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Abstract

Neural population dynamics are often highly coordinated, allowing task-related computa-

tions to be understood as neural trajectories through low-dimensional subspaces. How the

network connectivity and input structure give rise to such activity can be investigated with

the aid of low-rank recurrent neural networks, a recently-developed class of computational

models which offer a rich theoretical framework linking the underlying connectivity structure

to emergent low-dimensional dynamics. This framework has so far relied on the assumption

of all-to-all connectivity, yet cortical networks are known to be highly sparse. Here we inves-

tigate the dynamics of low-rank recurrent networks in which the connections are randomly

sparsified, which makes the network connectivity formally full-rank. We first analyse the

impact of sparsity on the eigenvalue spectrum of low-rank connectivity matrices, and use

this to examine the implications for the dynamics. We find that in the presence of sparsity,

the eigenspectra in the complex plane consist of a continuous bulk and isolated outliers, a

form analogous to the eigenspectra of connectivity matrices composed of a low-rank and a

full-rank random component. This analogy allows us to characterise distinct dynamical

regimes of the sparsified low-rank network as a function of key network parameters. Alto-

gether, we find that the low-dimensional dynamics induced by low-rank connectivity struc-

ture are preserved even at high levels of sparsity, and can therefore support rich and robust

computations even in networks sparsified to a biologically-realistic extent.

Author summary

In large networks of neurons, the activity displayed by the population depends on the

strength of the connections between each neuron. In cortical regions engaged in cognitive

tasks, this population activity is often seen to be highly coordinated and low-dimensional.

A recent line of theoretical work explores how such coordinated activity can arise in a net-

work of neurons in which the matrix defining the connections is constrained to be mathe-

matically low-rank. Until now, this connectivity structure has only been explored in fully-

connected networks, in which every neuron is connected to every other. However, in the

brain, network connections are often highly sparse, in the sense that most neurons do not

share direct connections. Here, we test the robustness of the theoretical framework of
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low-rank networks to the reality of sparsity present in biological networks. By mathemati-

cally analysing the impact of removing connections, we find that the low-dimensional

dynamics previously found in dense low-rank networks can in fact persist even at very

high levels of sparsity. This has promising implications for the proposal that complex cor-

tical computations which appear to rely on low-dimensional dynamics may be under-

pinned by a network which has a fundamentally low-rank structure, albeit with only a

small fraction of possible connections present.

Introduction

Neural recordings in animals performing cognitive tasks have revealed that individual neurons

ubiquitously display a high degree of coordination. When viewed in the activity state space, in

which each each axis represents the firing rate of one unit, the trajectories of neural activity are

typically confined to low-dimensional subspaces [1–6]. The resulting latent dynamics have

been proposed to underpin complex cortical computations [7]. However, how the inputs to

the network and the connectivity between the individual units shape such low-dimensional

activity remains a prominent question.

A recently developed class of models, recurrent networks with low-rank connectivity, pro-

vide a tractable theoretical framework for addressing this question and unravelling the rela-

tionship between connectivity structure, low-dimensional dynamics and the resulting

computations [8–17]. One important limitation is, however, that these models often assume a

dense connectivity structure in which every neuron shares synapses with every other. In con-

trast, cortical networks exhibit a high degree of sparsity in their connectivity, meaning that

each neuron receives inputs from only a fraction of its neighbors [18–21]. Since sparse matri-

ces are typically full-rank, an important question is whether and how the results obtained in

the study of low-rank recurrent networks apply to sparse connectivity structures.

Here we investigate how the dynamics of low-rank recurrent networks are impacted by

increasing degrees of sparsity. We start by analysing the eigenvalue spectra of low-rank con-

nectivity matrices in which sparsity is imposed by removing a random fraction of entries. Such

matrices are full-rank, but we find that the corresponding eigenspectra consist of a continuous

bulk and isolated outliers, and are therefore analogous to low-rank matrices superposed with a

random, full-rank component [8, 22, 23]. We show that both the radius of the eigenvalue bulk

and the outliers can be estimated analytically. We then use these results to compare the

dynamics of sparsified low-rank networks to those of densely connected low-rank networks

with a full-rank random component. Altogether we found that the low-dimensional dynamics

generated by a low-rank connectivity structure are highly resistant with respect to sparsity and

therefore provide a robust substrate for implementing computations in networks with biologi-

cally realistic connectivity.

Results

Network connectivity

We study recurrent networks of N firing rate units, following the classical formalism in [24].

The dynamics of each individual unit i evolve as:

t _xiðtÞ ¼ � xiðtÞ þ
XN

j¼1

Jij �ðxjðtÞÞ þ Ii uðtÞ; ð1Þ
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where xi describes the total input current to each unit, τ is the time constant of the dynamics,

Jij is the synaptic weights from unit j to unit i and ϕ(�) is a non-linear transfer function that we

take to be the hyperbolic tangent. Each unit can also receive a time-dependent input current of

magnitude u(t) via a feedforward weight vector I = {Ii}i = 1. . .N. The set of synaptic weights Jij
are stored in a connectivity matrix J, for which we consider two forms. We begin by consider-

ing full-rank Gaussian connectivity, introducing sparsity into the synaptic weights and estab-

lishing the ways in which sparse Gaussian networks differ from their fully-connected

counterparts. We then constrain the connectivity to be low-rank and sparsify as before, exam-

ining how the impact of sparsity in such networks both parallels and contrasts with that of the

Gaussian case.

The full-rank Gaussian networks are defined by a matrix J with entries independently dis-

tributed as

Jij � N ð0; g2=NÞ; ð2Þ

where g controls the variance of the matrix entries and thus the strength of the coupling.

For the low-rank networks, we consider the simplest case of a rank-one matrix P, con-

structed as in previous work [8] as a rescaled outer product of two N-dimensional random

connectivity vectors m = {mi}i = 1. . .N and n = {ni}i = 1. . .N such that

Pij ¼
minj

N
: ð3Þ

This ensures that all columns of P are linearly dependent and proportional to m. The indi-

vidual entries mi and ni of the connectivity vectors are drawn independently for each i from a

joint Gaussian distribution with mean 0 and covariance matrix S:

S ¼
s2 smn

smn s2

" #

; ð4Þ

where σ2 is the variance of both connectivity vectors which controls the overall strength of the

coupling, and σmn is the covariance between them (see Methods). In the large N limit, this

covariance becomes equivalent to the degree of overlap between m and n, given by the normal-

ised scalar product:

smn ¼
mTn
N

: ð5Þ

The covariance σmn plays a critical role in the stability of the dynamics of the rank-one net-

work due to its influence on the matrix eigenvalues, as will be seen in the following sections.

The variance σ2 likewise gains a critical influence as soon as the matrix becomes sparse. These

two key parameters controlling the connectivity, the variance and covariance of the connectiv-

ity vectors, will therefore become paramount in the later analysis of the dynamics.

Eigenvalues of connectivity matrices

The dynamics of recurrent networks are strongly influenced by the eigenspectrum of their

connectivity matrix. Regardless of network structure, the dynamics always possess a trivial

fixed point at zero, since we take the transfer function ϕ(�) to be the hyperbolic tangent, and

tanh(0) = 0. The stability of this zero fixed point is determined by the magnitude of the eigen-

value with largest real part, λmax. Since ϕ0(0) = 1, the stability matrix at zero reduces to Sij = Jij
− δij, so the fixed point at zero becomes unstable when the largest eigenvalue of the
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connectivity matrix J surpasses unity. As soon as this occurs, non-trivial dynamics can emerge.

To understand the impact of sparsity on network dynamics we will therefore analyse the

changes in the network eigenspectra, and will place particular focus on λmax, the eigenvalue

with maximum real part.

Eigenvalues of sparsified full-rank networks. We first consider the impact of sparsity on

the eigenspectra of the full-rank, random connectivity matrices (Eq 2). Work in random

matrix theory has demonstrated that the eigenspectra of such matrices are described by Girko’s

circular law [25]: for a matrix with entries independently distributed with mean zero and vari-

ance Var, the eigenvalues converge in the limit of N!1 to a uniform distribution within a

disk of radius
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var � N
p

centred at the origin. This result is universal in the sense that it holds

for any distribution with finite variance. For the Gaussian networks J introduced in (Eq 2)

with Var = g2/N, the eigenvalues are therefore uniformly distributed on a circular disk of

radius approximated by g. Since the distribution is circular, the radius of this disk is equivalent

in the large N limit to λmax, the eigenvalue with maximum real part, so we refer to both by the

spectral radius R.

To sparsify the matrix, we simply choose a fraction s 2 [0, 1] of connections to set to zero at

random. This is achieved by multiplying the original matrix J elementwise with a binary

matrix X, where Xij are drawn independently from a Bernoulli distribution Bð1; 1 � sÞ, form-

ing a sparse matrix ~J ¼ J� X characterised by a degree of sparsity s (Fig 1A). Due to the pres-

ence of zeros, the entries of ~J have a lower variance than those of J, but remain independently

distributed. Because of this property of independence, we expect the universality result of the

circular law for iid matrices to hold [25]. Indeed, we find that the eigenvalues of the sparse

matrix ~J continue to distribute uniformly on a disk for which the spectral radius is described

by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var � N
p

, where Var is now the variance of the sparse matrix elements ~J ij. This variance

can be calculated (see Methods) as (1 − s)g2/N, giving a spectral radius of:

R ¼ g
ffiffiffiffiffiffiffiffiffiffi
1 � s
p

: ð6Þ

Fig 1. Influence of sparsity on the eigenspectra of full-rank networks. A: Illustration of how sparsity is imposed in the connectivity matrix, where

the degree of sparsity is s = 0.5. B: Complex eigenspectra of full-rank, Gaussian connectivity matrices of finite size (N = 300, g = 1) in the dense case

(left) and with a sparsity of 0.5 (right). The dashed line plots the unit circle. C, D, E: Reduction of spectral radius R as a function of sparsity in a full-

rank matrix J constructed as in (Eq 2) with connection strength g = 1. In C, sparsity is imposed as a fraction of total connections removed (N = 1000).

In D and E sparsity is imposed by fixing the number of outgoing connections to C = 200 and increasing N. Dots: mean empirical spectral radius,

measured as the largest absolute value of all eigenvalues, over 50 instances. Solid lines: theoretical prediction (Eq (6)).

https://doi.org/10.1371/journal.pcbi.1010426.g001
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Increasing the degree of sparsity s in a full-rank Gaussian network thus monotonically

reduces the radius of the disk on which the eigenvalues distribute. In Fig 1C we demonstrate

the correspondence of the prediction in (Eq 6) to the empirical spectral radius, measured as

the largest eigenvalue in the spectrum of a finite-sized Gaussian matrix sparsified in the man-

ner described above.

An alternative means of sparsifying the matrix is to set to zero a fixed number of outgoing

connections C per unit, while increasing the total number of units N, where C� N. This is

often a regime of interest in neuroscientific work [26]. The network is now defined by a degree

of sparsity s = 1 − C/N, where C/N is the fraction of non-zero connections per unit. The impact

of sparsifying the matrix in this manner is equivalent to the previous case, where the theoreti-

cal spectral radius is now given by g
ffiffiffiffiffiffiffiffiffiffi
C=N

p
(Fig 1D) and taking the degree of sparsity to one

now corresponds to taking the number of units N to infinity (Fig 1E).

Eigenvalues of sparsified rank-one networks. We now turn to the impact of sparsity on

the eigenspectra of rank-one matrices. Fully-connected rank-one matrices have only one

potentially-nonzero eigenvalue, formed from the scalar product of the corresponding left and

right eigenvectors. For the matrix P defined in (Eq 3), the right and left eigenvectors are the

connectivity vectors m and n, and the corresponding eigenvalue is located at mTn/N on the

real axis, which is equivalent in the large N limit to the overlap σmn between the connectivity

vectors. All the remaining eigenvalues lie at zero.

When sparsity is introduced to the rank-one structure, forming a sparse matrix ~P, this

matrix is now formally full-rank and possesses N potentially-nonzero eigenvalues. However,

we observed empirically that the eigenspectrum splits into two distinct components. The

eigenvalue associated with the rank-one structure remains distinct in the spectrum, since such

structure persists as a backbone to the connectivity. We refer to this structural eigenvalue as

the outlier. At the same time, the full-rank perturbation introduced by the sparsity induces

additional eigenvalues with nonzero real and imaginary parts which distribute about the origin

on a disk with non-uniform density (Fig 2A). We refer to this set of additional non-zero eigen-

values induced by sparsity as the bulk. For the sparsified rank-one matrix ~P, it is now these two

components of the spectrum, the bulk and the outlier, that together contribute to the

Fig 2. Influence of sparsity on the eigenspectra of rank-one networks. A: Eigenspectra of rank-one connectivity matrices of finite size, in the dense

case (left) and under a sparsity of 0.5 (right). The matrix P is constructed as in (Eq 3), with parameters σ2 = 16, σmn = 1.44 and N = 300. Under sparsity,

the outlier (gold) is reduced and the bulk distribution (brown) emerges. The dashed line plots the unit circle. B, C: Impact of sparsity on two key

features of the eigenspectrum of finite-size rank-one networks: B, the outlier λ1, and C, the spectral radius of the bulk distribution. The outlier is

eventually reduced below the instability boundary of λ1 = 1, dashed line. Sparsity is imposed as a fraction of total connections removed; σ2 = 16, σmn = 4

and N = 1000. D: Same as in C but for sparsity imposed by fixing C = 200 non-zero connections and increasing N; bulk radius is plotted as a function of

N. Dots: empirical measurements of outlier and bulk radius. Solid lines: theoretical prediction (Eq (9)).

https://doi.org/10.1371/journal.pcbi.1010426.g002
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dynamics. Understanding the impact of sparsity on the dynamics therefore reduces to under-

standing how each component is modified by sparsity. We now address each in turn.

Firstly, the outlier λ1 is reduced monotonically by sparsity. It can be shown that in the large

N limit, the right connectivity vector m remains a right-eigenvector of ~P, and yet a fraction s of

matrix entries are now zero; this means that the factor by which the outlier is reduced is 1 − s
(see Methods). The outlier therefore lies at (1 − s)mTn/N on the real axis, and is drawn in

towards the origin as the degree of sparsity approaches one (Fig 2B). In the large N limit, this

value is equivalent to

l1 ¼ ð1 � sÞ smn: ð7Þ

Secondly, we wish to characterise the radius of the bulk distribution. Although the distribu-

tion of eigenvalues in the bulk is non-uniform (Fig 3A), it continues to be circular, and we

thus hypothesise that the universality result for the radius [25] still holds. This would allow us

to characterise the bulk radius directly using the variance of matrix elements, in a similar man-

ner to the Gaussian matrix. To test this, we derive the variance of the elements not of the entire

sparse matrix ~P, but of a new matrix ~P� which possesses solely the eigenvalues in the bulk dis-

tribution. We remove the eigenvalue outlier from the spectrum as in [22, 23, 27], constructing

a new matrix ~P� ¼ ~P � ð1 � sÞP as a linear combination of the dense matrix P and the origi-

nal sparse matrix ~P. The connectivity vector m is also an eigenvector of ~P�, but now with a

zero eigenvalue. The distribution of the remaining eigenvalues of ~P� is identical to those in ~P,

but with the outlier λ1 removed. By deriving the variance of the elements of ~P� (see Methods),

we obtain:

Varð~P�Þ ¼
s4

N2
sð1 � sÞ: ð8Þ

The theoretical bulk radius given by the circular law is therefore:

R ¼ s2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð1 � sÞ

N

r

: ð9Þ

We find that this expression accurately describes the radius of the bulk distribution mea-

sured empirically in finite-size networks (Fig 2C). When sparsity is imposed by setting a fixed

number of connections C and increasing N, these quantities can simply be redefined in terms

of C and N by substituting s = 1 − C/N. We thus obtain the outlier as:

l1 ¼
C smn

N
; ð10Þ

and the radius of the bulk as:

R ¼
ffiffiffiffi
C
p

s2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � C
p

ffiffiffiffiffiffi
N3
p : ð11Þ

In contrast to the previous case of Gaussian networks, the radius of the bulk distribution

which emerges in rank-one networks therefore scales non-monotonically with sparsity, first

increasing to its maximum extent at s = 0.5, then reducing once more into the origin as the

degree of sparsity approaches one (Fig 2C and 2D).

High sparsity limit. With the rank-one connectivity defined with a 1/N scaling as in Eq 3,

when C is fixed and N is taken to1, both the bulk radius R and the outlier λ1 are reduced to
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zero. In order to have a non-vanishing eigenspectrum and ensure that the bulk radius and the

outlier remain finite in the limit of N!1, we turn to a rescaled version of the connectivity

matrix Pij (Fig 3). By removing the weight scaling by N and considering simply the matrix

~Pij ¼ Xijminj; ð12Þ

the outlier is now constant with respect to sparsity:

l1 ¼ C smn; ð13Þ

and the radius of the bulk becomes:

R ¼
ffiffiffiffi
C
p

s2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � C
p

ffiffiffiffi
N
p ; ð14Þ

which approaches
ffiffiffiffi
C
p

s2 in the limit of high sparsity as N is taken to infinity at finite C
(Fig 3B). Thus in this rescaled network, for a given number of connections per neuron C and

for a high level of sparsity C� N, the radius of the bulk distribution depends only on the vari-

ance σ2 of the connectivity vectors (Fig 3C), and the location of the structural eigenvalue out-

lier depends only on their covariance σmn (Fig 3D). This decoupling from N allows us to

understand the dynamics of networks situated in the high-sparsity regime solely in terms of

the two variables characterising the rank-one connectivity, the variance σ2 and the covariance

σmn of the connectivity vectors.

Dynamics of sparsified rank-one networks

Having characterised the eigenspectrum of the sparsified rank-one matrix, we now turn to the

insights we can extract about the dynamics. We have shown that the eigenspectrum of the

sparse rank-one matrix is comprised of two distinct components, the outlier and the bulk dis-

tribution, which are under the independent control of two key parameters defining the net-

work connectivity. Moreover, we have shown that in the large N limit, the spectral radius of

the bulk distribution can be characterised by Girko’s circular law, in the same manner as the

Fig 3. Key features of rank-one eigenspectrum become independent of N in the high sparsity limit. A: Illustration of the spectral radius R of the bulk

distribution induced by sparsity, and the outlier λ1 inherited from the rank-one structure. Dots: eigenvalues of matrix. Dashed lines: theoretical

predictions, with C = 200, N = 2000, σ2 = 0.09, and σmn = 0.008. B: Bulk radius (Eq 14) as a function of sparsity imposed by fixing C = 200 and

increasing N, for the rescaled matrix Pij = minj with σ2 = 0.09 and σmn = 0.008. The outlier Cσmn is now independent of N. The bulk radius converges

towards
ffiffiffiffi
C
p

s2 (dashed line) as sparsity increases. C: Outlier and bulk radius as a function of the variance of the connectivity vectors, while the

covariance is fixed (σmn = 0.01). D: Outlier and bulk radius as a function of the covariance σmn, while the variance is fixed (σ2 = 0.09). Empirical values

are displayed as mean (dots) and standard deviation (bars, 10 repeats) of the eigenvalue with largest absolute magnitude (bulk) and real part (outlier),

while the outlier is still distinguished from the bulk. When the outlier is smaller than the bulk, its location cannot be measured empirically. Lines:

theoretical predictions at empirically measurable (solid) and unmeasurable (dashed) locations. Parameters: C = 200, N = 1200, resulting in s = 0.8.

https://doi.org/10.1371/journal.pcbi.1010426.g003
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circular disk of eigenvalues characteristic of a full-rank Gaussian matrix (Fig 1). This leads us

to hypothesize an equivalence between the dynamics of a sparsified rank-one network and

those of a dense rank-one network with an added full-rank, Gaussian component, which also

give rise to an outlier and an eigenvalue disk in the spectrum [8]. In what follows, we explore

the extent to which the dynamics of sparsified rank-one networks resemble dense rank-one

networks with additional random connectivity, and highlight the aspects in which they are

unique.

To preface our interpretation of the dynamics, we briefly summarise the behaviour of low-

rank recurrent networks in the dense case [8, 12, 13]. In general, a network of rank R gives rise

to dynamics embedded in an R-dimensional subspace spanned by the right connectivity vec-

tors, with an additional dimension introduced by each addition of external input along a given

vector I. Recent work has demonstrated that the trajectories within this subspace can be

reduced to a mean-field description of a small number of interacting latent variables [12, 13].

For the rank-one networks that we consider here, the activation of each unit xi can be

described by:

xiðtÞ ¼ krðtÞ mi þ kIðtÞ Ii; ð15Þ

where I is the vector along which the network receives an external input. The latent variables

κr(t) and κI(t) define the projection of the population activity x onto the vectors m and I

respectively. The population activity therefore spans the plane formed by the vectors m and I,

and reduces to a one-dimensional trajectory along the vector m in the absence of input.

Whether or not activity is generated along m is determined by the total recurrent input κrec,

given by (see Methods):

krec ¼
1

N

XN

j¼1

nj �ðxjÞ; ð16Þ

which represents the overlap of the network activity ϕ(x) with the left connectivity vector n. A

non-zero value of κrec—and thus non-trivial equilibrium dynamics structured along m—can

only arise if the connectivity vector n has a non-zero overlap σnI with the input vector I (input-

driven dynamics) or a non-zero overlap σnm with the connectivity vector m (autonomous

dynamics). In the latter case, the system can possess a bistability and evolve in the absence of

input towards one of two stable fixed points. Adding an external input which overlaps with the

vector n increases the activity along m but also eventually suppresses one of these bistable

states [8].

Here, we address the impact of sparsity on the degree of structure present in the input-

driven and autonomous network dynamics. We focus on rank-one networks in the high-spar-

sity limit (Eq 12) where the number of non-zero connections C is fixed independently of N, in

which case the magnitude of the outlier and bulk distribution become independent of N and

remain finite at high sparsities. We first fix both the outlier and the bulk below unity, and con-

sider the network response to an external feedforward input (Fig 4). We then turn to the

autonomous dynamics that arise when both the outlier and bulk are above the instability, and

study the dynamical landscape formed from the interaction between the two components

(Fig 5).

Input-driven dynamics. For dense rank-one connectivity, when both the eigenvalue out-

lier and the radius of the bulk are fixed below unity, the fixed point at zero is stable, and the

network can display only transient dynamics invoked by an external input u(t) along a feedfor-

ward input pattern I (Fig 4A). If the input pattern is orthogonal to the left connectivity vector

n, the network activity simply propagates the feedforward input pattern along the one-
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dimensional axis of I. However, two-dimensional trajectories can emerge if the vector I is

given a non-zero overlap with n; in this case, the component of the input-driven activity ϕ(x)

along n results in a non-zero κr, which allows the trajectory to evolve into the m dimension

during the course of the input current [8]. This behaviour can be seen by projecting the activity

into the m-I plane (Fig 4B). The input-driven trajectory is confined to the m-I plane, revealing

the underlying rank-one structure in the connectivity.

To understand the manner in which sparsity interferes with these input-driven trajectories,

we first consider what happens when we simply add a random, Gaussian component of vari-

ance g2/N to an otherwise dense rank-one matrix, which introduces to the eigenspectrum an

eigenvalue disk similar in nature to the bulk distribution that arises under sparsity. With such

an addition, the input-driven trajectories are only subtly modified as the strength g of the ran-

dom component (Eq 2) is increased from 0 to 1, increasing the radius of the corresponding

eigenvalue disk from 0 to 1 (Fig 4B and 4C). The projection of the population activity in the

m-I plane remains unaffected (Fig 4B, left), but the random perturbation to the recurrent

inputs causes the population activity to gain additional dimensions (Fig 4B, right). The

Fig 4. Impact of sparsity on input-driven dynamics. Network responses to a step input current along a random vector I. A-C: network consists of a

dense rank-one component 1

N minj and a full-rank, Gaussian component of variance g2/N; the random strength g is progressively increased from zero to

one, in order to increase the radius of the eigenvalue disk from zero to one. D-F: network consists only of rank-one component Pij = minj; the sparsity is

progressively increased by decreasing the number of non-zero connections C. Parameters are chosen such that the radius of the eigenvalue bulk also

spans the range [0, 1) as sparsity is modulated (σ2 = 0.043). The outlier is fixed at zero (σmn = 0). The input vector I partially overlaps with n (σnI = 0.2).

A, D: Temporal dynamics of the network during step input (A: g = 0.8; D: s = 0.8). Top: samples of input timeseries u(t)Ii. Bottom: samples of network

activations xi(t). B, E: Left: input-driven population trajectories projected onto the plane defined by the right connectivity vector m and input vector I,

as random strength (resp. sparsity) is progressively increased. Right: principal component analysis (PCA) of each trajectory, showing the fraction of

variance explained by the first three components (upper panels) and the correlation between first three principal components and the vectors I and m

(lower panels). Examples are shown for both low and high random strength (resp. sparsity). C, F: Top: Dimensionality of network trajectories

quantified by the participation ratio ð
P

iliÞ
2
=ð
P

il
2

i Þ, where λi are the eigenvalues of the covariance matrix of activations. Bottom: Projection of

network activation x onto the right connectivity vector m (the latent variable κr). The analytical radius of the corresponding eigenvalue disk is also

shown in grey. For comparison, we also plot the dimensionality of Gaussian network trajectories corresponding to values of g equal to the radius of the

sparse networks (red curve). The mean value for both dimensionality and projections is taken over 50 simulations for each value of g and C. Parameters

for all graphs: N = 2000, σ2 = 0.043, σmn = 0.

https://doi.org/10.1371/journal.pcbi.1010426.g004
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dominant dimensions of the activity remain aligned with the axes of I and m (Fig 4B, right),

and the degree of activation along the m dimension, as quantified by κr, is not reduced (Fig

4C, lower). However, because the radius of the eigenvalue disk induced by the random compo-

nent is equal to g (Fig 4C, lower), the dimensionality of the network activity increases non-lin-

early with g (Fig 4C, upper).

The impact of sparsity is markedly different (Fig 4D–4F). As the degree of sparsity is

increased, the increased presence of zeros in the connectivity reduces the overlap of the input-

driven activity with the n dimension, reducing κr and leading to a progressive loss of structure

along m (Fig 4E and 4F). Since the feedforward connections are left untouched, the degree to

which the activity spans the I dimension is not affected. The input-driven trajectories of the

sparse network are therefore flattened towards the I axis as sparsity is increased (Fig 4E), and

the degree of activity along m is progressively decreased to zero (Fig 4F, lower). Moreover,

since the radius of the eigenvalue bulk varies non-monotonically as C is decreased to increase

the degree of sparsity (Fig 4F, lower), the dimensionality of the network activity also first

increases before decreasing again to zero as the recurrent inputs are stripped away (Fig 4F,

upper, blue curve). For comparison, we also show the dimensionality of an equivalent Gauss-

ian network defined by a low-rank plus a random component with strength g equal to the cor-

responding radius of the bulk distribution at each degree of sparsity C (red curve). At

intermediate sparsity levels, the sparse low-rank network gives rise to higher-dimensional

dynamics than the equivalent Gaussian network.

We therefore highlight a key difference between the input-driven dynamics of sparsified

rank-one networks and those of a dense rank-one network with an added random component.

Sparsity interferes with the structure of input-induced activity in a way that a random compo-

nent does not: it reduces the component of the dynamics along m otherwise revealed by an

appropriate geometric configuration of inputs, and ultimately reduces the overall dimensional-

ity of the activity by stripping away the influence of recurrent inputs. At intermediate sparsi-

ties, this dimensionality is increased above that expected in a dense low-rank network with an

analogous eigenvalue disk introduced by a superposed Gaussian component. In this latter net-

work type, the overall dimensionality of the dynamics monotonically increases with the

strength of the random component while the the dynamics along m are preserved.

Autonomous dynamics. When the outlier and the bulk radius in the eigenspectrum are

increased above unity, the fixed point at zero loses stability and non-trivial autonomous

dynamics emerge. It is here that the equivalence of the sparse regime to the addition of a ran-

dom component manifests itself. In previous work [8] investigating the autonomous dynamics

that emerge in networks comprised of a rank-one component P plus a full-rank random part,

distinct dynamical regimes were identified on the basis of the dominance of each component

in the eigenspectrum. The dynamics were described as decaying, if both the outlier of P and

the eigenvalue disk of J lie below unity; structured stationary, if the outlier crosses the instabil-

ity and the disk radius, inducing a non-trivial fixed point along the axis of m; or chaotic, if the

radius of the disk belonging to J crosses the instability and the outlier, introducing the higher-

dimensional fluctuations classically associated with random networks [24].

Due to the similarities in the eigenspectra, our analyses reveal that the autonomous dynam-

ical regimes of sparsified rank-one networks can be mapped directly onto those described

above (Fig 5). The bulk distribution plays a role analogous to the eigenvalue disk of the ran-

dom part of the connectivity, while the eigenvalue outlier takes the role of the outlier of P. In

the rank-one network in the high-sparsity regime (Eq 12), the location of the bulk and the out-

lier are independent of N and thus remain present in the eigenspectrum even at high sparsities,

at magnitudes described respectively by
ffiffiffiffi
C
p

s2 and Cσmn (Fig 3). As in densely connected
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networks, the instability can either be lead by the outlier, bringing the network into a heteroge-

nous stationary regime aligned with m (Fig 5A, top left), or by the bulk, inducing chaotic

dynamics (Fig 5A, bottom right). Since the magnitude of the bulk radius and the outlier are

controlled respectively by the variance σ2 and covariance σmn of the connectivity vectors, the

regime in which the network is situated is dictated solely by the relative configuration of these

key connectivity parameters. The phase diagram of Fig 5A summarises the dynamical land-

scape that arises; we note that this diagram is equivalent to that in [8], where the variance σ2

takes the place of the coupling strength g of the random component.

Since the precise location of the outlier and the bulk are a function of C, the form of the

phase diagram is modulated by C. Fixing N and modulating C shifts the boundaries of the

phase diagram (Fig 5B), which can alter the dynamics displayed by a network for given values

of the variance σ2 and covariance σmn. For example, in a network fixed at a given parameter

location in the phase diagram (white square), progressively decreasing C to increase the degree

of sparsity causes the network activity to lose structure along m (Fig 5C), since the outlier

Cσmn decreases as a function of C.

In contrast, when fixing C and increasing N to sparsify the connections, the degree of struc-

ture along m remains unaffected (Fig 5D). This is because the outlier is independent of N, and

Fig 5. Dynamical regimes of autonomous network activity at high sparsity. A: Dynamics of a sparsified rank-one network in the high-sparsity

regime where Pij = minj and the number of non-zero connections C is fixed. The variance σ2 and covariance σmn of the connectivity vectors respectively

control the bulk radius and outlier of the eigenvalue distribution. Centre: Phase diagram of dynamical regimes in the variance-covariance plane, for

C = 200 and N = 1000. The transition from structured to chaotic activity occurs when the bulk radius surpasses the location of the outlier. Side panels:

samples of autonomous dynamics of simulated networks situated in different dynamical regimes (coloured squares). Eigenspectra of each network

accompany each panel, showing bulk distribution (small dots) and outlier (large dot) with respect to the instability limit at unity (dashed line). B:

Modification of the phase diagram when N is fixed (N = 1000) and C is reduced to increase the degree of sparsity. C: Projection of activity along m for a

network with fixed variance σ2 and covariance σmn (situated at the white square in phase diagrams in B) while N is fixed (N = 1000) and C is decreased.

The network activity progressively loses structure along m since the eigenvalue outlier is reduced. D: Same as C, but with C fixed (C = 600) and N
increased. The outlier is independent of N, so structured dynamics can be maintained.

https://doi.org/10.1371/journal.pcbi.1010426.g005
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the bulk radius quickly becomes so as the sparsity 1 − C/N is increased. Thus, the rank-one

network constructed as in Eq 12, appropriately parameterised, can preserve its rank-one out-

lier and sustain a high degree of sparsity while still displaying the structured, one-dimensional

dynamics that are the hallmark of its underlying connectivity.

In summary, sparsified low-rank networks display a wider range of dynamics than their

dense counterparts, since the full-rank perturbation to the connectivity introduced by sparsity

acts in a manner analogous to the addition of a random component. When the dynamics are

purely input-driven, these two cases are not directly equivalent; increasing the degree of spar-

sity ultimately reduces the dimensionality of the dynamics and erodes the structured compo-

nent, while imposing a random component expands the dimensionality of the dynamics.

However, when the dynamics are autonomous, the dynamical regimes accessible to sparsified

low-rank networks can be equated directly to those of a rank-one network with an added

Gaussian term.

Computations in sparsified networks

Low-rank recurrent networks lead to a simple, transparent relationship between the connectiv-

ity and resulting dynamics which can be harnessed to implement a rich repertoire of input-

output computations [8, 11–13]. The fact that this relationship is preserved even at high levels

of sparsity indicates that such computations can be performed even in the highly-sparse

regime. By way of example, here we demonstrate how a non-linear input-integration task can

be implemented in a sparse low-rank network by designing the connectivity according to geo-

metric principles originally developed in the context of dense low-rank networks (Fig 6).

We consider a simple evidence-accumulation task in the form of a common behavioural

paradigm: a stimulus is assumed to vary continuously along a particular stimulus feature, such

as the coherence of a random-dot kinetogram [28], and the task is to report whether the mean

magnitude �c of this stimulus feature is greater than a certain threshold. The actual magnitude c
(t) is assumed to be subject to noise fluctuations, so the input must be integrated over time. To

model the task, we follow [8] and use the network structure of Fig 6A. The network is provided

with a fluctuating stimulus c(t)I + η(t), where the input pattern I represents the stimulus fea-

ture of interest, c(t) is its fluctuating magnitude, and η(t) is a vector of independent noise

inputs. A readout unit sums the network activity through a set of readout weights w to generate

an output z(t). We consider the task as a Go-Nogo paradigm, in which the network must pro-

duce a positive readout if the average stimulus magnitude, �c, is above a certain threshold θ (Go

condition), and a negative readout if the magnitude is below this threshold (Nogo condition).

In dense networks, the task can be implemented easily with unit rank connectivity, using a

solution which relies solely on an appropriate geometric structure of input and readout

weights. The details of the solution are discussed in detail in [8]; here we simply give an over-

view of the requirements. As described in the previous section on dynamics, the network

response to an input pattern I overlapping with n is a two-dimensional trajectory which spans

the m − I plane. A non-trivial readout can therefore be obtained by using a readout vector w

which overlaps either with m or I. Here we use the simplest connectivity solution: we set I = n

and w = m. This ensures that the network generates a non-zero output in response to the given

input pattern I. Moreover, to obtain the nonlinear behaviour required for the task and ensure

that the output is positive only when the input strength is above a certain threshold, we addi-

tionally choose m and n with an overlap σmn greater than unity. This allows us to exploit the

bistability of the resulting fixed point: by initialising the network in the lower fixed point, the

readout is initially negative, but if the integrated input is strong enough, the network activity
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Fig 6. Implementation of input integration task in rank-one networks at high sparsity. A: Illustration of recurrent network structure (left),

geometrical configuration of input, readout and connectivity vectors (centre), and construction of sparse rank-one connectivity matrix (right). B:

Implementation of the task in a sparse network (s = 0.9, C = 200 and N = 2000). Top: sample of fluctuating inputs, with magnitude set by strength

parameter �c. Centre: examples of network activations xi(t), for high and low stimulus strengths (dark and light blue). Bottom: corresponding readout z
(t) for high and low stimulus strengths. Network is parameterised by variance σ2 = 0.1 and covariance σmn = 0.04, located at the white square on the

phase diagram in the inset. C: Psychometric curve for different sparsity levels C, indicating the proportion of positive readouts produced as the stimulus

strength is increased. The dashed line indicates the threshold stimulus strength for which the readout should switch from positive to negative. The

proportion is defined as the fraction of times, over 50 repeats, that the mean readout (taken over the final 50ms of stimulus presentation) is positive. All

other parameters are held fixed (σ2 = 0.1, σmn = 0.06 and N = 2000) D: Psychometric curve for different sparsity levels C, with the outlier held fixed at a

constant value of λ1 = 8. The different values in C result in bulk distributions with spectral radii of 0.76, 0.87 and 0.97 respectively. E: Readout dynamics

for task implemented in a network composed of a dense low-rank component plus a Gaussian component, parameterised to ensure the equivalent

outlier and spectral radius to the sparse network in B (network defined by Jij + minj, with Jij as in Eq 12, σ2 = 9, σmn = 2.3, g = 1.3). F: Psychometric curve

of low-rank-plus-Gaussian network for different random strengths, g, with the outlier fixed to the same value as the sparse network in D.

https://doi.org/10.1371/journal.pcbi.1010426.g006
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jumps to the upper fixed point and the readout becomes positive, symbolising stimulus

detection.

To summarise, the task is implemented with the following connectivity solution: we first

generate randomly the input and readout vectors I and w; we then set n = I to allow the input

to be picked up by the recurrent dynamics and m = w for the recurrent dynamics to themselves

influence the readout; and finally, we add a common component to m and n so that they over-

lap in a shared dimension orthogonal to the input and readout, in order to generate the non-

linear switch in readout upon integrating the stimulus (Fig 6A, centre). To implement the task

in a sparse rank-one network, we generate connectivity vectors m and n which obey these

requirements and construct a rank-one matrix P as Pij = minj. We then keep only C non-zero

inputs per neuron to form the sparse connectivity matrix ~P (Fig 6A, right).

Network simulations confirm that the task can be performed accurately at high degrees of

sparsity (Fig 6B), generating a positive readout only for high average stimulus magnitudes, �c.

The requirement for success is that the rank-one outlier remains greater than the bulk of the

eigenvalue distribution, to keep the network in the structured regime in which the bistability

can be maintained. Since the boundaries between regimes shift as C is modified (Fig 5B), the

connectivity vector overlap σmn needs to be modulated to ensure that the outlier continues to

dominate as the network is sparsified. If σmn is not modulated simultaneously, the psychomet-

ric curve for the task simply shifts with C (Fig 6C): as C is lowered, the network displays

increased sensitivity and lower (sub-threshold) stimulus strengths begin to generate positive

readouts, decreasing the accuracy on the task. In contrast, if σmn is modulated in order to fix

the outlier at a constant value while sparsity is modified, the psychometric curve does not

change (Fig 6D). This is because it is the overlap σmn, and thus the outlier λ1, that determines

the timescale over which the input is integrated to form the estimate �c, and thus the threshold

value for which the readout switches from negative to positive.

For comparison, we also test the performance of dense low-rank networks with an added

Gaussian component, parameterised to be in an equivalent regime to the sparse networks.

Fig 6E shows the task implementation in a low-rank-plus-Gaussian network constructed to

have the equivalent eigenspectrum to the sparse network in Fig 6B, with the same outlier λ1

and spectral radius R. Under this parameterisation, the task is performed accurately and gives

rise to a similar psychometric curve, indicating that inputs are integrated similarly in the struc-

tured regime of both sparse and Gaussian networks. We find that the psychometric curve is

unaffected by changes in random strength g from 0 and 1 (Fig 6F), and begins to be affected

only at very high random strengths (g> 3). This is because the high-dimensional fluctuations

induced by random connectivity are averaged out by the readout, leaving the task performance

unaffected. This stresses the fact that task performance depends critically on the value of the

outlier and not on the bulk radius, provided the bulk radius is still low enough to maintain the

network in the structured regime. The result is that task performance is robust to connectivity

perturbations—such as sparsity or addition of a random component—that merely modify the

eigenspectrum in such a way that does not fundamentally disrupt the dominance of low-rank

dynamics.

The basic principle we have demonstrated here is that the structured dynamical regime

induced by low-rank connectivity can be preserved even at high sparsities, which means that

computations designed to exploit this structure can be implemented effectively even in net-

works which are highly sparse. The implication is that the full repertoire of dynamical compu-

tations accessible to a low-rank network can be likewise performed at high sparsities, provided

the network is appropriately parameterised.
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Discussion

In this study, we investigated the dynamics of recurrent neural networks in which the connec-

tivity matrices are sparse but possess an underlying low-rank structure. We showed that the

resulting full-rank connectivity matrices have eigenspectra which consist of two distinct com-

ponents, a continuous bulk distribution and isolated outliers. Such eigenspectra are directly

analogous to those of a fully-connected unit rank structure plus a full-rank random compo-

nent [8, 22, 23]. Analytically estimating the magnitude of the outlier and the radius of the con-

tinuous bulk in the large N limit allowed us to predict the dynamics of the sparsified networks.

In particular, the relative magnitude of the two major eigenspectrum components delineates

boundaries between decaying, structured and chaotic dynamical regimes. The similarity in the

eigenspectra implies that the regimes of autonomous dynamics in sparsified unit-rank net-

works are analogous to those of dense unit-rank networks with a random connectivity compo-

nent [8]. Notable differences however appear when the dynamics are purely input-driven.

Altogether, we found that computations designed to exploit key dynamical properties of low-

rank networks are highly robust with respect to sparsity. This identifies sparsified low-rank

networks as a biologically-plausible network structure through which to implement computa-

tion through low-dimensional population dynamics [7].

The sparse networks examined here were generated by directly removing connections in a

fully-connected low-rank structure. The resulting connectivity matrices are directly analogous

to those obtained by learning a single pattern through Hebbian plasticity on a sparse subset of

connections [9, 29], and therefore are of potential biological relevance. Our analyses can be

directly extended to connectivity which consists of a sparsified low-rank structure superposed

with a random sparse component with independent entries. As with randomly-connected net-

works, the results depend on assumptions regarding how the synaptic weights scale with the

number of connections [10, 26, 30–33]. Here we considered two cases, and ultimately focused

on the situation in which both the number C of non-zero connections per neuron and the

strength of the connections are fixed as the total number of neurons N is increased [26].

Under these assumptions, the radius of continuous bulk of the eigenspectrum remains finite

for large N [27], as does the value of the outlier. For alternative choices of scaling, our analyses

suggest that the expected behaviour of the eigenvalue bulk ultimately depends on the scaling of

the variance of the connectivity matrix adjusted by removing the mean low-rank component.

Given its extreme ubiquity in the brain, a question of interest is whether sparsity confers

any direct benefit to cortical networks aside from the evident reduction in metabolic and wir-

ing costs. From our analysis, it is not directly clear whether sparsified low-rank networks pos-

sess direct computational advantages over their dense counterparts. Insights into the potential

computational benefit of sparsity are however rife in the related field of deep learning.

Research indicates that the performance of deep networks is remarkably robust to sparsity,

and that a large majority of parameters can be pruned without significant loss in accuracy [34,

35]. This makes sparsity a natural regulariser, often employed in combatting over-parameteri-

sation and overfitting [36]. Computational advantages are observed as a consequence, includ-

ing an improvement in the ability of the trained network to generalise [37, 38] and an

increased robustness to adversarial attacks [39, 40], on top of significant savings in memory

storage, training time and energy efficiency [35, 41]. Nonetheless, such benefits are most often

the result of a highly selective, rule-based pruning process, as opposed to the random weight

selection employed in this study. An important avenue of future work will be to explore differ-

ent forms of structure in the sparsity imposed, and its relation to the training process and the

dynamic rules under which the connectivity evolves.
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Methods

Connectivity vectors

The right and left connectivity vectors m and n are constructed from three independent nor-

mal random vectors x, y and z in the following manner:

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � smn

p
xþ ffiffiffiffiffiffiffi

smn
p z ð17Þ

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � smn

p
y þ ffiffiffiffiffiffiffi

smn
p z ð18Þ

where the components of x, y and z are generated independently from N ð0; 1Þ. The elements

of m and n are therefore Gaussian-distributed as� N ð0; s2Þ and their degree of overlap onto

the z direction is controlled by scaling
ffiffiffiffiffiffiffi
smn
p

in the interval [0, σ].

Spectral radius of sparsified full-rank matrix

The sparsified full-rank matrix ~J is generated as the elementwise product of the original matrix

J with an independent random binary matrix X whose elements are 0 with probability s and 1

with probability 1 − s. In other words:

~J ¼ J� X where Xij � Bð1; 1 � sÞ: ð19Þ

The entries of J have a variance of g2/N and a mean of 0, while the entries of X have a vari-

ance of (1 − s). The variance of the entries of ~J can therefore be derived as:

Varð~JÞ ¼ E ½~J2� � E ½~J�2

¼ E ½J2� E ½X2� � ðE ½J� E ½X�Þ2
ð20Þ

¼
g2

N
ð1 � sÞ: ð21Þ

The spectral radius is then given by the circular law:

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var ð~JÞ � N
q

¼ g
ffiffiffiffiffiffiffiffiffiffi
1 � s
p

: ð22Þ

When sparsity is imposed by setting the number of connections per unit C, the radius is

given by substituting s = 1 − C/N as:

R ¼ g
ffiffiffiffi
C
N

r

: ð23Þ

Eigenvalue spectrum of sparsified rank-one matrix

The elements of the sparsified rank-one matrix ~P are generated in an equivalent manner as

~Pij ¼ PijXij. Its eigenspectrum is comprised of a continuous bulk and an isolated outlier. We

here derive the location of the outlier λ1 and the radius R of the bulk distribution individually.

Outlier. We proceed by showing that, for N!1, the right connectivity vector m is an

eigenvector v of ~P, and derive the corresponding eigenvalue λ. By writing the individual matrix
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elements of ~P as:

~Pij ¼
minjXij

N
ð24Þ

the ith element of ~P applied to m is:

ð~PmÞi ¼ mi

X

j

mjnjXij

N ð25Þ

As N!1, the sum over j in the right-hand side converges to an expectation due to the

central limit theorem, and we may write:

ð~PmÞi ¼ E ½njmjXij� mi

¼ E ½njmj� E ½Xij� mi

¼ smn ð1 � sÞ mi

ð26Þ

It therefore holds that:

~Pm ¼ smnð1 � sÞ m ð27Þ

so that m is a right eigenvector of ~P with eigenvalue

l1 ¼ smnð1 � sÞ ð28Þ

Bulk. To determine the radius of the bulk distribution, we derive the variance of the ele-

ments of the matrix with the outlier eigenvalue removed, ~P� ¼ ~P � ð1 � sÞP. We first rewrite

X as 1 − B, where B is a Bernoulli matrix with entries Bij � Bð1; sÞ, in order to rewrite the indi-

vidual matrix entries ~P�ij as follows:

~P �
ij ¼ ~Pij � ð1 � sÞ Pij

¼ Pij � Xij � ð1 � sÞ Pij

¼ Pij � ð1 � BijÞ � ð1 � sÞPij

¼ Pij ðs � BijÞ

ð29Þ

We can then derive the variance of the entries ~P�ij as

Var ð~P �
ij Þ ¼ E ½~P �2

ij � � E ½~P �
ij �

2

¼ E ½ðPij ðs � BijÞÞ
2
� � 0

¼ E ½P2
ij� E ½ðs � BijÞ

2
�

¼ E
mi nj

N

� �2
� �

E ½ðs � BijÞ
2
�

¼
1

N2
E ½m2

i � E ½n
2

j � E ½s
2 � 2sBij þ B2

ij�

¼
s4

N2
� ðs2 � 2s2 þ E½B2

ij�Þ

¼
s4

N2
� s ð1 � sÞ

ð30Þ
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given that Pij ¼
minj
N , and mi and ni each have variance σ2. As before, we may substitute s = 1 −

C/N when sparsity is imposed by setting the number of connections per unit, to give:

Varð~P�Þ ¼
Cs4ðN � CÞ

N4
: ð31Þ

The bulk radius is then obtained via the circular law R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var � N
p

as in the Gaussian case.

Latent dynamics in low-rank networks

Here we summarize the description of low-dimensional dynamics in low-rank networks [12,

13].

The low-rank network of Eq 3, with connectivity matrix Pij ¼
minj
N , is governed by the

dynamics introduced in the main text (Eq 1):

t _xiðtÞ ¼ � xiðtÞ þ
1

N

XN

j¼1

minj �ðxjðtÞÞ þ Ii uðtÞ; ð32Þ

At the level of the population, the collective trajectory x(t) is embedded in a low-dimen-

sional linear subspace [12, 13]. The total dimensionality of this subspace is the sum of the rank

of the connectivity matrix P plus the dimensionality of external inputs. For a rank-one net-

work with one external input vector, the dynamics are constrained to the two-dimensional

plane spanned by the left connectivity vector m and the input vector I. The dynamics can then

be represented in a new basis by projecting the activity trajectory x(t) onto these two axes. The

individual unit activations thus read as:

xiðtÞ ¼ krðtÞ mi þ kIðtÞ Ii; ð33Þ

where κr(t) and κI(t) are projections of the activity x(t) onto the m and I axes respectively:

krðtÞ ¼
1

k m k2
mTxðtÞ ð34Þ

kIðtÞ ¼
1

k I k2
ITxðtÞ: ð35Þ

The projection onto the m axis, κr(t), is then governed by its own dynamical equation:

t _krðtÞ ¼ � kr þ krec; ð36Þ

where:

krec ¼
1

N

XN

j¼1

nj �ðxjÞ: ð37Þ

At equilibrium, we therefore have κr = κrec.
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40. Özdenizci O, Legenstein R. Training adversarially robust sparse networks via Bayesian connectivity

sampling. In: International Conference on Machine Learning. PMLR; 2021. p. 8314–8324.

41. Hoefler T, Alistarh D, Ben-Nun T, Dryden N, Peste A. Sparsity in Deep Learning: Pruning and growth for

efficient inference and training in neural networks. Journal of Machine Learning Research. 2021; 22

(241):1–124.

PLOS COMPUTATIONAL BIOLOGY The impact of sparsity in low-rank recurrent neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010426 August 9, 2022 21 / 21

https://doi.org/10.1371/journal.pcbi.1010426

