
HAL Id: hal-03797595
https://hal.science/hal-03797595v2

Preprint submitted on 16 Dec 2022 (v2), last revised 17 Jan 2024 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fractal Complex Dimensions and Cohomology of the
Weierstrass Curve

Claire David, Michel L Lapidus

To cite this version:
Claire David, Michel L Lapidus. Fractal Complex Dimensions and Cohomology of the Weierstrass
Curve. 2022. �hal-03797595v2�

https://hal.science/hal-03797595v2
https://hal.archives-ouvertes.fr


Fractal Complex Dimensions

and

Cohomology of the Weierstrass Curve

Claire David
1
and Michel L. Lapidus

2 ∗

November 8, 2022

1
Sorbonne Université
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Abstract

In this survey article, we present the authors’ main results concerning the Complex Dimensions
of the Weierstrass Curve, along with their links with the associated fractal cohomology, as devel-
oped in our previous papers [DL22a], [DL22b]. Our results shed new light on the theory and the
interpretation of Complex Fractal Dimensions, insofar as we envision the fractal Complex Dimen-
sions as dynamical quantities, which evolve with the scales. Accordingly, we define the Complex
Dimensions of the Weierstrass Curve as the set of the Complex Dimensions of the sequence of
Weierstrass Relative Fractal Drums which converge to the Curve. By means of fractal tube formu-
lae, we then obtain the associated Weierstrass fractal zeta functions, whose poles yield the set of
Complex Dimensions. In particular, we show that the Complex Dimensions (apart from 0 and −2)
are periodically distributed along countably many vertical lines, with the same oscillatory period.
As expected, the Minkowski (or box-counting) dimension is the Complex Dimension with maximal
real part, and zero imaginary part.

We then show how those Dimensions are connected to the cohomological properties of the Curve:
the cohomological groups related to the Curve are obtained, by induction, as sums indexed by the
cohomological Complex Dimensions. We determine explicitly both the infinite sequence of prefractal
cohomology spaces and the corresponding inductive limit, the fractal (or total) cohomology space
of the Weierstrass Curve. In particular, we show that the elements of these cohomology spaces
– viewed as suitable continuous functions on the Curve – admit a fractal power series expansion
taken over the cohomological Complex Dimensions, that are akin to Taylor-like expansions.

MSC Classification: 11M41, 28A12, 28A75, 28A80.

∗
The research of M. L. L. was supported by the Burton Jones Endowed Chair in Pure Mathematics, as well as by

grants from the U. S. National Science Foundation.

1
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1 Introduction

The Weierstrass Function is mainly known as one of those so-called “pathological objects”, continu-

ous everywhere, while nowhere differentiable. Given λ ∈ ]0, 1[, and an odd integer b such that λ b > 1 +
3π

2
,

it has been introduced by K. Weierstrass [Wei75], as the sum of the uniformly convergent trigonometric
series

x ∈ R↦

∞

∑
n=0

λ
n

cos (π bn x) ⋅

We refer to [Tit39] (pages 351-353) for an exposition of the original proof, which was then com-
pleted by G. Hardy [Har16], in the more general case, where b is any real number such that λ b > 1.

Yet, beyond this property of nowhere differentiability, the associated Curve is also of great interest,
due to its self-similarity properties: the Curve is a fractal, as evoked, for instance, by Benôıt Mandel-
brot in his famous books [Man77], [Man83]. Impressively, Mandelbrot guessed, in a purely intuitive

way, the exact value of the associated Hausdorff dimension, i.e., DW = 2 +
lnλ

ln b
, thereby joining the

cohort of the great mathematical conjectures. “Comment certains mathématiciens sont parvenus à
une conjecture, cela s’apparente à un saut dans le vide ” – “How some mathematicians came to a con-
jecture is akin to a leap into the void”, as stated by the French mathematician Martin Andler [Cul20].

From this perspective, the main topic that interested the mathematical community has long been
the determination of the box-counting dimension – or Minkowski dimension, of the Curve, as it can
be found in the existing literature on the subject, from discussions in Falconer’s book [Fal86], or
results by J.-L. Kaplan, J. Mallet-Paret and J. A. Yorke [KMPY84], involving Fourier analysis and
tools from the theory of dynamical systems. One should also cite the works of F. Przytycki and
M. Urbański [PU89], T.-Y. Hu and K.-S. Lau [HL93], followed, in the case of the Hausdorff dimen-
sion, by B. Hunt [Hun98], who also examined the randomized case. Further results concerning the
Hausdorff dimension have been obtained by K. Barańsky, B. Bárány and J. Romanowska [BBR14],
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then, by W. Shen [She18] (in the general case), and G. Keller [Kel17].

The specific question of the box-counting dimension is of importance. It has been proved by the
first author [Dav18], in the case where b = Nb is an integer, and by contrast to existing work, that it
can be obtained in a simple way, without requiring theoretical background in the theory of dynamical
systems. This is not all. It appears to be deeply linked to the non-differentiability property of the
function. One might then want to go further, and question the operators at stake: maybe there is a
way to obtain new ones, fitted to this singular object, that would make differentiation possible?

This is where the theory of Complex Dimensions comes into play. Developed for many years now by
M. L. Lapidus and his collaborators for example in [Lap91], [Lap92], [Lap93], [LP93], [LM95], [LP06],
[Lap08], [LPW11], [LvF06], [LvF13], [LRŽ17a], [LRŽ17b], [LRŽ18], [Lap19], [HL21], [Lap22], it makes
the connection between the geometry of an object and its differentiability properties. This is done
by means of geometric (or fractal) zeta functions, which stand for the trace of the differential oper-
ator at a complex order s. The Complex Dimensions are obtained as the poles of those fractal zeta
functions. They account, in particular, for the maximal order of differentiation, which coincides with
the Minkowski dimension of the compact set under study. Usually, the Minkowski (or box-counting)
dimension) coincides with the maximum value of the associated real parts.

With regard to fractals, the determination of the Complex Dimensions of the Weierstrass Curve
was, until now, an open problem (see [LRŽ17b], Problem 6.2.24, page 560), that we recently solved
in [DL22a]. The required geometric zeta functions are local and global fractal tube zeta functions,
obtained by means of so-called Weierstrass Iterated Fractal Drums; i.e., tubular neighborhoods of
prefractal polygonal approximations of the Curve. The main difficulty was to handle the nonlinear
features at stake, since, contrary to classical fractals such as, for instance, the Koch Curve, the Weier-
strass Curve is obtained by means of a suitable nonlinear and noncontractive iterated function system
(i.f.s.); see [Dav18]. The i.f.s. is essential: fractals are usually obtained as limits of so-called prefrac-
tals, i.e., a sequence of finite graphs that converge towards them. In our case, nonlinearity makes the
geometry especially complicated; in particular, one cannot obtain the exact values of the underlying
elementary lengths and angles.

In order to deal with those difficulties, we had to rely on geometrical properties that had never
been obtained previously:

i. Explicit lower and upper bounds for the elementary lengths, in relation with the Hölder and
anti-Hölder (or reverse Hölder) properties of the Weierstrass function.

ii. Nonincreasing property for the sequence of geometric angles.

iii. Conditions under which there exist reentrant angles.

Regarding the Complex Dimensions, in the case where b = Nb is an integer, we have obtained the
following key results:

i. In Corollary 2.6, and Theorem 2.7, along with Corollary 2.2, where we prove the sharp Hölder
continuity, and sharp local reverse Hölder continuity, with optimal Hölder exponent

2 −DW = αW =

ln 1
λ

lnNb
∈ (0, 1) for the Weierstrass function.
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ii. For very small values of the positive parameter ε, the expression of the ε-neighborhood of the
Curve – a Weierstrass Fractal Tube Formula, which (apart from two terms associated with the
Complex Dimensions 0 and −2) involves an expansion of the form

∑
α real part of a Complex Dimension

ε
2−α

Gα (lnNb (
1
ε)) , (⋆)

where, for any real part α of a Complex Dimension, Gα denotes a continuous and periodic func-
tion. Furthermore, for α = αmax = DW , the Minkowski dimension of the Curve – i.e., for α being
the maximal real part of the Complex Dimensions – Gαmax is nonconstant, as well as bounded
away from zero and infinity. See Theorem 4.2.

iii. The values of the possible Complex Dimensions of the Curve, defined as the poles of the as-
sociated Tube Zeta Function. In particular, we show that the Complex Dimensions different
from 0 and −2 are periodically distributed along countably many vertical lines, with abscis-
sae DW − k (2 −DW ), 1 − 2 k, where k in N is arbitrary. Furthermore, all of the Complex

Dimensions (different from 0 and −2) have the same oscillatory period p =
2π

lnNb
. Moreover,

zero and −2 are also Complex Dimensions. See Theorems 5.3 and 5.4, along with Corollary 4.4.

In addition, we know that the dimensions 0, 1, −2 and DW − k (2 −DW ), where k in N is ar-
bitrary, are actual Complex Dimensions of the Curve, and they are simple; i.e., they are simple
poles of the fractal zeta function of the Weierstrass Curve (or, rather, of the associated Weier-
strass iterated fractal drum).

iv. The nondegeneracy, in the Minkowski sense (see [LRŽ17b]), of the Curve, which comes from the
fact that the lower and upper Minkowski contents of the Curve are respectively positive and
finite. See Theorem 4.6 along with Corollary 4.7.

v. As a corollary, the fact that the number DW is a Complex Dimension of the Curve, and coincides
with the Minkowski dimension (which then exists) of the Curve, and takes the expected value,

as given by Mandelbrot’s conjecture; namely, DW = 2 −
ln 1

λ

lnNb
∈ (1, 2).

vi. The fractality of the Weierstrass Curve, in the sense of [LvF00], [LvF06], [LvF13], [LRŽ17b], [Lap19];
i.e., the existence of nonreal Complex Dimensions (with real part DW ) giving rise to geometric
oscillations, in the Fractal Tube Formula obtained in [DL22a]. In the terminology of [LvF13]
and [LRŽ17b], the Weierstrass Curve is fractal in countably many dimensions dk, with dk → −∞,
as k →∞.

Beyond these results, we have studied the links with a fractal cohomogy, a natural feature, in so far
as discrete differences are deeply connected with differentiation (see the paper on h-Cohomology [DL21]).
We place ourselves within a completely different framework from the one that can be found, for in-
stance, in the work by Marius Ionescu, Luke G. Rogers and Alexander Teplyaev in [IRT12], and which is
based on the construction of Fredholm modules. Along the lines of previous results obtained or conjec-
tured by the second author and his collaborators in [LvF00], [LvF06], [Lap08], [LvF13], [CL17], [Lap19]
and [Lap22], we have obtained the following key results:
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i. In Theorem 5.3, where we prove that the cohomology groups associated to the Weierstrass Curve
consist of continuous functions on the Weierstrass Curve, satisfying fractal expansions expressed
as sums indexed by the underlying Complex Dimensions. Such a result had not been established
(or even expected) before.

ii. In Theorem 5.4, which gives the total cohomology of the Weierstrass Curve, in terms of Taylor-
like expansions, again indexed by the underlying Complex Dimensions.

The aim of the present paper, which is a survey article, is to present those results in a summa-
rized form. Hence, we will not give detailed proofs, which can be found in the original texts [DL22a],
and [DL22b].

Section 2 is devoted to the geometric framework. The next one, Section 3, gives the expression of
the tubular neighborhood of the Curve, from which one deduces the tube zeta function (as well as the
distance zeta function), and the values of the possible Complex Dimensions. The fractal cohomology
is discussed in Section 5, where we also show, as could be expected, that the Weierstrass function W
belongs to the total cohomology of the Weierstrass Curve.

2 Geometric Framework

Henceforth, we place ourselves in the Euclidean plane of dimension 2, equipped with a direct or-
thonormal frame. The usual Cartesian coordinates are denoted by (x, y). The horizontal and vertical
axes will be respectively referred to as (x′x) and (y′y).

Notation 1 (Set of all Natural Numbers, and Intervals).

As in Bourbaki [Bou04] (Appendix E. 143), we denote by N = {0, 1, 2, ⋯} the set of all natural
numbers, and set N

⋆
= N \ {0}.

Given a, b with −∞ ⩽ a ⩽ b ⩽∞, ]a, b[ = (a, b) denotes an open interval, while, for example, ]a, b] = (a, b]
denotes a half-open, half-closed interval.

Notation 2 (Wave Inequality Symbol).

Given two positive numbers a and b, we will use the notation a ≲ b when there exists a strictly
positive constant C such that a ⩽ C b.

Notation 3 (Weierstrass Parameters).

In the sequel, λ and Nb are two real numbers such that

0 < λ < 1 , Nb ∈ N
⋆

and λNb > 1 ⋅ (♣)
Note that this implies that Nb > 1 (i.e., Nb ⩾ 2).
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Definition 2.1 (Weierstrass Function, Weierstrass Curve).

We consider the Weierstrass function W , defined, for any real number x, by

W (x) =
∞

∑
n=0

λ
n

cos (2πNn
b x) ⋅

We call the associated graph the Weierstrass Curve.

Due to the periodic properties of the W function, from now on, we restrict our study to the
interval [0, 1[= [0, 1) (or, equivalently, to [0, 1]). Accordingly, the Weierstrass Curve ΓW is viewed as
a compact subset of R

2
.

Notation 4 (Logarithm).

Given y > 0, ln y denotes the natural logarithm of y, while, given a > 0, a ≠ 1, lna y =
ln y

ln a
denotes

the logarithm of y in base a; so that, in particular, ln = lne.

Notation 5. For the parameters λ and Nb satisfying condition (♣) (see Notation 3), we denote by

DW = 2 +
lnλ

lnNb
= 2 − lnNb

1

λ
∈ ]1, 2[

the box-counting dimension (or Minkowski dimension) of the Weierstrass Curve ΓW , which happens to
be equal to its Hausdorff dimension [KMPY84], [BBR14], [She18], [Kel17]. Our results also provide a
direct proof of the fact that DW , the Minkowski dimension (or box-counting dimension) of ΓW , exists
and takes the above value.

Convention (The Weierstrass Curve as a Cyclic Curve).

In the sequel, we identify the points (0,W (0)) and (1,W (1)) = (1,W (0)). This is justified by the
fact that the Weierstrass function W is 1-periodic, since Nb is an integer.

Proposition 2.1 (Nonlinear and Noncontractive Iterated Function System (i.f.s.)).

Following our previous work [Dav18], we approximate the restriction ΓW to [0, 1[×R, of the
Weierstrass Curve, by a sequence of finite graphs, built via an iterative process. For this purpose, we
use the nonlinear iterated function system of the family of C

∞
maps from R

2
to R

2
denoted by

TW = {T0,⋯, TNb−1} ,

where, for any integer i belonging to {0,⋯, Nb − 1} and any point (x, y) of R
2
,

Ti(x, y) = (x + i
Nb

, λ y + cos (2π (x + i
Nb

))) ⋅

We point out that those maps are not contractions (see [Dav19]). Yet, they correspond, in a sense,
to the composition of a contraction of ratio rx in the horizontal direction, and a dilatation of factor ry
in the vertical one, with

rx ry < 1 ⋅
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Property 2.2 (Attractor of the i.f.s. [Dav18], [Dav19]).

The Weierstrass Curve is the attractor of the i.f.s. TW :

ΓW =

Nb−1

⋃
i=0

Ti(ΓW ) ⋅

Notation 6 (Fixed Points).

For any integer i belonging to {0,⋯, Nb − 1}, we denote by:

Pi = (xi, yi) = ( i

Nb − 1
,

1

1 − λ
cos ( 2π i

Nb − 1
))

the unique fixed point of the map Ti; see [Dav19].

Definition 2.2 (Sets of Vertices, Prefractals).

We denote by V0 the ordered set (according to increasing abscissae), of the points

{P0,⋯, PNb−1} ⋅
The set of points V0 – where, for any i of {0,⋯, Nb − 2}, the point Pi is linked to the point Pi+1 –

constitutes an oriented graph, according to increasing abscissa, that we will denote by ΓW0
. Then, V0

is called the set of vertices of the graph ΓW0
.

For any nonnegative integer m, i.e., for m ∈ N, we set

Vm =

Nb−1

⋃
i=0

Ti (Vm−1) ⋅

The set of points Vm, where two consecutive points are linked, is an oriented graph, according to
increasing abscissa, called the m

th
-order W -prefractal. Then, Vm is called the set of vertices of

the m
th

prefractal graph ΓWm ; see Figure 1.

Definition 2.3 (Adjacent Vertices, Edge Relation).

For any m ∈ N, the m
th

prefractal graph ΓWm is equipped with an edge relation ∼
m

, as follows: two

vertices X and Y of ΓWm , i.e. two points belonging to Vm will be said to be adjacent (i.e., neighboring
or junction points) if and only if the line segment [X,Y ] is an edge of ΓWm ; we then write X ∼

m
Y .

Note that this edge relation depends on m, which means that points adjacent in Vm might not remain
adjacent in Vm+1.

Property 2.3. [Dav18]

For any m ∈ N, the following statements hold :

i. Vm ⊂ Vm+1 ⋅
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ii. #Vm = (Nb − 1) Nm
b + 1 ⋅

iii. The m
th

prefractal graph ΓWm has exactly (Nb − 1) Nm
b edges.

iv. The consecutive vertices of the prefractal graph ΓWm are the vertices of N
m
b simple polygons Pm,k with Nb

sides. For any integer m ∈ N
⋆

, the junction point between two consecutive polygons is the point

Pm,k ∩Pm,k+1 = {( (Nb − 1) k
(Nb − 1)Nm

b

,W ( (Nb − 1) k
(Nb − 1)Nm

b

))} , 1 ⩽ k ⩽ N
m
b − 1 ⋅

Hence, the total number of junction points is N
m
b − 1. For instance, in the case Nb = 3, one gets

triangles.

In the sequel, we will denote by P0 the initial polygon, whose vertices are the fixed points of
the maps Ti, 0 ⩽ i ⩽ Nb − 1, introduced in Definition 2.2, i.e., {P0,⋯, PNb−1}.

1
x

-1

1

y

1
x

-1

1

y

1
x

-1

1

y

1
x

-1

1

y

1
x

-1

1

y

1
x

-1

1

y

Figure 1: The prefractal graphs ΓW0
, ΓW1

, ΓW2
, ΓW3

, ΓW4
, ΓW5

, in the case where λ =
1

2
and Nb = 3. For example, ΓW1

is on the right side of the top row, while ΓW4
is on the left

side of the bottom row.

8



P0
P2

T0 (P1)

T0 (P2) = T1 (P0) T1 (P2) = T2 (P0)

T2 (P1)

P1

polygon P1,0

polygon P1,1

polygon P1,2

initial polygon P0

1
x

-1

1

y

Figure 2: The initial polygon P0, and the polygons P0,1, P1,1, P1,2, in the case where λ =
1

2
and Nb = 3.

Definition 2.4 (Vertices of the Prefractals, Elementary Lengths, Heights and Angles).

Given a strictly positive integer m, we denote by (Mj,m)0⩽j⩽(Nb−1)Nm
b

the set of vertices of

the prefractal graph ΓWm . One thus has, for any integer j in {0,⋯, (Nb − 1)Nm
b },

Mj,m = ( j

(Nb − 1)Nm
b

,W ( j

(Nb − 1)Nm
b

)) ⋅

We also introduce, for any integer j in {0,⋯, (Nb − 1)Nm
b − 1}, the following quantities:

i. the elementary horizontal lengths:

Lm =
j

(Nb − 1)Nm
b

;

ii. the elementary lengths:

`j,j+1,m = d (Mj,m,Mj+1,m) =
√
L2
m + h

2
j,j+1,m ,

where hj,j+1,m is defined in iii. just below.
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iii. the elementary heights:

hj−1,j,m =

»»»»»»»»
W ( j

(Nb − 1)Nm
b

) −W ( j − 1

(Nb − 1)Nm
b

)
»»»»»»»»
, hj,j+1,m =

»»»»»»»»
W ( j + 1

(Nb − 1)Nm
b

) −W ( j

(Nb − 1)Nm
b

)
»»»»»»»»
;

iv. the geometric angles:

θj−1,j,m = ̂((y′y), (Mj−1,mMj,m)) , θj,j+1,m = ̂((y′y), (Mj,mMj+1,m)) ,

which yield the value of the geometric angle between consecutive edges
[Mj−1,mMj,m,Mj,mMj+1,m]:

θj−1,j,m + θj,j+1,m = arctan
Lm

∣hj−1,j,m∣
+ arctan

Lm

∣hj,j+1,m∣
⋅

Property 2.4 (Scaling Properties of the Weierstrass Function [DL22a]).

For any strictly positive integer m and any j in {0,⋯,#Vm},

W ( j

(Nb − 1)Nm
b

) = λm W ( j

(Nb − 1)) +
m−1

∑
k=0

λ
k

cos( 2πN
k
b j

(Nb − 1)Nm
b

) ⋅

Property 2.5 (Explicit Lower and Upper Bounds for the Elementary Heights [DL22a]).

For any strictly positive integer m, and any j in {0,⋯, (Nb − 1)Nm
b },

Cinf L
2−DW
m ⩽ ∣W ((j + 1)Lm) −W (j Lm)∣

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
hj,j+1,m

⩽ Csup L
2−DW
m ,

where the finite and positive constants Cinf and Csup are given by

Cinf = (Nb − 1)2−DW min
0⩽j⩽Nb−1

»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»

and

Csup = (Nb − 1)2−DW ( max
0⩽j⩽Nb−1

»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»
+

2π

(Nb − 1) (λNb − 1)) ⋅

One should note, in addition, that these constants Cinf and Csup depend on the initial polygon P0.

Corollary 2.6 (of Property 2.5).

For any strictly positive integer m and any integer j in {0,⋯, (Nb − 1)Nm
b − 1}, one then has, for

the elementary heights,

hj−1,j,m = L
2−DW
m O (1) ,

where Cinf ⩽ O (1) ⩽ Csup.
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Theorem 2.7 (Sharp Local Discrete Reverse Hölder Properties of the Weierstrass Func-
tion [DL22a]).

For any natural integer m, let us consider a pair of real numbers (x, x′) such that:

x =
(Nb − 1) k + j
(Nb − 1)Nm

b

= ((Nb − 1) k + j) Lm , x
′
=

(Nb − 1) k + j + `
(Nb − 1)Nm

b

= ((Nb − 1) k + j + `) Lm

where 0 ⩽ k ⩽ Nb − 1
m − 1, and

i. if the integer Nb is odd,

0 ⩽ j <
Nb − 1

2
and 0 < j + ` ⩽

Nb − 1

2

or

Nb − 1

2
⩽ j < Nb − 1 and

Nb − 1

2
< j + ` ⩽ Nb − 1 ;

ii. if the integer Nb is even,

0 ⩽ j <
Nb

2
and 0 < j + ` ⩽

Nb

2

or

Nb

2
+ 1 ⩽ j < Nb − 1 and

Nb

2
+ 1 < j + ` ⩽ Nb − 1 ⋅

This means that the points (x,W (x)) and (x′,W (x′)) are vertices of the polygon Pm,k (see Prop-
erty 2.3), both located on the left-side of the polygon, or both located on the right-side (see Figure 3).

Then, one has the following reverse-Hölder inequality, with sharp Hölder exponent −
lnλ

lnNb
= 2 −DW ,

Cinf ∣x′ − x∣2−DW
⩽

»»»»»W (x′) −W (x)»»»»» ⋅

Remark 2.1. It is clear that, for any natural integer m, and any pair ((x,W (x)) , (x′,W (x′))) of
adjacent vertices of the finite prefractal graph ΓWm , the same following (discrete, local) Hölder and

reverse-Hölder inequality, with sharp Hölder exponent −
lnλ

lnNb
= 2 −DW , holds; i.e., still with Cinf

and Csup given as in Property 2.5 above, we have that

Cinf ∣x′ − x∣2−DW
⩽

»»»»»W (x′) −W (x)»»»»» ⩽ Csup ∣x
′
− x∣2−DW ⋅

Remark 2.2. Thus far, no such reverse Hölder estimates had been obtained for the Weierstrass func-
tion. The fact that they are discrete ones is natural, since the Weierstrass Curve is approximated by
a sequence of polygonal prefractal graphs.
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Figure 3: The left-side and right-side vertices.

Corollary 2.8 (Optimal Hölder Exponent for the Weierstrass Function [DL22a]).

The local reverse Hölder property of Theorem 2.7, in conjunction with the Hölder condition sat-
isfied by the Weierstrass function (see [Zyg02], Chapter II, Theorem 4.9, page 47), shows that the

Codimension 2 −DW = −
lnλ

lnNb
is the best, i.e., optimal Hölder exponent for the Weierstrass function.

Corollary 2.9 (Nonincreasing Sequence of Geometric Angles).

For the geometric angles θj−1,j,m, 0 ⩽ j ⩽ (Nb − 1)Nm
b , m ∈ N, we have the following property:

θj−1,j,m > θj−1,j,m+1 and θj−1,j,m+1 ≲ L
DW −1
m ⋅

3 Iterated Fractal Drums and ε-Neighborhood of the W -Curve

We introduce here the notion of an iterated fractal drum (IFD), which is well suited to the present
setting – and, as we expect, to many other complicated examples of fractal curves and of their higher-
dimensional analogs. As we will see, it is defined in terms of the ε-neighborhood of an appropriate
infinitesimal sequence of lengths, ε = (εm)m∈N; intuitively, (εm)m∈N, can be thought of as a sequence
of scales.

Notation 7 (Euclidean Distance).

In the sequel, we denote by d the Euclidean distance on R
2
.

Notation 8 (Small Parameter and Associated Map).

Given a natural integer m, we take εm in ( 1

(Nb − 1)Nm+1
b

,
1

(Nb − 1)Nm
b

], and introduce the

map

εm ↦ m(εm) = [− lnNb ((Nb − 1) εm)] = [m(εm)] + {m(εm)} ,

12



where [⋅] and {⋅} respectively denote the integer and fractional parts; so that y = [y] + {y}, with [y] ∈ Z
and 0 ⩽ {y} < 1.

For the sake of simplicity, we temporarily set x = m(εm) = − lnNb ((Nb − 1) ε), which yields

N
m
b = N

[x]
b = N

x−{x}
b and ε =

1

Nb − 1
N
−([x]+{x})
b ⋅

Property 3.1 ((m,ε)-Neighborhood [DL22a]).

Given a natural integer m, and a point M ∈ R
2
, we denote by d (M,ΓWm) the distance from M

to ΓWm. Then, for the small positive number εm previously introduced in Notation 8, the (m, εm)-
Neighborhood of the Weierstrass Curve,

D (ΓWm , εm) = {M = (x, y) ∈ R2
, d (M,ΓWm) ⩽ εm}

(see Figure 4), is obtained by means of:

i. (Nb − 1)Nm
b upper and lower overlapping rectangles (see Figure 5), of length `j−1,j,m, 1 ⩽ j ⩽ N

m
b − 1,

and height εm.

One of the difficulties is, then, to compute and substract the area counted twice, which cor-
respond to parallelograms, of height εm and basis εm cotan (π − θjk−1,jk,m − θjk,jk+1,m), and
extra outer triangles, the area of which is of the form

1

2
εm (bj`−1,j`,m + bj`,j`+1,m) ,

and where, for the sake of simplicity, we have denoted by jk and j` the corresponding indices.

ii. Upper and lower wedges, the area of which are of the form

1

2
(π − θjl−1,jl,m − θjl,jl+1,m) ε2m , 1 ⩽ jl ⩽ N

m
b − 2 ⋅

The number of wedges is determined by the shape of the initial polygon P0, and the existence of
reentrant angles.

iii. Two extreme wedges (respectively located at the abscissae x = 0 and x = 1), each of area equal

to
1

2
π ε

2
m.

The small positive number εm will be referred to as the width of the (m, εm)-neighborhood D (ΓWm , εm).

13



Figure 4: The (1, ε1), (2, ε2) and (3, ε3)-Neighborhoods, in the case where λ =
1

2
and Nb = 3.
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Figure 5: Two overlapping rectangles, in the case where λ =
1

2
and Nb = 3.
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Thus far, we have considered the sequence of tubular neighborhoods associated to the prefractal
sequence of graphs (ΓWm)m∈N

, which approximate the Weierstrass Curve ΓW . In Property 3.2 just
below, we explain the connections between the aforementioned sequence of tubular neighborhoods,
and the tubular neighborhood of the Weierstrass Curve ΓW itself. Such a result is all the more
important, when it comes to determine the poles of the tubular zeta function obtained by means of the
aforementioned sequence of tubular neighborhoods associated to the prefractal sequence (ΓWm)m∈N

.
One intuitively understand that we cannot explicitly compute the volume of the tubular neighborhood
of ΓW .

Property 3.2 (Tubular Neighborhood of the Weierstrass Curve).

Given a small positive number δ, we define the δ-Neighborhood of the Weierstrass Curve ΓW by

D (ΓW , δ) = {M = (x, y) ∈ R2
, d (M,ΓW ) ⩽ δ} ⋅

Then, there exists an integer m0(δ) ∈ N such that,

∀m ⩾ m0(δ) ∶ D (ΓWm ,
δ

2
) ⊂ D (ΓW , δ) ⊂ D (ΓWm , 2 δ) ⋅

Hence, the sequence of tubular neighborhoods associated to the prefractal sequence of graphs
(ΓWm)m∈N

can also be interpreted as a sequence of tubular neighborhoods of ΓW , in the sense that,
for m large enough, any tubular neighborhood of ΓWm contains a tubular neighborhoods of ΓW , while, at
the same time, it also itself contains a tubular neighborhood of ΓW . Even if the widths involved are not
the same, we have a form of equivalence between a tubular neighborhood of ΓWm, for m ∈ N sufficiently

large, and a tubular neighborhood of ΓW . In our present setting, if we denote by Vm (δ
2
), Vm (2 δ)

and V (δ) the respective volumes of D (ΓWm ,
δ

2
), D (ΓWm , 2 δ) and D (ΓW , δ) , we can write

Vm (2 δ) = V (δ) +Rm (δ) = Vm (δ
2
) +Rm (δ

2
) ,

where Rm (δ) and Rm (δ
2
) denote strictly positive error terms, and are such that

lim
m→∞

Rm (δ) = 0
+

and lim
m→∞

Rm (δ
2
) = 0

+
⋅

Proof. In this proof, for the sake of simplicity, we will write M⋆,m, m ∈ N, for the points Mj,m,
with 0 ⩽ j ⩽ #Vm − 1, of the prefractal graph ΓWm .

i. Because of the density of the set V
⋆
= ⋃
n∈N

Vn in the Weierstrass Curve ΓW , there exists an inte-

ger m1(δ) ∈ N such that

∀m ⩾ m1(δ) ∶ d (ΓWm ,ΓW ) ⩽ δ ,
with

d (ΓWm ,ΓW ) = inf
M⋆,m ∈ΓWm ,M ∈ΓW

d (M,M⋆,m) > 0 ⋅
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Now, given a point M ∈ D (ΓW , δ), for m ⩾ m1(δ), we denote by MW ∈ ΓW the closest point
of M in ΓW . By the triangular inequality, we then have that

d (M,ΓWm) ⩽ d (M,MW ) + d (ΓWm ,ΓW ) ⩽ 2 δ ⋅

This implies that

M ∈ D (ΓWm , 2 δ) ,
from which we then deduce the desired result; i.e.,

∀m ⩾ m1(δ) ∶ D (ΓW , δ) ⊂ D (ΓWm , 2 δ) ⋅
ii. At the same time, and also because of the density of the set V

⋆
= ⋃
n∈N

Vn in ΓW , there exists an

integer m2(δ) ∈ N such that

∀m ⩾ m2(δ) ∶ d (ΓWm ,ΓW ) ⩽ δ

2
⋅

For m ⩾ m2(δ), given a point M ∈ D (ΓWm ,
δ

2
), we then have that

d (M,ΓW ) ⩽ d (M,ΓWm) + d (ΓWm ,ΓW ) ⩽ δ ,
from which we then deduce the expected result, i.e.,

∀m ⩾ m2(δ) ∶ D (ΓWm ,
δ

2
) ⊂ D (ΓW , δ) ⋅

iii. In order to conclude, we simply choose m0(δ) = max {m1(δ),m2(δ)}.

Remark 3.1. Note that, in Property 3.2, we have that

m0 = m0(δ)→∞ , as δ → 0
+
⋅

Our results on fractal cohomology obtained in [DL22b] have highlighted the role played by specific
threshold values for the number ε > 0 at any step m ∈ N of the prefractal graph approximation;
namely, the m

th
cohomology infinitesimal introduced in Definition 3.1 just below.

Definition 3.1 (m
th

Cohomology Infinitesimal and Infinitesimal Sequence).

From now on, given any m ∈ N, we will call m
th

cohomology infinitesimal the number ε
m
> 0

which, modulo a multiplicative constant equal to
1

Nb − 1
(recall that Nb > 1), stands as the elementary

horizontal length introduced in part i. of Definition 2.4, i.e.,

1

Nm
b

⋅

Observe that, clearly, ε itself – and not just ε
m

– depends onm; hence, we should really write ε
m
= (εm)m,

for all m ∈ N.
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Also, ε
m

satisfies the following asymptotic behavior,

ε
m
∼

1

Nm
b

, as m→∞,

which, naturally, results in the fact that the larger m, the smaller ε
m

. It is for this reason that we
call ε

m
– or rather, the infinitesimal sequence (εm)∞m=0 of positive numbers tending to zero as m→∞,

with ε
m
= (εm)m, for each m ∈ N – an infinitesimal. Note that this m

th
cohomology infinitesimal is

the one naturally associated to the scaling relation of Property 2.4 above from [DL22a].

In the sequel, it is also useful to keep in mind that the sequence of positive numbers (εm)∞m=0 itself
satisfies

εm ∼
1

Nb
, as m→∞ ;

i.e., εm →
1

Nb
, as m→∞. In particular, εm /→ 0, as m→∞, but, instead, εm decreases and tends to

a strictly positive and finite limit.

In the sequel, an infinitesimal ε will refer to any sequence (εm)m∈N such that, for any m ∈ N,

0 < εm ⩽
1

(Nb − 1)Nm
b

⋅ ( ˇ “* )

Property 3.3 (Staggered Sequence of (m,εm)-Neighborhoods).

Given a natural integer m ∈ N, there exists an integer km ∈ N such that, for each integer k ⩾ km,
the (m + k, εm+k)-Neighborhood of the Weierstrass Curve (where ε

m+k
is the (m + k)th cohomology

infinitesimal introduced in Definition 3.1),

D (ΓWm+k , ε
m+k) = {M = (x, y) ∈ R2

, d (M,ΓWm+k) ⩽ ε
m+k} ,

is contained in the (m, εm)-Neighborhood of the Weierstrass Curve (with ε
m

denoting, this time,

the m
th

cohomology infinitesimal),

D (ΓWm , ε
m) = {M = (x, y) ∈ R2

, d (M,ΓWm) ⩽ εm} ;

namely,

D (ΓWm+k , ε
m+k) ⊂ D (ΓWm , ε

m) ⋅

Proof. This proof is based on the fact that the sequence of sets of vertices (Vm)m∈N is increasing
(see part i. of Property 2.3), and that V

⋆
= ⋃
n∈N

Vn is dense in the Weierstrass Curve ΓW , along with

the fact that the prefractal graph sequence (ΓWm)m∈N
converges to the Weierstrass Curve ΓW (for

example, in the sense of the Hausdorff metric on R
2
).
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Given a natural integerm ∈ N, there exists an integer k0,m ∈ N such that, for each integer k ⩾ k0,m,
we have that

d (ΓWm ,ΓWm+k) = inf
0 ⩽ j ⩽#Vm − 1

0 ⩽ j
′
⩽#Vm+k − 1

{d (Mj,m,Mj ′,m+k) , Mj,m ∈ Vm , Mj ′,m+k ∈ Vm+k \ Vm} ⩽ εm ⋅

We then deduce that for all k ⩾ k0,m,

ΓWm+k ⊂ D (ΓWm , ε
m) ⋅

At the same time, since, for any (m, k) ∈ N2
,

ε
m+k

⩽ ε
m
,

along with the fact that, for any m ∈ N,

lim
k→∞

ε
m+k

= 0 ,

we can find another integer k1,m ∈ N such that, for each integer k ⩾ k1,m, we have that

D (ΓWm+k , ε
m+k) ⊂ D (ΓWm , ε

m) ⋅

The desired result is obtained by letting km = max {k0,m, k1,m}.

Remark 3.2 (Connection Between Fractality and the Cohomology Infinitesimal – Weier-
strass Iterated Fractal Drums).

As is mentioned in [DL22b], the cohomology infinitesimal (or, equivalently, the elementary length)
– which obviously depends on the magnification scale (i.e., the chosen prefractal approximation) – can
be seen as a transition scale between the fractal domain and the classical one. In fact, we could say
that the system is fractal below this scale, and classical above (for the level of magnification consid-
ered). In the limit when the integer m associated with the prefractal approximation tends to infinity,
the system is fractal below the cohomology infinitesimal (which is really an infinitesimal, in this case),
i.e., at small scales, and is classical beyond, i.e., on a large scale. Note that this is in perfect agreement
with what is evoked by the French physicist Laurent Nottale in [Not98] about scale-relativity.

The Complex Dimensions of a fractal set characterize their intrinsic vibrational properties. Thus
far, the values of the Complex Dimensions were obtained by studying the oscillations of a small neigh-
borhood of the boundary, i.e., of a tubular neighborhood, where points are located within an epsilon
distance from any edge; see, e.g., [LRŽ17a], [LRŽ17b], [LRŽ18]. In the case of our fractal Weierstrass
Curve ΓW , which is, also, the limit of the sequence of (polygonal) prefractal graphs (ΓW )m∈N, it is
natural – and consistent with the result of Property 3.3 above – to envision the tubular neighborhood
of ΓW as the limit of the (obviously convergent) sequence (D (ΓWm , ε

m))m∈N
of ε

m
-neighborhoods

of ΓWm , where, for each integer m ∈ N, ε
m

is the m
th

cohomology infinitesimal introduced in Defini-
tion 3.1 above.

We can note that, in a sense, this amounts to using a sequence of what we call Weierstrass Iterated
Fractal Drums (in short,Weierstrass IFDs), by analogy with the relative fractal drums involved, for
instance, in the case of the Cantor Staircase, in [LRŽ17b], Section 5.5.4, and in [LRŽ18]. In our
present setting, the Weierstrass IFDs – i.e., the sets D (ΓWm , ε

m), for m ∈ N sufficiently large – con-
tain the Weierstrass Curve ΓW , and are sufficiently close to ΓW , so that we can expect their Complex
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Dimensions to be the same.

Things change if we consider the fractal Complex Dimensions as dynamical quantities, which
evolve with the scales: to each prefractal approximation ΓWm of ΓW , we can associate specific values
of the Complex Dimensions, as is proved in [DL22b]. In this light, it is natural to define the Complex
Dimensions of the Weierstrass Curve as the set of the Complex Dimensions of (ΓWm)m∈N

, obtained
by means of the sequence of IFDs (D (ΓWm , ε

m))m∈N
, as is done in Section 4.

4 Weierstrass Tube Zeta Function, and Associated Complex Dimen-
sions

In this section, we discuss the results of [DL22a] in which we obtained the fractal tube formulas
associated with the Weierstrass iterated fractal drums (Weierstrass IFDs, for short), and deduced
from it the fractal (i.e., the tube and distance) zeta functions and hence, also, the associated Complex
Dimensions (i.e., the poles of these fractal zeta functions). We also discuss the geometric consequences
of these results for the Weierstrass IFDs and Curve – concerning, especially, the Minkowski nondegen-
eracy, the Minkowski measurability, the existence of the average Minkowski content, and the value of
the Minkowski dimension (which is positive and is also the largest real part of the Complex Dimen-
sions).

We first need the following useful, technical result.

Property 4.1 (Fourier Series Expansion of the 1-Periodic Map x↦N
−{x}
b [LvF06], [DL22a]).

The fractional part map {⋅} is one-periodic. Hence, it is also the case of the map x↦ N
−{x}
b , which

admits, with respect to the real variable x, the following Fourier Series expansion:

N
−{x}
b =

Nb − 1

Nb
∑
m∈Z

e
2 i πmx

lnNb + 2 imπ
=
Nb − 1

Nb
∑
m∈Z

(Nb − 1)−imp
ε
−imp
m

lnNb + 2 imπ
,

where the exponential Fourier coefficients cm have been obtained through

cm = ∫
1

0
N
−t
b e

−2 i πm t
dt = ∫

1

0
e
−t lnNb e

−2 i πm t
dt = −

1

lnNb + 2 imπ
[e−t lnNb e

−2 i πm t]
1

0

=
1

lnNb + 2 imπ
[1 −

1

Nb
] = Nb − 1

Nb

1

lnNb + 2 imπ
⋅

Thus, for any x ∈ R and any εm > 0,

N
−{x}
b =

Nb − 1

Nb
∑
m∈Z

e
2 i πmx

lnNb + 2 imπ
⋅

Since x = − lnNb ((Nb − 1) εm), one has, for every m ∈ Z,

e
2 i πmx

= e
−2 i πm lnNb((Nb−1) εm)

= e
−2 i πm

ln((Nb−1) εm)
lnNb ⋅
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Definition 4.1 (Oscillatory Period).

Following [LvF00], [LvF06], [LvF13], [LRŽ17b], we introduce the oscillatory period of the Weier-
strass Curve:

p =
2π

lnNb
⋅

Theorem 4.2 (Fractal Tube Formula for The Weierstrass Relative Fractal Drums [DL22a]).

Given an arbitrary integer m ∈ N, and εm > 0 sufficiently small (i.e., 0 < εm ⩽ ε
m

, where ε
m

is

the m
th

cohomology infintesimal introduced in Definition 3.1), the tubular volume Vm(εm), or two-
dimensional Lebesgue measure of the tubular neighborhood D (ΓWm , εm), is obtained by means of the
respective contributions coming from rectangles, wedges, and triangles. It is given, for all m ∈ N

sufficiently large, by the following fractal tube formula:

Vm(εm) = ∑
`∈Z, k∈N

f`,k,Rectangles ε
2−DW +k (2−DW )−i `p
m

+ ∑
`∈Z, k∈N

{f`,wedges,1 ε3−i `pm + f`,k,wedges,2 ε
1+2 k−i `p
m + f`,k,wedges,3 ε

5+2 k−i `p
m }

+ ∑
`∈Z, k∈N

f`,k,triangles, parallelograms ε
2−i `p
m + π ε

2
m −

π ε
4
m

2
,

⎛
⎜
⎝
G⎞

⎟
⎠

where the notation f`,k,Rectangles, f`,k,wedges,j, 1 ⩽ j ⩽ 3, and f`,k,triangles, parallelograms, respectively ac-
count for the (bounded) coefficients associated to the sums corresponding to the contribution of the
rectangles, wedges, triangles and parallelograms. Naturally, these coefficients depend on m as well, but
for notational simplicity, we do not indicate it explicitly.

Note that each of the sums over the integers k and ` giving the tubular formula
⎛
⎜⎜⎜⎜
⎝
G⎞

⎟⎟⎟⎟
⎠

just above

were, first, and as could be expected, sums taken over an integer km varying from 0 to m; however,
later manipulations involving asymptotic expansions of the elementary lengths yield infinite sums, as,
for instance, in the case of a-strings (see, e.g., [LvF13], Subsection 6.5.1, Theorem 6.21).

Moreover, we have that the following limit exists and satisfies the following inequalities – with the
obvious modifications and clearly associated to the entire sequence of Weierstrass IFDs, or, equiva-
lently, to the sequence of prefractal polygonal approximations to the Weierstrass Curve ΓW :

0 < lim
m→∞

Vm(εm)
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

V (ε)

<∞⋅

By necessity of concision, we do not respeat here the corresponding fractal tube formula for V (ε),
(with ε = (εm)m∈N denoting the corresponding infinitesimal), which is simply obtained by taking the

limit as m→∞ of the expression appearing on the right-hand side of
⎛
⎜⎜⎜⎜
⎝
G⎞

⎟⎟⎟⎟
⎠

above – and associated
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to the entire sequence of Weierstrass IFDs, or, equivalently, to the sequence of prefractal polygonal
approximations to the Weierstrass Curve ΓW .

Remark 4.1. Following (as well as adapting) [LRŽ17b], we define the tube zeta function of the se-
quence of Weierstrass IFDs associated to the cohomology infinitesimal (or, more generally, to any
infinitesimal ε = (εm)m∈N, by

ζ̃Wm(s) = ∫
εm

0
t
s−3

Vm(t) dt = ∫
εm

0
t
s−2

Vm(t) dt
t
,

for all s in C, with Re (s) sufficiently large, and, optimally for Re (s) > DWm = DW .

Theorem 4.3 (Local and Global Tube Zeta Function for the Weierstrass Iterated Fractal
Drums [DL22a]).

The global tube zeta function associated to the Weierstrass IFDs, ζ̃W , defined by analogy with
the work in [LRŽ17b], admits a meromorphic continuation to all of C, and is given, for any complex
number s, by the following expression:

ζ̃W (s) = lim
m→∞

ζ̃Wm(s) ,

where, for all m ∈ N sufficiently large, the local tube zeta function ζ̃Wm is given, for any complex
number s, by

ζ̃Wm
(s) = ∑

`∈Z, k∈N

f`,k,Rectangles

ε
s−DW +k (2−DW )−i `p
m

s −DW + k (2 −DW ) − i `p

+ ∑
`∈Z, k∈N

{f`,k,wedges,1

ε
s+1−i `p
m

s + 1 − i `p
+ f`,k,wedges,2

ε
s+2k−1−i `p
m

s + 2 k − 1 − i `p
+ f`,k,wedges,3

ε
s+3+2k−i `p
m

s + 3 + 2 k − i `p
}

+ ∑
`∈Z, k∈N

f`,k,triangles, parallelograms

ε
s−1−i `p
m

s − 1 − i `p
+
π ε

s
m

s −
π ε

s+2
m

4 (s + 2) ,

where, as already introduced in Theorem 4.2, the notation f`,k,Rectangles, f`,k,wedges,j, 1 ⩽ j ⩽ 3,
and f`,k,triangles, parallelograms, respectively, depend on m, are uniformly bounded and account for the co-
efficients associated to the sums corresponding to the contribution of the rectangles, wedges, triangles
and parallelograms.

Remark 4.2. The fact that the global tube zeta function ζ̃W admits a meromorphic continuation
to all of C is obtained by applying the Weierstrass theorem for uniformly convergent sequences of
holomorphic functions. First, we can note that, for all sufficiently large m ∈ N, the set Z of possible
poles of the local tube zeta function ζ̃Wm(s) (discrete, and thus closed) does not depend on m, and is

given by Theorem 4.5 below. The local tube zeta function ζ̃Wm is then holomorphic on the connected

open subset of C given by C \ Z . We can clearly see that the sequence of functions (ζ̃Wm)
m∈N

converges normally (and hence, uniformly) in a connected open (and relatively compact) neighborhood
of any given ω ∈ Z – i.e., for s = x + i y ∈ C close to ω. The Weierstrass theorem, applied once again,
then ensures the holomorphicity of the limit ζ̃W on the domain C \ Z . It follows that the global tube
zeta function ζ̃W is meromorphic in all of C, with possible set of poles given by Z .
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Corollary 4.4 ((of Theorem 4.3) Local and Global Distance Zeta Function for the Weier-
strass Iterated Fractal Drums).

According to the functional equation given in [LRŽ17b] (Theorem 2.2.1., page 112), along with
Theorem 4.3 just above, given an infinitesimal ε (see Definition 3.1), the global distance zeta func-
tion ζW is given, for any complex number s, by the following expression:

ζW (s) = lim
m→∞

ζWm(s) ,

where, for all m ∈ N sufficiently large, the local distance zeta function ζWm is given, for any complex
number s, by

ζWm(s) = ∫
M ∈D(εm)

d (M,ΓWm)s−2
dM

= ε
s−2
m Vm(εm) + (2 − s) ∫

εm

0
t
s−3

Vm(t) dt
= ε

s−2
m Vm(εm) + (2 − s) ζ̃Wm(s) ,

where Vm denotes the tubular volume obtained in Theorem 4.2, and where ζ̃Wm(s) is given in The-
orem 4.3. The first two equalities are valid for Re (s) > DWm = DW , while the last one is valid for
all s in C. Furthermore, still for all m ∈ N sufficiently large, the distance zeta function ζWm admits

a meromorphic continuation to all of C, given by the last equality just above, with ζ̃Wm given as in
Theorem 4.3.

We recall from [LRŽ17b] that the Complex Dimensions are defined as the poles of the meromorphic
continuation of the tube (or, equivalently, the distance) zeta function. In our present setting, the set
of Complex Dimensions of the Weierstrass Curve is the set of Complex Dimensions of the sequence of
Weierstrass IFDs introduced in Remark 3.2. Hence, those Complex Dimensions are the poles of the
tube zeta function – or, equivalently, the distance zeta function – associated to those IFDs, respectively
obtained in Theorem 4.3 and Corollary 4.4 above.

Theorem 4.5 (Complex Dimensions of the Weierstrass Curve [DL22a]).

The possible complex dimensions of the Weierstrass Curve are all simple, and given as follows:

DW − k (2 −DW ) + i `p , with k ∈ N , ` ∈ Z ,

1 − 2 k + i `p , with k ∈ N , ` ∈ Z, along with 0 and − 2 ⋅

Furthermore, the one-periodic functions (with respect to the variable lnNb ε
−1
m , see Property 4.1

above, and Equation (⋆) in the introduction), respectively associated to the values DW − k (2 −DW ),
k ∈ N, are nonconstant. See also [DL22a] for the exceptional cases, depending on the values of the
parameters of W .

In addition, all of the Fourier coefficients of those periodic functions are nonzero, which implies
that there are infinitely many Complex Dimensions that are nonreal, including all of those with maxi-
mal real part DW , which are the principal Complex Dimensions, in the terminology of [LRŽ17b], and
therefore give rise to geometric oscillations (or vibrations) with the largest amplitude, in the fractal
tube formula obtained in Theorem 4.2 above.
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Finally, for each k ∈ N and ` ∈ Z, DW − k (2 −DW ) + i `p, 1 and 0 are all simple and actual
Complex Dimensions of the Weierstrass Curve; i.e., they are simple poles of the tube (or, equivalently,
of the distance) zeta function.

Consequently, the Weierstrass Curve is fractal, in the sense of the theory of Complex Dimensions
developed in [LvF00], [LvF06], [LvF13], [LRŽ17b] and [Lap19], since it admits nonreal Complex Di-
mensions.

Figure 6: The Complex Dimensions of the Weierstrass Curve. The nonzero Complex

Dimensions are periodically distributed (with the same period p =
2π

lnNb
, the oscilla-

tory period of ΓW ) along countably many vertical lines, with abscissae DW − k (2 −DW )
and 1 − 2k, where k ∈ N is arbitrary. In addition, 0 and −2 are Complex Dimensions
of ΓW .
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Remark 4.3 (Possible Interpretation [DL22a]).

Figure 6 gives the distribution of the possible Complex Dimensions of the Weierstrass IFD – and
hence also, in practise, of the Weierstrass Curve itself. We note that the vertical lines x = 0 and x = 1,
respectively, correspond to oscillations coming from points and lines, which can be understood in an
intuitive way, since, for any natural integer m, the prefractal graph ΓWm is constituted of points,
connected between themselves by lines (or, rather, line segments).

Definition 4.2 (Lower and Upper r-Dimensional Minkowski Contents).

Given a bounded set A of R
2
, and δ > 0 sufficiently small, let us denote by VA(δ) the Lebesgue

measure of the δ-neighborhood of A, D (A, δ), defined as

D (A, δ) = {M = (x, y) ∈ R2
, d (M,A) ⩽ δ} ⋅

As in [LRŽ17b], we define, for any nonnegative real number r:

i. The lower r-dimensional Minkowski content of the set A as

M⋆
r (A) = lim inf

δ→0

VA(δ)
δ2−r ⋅

ii. The upper r-dimensional Minkowski content of the the set A as

M
⋆,r (A) = lim sup

δ→0

VA(δ)
δ2−r ⋅

Definition 4.3 (Minkowski Dimension).

If the lower Minkowski (or box) dimension of a bounded set A of R
2
,

inf {r ∈ R ∶ M⋆
r (A) = 0 }

and its upper Minkowski (or box) dimension,

inf {r ∈ R ∶ M
⋆,r (A) = 0 }

coincide, then their common value, denoted by DA, is the Minkowski (or box) dimension of the set A
(which is said to exist in this case).

Definition 4.4 (Minkowski Nondegeneracy and Minkowski Measurability).

Given a bounded set A of R
2
, and δ > 0 sufficiently small, let us denote by VA(δ) the Lebesgue

measure of the δ-neighborhood of A, D (A, δ), defined as

D (A, δ) = {M = (x, y) ∈ R2
, d (M,A) ⩽ δ} ⋅

As defined in [LRŽ17b], the set A of R
2

is said to be Minkowski nondegenerate, if its lower and up-

per Minkowski contents, M⋆
DA (A) = lim inf

δ→0+

VA(δ)
δ2−DA

and M
⋆DA (A) = lim sup

δ→0+

VA(δ)
δ2−DA

(where DA has
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been introduced in Definition 4.3), are respectively positive and finite. We then denote by M
DA (A)

their common value. Note that it follows from the assumption of the Minkowski nondegeneracy of A
that DA, the Minkowski dimension of A, exists.

Finally, the set A is said to be Minkowski measurable if it is Minkowski nondegenerate and

M⋆
DA (A) = M

⋆,DA (A) ;

i.e., if the following limit exists in ]0,+∞[ (and necessarily equals this common value):

M
DA (A) = lim

δ→0+

VA(δ)
δ2−DA

⋅

Then, M
DA (A) is called the Minkowski content of A.

Definition 4.5 (Average Lower and Upper Minkowski Contents [DL22a]).

We hereafter use the same notation as in Definition 4.4 just above, where A denotes a bounded
set R

2
, and δ > 0 a fixed number. Then, as can be found in [LRŽ17b], Definition 2.4.1, page 178, we

define the average lower-dimensional Minkowski content (resp., average upper-dimensional Minkowski
content) of A as

M̃
DA
⋆ (A) = lim inf

r→+∞

1

ln r
∫
δ

1
r

t
DA−3

VA(t) dt (resp., M̃
⋆,DA (A) = lim sup

r→+∞

1

ln r
∫
δ

1
r

t
DA−3

VA(t) dt) ⋅

In the case when both of these values coincide, their common value, denoted by M̃
DA (A), is called

the average Minkowski content of A, which is then said to exist. Accordingly,

M̃
DA (A) = lim

r→+∞

1

ln r
∫
δ

1
r

t
DA−3

VA(t) dt ⋅

Without loss of generality, we may choose δ = 1 in the present definition. Indeed, the value
of M̃

DA (A) is independent of the choice of δ > 0.

Remark 4.4. Henceforth, in the case of the Weierstrass IFD associated with the sequence of polygo-
nal prefractal approximation (ΓWm)m N

to ΓW , we use exactly the same terminology and definitions
(adapted in the obvious way) as in Definitions 4.2–4.5 above.

Furthermore, we denote by DW , M⋆
DW (ΓW ), M

⋆,DW (ΓW ) and M̃
DW (ΓW ) the associated

Minkowski dimension, lower and upper Minkowski contents, as well as the average Minkowski content,
respectively, of the Weierstrass IFD.

Note that DW also coincides with the Minkowski dimension of the Weierstrass Curve ΓW .

In some definite sense, the Weierstrass IFD (iterated fractal drum) is a natural geometric realization
of – and substitute for – the Weierstrass Curve ΓW .

We can now state several new geometric consequences of our above results, especially, Theorems 4.2.
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Theorem 4.6 (Lower, Upper and Average DW -Dimensional Minkowski Contents [DL22a]).

The lower and upper DW -dimensional Minkowski contents, M⋆
DW (ΓW ) and M

⋆,DW (ΓW ), of the
Weierstrass Curve, obtained by means of the Weierstrass IFDs introduced in Remark 3.2, take strictly
positive and finite values, and are such that

CRectangles

Nb
⩽ M⋆

DW (ΓW ) < M
⋆,DW (ΓW ) ⩽ CRectangles ,

where CRectangles denotes a strictly positive and finite constant (see [DL22a]).

Moreover, the values of M⋆
DW (ΓW ) and M

⋆,DW (ΓW ) are respectively equal to the minimum and
maximum value of a one-periodic function GDW

= G0,DW
introduced in [DL22a], associated to DW in

the expression of the fractal tube formula given in the same theorem (the periodicity is with respect
to the variable lnNb δ

−1
, see Property 4.1). The function GDW

is also nonconstant and bounded away
from zero as well as from infinity.

Finally, the average Minkowski content (which is independent of the choise of δ > 0; see Defini-
tion 4.5) exists and is given by the mean value of the one-periodic function GDW

, as well as by the

residues of ζ̃W at s = DW :

M̃
DW (ΓW ) = ∫

1

0
GDW

(x) dx = res (ζ̃W , DW ) = res (ζW , DW )
2 −DW

⋅ (✠✠)

Hence, M̃
DW is nontrivial; in fact, 0 < M⋆

DW (ΓW ) < M̃
DW (ΓW ) < M

⋆,DW (ΓW ) <∞.

Corollary 4.7 ((of Theorem 4.6) Minkowski Dimension – Minkowski Nondegeneracy).

The Weierstrass Curve ΓW is Minkowski nondegenerate. Furthermore, the number DW = 2 − lnNb
1

λ
is a simple Complex Dimension of ΓW , and it coincides with the Minkowski Dimension of ΓW , which
must also exist. Moreover, ΓW is not Minkowski measurable. In addition, the same statement holds
for the Weierstrass IFD.

Proposition 4.8 (Generalization to the Non-Integer Case [DL22a]).

An interesting question is the generalization of our previous results to the non-integer case, i.e.,
when the Weierstrass function W is defined, for any real number x, by

W (x) =
∞

∑
n=0

λ
n

cos (2π bn x) ,

where the real number b does not belong to the set of natural integers.

We plan to provide the details in a later work, but for now limit ourselves to a few comments.

From the geometric point of view, one cannot handle things in the same way. For instance, one
cannot resort to a finite IFS, and the Weierstrass function, apart from its parity, has no periodicity
property.

27



Yet, since the associated graph is the attractor of the infinite set of maps (Ti)i∈Z such that, for

any integer i and (x, y) in R
2
,

Ti(x, y) = (x + i
b

, λ y + cos (2π (x + i
b

))) ,

it is natural to consider the associated infinite IFS (IIFS). As a consequence, the resulting prefractal
graphs are infinite ones.

As for the tubular neighborhood, due to the polygonal approximation induced by the prefractals, it
is still obtained by means of rectangles and wedges.

In the integer case, extra terms coming from overlapping rectangles vanished, thanks to the symme-

try with respect to the vertical line x =
1

2
. In the non-integer case, one simply replaces this symmetry

with the one with respect to the vertical axis x = 0, thanks to the parity of W .

In this light, it is expected to lead to a fractal tube formula of the same type as the one obtained in
Theorem 4.2, where the powers of the small parameter ε are, respectively, and as previously,

ε
2−DW +k (2−DW )−i `p

, ε
3−i `p

, ε
1+2 k−i `p

, ε
5+2 k−i `p

, ε
2−i `p

, ε
2

, ε
4
,

which would yield the same results concerning the possible Complex Dimensions, and the upper and
lower Minkowski contents.

As in the integer case, the terms involving ε
2−DW +k (2−DW )−i `p

come from the contribution of the
rectangles. The one-periodic functions (with respect to the variable lnb ε

−1
this time), respectively as-

sociated to the values DW − k (2 −DW ), k ∈ N, are thus nonconstant, with all of their Fourier coeffi-
cients being nonzero. Hence, as in Theorem 4.5, for each k ∈ N and ` ∈ Z, DW − k (2 −DW ) + i `p,
are all simple Complex Dimensions of the Weierstrass Curve (or, of the Weierstrass IFD); i.e., they
are simple poles of the tube (or, equivalently, of the distance) zeta function.

5 Fractal Cohomology

We next discuss the fractal cohomology of the Weierstrass Curve ΓW – or rather, perhaps, of
the Weierstrass function W – building on the ideas, definitions and results of [DL21] – as well as
providing a concrete geometric (and topological) realization of the number-theoretic and analytic
work and conjectures about fractal cohomology in [LvF00], [LvF06], [Lap08], [LvF13], [CL17], [Lap19]
and [Lap22].

Definition 5.1 ((m,p)-Fermion).

By analogy with particle physics, given a pair of positive integers (m, p), we will call (m, p)-fermion

on Vm, with values in C, any antisymmetric map f from V
p+1
m to C, where V

p+1
m denotes the (p + 1)th

fold Cartesian product space of Vm by itself. Note that these maps are not assumed to be multilinear.

A (0, p)-fermion (p ∈ N
⋆
) on Vm (or a 0-fermion, in short) is simply a map f from Vm to C. We

adopt the convention according to which a 0-fermion on Vm is a 0-antisymmetric map on Vm.
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In the sequel, we will denote by F
p (Vm,C) the C-module (i.e., the complex vector space) of (m, p)-

fermions on Vm, with values in C, which makes it an abelian group with respect to the addition, with
an external law from C ×F

p (Vm,C) to F
p (Vm,C).

In order to understand how things go, one may look at the initial polygon P0: this polygon has
exactly Nb vertices, which means, in terms of potential topological invariants (under the form of a
complex-valued function f defined on the whole set of vertices V

⋆
= {Mj,m , j ∈ #Vm, m ∈ N}), a

number which will – or not – be conserved when switching to ΓW1
.

This can be achieved by examining the following quantities (see Figure 7):

f (Pj) − f (M1,1) + f (M2,1)⋯− f (Pj+1) ,with 0 ⩽ j ⩽ Nb ,

where the points Pj , for 0 ⩽ j ⩽ Nb − 1, are the vertices of P0.

One thus deals with alternate (i.e., antisymmetric) expressions with Nb + 1 terms.

When reaching the m
th

prefractal graph, with m ⩾ 1, one will have to examine quantities of the
following form (see Figure 8):

f (Mi,m−1) − f (Mj,m) + f (Mj+1,m)⋯− f (Mi+1,m−1) ,
for 0 ⩽ i ⩽ #Vm−1 − 1, and where

Mi,m−1 ∼
m
Mi+1,m−1 ,

and, at the same time,

Mi,m−1 ∼
m−1

Mj,m , Mj,m ∼
m−1

Mj+1,m , ⋯ ,

which means that the points Mi,m−1 and Mi+1,m−1 are consecutive vertices of Vm−1, and that the set of
consecutive vertices of Vm located strictly betweenMi,m−1 Mi+1,m−1 consists of the pointsMj,m,Mj+1,m;
and so on.

Pj+1 V0Pj V0

M1,1 V1\V0

M2,1 V1\V0

M1,Nb-1 V1\V0

Figure 7: In search of invariants, when switching from the initial prefractal graph, to the
first one.
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Mj,m ϵ Vm\Vm-1

Mi,m-1 ϵ Vm-1 ⊂Vm Mi+1,m-1 ϵ Vm-1 ⊂Vm

Mj+1,m ϵ Vm\Vm-1

Figure 8: In search of invariants, when switching from the (m − 1)th prefractal graph, to

the m
th

one.

Definition 5.2 ((m − 1,m)-Path).

Given a strictly positive integerm, and two adjacent verticesXm−1,k,Xm−1,k+1 in Vm, for 0 ⩽ k ⩽ #Vm−1,
we call (m − 1,m)-path between Xm−1,k, Xm−1,k+1 the ordered set of vertices

Pm−1,m (Xm−1,k, Xm−1,k+1) = {Xm,` , 0 ⩽ ` ⩽ Nb} ,
where

Xm,` = Xm−1,k and Xm,`+Nb = Xm−1,k+1 ;

see Figure 8.

Definition 5.3 ((m − 1,m)-Differential).

Given a strictly positive integer m, we define the (m − 1,m)-differential δm−1,m from F
0 (Vm,C)

to F
Nb+1 (Vm,C), for any f in F

0 (ΓW ,C) and any (Mi,m−1,Mi+1,m−1,Mj+1,m,⋯,Mj+Nb−2,m) ∈ V
Nb+1
m

such that

Mi,m−1 =Mj,m and Mi+1,m−1 =Mj+Nb,m ,

by

δm−1,m(f) (Mi,m−1,Mi+1,m−1,Mj+1,m,⋯,Mj+Nb−1,m) = cm−1,m (
Nb

∑
q=0

(−1)q f (Mj+q,m)) ,

where cm−1,m denotes a suitable positive constant. Note that as one handles differentials, one does
not need to know – or fix – the values of this constant. It becomes of importance when operators
involving the differentials, such as the Laplacian, are involved; see, for instance, Section 6 of [DL21].

By induction, we can, equivalently, consider the (0, 1)-differential δ0,1 from F
0 (V0,C) to

F
Nb+1 (V1,C), then, the (1, 2)-differential δ1,2 from F

Nb+1 (V1,C) to F
N

2
b +1 (V2,C), and so on, which

means that the (m − 1,m)-differential δm−1,m is defined from F
N
m−1
b +1 (Vm−1,C) to F

N
m
b +1 (Vm,C).

In fact, at a given step m ⩾ 0, between two vertices of Vm, there are Nb − 1 consecutive vertices
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of Vm+1 \ Vm. Hence, this amounts to Nb − 1 + 2 = Nb + 1 consecutive vertices of Vm+1 ⊃ Vm. Among
those Nb + 1 vertices, there are then Nb pairs of consecutive vertices of Vm+1 ⊃ Vm, which them-
selves involve N

2
b pairs of consecutive vertices of Vm+2 ⊃ Vm+1, i.e., N

2
b + 1 consecutive vertices

of Vm+2 ⊃ Vm+1 ⊃ Vm; and so on, by induction.

Furthemore, because of the compactness of ΓW , along with the density of the set V
⋆
= ⋃
n∈N

Vn

in the Weierstrass Curve ΓW , every continuous (and hence, uniformly continuous) function on ΓW is
uniquely determined by its restriction to V

⋆
(that is, to each Vm, for all m ∈ N).

Proposition 5.1 (Fractal Complex).

Hereafter, the Complex involved, denoted by (F • (ΓW ,C) , δ•) is the algebraic structure, which

consists in the sequence of abelian groups (of fermions) (FN
m
b +1 (Vm,C))

m∈N⋆
, where, for each in-

teger m ⩾ 2, the group F
N
m−1
b +1 (Vm−1,C) is connected to the group F

N
m
b +1 (Vm,C) by means of

the (m − 1,m)-differentials δm−1,m introduced in Definition 5.3, namely,

F
0 (V0,C)

δ0,1
⟶ ⋯F

N
m
b +1 (Vm,C)

δm−1,m
⟶ F

N
m+1
b +1 (Vm+1,C)

δm,m+1
⟶ ⋯ .

Because of the density of the set V
⋆
= ⋃
n∈N

Vn in the Weierstrass Curve ΓW , this complex can also

be written in the following form,

F
0 (ΓW ,C)

δ0,1
⟶ ⋯F

N
m
b +1 (ΓW ,C)

δm−1,m
⟶ F

N
m+1
b +1 (ΓW ,C)

δm,m+1
⟶ ⋯ .

Proposition 5.2 (Cohomology Groups).

In our present setting, with the differential introduced in Definition 5.3, the cohomology groups are
the quotient groups

Hm = ker δm−1,m/Im δm−2,m−1 , for m ⩾ 1 ,

with the additional convention that H0 = Im δ−1,0 = {0}.

Notation 9 (Argument of a Complex Number).

Given a nonzero complex number z, we denote by arg (z) the argument of z; i.e., the angle
between the positive real axis and the line joining the origin and the point M with affix z. Implicitly,
we always choose the same convention (e.g., arg (z) ∈ ]−π, π]) whenever evaluating arg (z) – and
hence also, arg (z) − arg (z′), for (z, z′) ∈ C⋆ × C⋆.

Definition 5.4 (Set of Functions of the Same Nature as the Weierstrass Function W ).

i. We say that a continuous, complex-valued function f , defined on ΓW ⊃ V
⋆
, is of the same nature

as the Weierstrass function W , if it satisfies local Hölder and reverse-Hölder properties analogous
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to those satisfied by the Weierstrass function W ; i.e., for any pair of adjacent vertices (M,M
′) of

respective affixes (z, z′) ∈ C2
of the prefractal graph ΓWm , with m ∈ N arbitrary (see Remark 2.1),

C̃inf ∣z′ − z∣2−DW
⩽

»»»»»f(z
′) − f(z)»»»»» ⩽ C̃sup ∣z

′
− z∣2−DW ,

where C̃inf and C̃sup denote strictly positive and finite constants (but not necessarily the same ones
as for the Weierstrass function W itself, in Property 2.5). Using Notation 2, this can be written,
equivalently, as

»»»»»z − z
′»»»»»

2−DW
≲

»»»»»f(z) − f(z
′)»»»»» ≲

»»»»»z − z
′»»»»»

2−DW
⋅ (♦)

Hereafter, we will denote by H öld (ΓW ) the set consisting of the continuous, complex-valued func-
tions f , defined on ΓW ⊃ V

⋆
and satisfying (♦).

ii. Moreover, we will denote by H öldgeom (ΓW ) ⊂ H öld (ΓW ) the subset of H öld (ΓW ) consisting of
the functions f in H öld (ΓW ) which satisfy the following additional geometric condition (♠), again, for
any pair of adjacent vertices (M,M

′) with respective affixes (z, z′) ∈ C2
of the prefractal graph Vm,

with m ∈ N arbitrary; namely,

»»»»»arg (f(z)) − arg (f(z′))»»»»» ≲ ∣z − z′∣ ⋅ (♠)

We can now state the following key result.

Theorem 5.3 (Cohomological Complex Dimensions Series Expansion and Characteriza-
tion of the Prefractal Cohomology Groups Hm [DL22b]).

Let m ∈ N be arbitrary. Then:

i. Within the set H öld (ΓW ) (see part i. of Definition 5.4 just above), then, for any integer m ⩾ 1,
and with the convention H0 = Im δ−1,0 = {0}, the cohomology groups

Hm = ker δm−1,m/Im δm−2,m−1

are comprised of the restrictions to Vm of (m,Nm
b + 1)-fermions, i.e., the restrictions to (the Cartesian

product space) V
N
m
b +1

m of antisymmetric maps on ΓW , with N
m
b + 1 variables (corresponding to the

vertices of Vm), involving the restrictions to Vm of continuous functions f on ΓW , such that, for any
vertex Mj,m ∈ Vm, the following Taylor-like expansion is satisfied,

f (Mj,m) =
m

∑
k=0

ck (f,Mj,m) εk (2−DW )
, M⋆,m ∈ Vm , ck (f,M⋆,m) ∈ C , (♦♦)

where, for each integer k such that 0 ⩽ k ⩽ m, the number ε
k
> 0 is the k

th
cohomology infinitesimal

introduced in Definition 3.1 above.

The coefficients ck (f,M⋆) are complex quantities, which only depend on the function f involved,
and on the point M⋆ at which they are evaluated. As is explained in [DL22b], these coefficients ck (f,M⋆)
are the residues (at the possible cohomological Complex Dimensions −k (2 −DW )) of a suitable local
scaling zeta function evaluated at M⋆.
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Note that, insofar as the functions f involved are, in a sense, determined, at any vertex Mj,m ∈ Vm,
by the expansion given in (♦♦), it is natural to identify the cohomology groups Hm with those func-
tions.

ii. If the functions f of part i. belong to H öldgeom (ΓW ) (see part ii. of Definition 5.4 above), then,
for any strictly positive integer m, and again with the convention H0 = Im δ−1,0 = {0}, the cohomology
groups

Hm = ker δm−1,m/Im δm−2,m−1

are comprised of the restrictions to Vm of (m,Nm
b + 1)-fermions, i.e., the restrictions to V

N
m
b +1

m of
antisymmetric maps on ΓW , with N

m
b + 1 variables (corresponding to the vertices of Vm), involving

the restrictions to Vm of continuous functions f on ΓW , such that, for any vertex Mj,m ∈ Vm,

f (Mj,m) =
m

∑
k=0

ck (f,Mj,m) εk (2−DW )
ε
i `k p

=

m

∑
k=0

ck (f,Mj,m) εk (2−DW )+i `k p , M⋆,m ∈ Vm (♠♠)

where p denotes the oscillatory period introduced in [DL22a],

p =
2π

lnNb
,

and where the coefficients ck (⋆,⋆) are complex numbers which still depend on the function f involved,
and on the point at which they are evaluated. Here, in (♠♠), for each integer k such that 0 ⩽ k ⩽ m, `k
denotes an integer (in Z) satisfying the estimate

»»»»»»»»
{`k

ln ε

lnNb
}
»»»»»»»»
≲
ε
k (DW −1)

2π
⋅ (�)

Much as in part i., the coefficients ck (f,M⋆), for 0 ⩽ k ⩽ m, depend only on the function f and
on the point M⋆ of Vm at which they are evaluated. Note that obviously, the values of the constants ck
in part ii. are different from those obtained in part i. The specific topic of their possible extension
to all M⋆ ∈ ΓW and their possible continuity in M⋆ will be studied in more detail in a forthcoming
work, [DLO23].

Furthermore, these coefficients ck (f,M⋆) are the residues (at the possible cohomological Com-
plex Dimensions − (k (2 −DW ) + i `k p)) of a suitable local scaling zeta function (evaluated at M⋆);
see [DL22b].

In both expansions (♦♦) and (♠♠), the coefficients ck (f,M⋆), for 0 ⩽ k ⩽ m, reflect the de-
pendence of the value taken by the map f at the vertex Mj,m on the values taken by f at previous

steps – vertices – of the m
th

prefractal graph approximation, in conjunction with values taken by f
at neighboring vertices of Mj,m at the same level (m) of the prefractal sequence and with vertices
which, in addition, strictly belong to the same polygon Pm,k introduced in part iv. of Property 2.3,
with 1 ⩽ k ⩽ N

m
b − 1 (by “strictly” here, we mean that the junction vertices are not concerned).

The expansion in part ii. (namely, (♠♠)) might be interpreted as a kind of generalized Taylor
expansion with corresponding complex derivatives of orders −ωk = k (2 −DW ) + i `k p, where k ∈ N

is arbitrary, the coefficients ck (f,M⋆) can thus be interpreted as (discrete) derivatives of complex
order −ωk of the function f , evaluated at the point M⋆ of V

⋆
⊂ ΓW . A similar comment can be

made about the expansion in part i. (namely, (♦♦)), but now with the above value of −ωk replaced
by k (2 −DW ).
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Again, as in part i., it is natural to identify the cohomology groups Hm with the sets of functions
satisfying, at any vertex Mj,m ∈ Vm, the expansion given in (♠♠).

Remark 5.1. Note that the result given in part ii. above is significantly stronger than the one given
in part i. of this theorem. Indeed, the expansion (♦♦) in part i. only involves (modulo a translation
by −DW ) the real parts of some of the Complex Dimensions listed in Theorem 4.5; namely, the Com-
plex Dimensions of the Weierstrass Curve ΓW with real parts different from −2, 0, and 1. By contrast,
in part ii., we can also recover the imaginary parts of those same Complex Dimensions; note that
this is possible only because the functions involved satisfy the geometric condition (♠) introduced in
part i. of Definition 5.4 above.

It immediately follows from the expansion given in (♠♠) of part ii. of Theorem 5.3 above, as well as
from the fact that the sequence of sets of vertices (Vm)m∈N is increasing (see part i. of Property 2.3),
that the sequence of cohomology groups (Hm)m∈N is increasing; i.e.,

∀m ∈ N ∶ Hm ⊂ Hm+1 ⋅

Finally, in both expansions (♦♦) and (♠♠), the number ε is not an arbitrary one. It is directly
connected to the scaling properties of the Weierstrass Curve, and enables us to express the exact form
of the associated scaling relationship (see Property 2.4, along with Remark 5.3 just below). In other

words, the number ε – or, rather, the corresponding m
th

cohomology infinitesimal ε
m

, in the sense
of Definition 3.1 above – depends on the geometry of the Curve. In light of our expansions, it can
be interpreted as a (geometric) coefficient connecting the Weierstrass Curve and the complex-valued

functions defined on the set V
⋆
= ⋃
n∈N

Vn.

Remark 5.2. We stress that the expansions (♦♦) and (♠♠) in Theorem 5.3 are also valid for any

infinitesimal ε (see Definition 3.1, inequality ( ˇ “* ) and the text surrounding it).

Remark 5.3 (The Special Case of the Weierstrass Complexified Function).

Among the continuous functions on ΓW which possess, in the most natural manner, and, for any
integer m ∈ N

⋆
, an expansion of the form obtained in (♠♠), we have, as could be expected, the

Weierstrass Complexified function Wcomp, introduced in [DL22b], defined, for any real number x, by

Wcomp(x) =
∞

∑
n=0

λ
n
e

2 i π N
n
b x ⋅

More precisely, as is shown in [DL22b], we have that, for any strictly positive integer m and
any j in {0,⋯,#Vm}, we have the following exact expansion, indexed by the Complex Codimen-
sions k (DW − 2) + i `k p, with 0 ⩽ k ⩽ m,

Wcomp (j εm) = (Nb − 1) εm (2−DW )
Wcomp (

j

Nb − 1
) + (Nb − 1)

m−1

∑
k=0

ck ε
k (2−DW )

ε
i `k p ,

where, for any integer k in {0,⋯,m − 1}, ck ∈ C and `k ∈ Z are such that

(Nb − 1) ei
2π
Nb−1

j ε
m−k

= ck ε
i `k p ⋅ (⋄)
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Remark 5.4 (About the Integers `k in part ii. of Theorem 5.3, or in Theorem 5.4 below).

Note that since, the fractional part map is one-periodic, this results in a kind of periodicity with
respect to the integers `k.

Naturally, the set {`k , k ∈ N} is infinite and equal to Z. In particular, ∣`k∣→∞ as k →∞. We
thus recover completely analogous results to those obtained in Theorem 4.5 above (from [DL22a]).

An entirely similar comment can be made about the integers `k occurring in the statement of
Theorem 5.4 just below.

Furthermore, once `k has been chosen to be the smallest positive integer satisfying the required
inequalities, for a given k ∈ N, then we obtain a sequence of integers (`k,q)q ∈Z = (`k + q)q ∈Z (iso-

morphic to Z) satisfying the fractal series expansion (♠♠), where

∀ q ∈ Z ∶
»»»»»»»»
{(`k + q)

ln ε

lnNb
}
»»»»»»»»
=

»»»»»»»»
{`k

ln ε

lnNb
}
»»»»»»»»
⋅

This sequence also gives rise to the imaginary parts of the cohomological Complex Dimensions
corresponding to the involved scale, since

ε
i `k,q p

= e
i (`k+q)p ln ε

= e
i [(`k+q)p ln ε]+i {(`k+q)p ln ε}

= e
i 2π [(`k+q) lnε

lnNb
]+i {(`k+q) lnε

lnNb
}
= e

i {`k lnε
lnNb

}
= ε

i `k p ⋅

Theorem 5.4 (Fractal Cohomology of the Weierstrass Curve [DL22b]).

Within the set H öldgeom (ΓW ) of continuous, complex-valued functions f , defined on the Weier-

strass Curve ΓW ⊃ V
⋆
= ⋃
n∈N

Vn (see part ii. of Definition 5.4 above), let us consider the Complex

(which can be called the Fractal Complex of ΓW ),

H
⋆
= H

• (F • (ΓW ,C) , δ•) =
∞

⨁
m=0

Hm ,

where, for any integer m ⩾ 1, and with the convention H0 = Im δ−1,0 = {0}, Hm is the cohomology
group

Hm = ker δm−1,m/Im δm−2,m−1 ⋅

Then, H
⋆

is the set consisting of functions f on ΓW , viewed as 0-fermions (in the sense of Def-
inition 5.1), and, for any integer m ⩾ 1, of the restrictions to Vm of (m,Nm

b + 1)-fermions, i.e., the

restrictions to (the Cartesian product space) V
N
m
b +1

m of antisymmetric maps on ΓW , with N
m
b + 1

variables (corresponding to the vertices of Vm), involving the restrictions to Vm of the continuous,
complex-valued functions f on ΓW – as, naturally, the aforementioned 0-fermions – satisfying the
following convergent (and even, absolutely convergent)Taylor-like expansions (with V

⋆
= ⋃
n∈N

Vn ),

∀M⋆,⋆ ∈ V
⋆
∶ f (M⋆,⋆) =

∞

∑
k=0

ck (f,M⋆,⋆) εk (2−DW )
ε
i `k p

=

∞

∑
k=0

ck (f,M⋆,⋆) εk (2−DW )+i `k p , (♠♠♠)
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where, for each integer k ⩾ 0, the coefficient ck (⋆,⋆) = ck (f,⋆) ∈ C is the same as in part ii. of

Theorem 5.3, the number ε
k
> 0 is the k

th
component of the k

th
cohomology infinitesimal introduced

in Definition 3.1, and where `k denotes an integer (in Z) such that

»»»»»»»»
{`k

ln ε

lnNb
}
»»»»»»»»
≲
ε
k (DW −1)

2π
⋅

Note that since the functions f involved are uniformly continuous on the Weierstrass Curve ΓW ⊃ V
⋆

,
and since the set V

⋆
is dense in ΓW , they are uniquely determined by their restriction to V

⋆
, as given

by (♠♠♠). We caution the reader, however, that at this stage of our investigations, we do not know
wether f(M) is given by an expansion analogous to the one in (♠♠♠), for every M ∈ ΓW , rather
than just for all M ∈ V

⋆
.

The convergence (or even, the absolute convergence) of the series
∞

∑
k=0

ck (f,M⋆,⋆) εk (2−DW )+i `k p

directly comes from the fact that the coefficients ck (⋆,⋆) are uniformly bounded (see the inequali-
ties (⋆⋆) in the proof of Theorem 5.3), and that, for any k ∈ N

⋆
,

»»»»»»ε
k (2−DW )+i `k p»»»»»» = ε

k (2−DW )
= (ε2−DW )k , with 0 < ε < 1 and 2 −DW > 0 ⋅

Finally, for each M⋆ =M⋆,m ∈ V
⋆

, as is shown in [DL22b], the coefficients ck (⋆,⋆) (for any k ∈ N)
are the residues at the possible cohomological Complex Dimensions − (k (2 −DW ) + i `k p)) of a suit-
able global scaling zeta function evaluated at M⋆.

The group H
⋆
=

∞

⨁
m=0

Hm is called the total fractal cohomology group of the Weierstrass Curve ΓW

(or else, of the Weierstrass function W ).

The following statement is a corollary of both Theorems 5.3 and 5.4.

Corollary 5.5. For each m ∈ N, the prefractal cohomology space Hm is different from {0}. Indeed,
the Weierstrass function W , viewed as an appropriate restriction of the identity map on the Weier-
strass Curve ΓW , belongs to each Hm, for any m ∈ N.

Similarly, and for exactly the same reason, the fractal cohomology space H
⋆

, is not reduced to {0}
(because, in short, W belongs to H

⋆
).

Therefore, in some definite sense, we can say that the Weierstrass function – or, alternatively, the
Weierstrass Curve – belongs to its own cohomology.

Remark 5.5. These results are to be compared with previous ones of Michel L. Lapidus and collabo-
rators obtained in [LvF00], [LvF06], [Lap08], [LvF13], [CL17], [Lap19] and [Lap22].

More precisely, in our present setting, and contrary to the classical cases of arithmetic or differ-
entiable varieties, for which the decomposition of the total cohomology is indexed by integers, the
total (fractal) cohomology H

⋆
is a sum of spaces indexed by the complex dimensions (as is expected

in [LvF00], [LvF06], [LvF13] and [Lap08], and discussed in detail in [CL17], [Lap19] and [Lap22]),
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with an underlying quasiperiodicity property, induced by the estimate (on the imaginary parts of the
complex dimensions) (�) in part ii. of Theorem 5.3. We thus dispose of a quasiperiodic geometric
property (reminiscent of, but not identical to, that established in Chapter 3 of [LvF13] for nonlattice
self-similar strings), which can possibly be connected to the structure of a (generalized) quasicrystal
(see [LvF13], Problem 3.22, page 89, and [Lap08], especially, Chapter 5 and Appendix F), especially
in the case not considered in the present paper when Nb is not an integer, but for which we expect
analogous results; see, in particular, Proposition 4.8 above.

Remark 5.6. Note that H
⋆

is to be understood in the sense of the inductive limit of the sequence of co-
homology groups (Hm)m∈N; namely, for each fermion ϕ ∈ H

⋆
, and each m ∈ N, the restriction ϕ∣Vm

of ϕ to the set of vertices Vm belongs to Hm; the restriction (ϕ∣Vm+1)∣Vm to Vm of the restriction ϕ∣Vm+1
of ϕ to the set of vertices Vm+1 (which is itself in Hm+1), cöıncides with the restriction ϕ∣Vm of ϕ to Vm;
i.e.,

∀m ∈ N ∶ ϕ∣Vm ∈ Hm and (ϕ∣Vm+1)∣Vm = ϕ∣Vm ⋅

This amounts, for each ϕ ∈ H
⋆
, to

ϕ = (ϕm)m∈N ,

where, for each m ∈ N, ϕm ∈ Hm, while, if we denote by π ∶ Hm+1 → Hm the natural projection
from Hm+1 to Hm (recall from Remark 5.1 that Hm ⊂ Hm+1), we have that π (ϕm+1) ∈ Hm coincides
with ϕm.

Remark 5.7. In some sense, the Complex Dimensions corresponding to the fractal cohomology –
namely, ωk = −k (2 −DW ) − i `k p, where k ∈ N is arbitrary – can be viewed as being associated to
the Weierstrass function itself rather than with the Weierstrass Curve.

In [DL22b], we also provide a reformulation of Theorems 5.3 and 5.4 concerning, respectively,

the m
th

prefractal cohomology groups Hm (m ∈ N) and the global (or total) fractal cohomology
group H

⋆
. This reformulation – based on a pair of complex conjugate variables Z and Z̄ instead

of (x, y) ∈ R2
– makes use of the natural symmetry of the Weierstrass Curve ΓW and, correspondingly,

enables us to obtain a natural version of Poincaré Duality for the associated cohomology spaces;
see [DL22b] and Section 6 below.

6 Concluding Comments and Perspectives

Up to now, the determination of the Complex Dimensions of the Weierstrass Curve had remained
an open problem, that we have completely solved in [DL22a]. Contrary to classical fractals, the non-
affine feature, coming from a nonlinear iterated function system, makes things a lot more complicated
than for earlier examples studied in the literature (see, e.g., [LRŽ17a], [LRŽ17b], [LRŽ18], [Lap19]).

By considering the fractal Complex Dimensions as dynamical quantities, which evolve with the
scales, we set up a broader and more general framework than the one which was envisioned before.
We can draw an analogy between this new framework and the theory of the French physicist Laurent
Notale discussed, for instance, in [Not98]: in our context, the fractal dimension plays the role of the
time variable; the length – seen as a function of the resolution, once replaced by its logarithm – plays
the role of the position; as for the scale (or, in an additive way, its logarithm), it is the analogue of
the speed. This explains why there is an insurmountable (minimum) resolution, directly depending
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on the geometry. (There is also a largest scale, but this is perhaps less surprising).

One of the benefits of our study – insofar as we handled a more general setting than in the clas-
sical cases – will concern the extension to a large class of (possibly nowhere differentiable) fractal
functions. Note that our results also provide a new and very direct proof of the fact that the value of

the Minkowski (or box-counting) dimension of the Weierstrass Curve is DW = 2 − lnNb
1

λ
.

The interest of considering such a fractal object is, besides its very rich geometrical properties –
a self-shape similarity, coming from a prefractal polygonal sequence with vertices entirely contained
and dense in the Curve – that one has a natural map defined on the Curve. Again, it is not usually
the case (see, for instance, the Sierpiński Gasket, where one has to introduce specific functions). As
is shown in [DL22b], it happens that the complexified Weierstrass function possesses a series expan-
sion indexed by the cohomological Complex Dimensions; see Remark 5.3. Under this light, one could
not bypass establishing a direct link with a fractal cohomology. As expected, the fractal expansion
(or explicit formula) that enables us to express any given function belonging to the m

th
cohomology

group, at a given vertex of the associated m
th

prefractal graph approximation, can exactly be written
as a countably infinite sum indexed by the cohomological Complex Dimensions. Going further, this
might be interpreted as a kind of generalized Taylor expansion, with fractional derivatives of under-
lying orders the corresponding Complex Dimensions. It appears that we have significantly extended
and given a geometric meaning to the results (and conjectures) in [LvF00], [LvF06], [Lap08], [LvF13],
along with the ones in [CL17] and [Lap22], where the authors suggested that there should exist a
fractal cohomology theory having direct links with the theory of Complex Dimensions.

The natural Poincaré duality associated to the Weierstrass Curve (see [DL22b]) calls for further
investigation. In our future works, we envision to lay out the foundations of a so-called fractal differ-
ential calculus along with a corresponding version of Hodge theory – the natural extension to fractal
objects of the classic differential calculus. Specific topics include the conditions of existence of Taylor-
like expansions, as well as of the explicit expressions of the corresponding (local) fractional derivatives,
along with a proper definition, in the present context, of the notion of (possibly higher-dimensional)
fractal manifold, its associated Complex Dimensions, fractal curvatures and fractal cohomology, dual
of a potential fractal homology which is yet to be constructed here.
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