = Nb + 1 consecutive vertices
of Vm+1 ⊃ Vm. Among thoseNb + 1 vertices, there are thenNb pairs of consecutive vertices of Vm+1 ⊃ Vm,
which themselves involve N

2
b pairs of consecutive vertices of Vm+2 ⊃ Vm+1, i.e., N

2
b + 1 consecutive

vertices of
Vm+2 ⊃ Vm+1 ⊃ Vm ;

and so on, by induction.

Furthemore, because of the compactness of ΓW , along with the density of the set V
⋆
= ⋃
n∈N

Vn in

the Weierstrass Curve ΓW , every continuous (and hence, uniformly continuous) function on ΓW is
uniquely determined by its restriction to V

⋆
(that is, to each Vm, for all m ∈ N).

Proposition 5.1 (Fractal Complex). Hereafter, the Complex involved, denoted by (F• (ΓW ,C) , δ•)
is the algebraic structure, which consists in the sequence of abelian groups (of fermions) (FN

m
b +1 (Vm,C))

m∈N⋆
,

where, for each integer m ⩾ 2, the group FN
m−1
b +1 (Vm−1,C) is connected to the group FN

m
b +1 (Vm,C)

by means of the (m − 1,m)-differentials δm−1,m introduced in Definition 5.3, on page 31, namely,

F0 (V0,C)
δ0,1
⟶ . . .FN

m
b +1 (Vm,C)

δm−1,m
⟶ FN

m+1
b +1 (Vm+1,C)

δm,m+1
⟶ . . . .

Because of the density of the set V
⋆
= ⋃
n∈N

Vn in the Weierstrass Curve ΓW , this complex can also

be written in the following form,

F0 (ΓW ,C)
δ0,1
⟶ . . .FN

m
b +1 (ΓW ,C)

δm−1,m
⟶ FN

m+1
b +1 (ΓW ,C)

δm,m+1
⟶ . . . .
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Proposition 5.2 (Cohomology Groups). In our present setting, with the differential introduced in
Definition 5.3, on page 31, the cohomology groups are the quotient groups

Hm = ker δm−1,m/Im δm−2,m−1 , for m ⩾ 0 ,

with the additional convention that δ−2,−1 = 0 and δ−1,0 = 0, which ensures that H0 = {0}.

Notation 9 (Argument of a Complex Number). Given a nonzero complex number z, we de-
note by arg (z) the argument of z; i.e., the angle between the positive real axis and the line join-
ing the origin and the point M with affix z. Implicitly, we always choose the same convention
(e.g., arg (z) ∈ ]−π, π]) whenever evaluating arg (z) – and hence also, arg (z) − arg (z′), for (z, z′) ∈ C⋆ × C⋆.

Definition 5.4 (Set of Functions of the Same Nature as the Weierstrass Function W). i. We
say that a continuous, complex-valued function f , defined on ΓW ⊃ V

⋆
, is of the same nature as the

Weierstrass function W, if it satisfies local Hölder and reverse-Hölder properties analogous to those
satisfied by the Weierstrass function W; i.e., for any pair of adjacent vertices (M,M

′) of respective
affixes (z, z′) ∈ C2

of the prefractal graph ΓWm
, with m ∈ N arbitrary (see Remark 2.2, on page 10),

C̃inf ∣z′ − z∣2−DW
⩽

»»»»»f(z
′) − f(z)»»»»» ⩽ C̃sup ∣z

′
− z∣2−DW ,

where C̃inf and C̃sup denote positive and finite constants (but not necessarily the same ones as for the
Weierstrass function W itself, in Proposition 2.4, on page 8). This can be written, equivalently, as

»»»»»z − z
′»»»»»

2−DW
≲

»»»»»f(z) − f(z
′)»»»»» ≲

»»»»»z − z
′»»»»»

2−DW
. (40)

Hereafter, we will denote by Ḧold (ΓW) the set consisting of the continuous, complex-valued func-
tions f , defined on ΓW ⊃ V

⋆
and satisfying relation (40), on page 32.

ii. Moreover, we will denote by Ḧoldgeom (ΓW) ⊂ Ḧold (ΓW) the subset of Ḧold (ΓW) consisting of the
functions f of Ḧold (ΓW) which satisfy the following additional geometric condition (41), again, for
any pair of adjacent vertices (M,M

′) with respective affixes (z, z′) ∈ C2
of the prefractal graph Vm,

with m ∈ N arbitrary; we have that,

»»»»»arg (f(z)) − arg (f(z′))»»»»» ≲ ∣z − z′∣DW−1
. (41)

We can now state the following key result.

Theorem 5.3 (Cohomological Complex Dimensions Series Expansion and Characteriza-
tion of the Prefractal Cohomology Groups Hm [DL22c]). Let m ∈ N be arbitrary. Then:

i. Within the set Ḧold (ΓW) (see part i. of Definition 5.4, on page 32 just above), then, for any
integer m ⩾ 1, and with the convention H0 = Im δ−1,0 = {0}, the cohomology groups

Hm = ker δm−1,m/Im δm−2,m−1

are comprised of the restrictions to Vm of (m,Nm
b + 1)-fermions, i.e., the restrictions to (the Cartesian

product space) V
N

m
b +1

m of antisymmetric maps on ΓW , with N
m
b + 1 variables (corresponding to the

vertices of Vm), involving the restrictions to Vm of continuous functions f on ΓW , such that, for any
vertex Mj,m ∈ Vm, the following Taylor-like expansion is satisfied,

f (Mj,m) =
m

∑
k=0

ck (f,Mj,m) εk (2−DW)
k , M⋆,m ∈ Vm , ck (f,M⋆,m) ∈ C , (42)

where, for each integer k such that 0 ⩽ k ⩽ m, the number ε
k
k > 0 is the k

th
cohomology infinitesimal

introduced in Definition 3.1, on page 11 above.
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The coefficients ck (f,M⋆) are complex quantities, which only depend on the function f involved,
and on the point M⋆ at which they are evaluated. As will follow, these coefficients ck (f,M⋆) are the
residues (at the possible Complex Dimensions −k (2 −DW)) of a suitable global scaling zeta function,
defined in [DL23b].

Note that, insofar as the functions f involved are, in a sense, determined, at any vertex Mj,m ∈ Vm,
by the expansion given in relation (42), on page 32 above, it is natural to identify the elements of the
cohomology groups Hm with those functions.

ii. If the functions f of part i. belong to Ḧoldgeom (ΓW) (see part ii. of Definition 5.4, on page 32
above), then, for any strictly positive integer m, and again with the convention H0 = Im δ−1,0 = {0},
the cohomology groups

Hm = ker δm−1,m/Im δm−2,m−1

are comprised of the restrictions to Vm of (m,Nm
b + 1)-fermions, i.e., the restrictions to V

N
m
b +1

m of
antisymmetric maps on ΓW , with N

m
b + 1 variables (corresponding to the vertices of Vm), involving

the restrictions to Vm of continuous functions f on ΓW , such that, for any vertex Mj,m ∈ Vm,

f (Mj,m) =

m

∑
k=0

ck (f,Mj,m) εk (2−DW)
k ε

i k `k,j,m p

k

=

m

∑
k=0

ck (f,Mj,m) εk (2−DW)+i `k,j,m p

k ,M⋆,m ∈ Vm ,

(43)

where p denotes the oscillatory period introduced in [DL22b],

p =
2π

lnNb
,

and where the coefficients ck (⋆,⋆) are complex numbers which still depend on the function f in-
volved, and on the point at which they are evaluated. Here, in relation (43), for each integer k such
that 0 ⩽ k ⩽ m, `k,j,m denotes an integer (in Z) satisfying the estimate

0 ⩽ {`k,j,m
ln ε

k
k

lnNb
} ≲

ε
k (DW−1)
k

2π
, (44)

where {.} denote the fractional part.

Remark 5.1. Note that, since the fractional part map is one-periodic, this results in a kind of pe-
riodicity with respect to the integers `k,j,m: the set {`k,j,m , k ∈ N} is infinite and equal to Z. In
particular, ∣`k,j,m∣→ +∞ as k →∞. We thus recover completely analogous results to those obtained
in Theorem 4.4, on page 24 above (from [DL22b]).

Much as in part i., the coefficients ck (f,M⋆), for 0 ⩽ k ⩽ m, depend only on the function f and on
the point M⋆ of Vm at which they are evaluated. Note that, obvisously, the values of the constants ck
in part ii. are different from those obtained in part i. The specific topic of their possible extension to
all M⋆ ∈ ΓW and their possible continuity in M⋆ will be studied in more detail in a forthcoming work
of the authors with M. Overduin [DLO23]. In particular, the use of the phrase Taylor-like expansion
is partly justified by the results presented in [DLO23], where the coefficients ck (f,M⋆) are precisely
determined in terms of the local differentials introduced in the first part of this section (see, especially,
Definition 5.3 above, on page 31.)
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Furthermore, these coefficients ck (f,M⋆) are the residues (at the possible Complex Dimensions − (k (2 −DW) + i k `k,j,m p)
of a suitable global scaling zeta function, provided in [DL23b].

In both expansions (42), on page 32, and (43), on page 33, the coefficients ck (f,M⋆), for 0 ⩽ k ⩽ m,
reflect the dependence of the value taken by the map f at the vertex Mj,m on the values taken by f

at previous steps – vertices – of the m
th

prefractal graph approximation, in conjunction with values
taken by f at neighboring vertices of Mj,m at the same level (m) of the prefractal sequence and with
vertices which, in addition, strictly belong to the same polygon Pm,k introduced in Proposition 2.2, on
page 7, with 1 ⩽ k ⩽ N

m
b − 1 (by “strictly” here, we mean that the junction vertices are not included).

The expansion in part ii. (namely, relation (43, on page 33)) might be interpreted as a kind of
generalized Taylor expansion with corresponding complex derivatives of orders

−ωk = k (2 −DW) + i `k,j,m p ,

where k ∈ N is arbitrary, the coefficients ck (f,M⋆) can thus be interpreted as (discrete) derivatives
of complex order −ωk of the function f , evaluated at the point M⋆ of V

⋆
⊂ ΓW . A similar comment

can be made about the expansion in part i. (namely, (42, on page 32)), but now with the above value
of −ωk replaced by k (2 −DW).

Again, as in part i., it is natural to identify the cohomology groups Hm with the sets of functions
satisfying, at any vertex Mj,m ∈ Vm, the expansion given in relation (43), on page 33.

Note that the result given in part ii. above is significantly stronger than the one given in part i. of
this theorem. Indeed, the expansion (42) in part i., on page 32, only involves (modulo a translation
by −DW) the real parts of some of the Complex Dimensions listed in Theorem 4.4, on page 24. By
contrast, in part ii., we can also recover some of the imaginary parts of those same Complex Dimen-
sions; note that this is possible only because the functions involved satisfy the geometric condition (41)
introduced in Definition 5.4, on page 32 above.

It immediately follows from the expansion given in (43) of part ii. above, on page 33, as well as
from the fact that the sequence of sets of vertices (Vm)m∈N is increasing (see part i. of Proposition 2.2,
on page 7), that the sequence of cohomology groups (Hm)m∈N is increasing; i.e.,

∀m ∈ N ∶ Hm ⊂ Hm+1 .

Finally, in both expansions (42), on page 32, and (43), on page 33, since the m
th

cohomology
infinitesimal ε

m
m, in the sense of Definition 3.1, on page 11 above, depends on the geometry of the

Curve, it can be interpreted as a (geometric) coefficient connecting the Weierstrass Curve and the

complex-valued functions defined on the set V
⋆
= ⋃
n∈N

Vn.

Finally, in both expansions (42) and (43), by contrast to classical Taylor expansions, we deal
with a nonarbitrary sequence of infinitesimals – the cohomology infinitesimals – directly connected
to the scaling properties of the Weierstrass Curve. This enables us to express the exact form of the
associated scaling relationship (see Proposition 2.3, on page 8, along with Remark 5.2 just below).

In other words, given k ∈ N, each k
th

cohomology infinitesimal ε
k
k, in the sense of Definition 3.1, on

page 11 above – depends on the geometry of the Curve. In light of our expansions, it can be interpreted
as a (geometric) coefficient connecting the Weierstrass Curve and the complex-valued functions defined

on the set V
⋆
= ⋃
n∈N

Vn.

Remark 5.2 (The Special Case of the Weierstrass Complexified Function [DL22c],
[DL23a], [DL23b]). Among the continuous functions on ΓW which possess, in the most natural
manner, and, for any integer m ∈ N⋆, an expansion of the form obtained in (43), on page 33,we have,
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as could be expected, the Weierstrass Complexified function Wcomp, introduced in [DL22c], defined,
for any real number x, by

Wcomp(x) =
∞

∑
n=0

λ
n
e

2 i π N
n
b x .

More precisely, as is shown in [DL22c], we have that, for any strictly positive integer m and
any j in {0, . . . ,#Vm}, we have the following exact expansion, indexed by the Complex Codimen-
sions k (DW − 2) + i k `Wk,j,m p, with 0 ⩽ k ⩽ m,

Wcomp (j εmm) = Wcomp (
j ε

m

Nb − 1
)

= ε
m (2−DW) Wcomp (

j

Nb − 1
) +

m−1

∑
k=0

ck,j,m ε
k (2−DW)

ε
i `k,j,m p

=

m

∑
k=0

ck,j,m ε
k (2−DW)

ε
i `k,j,m p

,

(45)

where, for 0 ⩽ k ⩽ m, ε
k

is the k
th

intrinsic cohomology infinitesimal, introduced in Definition 3.1,

on page 11, with p =
2π

lnNb
denoting the oscillatory period of the Weierstrass Curve, as introduced

in [DL22b] and where:

i. `k,j,m ∈ Z is arbitrary.

ii. cm,j,m =Wcomp (
j

Nb − 1
) and, for 0 ⩽ k ⩽ m − 1, ck,j,m ∈ C is given by

ck,j,m = exp ( 2 i π

Nb − 1
j ε

m−k) . (⋄⋄) (46)

For anym ∈ N, the complex numbers {c0,j,m+1, . . . , cm+1,j,m+1} and the integers {`0,j,+1, . . . , `m+1,j,m+1}
respectively satisfy the following recurrence relations:

cm+1,j,m+1 =W ( j

Nb − 1
) = cm,j,m (47)

and

∀ k ∈ {1, . . . ,m} ∶ ck,j,m+1 = ck,j,m , ε
i `k,j,m+1 p

= ε
i `k,j,m p

. (48)

In addition, since relation (45) is valid for any m ∈ N⋆ (and since, clearly, relation (46) implies that
the coefficients ck,j,m are nonzero for 0 ⩽ k ⩽ m), we deduce that the associated Complex Dimensions
(i.e., in fact, the Complex Dimensions associated with the Weierstrass function) are

DW − k (2 −DW) + i `k,j,m p

where 0 ⩽ j ⩽ #Vm − 1, 0 ⩽ k ⩽ m and `k,j,m ∈ Z is arbitrary.

This immediately ensures, for the Weierstrass function (i.e., the real part of the Weierstrass com-
plexified function Wcomp), that, for any strictly positive integer m and for any j in {0, . . . ,#Vm},
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W (j εmm) = ε
m (2−DW) Wcomp (

j

Nb − 1
) +

m−1

∑
k=0

ε
k (2−DW) Re (ck,j,m εi `k,j,m p)

= ε
m (2−DW) Wcomp (

j

Nb − 1
) + 1

2

m−1

∑
k=0

ε
k (2−DW) (ck,j,m εi `k,j,m p

+ ck,j,m ε
− i `k,j,m p)

=
1

2

m

∑
k=0

ε
k (2−DW) (ck,j,m εi `k,j,m p

+ ck,j,m ε
− i `k,j,m p) .

(49)

Remark 5.3 (About the Integers `k,j,m in part ii. of Theorem 5.3, on page 32, or in Theo-
rem 5.4 below, on page 36). Note that since, the fractional part map is one-periodic, this results
in a kind of periodicity with respect to the integers `k,j,m.

Naturally, the set of integers {`k,j,m , k ∈ N} (in part ii. of Theorem 5.3, on page32) is infinite
and equal to Z. In particular, ∣`k,j,m∣→∞ as k →∞. We thus recover completely analogous results
to those obtained in Theorem 4.4, on page 24 above (from [DL22b]).

An entirely similar comment can be made about the integers `k,j,m occurring in the statement of
Theorem 5.4, on page 36 just below.

Furthermore, once `k,j,m has been chosen to be the smallest positive integer satisfying the required
inequalities, for a given k ∈ N, then we obtain a sequence of integers (`k,j,mq)q ∈Z = (`k,j,m + q)q ∈Z
(isomorphic to Z) satisfying the fractal series expansion (43), on page 33, where, for all q ∈ Z,

0 ⩽ {(`k,j,m + q)
ln ε

k
k

lnNb
} ≲

ε
k (DW−1)
k

2π
.

Theorem 5.4 (Fractal Cohomology of the Weierstrass Curve [DL22c]). Within the set Ḧoldgeom (ΓW)
of continuous, complex-valued functions f , defined on the Weierstrass Curve ΓW ⊃ V

⋆
= ⋃
m∈N

Vm (see

part ii. of Definition 5.4, on page 32 above), let us consider the Complex (which can be called the
Fractal Complex of ΓW),

H
⋆
= H

• (F• (ΓW ,C) , δ•) =
∞

⨁
m=0

Hm ,

where, for any integer m ⩾ 1, and with the convention H0 = Im δ−1,0 = {0}, Hm is the cohomology
group

Hm = ker δm−1,m/Im δm−2,m−1 .

Then, H
⋆

is the set consisting of functions f on ΓW , viewed as 0-fermions (in the sense of
Definition 5.1, on page 29), and, for any integer m ⩾ 1, of the restrictions to Vm of (m,Nm

b + 1)-

fermions, i.e., the restrictions to (the Cartesian product space) V
N

m
b +1

m of antisymmetric maps on ΓW ,
with N

m
b + 1 variables (corresponding to the vertices of Vm), involving the restrictions to Vm of the con-

tinuous, complex-valued functions f on ΓW – as, naturally, the aforementioned 0-fermions – satisfying
the following convergent (and even, absolutely convergent) Taylor-like expansions (with V

⋆
= ⋃
n∈N

Vn

), for all M⋆,⋆ ∈ V
⋆

,
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f (M⋆,⋆) =

∞

∑
k=0

ck (f,M⋆,⋆) ε
k (2−DW)
k ε

i k `k,j,m p

k

=

∞

∑
k=0

ck (f,M⋆,⋆) ε
k (2−DW)+i `k,j,m p

k ,

(50)

where, for each integer k ⩾ 0, the coefficient ck (⋆,⋆) = ck (f,⋆) ∈ C is the same as in part ii. of

Theorem 5.3, on page 32, the number ε
k
k = (εk)k > 0 is the k

th
component of the k

th
cohomology

infinitesimal introduced in Definition 3.1, on page 11, and where `k,j,m denotes an integer (in Z) such
that

0 ⩽ {`k,j,m
ln ε

k
k

lnNb
} ≲

ε
k (DW−1)
k

2π
.

Note that since the functions f involved are uniformly continuous on the Weierstrass Curve ΓW ⊃ V
⋆
,

and since the set V
⋆

is dense in ΓW , they are uniquely determined by their restriction to V
⋆
, as given

by relation (50), on page 37. We caution the reader, however, that at this stage of our investigations,
we do not know wether f(M) is given by an expansion analogous to the one in relation (50), on
page 37, for every M ∈ ΓW , rather than just for all M ∈ V

⋆
.

The convergence (or even, the absolute convergence) of the series

∞

∑
k=0

ck (f,M⋆,⋆) ε
k (2−DW)+i `k,j,m p

k

directly comes from the fact that the coefficients ck (⋆,⋆) are uniformly bounded and that, for any k ∈ N⋆,

»»»»»»ε
k (2−DW)+i `k,j,m p

k

»»»»»» = ε
k (2−DW)
k = (ε2−DW

k )
k
, with 2 −DW > 0 .

Finally, for each M⋆ =M⋆,m ∈ V
⋆

, the coefficients ck (⋆,⋆) (for any k ∈ N) are the residues
at the possible Complex Dimensions −k (2 −DW) + i `k,j,m p of a suitable global scaling zeta func-
tion ζf,M⋆,m,gl (see [DL22c]).

The group H
⋆
=

∞

⨁
m=0

Hm is called the total fractal cohomology group of the Weierstrass Curve ΓW

(or else, of the Weierstrass function W).

This amounts, for each ϕ ∈ H
⋆

, to

ϕ = (ϕm)m∈N ,

where, for each m ∈ N, ϕm ∈ Hm, while, if we denote by π ∶ Hm+1 → Hm the projection from Hm+1

onto Hm, we have that π (ϕm+1) ∈ Hm coincides with ϕm.

The following statement is a corollary of both Theorems 5.3, on page 32, and Theorem 5.4, on
page 36.

Corollary 5.5. For each m ∈ N, the prefractal cohomology space Hm is different from {0}. Indeed,
the Weierstrass function W, viewed as an appropriate restriction of the identity map on the Weier-
strass Curve ΓW , belongs to each Hm, for any m ∈ N.

Similarly, and for exactly the same reason, the total fractal cohomology space H
⋆
, is not reduced

to {0} (because, in short, W belongs to H
⋆
).
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Therefore, in some definite sense, we can say that the Weierstrass function – or, alternatively, the
Weierstrass Curve – belongs to its own cohomology.

Remark 5.4. These results are to be compared with previous ones of Michel L. Lapidus and collabora-
tors (specifically, Machiel van Frankenhuijsen and Tim Cobler) obtained in [LvF00], [LvF06], [Lap08], [LvF13], [CL17], [Lap19]
and [Lap24].

More precisely, in our present setting, and contrary to the classical cases of arithmetic or differ-
entiable varieties, for which the decomposition of the total cohomology is indexed by integers, the
total (fractal) cohomology H

⋆
is a sum of spaces indexed by the Complex Dimensions (as is expected

in [LvF00], [LvF06], [LvF13] and [Lap08], and discussed in detail in [CL17], [Lap19] and [Lap24]),
with an underlying quasiperiodicity property, induced by the estimate (on the imaginary parts of the
complex dimensions) (44) in part ii. of Theorem 5.3, on page 32. We thus dispose of a quasiperiodic
geometric property (reminiscent of, but not identical to, that established in Chapter 3 of [LvF13]
for nonlattice self-similar strings), which can possibly be connected to the structure of a (generalized)
quasicrystal (see [LvF13], Problem 3.22, page 89, and [Lap08], especially, Chapter 5 and Appendix F),
especially in the case not considered in the present paper when Nb is not an integer, but for which we
expect analogous results; see, in particular, Remark 4.8, on page 28 above.

Remark 5.5. Note that H
⋆

is to be understood in the sense of the inductive limit of the sequence of co-
homology groups (Hm)m∈N; namely, for each fermion ϕ ∈ H

⋆
, and each m ∈ N, the restriction ϕ∣Vm

of ϕ to the set of vertices Vm belongs to Hm; the restriction (ϕ∣Vm+1
)∣Vm to Vm of the restriction ϕ∣Vm+1

of ϕ to the set of vertices Vm+1 (which is itself in Hm+1), cöıncides with the restriction ϕ∣Vm of ϕ to Vm;
i.e.,

∀m ∈ N ∶ ϕ∣Vm ∈ Hm and (ϕ∣Vm+1
)∣Vm = ϕ∣Vm .

This amounts, for each ϕ ∈ H
⋆
, to

ϕ = (ϕm)m∈N ,

where, for each m ∈ N, ϕm ∈ Hm, while, if we denote by π ∶ Hm+1 → Hm the natural projection
fromHm+1 ontoHm (recall from Remark 5.1, on page 33 thatHm ⊂ Hm+1), we have that π (ϕm+1) ∈ Hm

coincides with ϕm.

Remark 5.6. In some sense, the Complex Dimensions corresponding to the fractal cohomology –
namely, ωk = −k (2 −DW) + i `k,j,m p, where k ∈ N is arbitrary – can be viewed as being associated
to the Weierstrass function itself rather than with the Weierstrass Curve.

In [DL22c], we also provide a reformulation of Theorem 5.3, on page 32 and Theorem 5.4, on

page 36 concerning, respectively, the m
th

prefractal cohomology groups Hm (m ∈ N) and the global
(or total) fractal cohomology group H

⋆
. This reformulation – based on a pair of complex conjugate

variables Z and Z̄ instead of (x, y) ∈ R2
– makes use of the natural symmetry of the Weierstrass

Curve ΓW and, correspondingly, enables us to obtain a natural version of Poincaré Duality for the
associated cohomology spaces; see [DL22c] and Section 6, on page 38 below.

6 Concluding Comments and Perspectives

Up to now, the determination of the possible Complex Dimensions of the Weierstrass Curve had
remained an open problem, that we have solved in [DL22b]. Contrary to classical fractals, the non-
affine feature, coming from a nonlinear iterated function system, makes things a lot more complicated
than for earlier examples studied in the literature (see, e.g., [LRŽ17a], [LRŽ17b], [LRŽ18], [Lap19]).

By considering the fractal Complex Dimensions as dynamical quantities, which evolve with the
scales, we set up a broader and more general framework than the one which was envisioned before.
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We can draw an analogy between this new framework and the theory of the French physicist Laurent
Notale discussed, for instance, in [Not98]: in our context, the fractal dimension plays the role of the
time variable; the length – seen as a function of the resolution, once replaced by its logarithm – plays
the role of the position; as for the scale (or, in an additive way, its logarithm), it is the analogue of
the speed. This explains why there is an insurmountable (minimum) resolution, directly depending
on the geometry. (There is also a largest scale, but this is perhaps less surprising.)

One of the benefits of our study – insofar as we handled a more general setting than in the clas-
sical cases – will concern the extension to a large class of (possibly nowhere differentiable) fractal
functions. Note that our results also provide a new and very direct proof of the fact that the value

of the Minkowski (or box-counting) dimension of the Weierstrass Curve is DW = 2 − lnNb

1

λ
. More

precisely, this new complete proof is provided in our later work [DL23b], by using the polyhedral
methods of that paper and of [DL22a].

The interest of considering such a fractal object is, besides its very rich geometrical properties – a
self-shape similarity, coming from a prefractal polygonal sequence with vertices entirely contained and
dense in the Curve – that one has a natural map defined on the Curve. Again, it is not usually the case
(see, for instance, the Sierpiński Gasket, where one has to introduce specific functions). As is shown
in [DL22c], it happens that the complexified Weierstrass function possesses a fractal power series ex-
pansion indexed by the cohomological Complex Dimensions; see Remark 5.2, on page 34. In this light,
one could not bypass establishing a direct link with a fractal cohomology. As expected, the fractal
expansion (or explicit formula) that enables us to express any given function belonging to the m

th
co-

homology group, at a given vertex of the associated m
th

prefractal graph approximation, can exactly be
written as a countably infinite sum indexed by the cohomological Complex Dimensions. Going further,
this might be interpreted as a kind of generalized Taylor expansion, with fractional derivatives of un-
derlying orders the corresponding Complex Dimensions. It appears that we have significantly extended
and given a geometric meaning to the results (and conjectures) in [LvF00], [LvF06], [Lap08], [LvF13],
along with the ones in [CL17] and [Lap24], where the authors suggested that there should exist a
fractal cohomology theory having direct links with the theory of Complex Dimensions.

The natural Poincaré duality associated to the Weierstrass Curve (see [DL22c]) calls for further
investigation. In our future works, we envision to lay out the foundations of a so-called fractal differ-
ential calculus along with a corresponding version of Hodge theory – the natural extension to fractal
objects of the classic differential calculus. Specific topics include the conditions of existence of Taylor-
like expansions, as well as of the explicit expressions of the corresponding (local) fractional derivatives,
along with a proper definition, in the present context, of the notion of (a possibly higher-dimensional)
fractal manifold, its associated Complex Dimensions, fractal curvatures and fractal cohomology, dual
of a potential fractal homology which is yet to be constructed here.

It is worth pointing out that in [DL23b] – announced in [DL23a] – and building, in particular,
on the methods introduced in [DL22b] and [DL22c] (and discussed in this paper) – we consider
the Weierstrass IFD (or iterated fractal drum) defined by means of suitable polyhedral (i.e., here,
polygonal) neighborhoods of the Weierstrass Curve and study in detail the associated local and global
effective polyhedral zeta functions, associated respectively with the prefractal approximations ΓWm

(for all m ∈ N⋆ sufficiently large) and the whole Weierstrass Curve ΓW . In particular, we determine
the corresponding Complex Dimensions – called the intrinsic Complex Dimensions of ΓW – and show
that they are exact (i.e., actual) and simple poles of the global zeta function, as well as given by

DW − k (2 −DW) + i `p ,

where k ∈ N and ` ∈ Z are arbitrary and p =
2π

lnNb
is the same oscillatory period as in [DL22b], [DL22c]

and in this paper.
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These methods were further extended in [DL23c] to the prototypical case of the celebrated Koch
Curve, another nowhere differentiable and fractal curve, for which we have now determined the ex-
act Complex Dimensions, thereby significantly expanding the earlier work of the second author and
Erin P. J. Pearse in [LP06].
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Figure 1: The prefractal graphs ΓW0
, ΓW1

, ΓW2
, ΓW3

, ΓW4
, ΓW5

, in the case when λ =
1

2
and Nb = 3. For example, ΓW1

is on the right side of the top row, while ΓW4
is on the

left side of the bottom row.

44



P0
P2

T0 (P1)

T0 (P2) = T1 (P0) T1 (P2) = T2 (P0)

T2 (P1)

P1

polygon P1,0

polygon P1,1

polygon P1,2

initial polygon P0

1
x

-1

1

y

Figure 2: The initial polygon P0, and the polygons P1,0, P1,1, P1,2, in the case when λ =
1

2
and Nb = 3.
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Figure 3: The left–side and right–side vertices.
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Figure 4: The (1, ε1), (2, ε2) and (3, ε3)-Neighborhoods, in the case when λ =
1

2
and Nb = 3.
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Figure 5: Two overlapping rectangles, coming from the upper tubular neighborhood, in

the case when λ =
1

2
and Nb = 3. The overlapping shape is a rhombus, because we deal

with the upper tubular neighborhood, which means that the rectangles cannot be side
by side, and thus, overlap.
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Figure 6: The intrinsic Complex Dimensions of the Weierstrass Curve. The Complex

Dimensions are periodically distributed (with the same period p =
2π

lnNb
, the oscillatory

period of ΓW) along countably many vertical lines, with abscissae DW − k (2 −DW),
where k ∈ N is arbitrary.
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Figure 7: In search of invariants, when switching from the initial prefractal graph, to the
first one.
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Figure 8: In search of invariants, when switching from the (m − 1)th prefractal graph, to

the m
th

one.
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