
HAL Id: hal-03797570
https://hal.science/hal-03797570v1

Submitted on 13 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward a learning game on Computational Thinking
Driven by Competencies

Malak Kanaan, Sébastien Maillos, Mathieu Muratet

To cite this version:
Malak Kanaan, Sébastien Maillos, Mathieu Muratet. Toward a learning game on Computational
Thinking Driven by Competencies. 16th European Conference on Games Based Learning, Oct 2022,
Lisbonne, Portugal. pp.288-296, �10.34190/ecgbl.16.1.537�. �hal-03797570�

https://hal.science/hal-03797570v1
https://hal.archives-ouvertes.fr

Toward a learning game on Computational Thinking Driven by
Competencies

Malak Kanaan1, Sébastien Maillos1, Mathieu Muratet1, 2, Sébastien Jolivet3, Bertrand
Marne4 and Karim Sehaba5

1 Sorbonne université, CNRS, LIP6, Paris, France
2 INSHEA, Suresnes, France
3 IUFE, Université de Genève, Genève, Switzerland
4 ICAR UMR 5191, Université Lumière Lyon 2, Lyon, France
5 LIRIS - Université Lumière Lyon 2, Lyon, France
malak.kanaan@lip6.fr
sebastien.maillos@lip6.fr
mathieu.muratet@lip6.fr
sebastien.jolivet@unige.ch
bertrand.marne@ens-lyon.fr
karim.sehaba@liris.cnrs.fr

Abstract: There are many learning games related to the theme of programming and computational thinking (CT) that exist
nowadays. However, the main problem currently in France is that teachers lack training to teach K-12 learners to modern
computer concepts. Teachers understand the competencies of referential but are not comfortable with and don’t know how
to develop teaching sessions for these competencies. Our proposition is: a learning game (LG) driven by competencies will
assist teachers to develop teaching sessions with learners. Our main objective is to help teachers to appropriate learning
games on CT. To do this, we conducted an analysis based on the PIAF (Pensée informatique et Algorithmique dans
l’enseignement Fondamental - Computational Thinking in primary school) reference framework which aims at developing CT
in elementary school. It lists a set of competencies related to the development of algorithmic thinking in fundamental
education. We chose to analyse three existing learning games on CT with this framework. We selected these three learning
games ("Blockly Maze", "Compute-it" and "Kodu") from 48 learning games identified on CT. These analyses show that many
competencies aren’t present in the games. Then we study how to link the PIAF framework in a LG. We work on the learning
game named SPY in which the player has to program an agent to escape a maze. Our contribution for this paper is double:
(1) an analysis of existing learning games and (2) propositions how to express PIAF competencies in gameplay features.

Keywords: Serious Games, Computational Thinking, Didactic Engineering, Fundamental Education, Learning Game.

1. Introduction and positioning
In 2016 it was established that “40% of Europeans have an insufficient level of digital competencies and that
among those who have none (i.e., 22%) 42% are unemployed.” (Van den Brande, 2016). This finding shows that
learning digital competencies from an early age is crucial because mastering digital tools is becoming essential
for all citizens.

In our research context, dealing with education in France, the question of computer science education dates
back to the 1970s and is characterized by a balance between two conceptions of what should be taught. On the
one hand, there is the idea of teaching IT and computer science as a tool. On the other hand, the idea of
computer science as an academic subject, with its own concepts and methods to be taught (Baron and Drot-
Delange, 2016).

In France, computer science has made a comeback in elementary school curricula, where it is referred to as “CT”.
According to Jeannette Wing, CT involves five cognitive abilities: (1) algorithmic thinking, (2) abstraction, (3)
evaluation, (4) decomposition, and (5) generalization (Wing, 2006). The French researcher Gilles Dowek (Dowek,
2011) has structured computer science into four concepts so that the content taught provides an accurate
picture of the discipline itself: (1) digital information, (2) algorithms, (3) languages, and (4) computing machines.
However, teaching CT and computer science in France, at both elementary and high school levels, requires a
major involvement from teachers (Kradolfer et al, 2014) in order to tackle this new discipline, due to a lack of
training (both pre-service and in-service). Even if teachers don’t master CT competencies, they are able to
understand the competencies presented inside referential but are not comfortable with and don’t know how to

288

mailto:malak.kanaan@lip6.fr
mailto:sebastien.maillos@lip6.fr
mailto:mathieu.muratet@lip6.fr
mailto:sebastien.jolivet@unige.ch
mailto:bertrand.marne@ens-lyon.fr
mailto:karim.sehaba@liris.cnrs.fr

Malak Kanaan et al

develop teaching sessions for these competencies or to choose the appropriate learning tools/games for these
competencies.

Our proposition is: a learning game driven by competencies will assist teachers to develop teaching sessions
with learners.

The PIAF1 competency framework (Parmentier and al, 2020), established in 2021, provides a classification of
competencies related to the development of CT in basic education, as well as various pedagogical scenarios to
help teachers transmit these competencies to their students. A competency framework is a single underlying
construct framework that provides a rational, consistent and practical basis for the purpose of understanding
people’s behaviours at work and the likelihood of being able to succeed in certain roles and in certain
environments (Bartram, 2006). There are already a lot of competency frameworks related to the CT and
technology (CSTA K12, Computing, Digital Competencies, …). Parmentier et al (2020) synthesize the content of
each framework and propose a synthesis centred on CT and targeted at basic education.

Today there are several dozen LGs dealing with learning programming in various forms (Saddoug et al, 2022).
But these games don’t explain how competencies are worked on and offer very little freedom for teachers to
personalize their activities (Atlan et al, 2019).

In this article, we study a selection of LG meant to teach CT based on the PIAF reference framework. Then we
study the possibility of modifying a LG so that it covers the competencies of the PIAF framework.

Next section presents the methodology of the research. In section 3 we analyse three learning games: "Blockly
Maze", "Compute-It" and "Kodu". This analysis is based on the PIAF reference framework. We identify the
competencies present and those missing in these three games. Section 4 introduces the game SPY and our
contribution: we detail how we associate PIAF competencies and game features to design a learning game driven
by competencies. We conclude this paper in section 5.

2. Methodology
We followed a didactic engineering research methodology (Barquero and Bosch, 2015). We focus in this paper
on the two first phases of didactic engineering: the first concerns preliminary analysis (the analysis of learning
games mentioned below through the PIAF competencies) and the second concerns a priori analysis and the
design (proposition of a gameplay feature for each PIAF competency). Our goal is to provide a tool for the SPY
game (SPY is presented in section 4) that enables teachers to select a set of competencies on CT and
automatically build a level on SPY focused on these competencies.

Regarding the first phase, we identified 48 learning games from the review of learning games for CT (Saddoug
et al, 2022). This review also combines a list of games identified from reviews related to CT (Lindberg et al, 2019;
Miljanovic and Bradbury, 2018; Vahldick et al, 2014). We then focused our analysis on three of them: "Blockly
Maze", "Compute-it" and "Kodu", we argue our choices of these three games in the next section.

As we state in the introduction, we choose to base our work on the PIAF framework. It mainly focuses on CT and
offers six competencies to be developed with students. Each of these competencies is broken down into a set
of three to seven sub-competencies for a total of 26 sub-competencies2:

1. C1 - Defining abstractions / generalizing is to develop the ability to name (groups of) objects or actions
for later reference.

2. C2 - Compose/decompose a sequence of action aims to develop the ability to manipulate actions to
solve tasks.

3. C3 - Controlling a sequence of actions aims to develop the ability to control when a sequence of actions
can be performed.

1 PIAF : Pensée Informatique et Algorithmique dans l’enseignement Fondamental (Computational Thinking in
primary school)
2 The complete list of competencies and their descriptions are available on the official PIAF website.
https://piaf.loria.fr/en/outcomes/competencies-framework/, accessed May 12, 2022

289

https://piaf.loria.fr/en/outcomes/competencies-framework/

Malak Kanaan et al

4. C4 - Evaluating objects or sequences of actions is designed to develop the ability to think about the
construction of sequences of actions.

5. C5 - Translate information into different representations should develop the ability to adapt to various
equivalent representations

6. C6 - Constructing a sequence of actions iteratively aims to develop a work methodology based on an
iterative approach specific to CT.

In next sections, we will refer to a competency as follows: CX.Y which means sub-competency number Y of
category number X, for instance C2.4 corresponds to the fourth sub-competency of C2.

To conduct the analysis for the three games mentioned above, we proceeded as follows: Understanding the
PIAF competencies, playing the entire games, identifying PIAF competencies worked on, performing a
comprehensive analysis, filling in the table of competencies with 0s and 1s (1 if the competency is covered by
the game, 0 if not), and lastly analysing results.

Concerning the second phase of the didactic engineering research methodology, we study how to design new
game features in the SPY project to cover competencies defined by the PIAF framework. We aimed to establish
features that could be enabled/disabled depending on the competencies we wish to work on. We started first
by defining which competencies were already present in SPY. If this wasn't the case, or if a competency wasn’t
represented properly, we have designed new features to integrate it into the game.

3. PIAF based analysis of games dealing with CT teaching
There are already several reviews of learning games for CT in the literature. We conduct our analysis on the work
of Saddoug et al (2022) which reviewed the adaptability of a set of learning games meant for teaching CT. This
review identifies 48 games. Among these 48 games, we have focused on 3, with complementary features, in
order to analyse them with the PIAF framework:

1. “Blockly Maze” (BM) because it is well tested and free software. Indeed, inspired by Scratch (Resnick et
al, 2009), BM has been reused in many derivative works (for instance Hour of Code3, Algorea4 and more
than 400 derivatives on the forge GitHub) and it is well used by teachers. The fact that the game is widely
tested has particularly interested us to analyse it based on the PIAF framework.

2. “Compute-it” because it focuses on code reading to teach CT. We considered this game interesting in
our study due to its uncommon gameplay structure (executing code rather than writing code).

3. “Kodu” because it was judged as the most adaptable game by Saddoug et al (2022), which highly
interested us in our goal of proposing a helping tool for teachers.

3.1 Blockly Maze analysis
In Blockly Maze5 students are introduced to simple computer programming concepts with a graphical editing
tool that uses blocks instead of typed characters. To analyse BM based on the PIAF framework, we identified the
competencies covered in each level. For instance, the C5.1 entitled “Represents objects or sequences of actions
using a formal representation” consists of “being able to represent an object or an action using a precisely
defined mode of representation” (Parmentier et al, 2020). In BM, at level 1 (and this is the case in all levels),
several blocks with a precise meaning (linked to an action) have been used to describe a sequence of actions,
for example, using the block "turn left" to say that you have to turn to the left.

Table 1: Analysis of 3 games based on PIAF

 Blockly Maze Compute-it Kodu

PI
AF

 C
om

pe
te

nc
ie

s

C1

1.1 0 0 1
1.2 1 1 0
1.3 1 0 1
1.4 1 1 1
1.5 1 0 0
1.6 0 0 1

3 Hour of Code: https://hourofcode.com/fr/en, accessed May 18, 2022
4 Algorea: https://algorea.org/main.html#/, accessed May 18, 2022
5 Blockly Maze: https://blockly.games/maze?lang=en accessed May 19, 2022

290

https://hourofcode.com/fr/en
https://algorea.org/main.html#/
https://blockly.games/maze?lang=en

Malak Kanaan et al

 Blockly Maze Compute-it Kodu
1.7 1 0 1

C2

2.1 1 0 1
2.2 1 0 1
2.3 1 0 1
2.4 1 0 1
2.5 1 0 1
2.6 0 0 1

C3

3.1 1 0 0
3.2 1 0 0
3.3 1 0 0
3.4 1 0 0

C4
4.1 0 0 1
4.2 0 0 1
4.3 1 0 1

C5
5.1 1 1 1
5.2 1 0 1

C6

6.1 0 1 0
6.2 0 0 0
6.3 0 0 0
6.4 0 0 0

Sum 6 26 17 4 16

Furthermore, while trying to test the C6.3 entitled “Correct a sequence of actions to achieve a given goal” in BM,
we didn’t identify a situation that was proposing a wrong sequence of actions to the player and asking him/her
to correct it. So, no levels in BM are designed to work specifically on C6.3 competency. This is the same for C6.1,
C6.2 and C6.3.

The results from the analysis showed that there are 17/26 competencies of PIAF covered in the 10 levels of BM
(see Table 1).

3.2 Compute-it analysis
Compute-it6 focuses on code reading. After finishing Compute-it, students will have a good practice on how a
computer reads and executes some code. It is a useful competency when discovering code written by other
people and to debug his own code. In this game the player has to read code that contains positive and negative
conditions, for and while loops, functions and recursivity.

This game is interesting because our analysis points to only 4 PIAF competencies (see Table 1). We noticed C1.2
(i.e., Differentiate atomic actions and non-atomic actions) for levels that contain basic actions and functions. We
noticed C1.4 (i.e., Describe the outcome of a sequence of actions) because this competency includes the ability
to execute a sequence of action that is the centre of Compute-it. We noticed C5.1 (i.e., Represent objects or
sequences of actions in various formal representations) because players have to understand the formal language
of Compute-it. We noticed C6.1 (i.e., Test a sequence of actions with respect to a given goal) because executing
a program step-by-step is a key competency to test a sequence of actions.

We didn’t check C2.X competencies because Compute-it doesn't ask the player to edit a sequence of actions.
C3.X are more ambiguous because Compute-it includes control structures but always in a reading perspective
and not in a writing perspective as described in the PIAF framework. We can see here that it was difficult to
describe Compute-it finely with the PIAF framework.

3.3 Kodu analysis
Kodu7 is a game aimed at teaching CT as well as creativity, storytelling and problem solving to students, by
allowing them to create their own game and edit existing ones. Kodu is based on event-driven programming,

6 Compute-it: https://compute-it.toxicode.fr/ accessed May 19, 2022
7 Kodu: https://www.kodugamelab.com/ accessed May 19, 2022

291

https://compute-it.toxicode.fr/
https://www.kodugamelab.com/

Malak Kanaan et al

the player defines the actions to associate to a set of events. The events are structured on pages and the player
can control the page to execute.

The event-driven programming is an interesting feature of Kodu because it requires a different manner to
resolve problems than procedural thinking. For instance, all the C3 competencies are void in Kodu because not
applicable of the event-driven programming included in the game. Nevertheless, even if the programming
paradigms are different between Kodu and PIAF a lot of competencies have been identified (16/26 see Table 1).

3.4 Conclusions from the analyses
In the three games that we have studied, we found that they don't cover all of the PIAF competencies, each of
them has its orientation and its pedagogical choices. We also identified that some games address competencies
outside the scope of PIAF like event-driven programming or recursivity. This incomplete analysis shows that even
if the three games are about CT the means used to tackle these competencies are diverse.

In the 48 game references identified (Saddoug et al, 2022) none of them explains the links between the targeted
competencies and the game mechanics. Within the rest of this paper, we detail how we link the PIAF
competencies in the LG we are developing: SPY.

4. How to link competencies and game features?
SPY is a learning game focused on CT. It is an open-source project8 developed by Sorbonne University. The game
principle is to select from a list of actions, those that will allow a robot to get out of a maze. These actions are
represented as blocks and the player has to build a sequence of actions before the robot executes them (see
Figure 1).

To get out of the maze, the player has to program the robot to avoid obstacles. These obstacles have been built
for educational purposes:

1. Sentinels end the level if they spot the robot (if the robot passes through their detection area). Players
can select every sentinel to see the sequence of actions assigned to it. Players must know how to read
programs, to understand it and to anticipate the sentinels' movements in order to create a proper
sequence to reach the objective with the robot.

2. Doors can be activated with terminals. This feature was designed to engage a step-by-step resolution
process. Players have to understand that to reach the exit, it is necessary to solve the level in sub-steps
(Objective 1: Activate the terminal to open the door. Objective 2: Reach the exit). This also allows players
to manipulate the states of an object (open or closed).

3. Program several robots with a unique program. Players need to find a generic solution that enables two
robots to reach their exit in different mazes.

In sum, according to Wing (2006), players have to observe and model the simulation (abstraction), decompose
their strategy in sub-steps (decomposition), determine the best solution (evaluation), plan the actions to
perform (algorithmic thinking) and reuse and adapt previous solutions on new problems (generalization).

Currently a sequence of actions could be created with action blocks: advance, rotate left/right, U-turn, activate
and wait; and with control blocks: if condition and for loop. The “if” block is currently limited to one criteria
selectable in a drop-down menu (is a wall in front of the robot? Is a sentinel in front of the robot? …).

SPY loads levels from XML files, in this way, it is possible to customize the pedagogical scenario by changing
levels order. The levels being in XML format, it is possible to create new levels or to modify those already existing.
Currently SPY doesn't include a level editor to help to create new levels or update existing ones, so editing XML
files is only accessible for users who know XML format. We used this prototype to implement new features and
modify existing ones to improve them.

8 SPY: https://github.com/Mocahteam/SPY, accessed May 19, 2022

292

https://github.com/Mocahteam/SPY

Malak Kanaan et al

Figure 1: SPY example level

We have designed features for each of the competencies offered by PIAF. We propose 22 features for the 26
PIAF competencies. We remind the goal of this research: providing a tool for the SPY game that enables teachers
to select a set of competencies on CT and automatically build a level on SPY focused on these competencies. The
list of the 22 features is: F1: Enable library; F2: Enable only required actions; F3: Drag and Drop elements; F4:
Initialize robot with an incomplete starting sequence; F5: Enable step by step resolution; F6: For loop; F7: If Else;
F8: Play button enabled; F9: Name robot and container to associate them; F10: Select the appropriate actions
to solve a level; F11: Ask question according sequence executed by the robot; F12: Select the appropriate
sequence to solve a level; F13: Paint the robot and colour detector; F14: Select sequence(s) from history; F15:
Provide specific sequence(s); F16: While loop; F17: Operator (And, Or, Not); F18: Select the appropriate exit;
F19: Enable several exits + distance criteria; F20: Select an icon to save custom sequence actions; F21: Console
mode; F22: Select wrong blocks.

Table 2: Relations between the features and the PIAF competencies

 Features
 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22

PI
AF

 C
om

pe
te

nc
ie

s

C1.1 O
C1.2 O
C1.3 O
C1.4 O
C1.5 O
C1.6 O
C1.7 O
C2.1 O O
C2.2 O O
C2.3 O
C2.4 O
C2.5 O O1
C2.6 O
C3.1 O
C3.2 O
C3.3 O
C3.4 O
C4.1 O O
C4.2 O O
C4.3 O O2 O
C5.1 O
C5.2 O

293

Malak Kanaan et al

 Features
 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22

C6.1 O
C6.2 O3 0
C6.3 O O3
C6.4 O O

O₁: Incomplete sequences O₂: Non optimal sequence O₃: Sequence with bugs

Table 2 shows a list of the established features and the PIAF competencies they correspond to. The white and
grey features were already present in the first version of the game, but the grey features need to be modified
to better match the competencies. The black features correspond to the proposed new features.

We can’t detail all the new features we designed but we focus in some of them:

1. F9 asks the player to give a name to the robot and the container of actions in order to associate them.
If a container and a robot have the same name, the actions inside this container will control the associate
robot. Thus, we link this feature to the C1.1 competency (i.e., Name objects and (sequences of) actions)
which is defined as “Being able to give names to objects, actions and sequences of actions”.

2. F13 provides an action to paint the robot with a specific colour. The player will have to use this action to
enable the robot to pass through magic doors that let enter only objects with a specific colour. We link
this feature to C1.6 competency (i.e., Using objects whose value can change) that refers to the notion of
variables. In our case the robot can store a property (the colour) that can be read by the door.

3. F20 allows the player to save a sequence of actions he has created. When he saves it, he has to associate
an icon with it (from a selection offered by the game). The icon is then added to the list of available
blocks and the player can use it to create new sequences. When the icon is read during the execution of
the sequence, the robot performs the sequence of actions associated with the icon. We associate this
feature to the C5.1 competency (i.e., Represent objects or sequences of actions in various formal
representations).

4. F22 shows the player an erroneous sequence of actions to solve a level. Then the player has to select
the erroneous blocks in the sequence. We associate this feature with C6.2 competency (i.e., Check a
sequence of actions with respect to a given goal).

We can see in Table 2 that only two competencies used exactly the same features. The competencies C2.3
"Create a sequence of actions to reach a simple goal" and C2.4 "Create a sequence of actions to reach a complex
goal" both represent the creation of sequences. The only difference is that C2.4 is about more complex
problems. We explain this similarity in next paragraphs. As discussed in Section 3, we didn’t identify any research
that details in existing games how the relationship between competencies and game features was designed.
Table 2 shows the features we associate to PIAF competencies in the SPY game. But we identify that these
associations reveal additional constraints. Indeed, we have constraints between PIAF competencies (for instance
the framework states that C2.3 is an extension of C2.1) and constraints between features (for instance “Enable
library” is required to “Drag and drop element”). Table 3 summarizes these constraints and we will detail some
of them.

Table 3 has to be read line by line. The symbols "||" mean: if a row competency is selected, at least one of the
column competencies must be selected. The symbols "&&" mean: when a row competency is activated, all
column competencies must be selected. An empty cell means: the row competency is compatible with column
competency, the both competencies can be enabled at the same time. The symbols "x" means: when the row
competency is selected the column competency is in conflict, the both competencies cannot be selected at the
same time.

We can see that for some competencies (C1.3, C1.4, C1.5, C4.1, C4.2 and C6.2), the lines are entirely filled with
"x". These competencies are not based on writing a program but require to identify an error, to select a specific
answer, to analyse the result of a program, etc. To deal with these competencies we propose specific game
features. For instance, C1.3 “Identify the input parameters of a sequence of actions” will be processed by
presenting a situation to the player and asking him/her to select required action blocks to resolve this situation
but s/he will not have to build a sequence with these blocks (this concerns the competencies C2.X). Then C1.3
will be a specific activity to select a set of blocks without using them and can’t be combined with other
competencies with SPY. We followed the same process for C1.4, C1.5, C4.1, C4.2 and C6.2.

294

Malak Kanaan et al

As we introduce before, "x" symbol refers to incompatible competencies combinations with SPY. This
incompatibility is symmetrical. This can be explained by constraints between competencies (e.g., C2.3 and C2.4).
If the teacher wants to work on the creation of a sequence of actions to resolve a complex problem (i.e., C2.4),
then competency C2.3 (i.e., create a sequence of actions to resolve a simple problem) is not compatible. But this
can also be explained by the features. For instance, C2.5 asks to reach an objective by combining already known
sequences. This competency requires to use and combine only sequences of actions and exclude features that
enable to use action blocks. At the same time C2.2 (i.e., complete a sequence of actions to reach a simple
objective) asks to add missing actions in a given sequence without using already known sequences. These two
features (i.e., use only sequences and use only action blocks) are mutually exclusive.

The symbols "&&" and "||" mostly work symmetrically. For instance, C6.1 requires at least one competency
between C1.7, C2.1, C2.2, C2.3, C2.4, C2.5, C4.3, C5.2, C6.3 and C6.4 that are marked with "||". This is because
C6.1 (i.e. check if a sequence of actions reaches an objective) is integrated into SPY by activating the run button
that enables to play and check a sequence of actions. This competency cannot be worked on alone. It is necessary
to combine it with a competency that requires code execution, C2.2 for instance (i.e. complete a sequence of
actions to reach a simple objective). In consequence working on C2.2 requires being able to check if a sequence
of actions reaches an objective and then requires C6.1 that is coded in Table 3 by “&&”.

We identify some cases where “&&” and “||” are not symmetrical. For instance, C3.4 (that enables the use of
AND, OR, NOT operators) requires at least C3.2 (i.e., “while” loop) or C3.3 (i.e., “if” block), but “&&” symmetry
is not true. Indeed, it is possible to work on C3.2 or C3.3 without working on C3.4.

Table 3: Relationships between competencies depending on underlying game features in SPY

 C
1.1

C
1.2

C
1.3

C
1.4

C
1.5

C
1.6

C
1.7

C
2.1

C
2.2

C
2.3

C
2.4

C
2.5

C
2.6

C
3.1

C
3.2

C
3.3

C
3.4

C
4.1

C
4.2

C
4.3

C
5.1

C
5.2

C
6.1

C
6.2

C
6.3

C
6.4

C1.1 X X X X X && X

C1.2 X X X || || || || || || || || || X X || || X || ||
C1.3 X X X
C1.4 X X X X
C1.5 X X X X X
C1.6 X X X X && X X X

C1.7 X X X X X X

C2.1 && X X X X X X X X && X

C2.2 && X X X X X X && X

C2.3 && X X X X X X X X X X X X X && X

C2.4 && X X X || X X X || || || || X X && X

C2.5 && X X X X X X X X X && X

C2.6 X X X X X && X

C3.1 && X X X X && X X X

C3.2 && X X X X && X X X

C3.3 && X X X X && X X X

C3.4 && X X X X && || || X X X

C4.1 X X X X X X X X X X X X X X X X X X X X X X X X X
C4.2 X X X X X X X X X X X X X X X X X X X X X X X X X
C4.3 && X X X X X && X

C5.1 && X X X X X X

C5.2 X X X X X && X

C6.1 X X X || || || || || || X X || || X || ||
C6.2 X X X
C6.3 && X X X X X && X X
C6.4 && X X X X X && X X

295

Malak Kanaan et al

5. Conclusion and future perspective
In this paper we analysed three learning games to identify the implementation of PIAF competencies in each
game. We found that not all competencies were present. But we were able to see that the ways in which these
competencies were addressed were diverse. None of them, however, explain the links between the
competencies targeted and the associated game mechanics.

Our contribution is to propose a set of features for a specific learning game, each feature is linked to one or
several PIAF Framework competencies. In this way, we have identified different types of constraints related to
the combination of competencies and features. These constraints have an influence on the pedagogical scenario
that teachers can create. Some of the competencies they choose prevent them from selecting others at the
same time, and some of the competencies they choose force them to also select other competencies at the
same time.

We followed a didactic engineering research methodology. We focused in this paper on the two first stages of
didactic engineering: the first is a preliminary analysis (the analysis of learning game mentioned above in view
of PIAF competencies) and the second is the design and a priori analysis (proposition of a gameplay feature for
each PIAF competency). Future works will focus on phases 3 (observation and data collection) and 4 (a posteriori
analysis) and will engage the iterative process of didactic engineering research methodology.

Concerning the two first stages (preliminary analysis and design) we identified two main challenges. The first is
a classic game design subject and consists of finding the right game concepts associated with each competency.
The second is to create game mechanics that are the most independent from each other, but can be used
together.

References
Atlan, C., Archambault, J. P., Banus, O., Bardeau, F., Blandeau, A., Cois, A., Courbin-Coulaud, M., Giraudon, G., Lefèvre, S.-

C., Letard, V., Masse, B., Masseglia, F., Ninassi, B., de Quatrebarbes, S., Romero, M., Roy, D. and Viéville, T. (2019),
"Apprentissage de la pensée informatique : de la formation des enseignant· e· s à la formation de tou· te· s les citoyen·
ne· s", Revue de l'EPI (Enseignement Public et Informatique).

Baron, G-L., Drot-Delange, B. (2016) "L’informatique comme objet d’enseignement à l’école primaire française ? Mise en
perspective historique", Revue française de pédagogie Recherches en éducation, pp 51–62.

Barquero, B. and Bosch, M. (2015), “Didactic engineering as a research methodology: From fundamental situations to study
and research paths”, In Task design in mathematics education, Springer, Cham, pp 249-272.

Bartram, D. (2006), The SHL universal competency framework, SHL White paper, pp 1-8.
Dowek, G. (2011) "Les quatre concepts de l'informatique, Sciences et technologies de l'information et de la communication

en milieu éducatif : Analyse de pratiques et enjeux didactiques", New Technologies Editions, Athens, pp 21-29.
Kradolfer, S., Dubois, S., Riedo, F., Mondada, F. and Fassa, F. (2014), “A sociological contribution to understanding the use

of robots in schools: the thymio robot”, International Conference on Social Robotics, Springer, Cham, pp 217-228.
Lindberg, R. S., Laine, T. H. and Haaranen, L. (2019), “Gamifying programming education in K-12: A review of programming

curricula in seven countries and programming games”, British Journal of Educational Technology, Vol 50, No. 4, pp
1979-1995.

Miljanovic, M.A., Bradbury, J.S. (2018), “A Review of Serious Games for Programming”, In Joint International Conference on
Serious Games, pp 204-216.

Parmentier, Y., Reuter, R., Higuet, S., Kataja, L., Kreis, Y., Duflot-Kremer, M., Laduron, C., Meyers, C., Busana, G.,
Weinberger, A. and Denis, B. (2020), “PIAF: developing computational and algorithmic thinking in fundamental
education”, EdMedia+ Innovate Learning, Association for the Advancement of Computing in Education (AACE), pp 315-
322.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A., Rosenbaum, E., Silver, J.,
Silverman, B. and Kafai, Y. (2009), “Scratch: programming for all”, Communications of the ACM, Vol 52, No. 11, pp 60-
67.

Saddoug, H., Rahimian, A., Marne, B., Muratet, M., Sehaba, K. and Jolivet, S. (2022), “Review of the Adaptability of a Set of
Learning Games Meant for Teaching Computational Thinking or Programming in France”, Proceedings of the 14th
International Conference on Computer Supported Education, Vol 1: GonCPL, pp 562-569.

Vahldick, A., Mendes, A. J. and Marcelino, M. J. (2014), "A review of games designed to improve introductory computer
programming competencies", 2014 IEEE Frontiers in Education Conference (FIE) Proceedings, pp 1-7, doi:
10.1109/FIE.2014.7044114.

Van den Brande, L. (2016) The European Digital Competence Framework for citizens. 10.13140/RG.2.1.4687.1281.
Wing, J. M. (2006) “Computational thinking”, Communications of the ACM, Vol. 49, No. 3, pp 33-35.

296

	Kanaan GBL-094-
	1. Introduction and positioning
	2. Methodology
	3. PIAF based analysis of games dealing with CT teaching
	3.1 Blockly Maze analysis
	3.2 Compute-it analysis
	3.3 Kodu analysis
	3.4 Conclusions from the analyses

	4. How to link competencies and game features?
	5. Conclusion and future perspective
	References

