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INTRODUCTION

This book is a course given to L0 students at UFAZ during the second semester of
the academic years 2019-2020, 2020-2021 and 2021-2022. The Frecnh-Azerbaijani
University called this year the foundation year because it allows to fill the gap that
between the French High School program and Azerbaijan High School’s program.
Its main objective is to give general backgrounds in mathematics to students who
integrate UFAZ, in order to allow them to be able to follow first year’s courses of the
University of Strasbourg. In other words this year corresponds to the ”Terminale”
of french program. This book is concerned by the first Semester. In this book,
we deal with functions, itegration, first oder ordinary di�erential equations, second
order ordinary di�erential equations In each chapter we recall the general results
of the topic and give examples that help to understand this subject. We point out
that we took some exercises from the list of homework given by Javanshir Azizov
(UFAZ) and Loic Célier (UFAZ).
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CHAPTER 1

INTRODUCTION TO LIMITS
AND CONTINUITY

Contents
1.1 Limit at a Point in the Domain of a Function . . . . . 2

1.1.1 Operations in the Set of Limits . . . . . . . . . . . . . . 5
1.2 Convergence to Infinity . . . . . . . . . . . . . . . . . . . 12
1.3 Limit of a Function at Infinity . . . . . . . . . . . . . . . 13
1.4 Infinite Limit of a Function at Infinity . . . . . . . . . . 16
1.5 Continuity of Functions . . . . . . . . . . . . . . . . . . . 21

Let f be a real function with domain D. Take two points x and y in D, which
are close to each other. The images of these points by the function f are f(x) and
f(y). We remind the points f(x) and f(y) belong to the set f(D), which is the
range of D by the function f . After this transformation, one may wounder if the
image of x and y remain close to each other. There are two possible answers:

• the points f(x) and f(y) are close to each other

• the point f(x) is far from f(y).

In the first case we say the function f is continuous at the point x. In the second
case the function f is said to be discontinuous at the point x. To say that a point
x is near or far from a point y we need to measure the distance between these
two points. We want to know from which distance we can say that the point x is
close to y. To investigate all these questions we introduce the concept of limit and
continuity. The notion of Limit is a key concept in analysis. We can say that it is
the very Basis of the analysis. To give an idea of what is a limit, we consider the
function f(x) = 1

x + 1 · This function is defined if an only if x + 1 ”= 0. This means
that the function f is defined if and only if x ”= ≠1. That is, Df = R\{≠1}.
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2 CHAPTER 1. INTRODUCTION TO LIMITS AND CONTINUITY

Now we take x0 = 2, we can see that when x approaches x0 the value of the
function f(x) approaches f(x0). In other words when x goes to x0, the value of
f(x) approaches f(x0) = 1

3 · In this case we write

lim
xæx0

f(x) = f(x0). (1.0.1)

The expression (1.0.1) reads: limit when x goes to x0 of f(x) is f(x0).
Now we consider x0 = ≠1, which is not in the domain of the function f . We

can see that if x = ≠0.999999, we obtain f(x) = 1000000. We observe that, when
x is as close as possible to x0, the quantity f(x) is as greater as possible. In this
case we write

lim
xæx0

f(x) = +Œ.

May be another example could be helpful to better understand the concept of limit.
Let f be the function defined by

f(x) =

Y
____]

____[

x + 1, x < 0

2, x = 0

2x + 3, x > 0.

We remark when x approaches 0 but remains less than 0 the value of f(x) approaches
the value 1. On the other hand when x approaches 0 but remains greater than 0 the
value of the function f(x) approaches 3. As we can see it the two limits are di�erent
to f(0) = 2. We see that the limits are finite but the function is not continuous at
the point x0 = 0.

The main objective of this chapter is to define rigorously limits and continuity
by providing a method which will allows to measure e�ciently the distance between
x and x0 in one part and f(x) and the limit of f in the other part. This chapter
is organized as follows: In section 1 we deal with limits at a point which is in the
domain of a function f. In section 2, we define the limit at bounds of a domain of
a function. The limits at such points lead usually to the concept of asymptotes. In
section 3 we study continuity of functions.

1.1 Limit at a Point in the Domain of a Function
In this section we study limit at point on which a function is defined. Here we will
only deal with functions which have their domains in R. We define the limit of the
function f at the point x0 œ Df , as follows:

Definition 1.1.1. Let f be a real function with domain Df µ R. We consider two
real numbers ¸ and x0 such that x0 œ Df . We say that the real number ¸ is the limit
of f at x0, if f(x) approaches ¸ when x approaches x0. In this case we write

lim
xæx0

f(x) = ¸ (1.1.1)

Example 1.1.2. We consider the function f(x) = 1
x + 3 · This function is defined

for all real numbers excepted ≠3.Then, the domain of f is R\{≠3}. Since 1 and 2
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are in Df , we have

lim
xæ1

f(x) = 1
4 and lim

xæ2
f(x) = 1

5 ·

Exercise 1.1.3. Determine the following limits

lim
xæ0

x3 + 2x2 + 3x + 6, lim
xæ1

1
x2 + 3x + 1 , lim

xæ2
x2 + 1, lim

xæ6

x2 + 2x + 10
x3 + 1 ·

Equation (1.1.1) needs some comments. Indeed, what we mean by (1.1.1) is
when x is near to x0, the value of f(x) is approximately ¸. That is, the quantity
|f(x) ≠ ¸| is negligible. The error we make to replace f(x) by ¸ is small enough.
We specify from now on, each time we use Á or ”, we refer to strictly positive real
numbers that are small enough. The positive real numbers Á and ” are as small as
we want. By x is approximately equal to y, we means that, the positive real number
|x ≠ y| is approximately 0. Then we introduce the following definition.

Definition 1.1.4. Let x and y be two reals numbers. We say that x is approximately
equals to y if there exists some real number Á > 0 small enough, such that,

|y ≠ x| < Á.

We recall that , |y ≠ x| < Á is equivalent to ≠Á < y ≠ x < Á. This means that

x ≠ Á < y < x + Á.

Hence y œ
!
x ≠ Á , x + Á

"
. We can reformulate the previous definition as follows.

Definition 1.1.5. Let x and y be two real numbers. We say y is approximately
equal to x if there exist Á > 0 or (” > 0) small enough such that

y œ
!
x ≠ Á , x + Á

"
or

!
y œ

!
x ≠ ” , x + ”

""
.

Example 1.1.6. We take x = 1 and y = 1 + 10≠10. If we fix Á = 10≠10 + 10≠11,
we have

|y ≠ x| = 1 + 10≠10 ≠ 1 = 10≠10 < Á.

Using Á and ” we can rewrite definition 1.1.1. Indeed, we mean by x tends to x0,
that x is approximately equal to x0. That is, |x ≠ x0| is small enough. Therefore,
we can find some ” > 0, such that, |x ≠ x0| < ”. By f(x) goes to ¸ we want to say
that, we can make the distance between f(x) and ¸ as small as we want. Then for
all real number Á > 0, we can choose x near to x0 so that |f(x) ≠ ¸| < Á. We can
summarize this in this way

’Á > 0, ÷” > 0, ’x œ R, ( |x ≠ x0| < ” ∆ |f(x) ≠ ¸| < Á).

This sentence means that, for all positive real number Á > 0, there exists a positive
real number ” > 0, such that for any real x œ R that verifies |x ≠ x0| < ” implies
|f(x) ≠ ¸| < Á. We emphasize that the real number ” depends on Á. But for the sake
of simplicity we will write ” instead of ”(Á) or ”Á.

Then, definition 1.1.1 is equivalent to
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Definition 1.1.7. Let f be a real function with domain Df µ R. Take x0 œ Df ,
and ¸ œ R. We say that ¸ is the limit of f when x approaches x0, if

’Á > 0, ÷” > 0, ’x œ R, ( |x ≠ x0| < ” ∆ |f(x) ≠ ¸| < Á). (1.1.2)

To illustrate this dependence we consider the following examples.

Example 1.1.8. Let f(x) = 1
x + 3 · We have established that

lim
xæ1

f(x) = 1
4 ·

Now we want to confirm this limit by using Á and ”. To this end we take some
positive real number Á which is as small as we want. To find ” we proceed as follow.
We consider our Á, such that

---f(x) ≠ 1
4

--- < Á. This is equivalent to

----
4 ≠ x ≠ 3
4(x + 3)

---- < Á =∆
----
≠(x ≠ 1)
4(x + 3)

---- < Á.

Since x tends to 1, we observe that x should be in the interval
!
0 , 2

"
. That is x Æ 2.

Using this we obtain 4(x+3) Æ 4◊5 = 20. Consequently 1
20 Æ 1

4(x + 3) · This leads
to

|x ≠ 1|
20 Æ |x ≠ 1|

4(x + 3) < Á.

From the inequality above we deduce |x ≠ 1| < 20 Á. Setting ” := 20 Á, we obtain for
every

x œ Df , |x ≠ 1| < 20 Á we have
---f(x) ≠ 1

4

--- < Á.

Therefore one obtains
lim
xæ1

f(x) = 1
4 ·

Example 1.1.9. We consider the function g(x) =
Ô

x ≠ 2. This function is defined
in the interval [2 , +Œ). We can observe

lim
xæ6

g(x) = 2.

We want to prove this property using Á and ”. Let Á > 0 such that
---g(x) ≠ 2

---, Æ Á.

Then, we have
---
Ô

x ≠ 2≠2
--- Æ Á. Now we multiply and divide the expression between

the bars by
Ô

x ≠ 2 + 2. Here we can divide by
Ô

x ≠ 2 + 2, because x Ø 2. Thus, we
obtain ----

x ≠ 2 ≠ 4Ô
x ≠ 2 + 2

---- =
----

x ≠ 6Ô
x ≠ 2 + 2

---- Æ Á.

Since x approaches 6, we have x Æ 7. This gives x ≠ 2 Æ 5. Using the square root
and adding 2 in both sides we have

Ô
x ≠ 2 + 2 Æ

Ô
5 + 2. This involves

1Ô
5 + 2

Æ 1Ô
x ≠ 2 + 2

·
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Multiplying the inequality above by |x ≠ 6| in both sides we obtain

|x ≠ 6|Ô
5 + 2

Æ |x ≠ 6|Ô
x ≠ 2 + 2

Æ Á·

This yields the following inequality

|x ≠ 6| Æ
!Ô

5 + 2
"

Á.

We define ” :=
!Ô

5 + 2
"

Á. Then, for every x œ [2 , +Œ[ satisfying
|x ≠ 6| Æ

!Ô
5 + 2

"
Á we have

--g(x) ≠ 2
-- Æ Á.

Exercise 1.1.10. Using Á and ” prove the following statements

lim
xæ0

sin(x) = 0, lim
xæ1

Ô
x + 3 = 2, lim

xæ3

3x + 5
x + 1 = 7

2 ·

From now on, we define the limit of a function at a point x0 which is in the
domain. Let x0 be a real number and f a real function with domain ]a , x0[ fi]x0 , b[.
In the definition that will follow we define the limit of the function at the point x0.

Definition 1.1.11. Let (a , b) be an interval of R. We consider a real number
x0 œ (a , b) and ¸ œ R. We consider the real function f with domain (a , b)\{x0}.
We say that ¸ is the limit of f , as x approaches x0 if

’Á > 0, ÷” > 0, ’x œ R,
1

|x ≠ x0| < ” ∆ |f(x) ≠ ¸| < Á
2

. (1.1.3)

In this case we write
lim

xæx0
f(x) = ¸.

Remark 1.1.12. From this definition we obtain the information that, the limit of
a function does not depend on its value at x0. Indeed, as we can see it here the
function f is not defined at x0. This means that the limit can be di�erent to f(x0).
Because f(x0) is not defined.

1.1.1 Operations in the Set of Limits
In the first year of Bachelor degree,we will be able to prove that the set of all finite
limits is an algebra. That is, we can do some operation on limits. Admitting this
property, here we calculate sums and multiplications of limits. The first result of
this subsection deals with sum of limits. Throughout this subsection we deal only
with finite limits.

Theorem 1.1.13. Let f and g be two real functions defined in some interval I,
which contains x0. We consider ¸1 and ¸2 two real numbers, such that,

lim
xæx0

f(x) = ¸1 and lim
xæx0

g(x) = ¸2.

Then, we have
lim

xæx0
f(x) + g(x) = ¸1 + ¸2. (1.1.4)
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Proof. Let ¸1 and ¸2 be two real number, such that,

lim
xæx0

f(x) = ¸1 and lim
xæx0

g(x) = ¸2.

Then for all Á > 0 we can find two real numbers ”1 > 0 and ”2 > 0 such that, for
all x œ R,

|x ≠ x0| < ”1, =∆
--f(x) ≠ ¸1

-- <
Á

2
|x ≠ x0| < ”2, =∆

--g(x) ≠ ¸2
-- <

Á

2 ·

Now we define ” = min(”1 ; ”2) and we consider x œ R such that

|x ≠ x0| < ”. (1.1.5)

On the other hand we know that,
--f(x) + g(x) ≠ (¸1 + ¸2)

-- =
--(f(x) ≠ ¸1) ≠ (g(x) ≠ ¸2)

-- Æ
--f(x) ≠ ¸1

-- +
--g(x) ≠ ¸2

--.

We remind that since |x ≠ x0| < ”, then |x ≠ x0| < ”1 and |x ≠ x0| < ”2. Therefore--f(x) ≠ ¸1
-- <

Á

2 and
--g(x) ≠ ¸2

-- <
Á

2 . This involves,
--(f(x) + g(x)) ≠ (¸1 + ¸2)

-- < Á.

Therefore we have proved

lim
xæx0

f(x) + g(x) = ¸1 + ¸2.

Example 1.1.14. Let f(x) = 3 x + 2 and g(x) = x2 + 1. We have

lim
xæ1

f(x) = 5 and lim
xæ1

g(x) = 3.

From this, we deduce

lim
xæ1

!
f + g

"
(x) = lim

xæ1
f(x) + lim

xæ1
g(x) = 8.

Exercise 1.1.15. Find the limit of the following functions

lim
xæ1

x3 + 4x2 + 3x + 1, lim
xæ2


x2 + 3x + 1 +


x2 + 1, lim

xæ3

1
x + 1 + x + 2,

lim
xæ≠1

1
x2 + 3x + 1 + 1

x + 3 , lim
xæ≠3

x + 3
x2 + 10 +


x2 + 2x + 1.

A similar result can be established for multiplication of functions.

Theorem 1.1.16. Let f and g be two real functions defined in some interval I. We
assume that x0 belongs to I and we consider two reals numbers ¸1 and ¸2 such that,

lim
xæx0

f(x) = ¸1 and lim
xæx0

g(x) = ¸2.

Then,
lim

xæx0
f(x) · g(x) = ¸1 · ¸2. (1.1.6)
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Proof. Let f , g, x0, ¸1 and ¸2 be as in the theorem. Then for any Á > 0, there are
two real numbers ”1 > 0, and ”2 > 0, such that, for every x œ R,

|x ≠ x0| < ”1, ∆
--f(x) ≠ ¸1

-- <
Á

2(1 + |¸2|)

|x ≠ x0| < ”2, ∆
--g(x) ≠ ¸2

-- <
Á

2(1 + |¸1|) ·

Let x œ R, we have

f(x) · g(x) ≠ ¸1 · ¸2 = f(x) · g(x) ≠ g(x) · ¸1 + g(x) · ¸1 ≠ ¸1 · ¸2

= g(x)
1

f(x) ≠ ¸1
2

+ ¸1
1

g(x) ≠ ¸2
2

.

From this we deduce that
---f(x) · g(x) ≠ ¸1 · ¸2

--- Æ
--g(x)

-- ·
--f(x) ≠ ¸1

-- +
--¸1

----g(x) ≠ ¸2
--.

We point out that
--g(x)

-- =
--g(x) ≠ ¸2 + ¸2

-- Æ
--g(x) ≠ ¸2

-- +
--¸2

-- Æ 1 +
--¸2

--. This
implies that

--f(x) · g(x) ≠ ¸1 · ¸2
-- < (1 + |¸1|) · Á

2(1 + |¸1|)

+ (1 + |¸2|) · Á

2(1 + |¸2|)

<
Á

2 + Á

2 = Á.

Therefore
lim

xæx0
f(x) · g(x) = ¸1 · ¸2.

This completes the proof.

Example 1.1.17. We consider f(x) = x + 3 and g(x) = x + 1. We have

lim
xæ0

f(x) = 3 and lim
xæ0

g(x) = 1.

Therefore using the theorem above we obtain

lim
xæ0

!
f · g

"
(x) = lim

xæ0
f(x) · lim

xæ0
g(x) = 3.

Exercise 1.1.18. Find the following limits

lim
xæ1

(3x + 2)(2x + 1), lim
xæ3

(x2 + 2x + 3)(5x + 8), lim
xæ0

(x + 1)


x2 + 2x + 6 .

Lemma 1.1.19. Let f be a real function defined in some interval I, which contains
x0. We consider a real number ¸ ”= 0, and we assume

lim
xæx0

f(x) = ¸.

Then,

lim
xæx0

1
f(x) = 1

¸
· (1.1.7)
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Proof. Let f , x0 and ¸ be as in the Lemma. We suppose

lim
xæx0

f(x) = ¸ ”= 0.

Hence there exist ” > 0, such that |x ≠ x0| < ”, implies
--f(x) ≠ ¸

-- < Á|¸|2

2 · One
can also find ”0 > 0 such that |x ≠ x0| < ”0, implies

--f(x) ≠ ¸
-- < |¸|

2 · Defining
”1 = min(” ; ”0). we have, for all x œ R, such that |x ≠ x0| < ”1,

--f(x) ≠ ¸
-- <

Á|¸|2

2 and
--f(x) ≠ ¸

-- <
|¸|
2 ·

This implies that

|¸| =
--¸ ≠ f(x) + f(x)

-- Æ
--¸ ≠ f(x)

-- +
--f(x)

-- <
|¸|
2 +

--f(x)
--.

From this, we deduce |¸|
2 <

--f(x)
--. This leads to the following inequality

1
|f(x)| <

2
|¸| ·

On the other part, we have
----

1
f(x) ≠ 1

¸

---- =
--¸ ≠ f(x)

--

|¸|
--f(x)

-- <
Á |¸|2

2 |¸| · 2
|¸| = Á·

Therefore
lim

xæx0

1
f(x) = 1

¸
·

Theorem 1.1.20. Let f and g be two real functions defined in some interval I,
which contains x0. We consider two real numbers ¸1 and ¸2, such that,

lim
xæx0

f(x) = ¸1 and lim
xæx0

g(x) = ¸2.

Moreover we assume ¸2 ”= 0. Then

lim
xæx0

f(x)
g(x) = ¸1

¸2
·

Proof. Let f , g, ¸1 and ¸2 be as in the theorem. In a neighborhood of x0, we can
write

f(x)
g(x) = f(x) · 1

g(x) ·

Therefore using Theorem 1.1.16 and Lemma 1.1.19, we obtain

lim
xæx0

f(x)
g(x) = lim

xæx0
f(x) · lim

xæx0

1
g(x) = ¸1 · 1

¸2
= ¸1

¸2
·
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Example 1.1.21. Let f(x) = x + 2 and g(x) = x2 + 1. Then, one observes that

lim
xæ1

f(x) = 3 and lim
xæ1

x2 + 1 = 2.

This means that
lim
xæ1

f(x)
g(x) = limxæ1 f(x)

limxæ1 g(x) = 3
2 ·

Exercise 1.1.22. Determine the following limits

lim
xæ≠1

x2 + 3x + 2
x + 3 , lim

xæ2

2x + 3
x + 2 , lim

xæ0

x3 + 2x + 1
x2 + 3x + 5 ·

Sometimes it is more complicate to fine the limit of a function at some points.
Because in some cases the limits are undefined. We will explain late on what
we mean by undefined limits. Another problem can happen when we deal with
oscillating function like cos or sin. In this case it is di�cult to to obtain a unique
limit. To treat these type of limits what we usually do is to bound the function that
we want to find the limit by two other functions that have the same limit. Indeed
let f be the function to which we cannot unfortunately find directly a limit. What
we do is to use two other functions g and h such that g Æ f Æ h and g and h have
the same limit. From this we deduce the limit of f . But we have a little bit problem
because we did not prove that if f Æ h, we have lim f Æ lim h. To establish this
property, we proceed in three steps:

Step 1: we compare f to 0

Step 2: we compare f to a real number M ”= 0

Step 3: we compare f to a real function

Theorem 1.1.23. Let f be a real function with domain D. We assume for every
x œ D, f(x) Ø 0. Then, we have

lim
xæx0

f(x) Ø 0.

Before doing the proof of this theorem, we remind the following logical properties .
Proving the property (Proposition A =∆ Proposition B) is equivalent to prove the
following statement (nonProposition B =∆ nonProposition A) .

Another method which is frequently used in demonstration of theorem is the
proof by contradiction. Suppose we have to prove a Proposition A. We assume non-
Proposition A holds and we establish that this leads to a contradiction or something
which does not make sens.

We mean by nonProposition A the contrary of proposition A. For instance we
define, Proposition A: I go to school. Then, nonProposition A : I don’t go to school.

Proof. Here we will proceed by contradiction. Let f be a real function with domain
D such that for every x œ D we have f(x) Ø 0. We suppose limxæx0 f(x) = ¸ < 0.
Let Á > 0 be such that ¸ + Á < 0. We can find ” > 0, such that |x ≠ x0| < ”
implies

--f(x) ≠ ¸
-- Æ Á. This is possible because limxæx0 f(x) = ¸. The inequality--f(x) ≠ ¸

-- Æ Á implies f(x) Æ ¸ + Á < 0. Then, for every x œ
!

≠ ” + x0 , ” + x0
"
, we
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have f(x) < 0. This is in contradiction with the hypothesis that f(x) Ø 0 for all
x œ D. Therefore ¸ Ø 0 and we write

lim
xæx0

f(x) Ø 0.

Remark 1.1.24. We draw the readers attention that strict inequalities do not pass
to the limit. In other words if ’ x œ D, f(x) > 0, we do not necessarly have

lim
xæx0

f(x) > 0.

As a counter example we define the function f(x) = 1
x

for any x œ
!
0 , +Œ

"
.

Then,for every x > 0, we have f(x) > 0. But we know that

lim
xæ+Œ

f(x) = 0.

Theorem 1.1.25. Let f be a real function with domain D. We consider a real
number M and we assume for every x œ D, f(x) Ø M . Then,

lim
xæx0

f(x) Ø M.

Proof. To prove this theorem, we define the function g(x) := f(x) ≠ M . Then for
all x œ D, we have g(x) Ø 0. Now we apply theorem 1.1.23 to the function g to
obtain

lim
xæx0

g(x) Ø 0 =∆ lim
xæx0

f(x) Ø M.

Theorem 1.1.26. Let f and g be two real functions defined in some interval I.
We suppose that for every x œ I, we have f(x) Ø g(x). Then

lim
xæx0

f(x) Ø lim
xæx0

g(x).

Proof. Let x œ I,such that f(x) = g(x). Then, one has

lim
xæx0

f(x) = lim
xæx0

g(x).

Now we suppose that for all x œ I, f(x) > g(x). There exists a real number Áx > 0
depending on x such that, f(x) = g(x) + Áx. If we agree that limxæx0 g(x) = ¸,
We have limxæx0 g(x) + Áx = ¸ + limxæx0 Áx Ø ¸. Here we use an inequality large
because maybe limxæx0 Áx = 0. This involves limxæx0 f(x) Ø limxæx0 g(x).

The following theorem is helpful for dealing with limits of oscillating functions.

Theorem 1.1.27 (Sandwich Theorem). Let f , g and h be three functions defined
in an interval I, which contains the real number x0. We suppose for any x œ I,
g(x) Æ f(x) Æ h(x) and

lim
xæx0

g(x) = lim
xæx0

h(x) = ¸, (1.1.8)

where ¸ is some real number. Then, we have

lim
xæx0

f(x) = ¸.
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Proof. Let f , g, h, x0 and ¸ be as in the theorem. Since limxæx0 g(x) = ¸, then for
all Á1 > 0, there exist ”1 > 0, such that for any x œ I, |x ≠ x0| < ”1 implies

¸ ≠ Á1 < g(x) < ¸ + Á1. (1.1.9)

On the other hand, we know that for all Á2 > 0 , there exists ”2 > 0, such that, for
all x œ I, |x ≠ x0| < ”2, implies

¸ ≠ Á2 < h(x) < ¸ + Á2. (1.1.10)

Because we have limxæx0 h(x) = ¸.
Now we set ” := min(”1 ; ”2) and Á := max(Á1 ; Á2). Using (1.1.9) and (1.1.10)

we obtain, for all x œ I, such that, |x ≠ x0| < ”, ¸ ≠ Á1 < f(x) < ¸ + Á2. This yields

≠Á1 < f(x) ≠ ¸ < Á2.

Since ≠Á Æ ≠Á1 and Á2 Æ Á, we deduce, for x œ I, such that |x ≠ x0| < ”, we have
≠Á < f(x) ≠ ¸ < Á. This means that,

--f(x) ≠ ¸
-- Æ Á.

Hence
lim

xæx0
f(x) = ¸.

Example 1.1.28. We consider the function f(x) = x sin
1

1
x

2
. This function is

defined R\{0}. We know that for all x œ R\{0}, ≠1 Æ sin
1 1

x

2
Æ 1. Multiplying by

x in both sides , we obtain

≠x Æ x sin
1 1

x

2
Æ x.

As we know that limxæ0 ≠x = limxæ0 x = 0. We conclude that

lim
xæ0

x sin
3

1
x

4
= 0.

Exercise 1.1.29. Find the following limits

lim
xæ0

x2 cos
1 1

x

2
, lim

xæ0
x sin

1 1
x3

2
, lim

næ+Œ

cos(n2)
n

·

To end this subsection we define limits of function of the form g ¶ f where f and
g are two real functions.

Theorem 1.1.30. We consider three real numbers x0, y0, and ¸. Let f be a real
function defined in an interval I which contains x0 into some interval J and g a
real function defined in the interval J , which contains y0. We assume

lim
xæx0

f(x) = y0 and lim
yæy0

g(y) = ¸.

Then
lim

xæx0
g(f(x)) = ¸. (1.1.11)
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Proof. We remind that limxæx0 g(f(x)) = ¸ means :

’ Á > 0, ÷ ” > 0, ’ x œ I, |x ≠ x0| < ” =∆
--g

!
f(x)

"
≠ ¸

-- < Á.

The assumption limyæy0 g(y) = ¸ implies for all Á > 0, there exists ÷ > 0 depending
on Á such that |y ≠ y0| < ÷ implies

--g(y) ≠ ¸
-- < Á.

On the other hand we know limxæx0 f(x) = y0. Therefore, for any Á1 > 0,
there exists ” depending on Á1, such that, |x ≠ x0| < ” implies

--f(x) ≠ y0
-- < Á1.

Since this property holds for any positive real number Á1, in particular it is true for
Á1 = ÷. In this case we can find a ” depending on ÷ such that |x ≠ x0| < ” leads to
|f(x) ≠ y0| < ÷. Since ” depends on ÷ and ÷ depends on Á, therefore ” depends on
Á.

We have proved that for all Á > 0, there exists ” > 0, such that |x ≠ x0| < ”
gives --g(f(x)) ≠ ¸

-- < Á.

Consequently we have
lim

xæx0
g
!
f(x)

"
= ¸.

We draw the readers attention on the fact that some functions can have infinite
limits. Indeed let f(x) = 1

x
for any x ”= 0. We can see that

lim
xæ0

f(x) = ±Œ.

In the next section we study infinite limits of functions.

1.2 Convergence to Infinity
Let I be an interval which contains the real number x0. We consider a real function
f defined in I maybe excepted at x0. We say that f(x) converge to ±Œ (± infinity),
when x goes to x0 if

lim
xæx0

f(x) = ±Œ.

Example 1.2.1. Consider the real function f(x) = 1
x

· We can easily check that

lim
xæ0

f(x) = ±Œ.

Definition 1.2.2. Let f be a real function defined in I, which contains x0. We
assume that f is not defined at x0. We say that the line x = x0 is a vertical
asymptote for f , if

lim
xæx0

f(x) = ±Œ.

Example 1.2.3. Let f(x) = 1
x + 1 · The function f is defined in R\{≠1}. We know

that
lim

xæ≠1+
f(x) = +Œ and lim

xæ≠1≠
f(x) = ≠Œ.

Then the line which has equation x = ≠1 is a vertical asymptote for the function f.
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Example 1.2.4. We consider the following function g(x) = 3
x ≠ 2 · We have Dg =

R\{2} and
lim

xæ2+
f(x) = +Œ and lim

xæ2≠
f(x) = ≠Œ.

Therefore line with equation x = 2 is a vertical asymptote for f.

Remark 1.2.5. Vertical asymptotes can only hold at a point on which the function
is not defined.

Exercise 1.2.6. Define vertical asymtotes for the following functions.

f(x) = x + 1
x2 ≠ 1 , g(x) = 1

x2 + 3x + 2 , h(x) = 5
x

, i(x) = 4
x + 5 , j(x) = x + 3

x2 + 2x + 1 ·

Up to now we have only defined limits at points which are interior to some
interval. In the next section, we define limits at the bounds of an open domain.

1.3 Limit of a Function at Infinity
In this section we consider function which are defined in intervals of the form!

≠Œ , a
"

or [a , +Œ), or
!

≠Œ , +Œ
"
, where a is a real number. That is, we study

limits functions at ±Œ.

Definition 1.3.1. Let f be a function defined in the interval [a , +Œ) and ¸ œ R.
We say that the real number ¸ is the limit of f at +Œ if

lim
xæ+Œ

f(x) = ¸.

Example 1.3.2. We consider the function f(x) = 1
x2 · The domain of the function

f is Df = (≠Œ , 0 ) fi ( 0 , +Œ ). We can see that

lim
xæ+Œ

f(x) = 0.

Definition 1.3.3. Let f be a real function defined in the interval (≠Œ , a]. We
that say the real number ¸ is the limit of f at ≠Œ if

lim
xæ≠Œ

f(x) = ¸.

Example 1.3.4. We take the function f(x) = 1
x + 3 · The function f is defined in

(≠Œ , ≠3) fi (≠3 , +Œ). We can check that

lim
xæ≠Œ

f(x) = 0.

Finding limits at ±Œ can be a hard task. But sometimes the expression of
the function leads to some simplifications. Let f be a polynomial function, we will
prove that the limit of the function f at ±Œ is nothing but the limit of the term
with the highest degree.



14 CHAPTER 1. INTRODUCTION TO LIMITS AND CONTINUITY

Theorem 1.3.5. Let f(x) = an xn + · · · + a1 x + a0, with n Ø 1 and an ”= 0 be a
polynomial function of degree n. Then, we have

lim
xæ±Œ

f(x) = lim
xæ±Œ

anxn.

Proof. To prove this theorem we define f(x) = an xn + · · · + an x + a0, such that
an ”= 0. Since x goes to ±Œ we can suppose x ”= 0. We write the function f in this
way

f(x) = anxn

3
1 + an≠1

anx
+ · · · a1

anxn≠1 + a0
anxn

4
·

Using the fact that

lim
xæ±Œ

an≠1
anx

= · · · = lim
xæ±Œ

a0
anxn

= 0,

one deduces that,

lim
xæ±Œ

1 + an≠1
anx

+ · · · + a1
anxn≠1 + a0

anxn
= 1·

We conclude that
lim

xæ±Œ
f(x) = lim

xæ±Œ
anxn.

Theorem 1.3.6. We consider n and m in Nú. Let an ”= 0 and bm ”= 0 be two
real numbers. We define the function f(x) = anxn + · · · + a1x + a0

bmxm + · · · + b1x + b0
· Then, the

following holds
lim

xæ±Œ
f(x) = lim

xæ±Œ

anxn

bmxm
·

Proof. Let an ”= 0 and bm ”= 0 be two real numbers. Since x tends to ±Œ we can
suppose it di�erent to 0. Now we observe that

f(x) = anxn

bmxm
·

1 + an≠1
anx

+ an≠2
anx2 · · · + a0

anxn

1 + bm≠1
bmx

+ bm≠2
bmx2 · · · + b0

bmxm

·

Remarking that

lim
xæ±Œ

1 + an≠1
anx

+ · · · + a0
anxn

= 1, and lim
xæ±Œ

1 + bm≠1
bmx

+ · · · + b0
bmxm

= 1,

we obtain

lim
xæ±Œ

1 + an≠1
anx

+ an≠2
anx2 · · · + a0

anxn

1 + bm≠1
bmx

+ bm≠2
bmx2 · · · + b0

bmxm

= 1·

Consequently, we have
lim

xæŒ
f(x) = lim

xæŒ

anxn

bmxm
·
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Example 1.3.7. We consider the function f(x) = x3 + 3x + 5
x2 + 6x + 1 · Then, we have

lim
xæ+Œ

f(x) = lim
xæ+Œ

x3

x2 = lim
xæ+Œ

x = +Œ.

Example 1.3.8. We define the function f(x) = 2x2 + x + 4
x + 1 · One has

lim
xæ≠Œ

f(x) = lim
xæ≠Œ

2x2

x
= lim

xæ≠Œ
2x = ≠Œ.

Exercise 1.3.9. Define the limit of the following functions at +Œ.

f(x) = x + 3
x2 + 2x + 1 , g(x) = x + 1

x + 2 , h(x) = x2 + 2x + 3
x2 + 4x + 1 ·

Exercise 1.3.10. Determine the limit of the following functions at ≠Œ

f(x) = x + 1
x3 + 2x + 3 , g(x) = x2 + 1

x2 + 2x + 1 , h(x) = x2

x2 + 3 ·

Definition 1.3.11. Let f be a real function defined in the interval [a , +Œ). We
say that the line with equation y = ¸1 is a horizontal asymptote for f at +Œ if

lim
xæ+Œ

f(x) = ¸1.

Definition 1.3.12. Let f be a real function defined in the interval (≠Œ , a]. We
say that the line y = ¸2 is a horizontal asymptote for f at ≠Œ if

lim
xæ≠Œ

f(x) = ¸2.

Example 1.3.13. Let f(x) = x + 3
x + 1 · Then, we have

lim
xæ+Œ

f(x) = 1.

Hence the line y = 1, is a horizontal asymptote for the function f at +Œ.

Example 1.3.14. We consider the function g(x) = 1
x + 3 · We can see that

lim
xæ≠Œ

g(x) = 0.

Then, the line y = 0, is a horizontal asymptote for the function f at ≠Œ.

Exercise 1.3.15. Say whether the following functions have horizontal asymptote

f(x) = x + 6
x + 1 , g(x) = |x|

x + 1 , h(x) = |x + 3|
x + 9 , i(x) = x2 + 3x + 7

x2 + 3 , j(x) = x

|x ≠ 1| ·
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One may think that the limit of a function at ±Œ is always finite. Here we
will specify that the limit of a function at ±Œ can be infinite. In truth, most of
the time these limits are infinite. A simplest example can be given by the function
f(x) = x. We see

lim
xæ+Œ

f(x) = +Œ and lim
xæ≠Œ

f(x) = ≠Œ.

Before going further, it is important to explain what we mean by a function has
limit ±Œ.

By f tends to +Œ when x approaches +Œ, we mean that the values of f(x)
can be as greater as possible in the condition that x be as greater as possible. In
other words for any real number A > 0, we can find x in the domain of f such
that the value f(x) be greater than A. But this holds when x is greater enough.
The expression x greater enough means there exists a big number x0 such that
x œ [x0 , +Œ). This leads to the following definition.

Definition 1.3.16. Let f be a real function. The function f has limit +Œ when
x goes to +Œ if : ’ A > 0, ÷ x0 > 0, ’ x œ Df , x Ø x0, =∆ f(x) > A.

In this case we write
lim

xæ+Œ
f(x) = ≠Œ.

Definition 1.3.17. Let f be a real function. The function f has limit ≠Œ at +Œ
if : ’ M œ R, ÷ x0 > 0, ’ x œ Df , x Ø x0, =∆ f(x) < M.

The definitions of the following expressions

lim
xæ≠Œ

f(x) = ≠Œ and lim
xæ≠Œ

f(x) = +Œ

are stated below.

Definition 1.3.18. Let f be a real function. We say the function f has limit ≠Œ
at ≠Œ if : ’ A > 0, ÷ x0 > 0, ’ x œ Df , x Æ ≠x0, =∆ f(x) < ≠A.

Definition 1.3.19. Let f be a real function. We have limxæ≠Œ f(x) = +Œ if :
’ A > 0, ÷ x0 > 0, ’ x œ Df , x Æ ≠x0, =∆ f(x) > A.

In order to show how to deal with these types of limits we introduce the following
section.

1.4 Infinite Limit of a Function at Infinity
This section is devoted to functions that have infinite limits, when x approaches
±Œ. Some function has complicate expression, in these cases determining their
limits can be so di�cult. To find the limits of these types of functions, we try to
bound them below or above by elementary functions that we can determine easily
their limits.Thus we deduce their limits from limits of such elementary functions.To
clarify what mean, let f and g be two functions defined in some interval [a , +Œ).
We assume the limit of the function g is known and g(x) Æ f(x) for all x œ [a , +Œ).
Using the limit of the function g we can find the limit of f when x tends to +Œ. To
do so we use a property called the comparison principle. This property is enunciated
in the following theorems.
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Theorem 1.4.1. Let f and g be two real functions defined in the interval [a , +Œ),
such that for all x œ [a ; +Œ), f(x) Ø g(x) and

lim
xæ+Œ

g(x) = +Œ.

Then, one has
lim

xæ+Œ
f(x) = +Œ.

Since f(x) Ø g(x) for all x in [a , +Œ) we have

lim
xæx0

f(x) Ø lim
xæx0

g(x).

Taking here x0 = +Œ, we obtain

+Œ = lim
xæ+Œ

g(x) Æ lim
xæ+Œ

f(x).

Therefore,
lim

xæ+Œ
f(x) = +Œ.

To rephrase this, we say if a function f is bounded below by a function g which
increases to +Œ, then f must go to +Œ.

Theorem 1.4.2. Let f and g be two real functions defined in [a , +Œ), such that
for all x œ [a ; +Œ), f(x) Ø g(x) and

lim
xæ+Œ

f(x) = ≠Œ.

Then,
lim

xæ+Œ
g(x) = ≠Œ.

The principle of the proof is the same. As we know for every x œ [a , +Œ),
f(x) Ø g(x), then

lim
xæx0

f(x) Ø lim
xæx0

g(x).

Now we take x0 = +Œ. Hence we obtain

lim
xæ+Œ

g(x) Æ lim
xæ+Œ

f(x) = ≠Œ.

We conclude that
lim

xæ+Œ
g(x) = ≠Œ.

Example 1.4.3. Let f(x) = x2 and g(x) = x2 + 1. One has f(x) Æ g(x) for all
x œ R. On the other hand, we know that

lim
xæ+Œ

f(x) = +Œ.

Hence
lim

xæ+Œ
g(x) = +Œ.
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As we mentioned it before in this section we are dealing with functions which
have limits ±Œ at ±Œ. Since we know these functions go to ±Œ when x æ
+Œ, we need to know how fast they converge to ±Œ. In other words we study
their asymptotic behavior. To this end we compare them to a�ne functions. This
comparison leads to the key concept of oblique asymptotes

Definition 1.4.4. Let f be a real function with domain Df = [a , +Œ). We define
the line d that has equation y = a x + b, where a ”= 0. We say that the line d is an
oblique asymptote of f at +Œ if

lim
xæ+Œ

1
f(x) ≠ ax ≠ b

2
= 0.

Remark 1.4.5. What this definition says is, when x goes to +Œ the behavior of
the function f resembles to the behavior of the line d.

Definition 1.4.6. Let f be real function with domain Df = (≠Œ , a]. We define
a line d : y = a x + b, where a ”= 0. We say the line d is an oblique asymptote of f
at ≠Œ if

lim
xæ≠Œ

1
f(x) ≠ ax ≠ b

2
= 0.

The question now is, how to define the equation of the line d. This is equivalent
to find a and b.

Since we know that limxæ±Œ f(x) = ±Œ, to determine the value of a we proceed
in this way: We compute

lim
xæ±Œ

!
f(x)/x

"
.

If this limit exists (is finite) we define

a := lim
xæ±Œ

f(x)
x

· (1.4.1)

Now we consider the following limit:

lim
xæ±Œ

!
f(x) ≠ ax

"
.

If this limit is finite we fix

b := lim
xæ±Œ

(f(x) ≠ a x) . (1.4.2)

Example 1.4.7. Let f(x) = x2 + 2x + 1
x + 2 · We can see that

lim
xæ+Œ

f(x) = +Œ and lim
xæ+Œ

f(x)
x

= 1.

In this case we can take a = 1. On the other hand we have

lim
xæ+Œ

(f(x) ≠ x) = lim
xæ+Œ

1
x + 1 = 0.

Therefore the line d with equation y = x is an oblique asymptote for the function f
at +Œ.
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Example 1.4.8. We consider the function g(x) = 2x
3+3x

2+2x+1
x2+2x+2 · Wehave

lim
xæ≠Œ

g(x) = lim
xæ≠Œ

2x3

x2 = ≠Œ.

We can observe that

lim
xæ≠Œ

g(x)
x

= lim
xæ≠Œ

2x3 + 3x2 + 2x + 1
x3 + 2x2 + 2x

= lim
xæ≠Œ

2x3

x3 = 2.

Therefore, we have a = 2. We know that

lim
xæ≠Œ

1
g(x) ≠ 2x

2
= lim

xæ≠Œ

2x3 + 3x2 + 2x + 1
x2 + 2x + 2 ≠ 2x

= lim
xæ≠Œ

2x3 + 3x2 + 2x + 1 ≠ 2x3 ≠ 4x2 ≠ 4x

x2 + 2x + 2

= lim
xæ≠Œ

≠x2 ≠ 2x + 1
x2 + 2x + 2 = lim

xæ≠Œ

≠x2

x2 = ≠1.

We conclude that the line y = 2x ≠ 1 is an oblique asymptote for the function g at
≠Œ.

Exercise 1.4.9. Define oblique asymptotes for the following functions

f(x) = x2 + 6x + 1
x + 1 , g(x) = x2 + 2x + 13, h(x) = x3 + 6x + 3

x2 + 9 ·

We recall the fact that a function is defined at some point x0 does not mean
that the function has a limit at this point x0. As an counter example we consider
the function

f(x) =

Y
]

[

3x + 2, if x Ø 0

4, if x < 0

This function is defined at 0 but does not have a limit at 0. But a careful study of
the two expressions which defined the function allows us to identify the notion of
left and right hand side limit.

Definition 1.4.10. We say x approaches x0 to the right hand side, if x approaches
x0 and remains greater than x0. In this case we write

lim
xæx

+
0

= lim
xæx0
x>x0

= lim
x¿x0

.

The arrow is down because x goes to x0 by decreasing.

Definition 1.4.11. We say x approaches x0 to the left hand side, if x approaches
x0 and remains less than x0. In this case we write

lim
xæx

≠
0

= lim
xæx0
x<x0

= lim
xøx0

.

The arrow is up, because x approaches x0 by increasing.
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Definition 1.4.12. We say ¸r œ R is the right hand side limit of f when x tends
to x0, if the value of f(x) approaches ¸r when x approaches x0 and remains grater
than x0. We write

lim
xæx

+
0

f(x) = lim
xæx0
x>x0

f(x) = lim
x¿x0

f(x) = ¸r.

Definition 1.4.13. We say that ¸l œ R is the left hand side limit of f when x tends
to x0, if the value of f(x) approaches ¸l when x approaches x0 and remains less
than x0. We write

lim
xæx

≠
0

f(x) = lim
xæx0
x<x0

f(x) = lim
xøx0

f(x) = ¸l.

Example 1.4.14. We consider the function

f(x) =

Y
]

[

3x + 2, if x Ø 0

4, if x < 0

Then, one has
lim

xæ0≠
f(x) = 4 and lim

xæ0+
f(x) = 2.

Exercise 1.4.15. Find the left and the right hand side of the following functions
at 1, 2 and ≠2

f(x) =

Y
]

[

x ≠ 1, if x Ø 1
Ô

x2 + 2, if x < 1,
g(x) =

Y
]

[

≠x + 2, if x Æ 2

≠5x + 3, if x > 2,

h(x) =

Y
__]

__[

x2 + 3x + 1
x + 2 , if x Ø ≠2

Ô
≠x + 2, if x < ≠2

Theorem 1.4.16. Let f be a real function with domain D which contains x0. We
assume lim

xæx
≠
0

f(x) and lim
xæx

+
0

f(x) exist. Then, the function f has a limit
at x0 if and only if

lim
xæx

≠
0

f(x) = lim
xæx

+
0

f(x).

In this case we write

lim
xæx0

f(x) = lim
xæx

≠
0

f(x) = lim
xæx

+
0

f(x).

In some particular case the limit of the function f at x0 is nothing but f(x0).
When this situation holds we say the function f is continuous at x0. In the next
section we discuss continuity of functions.
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1.5 Continuity of Functions
In this section deals with continuous functions. We start by defining the continuity
of a function at a point. Choosing an arbitrary point we generalize this definition
to interval. In the second paragraph , we introduce the IVT theorem, the mean
value theorem and their corollaries. We end the section by establishing that every
continuous function in a segment [a ; b] reaches its maximum and its minimum.

Definition 1.5.1. Let f be a real function with domain Df . We consider an interval
I µ Df and a real number x0 œ I. We say that, the function f is continuous at x0,
if

lim
xæx0

f(x) = f(x0). (1.5.1)

A possible interpretation of the definition above is the following one: When the
real number x approaches x0 the value of the function f(x) approaches f(x0). This
can be expressed in terms of Á and ”.

Definition 1.5.2. Let f be a real function with domain D. We consider an interval
I µ D which contains the real number x0. We say the function f is continuous at
x0, if, ’ Á > 0, there exists a real number ”Á(x0) > 0 such that, ’ x œ D

|x ≠ x0| < ”Á(x0) =∆
---f(x) ≠ f(x0)

--- < Á. (1.5.2)

We have to specify here that, the real number ” depends on Á and x0. In other
words, f is continuous at x0 if

’ Á > 0, ÷ ”Á(x0) > 0, ’ x œ D, |x ≠ x0| < ”Á(x0) =∆
---f(x) ≠ f(x0)

--- < Á.

For a function which has a left hand side and right hand limit we can establish the
following theorem

Theorem 1.5.3. Let f be a real function. We consider x0 œ Df and suppose f
has left and right hand side limits. Then, the function f is continuous at x0 if and
only if

lim
xæx

+
0

f(x) = lim
xæx

≠
0

f(x) = f(x0).

To simplify notations, we write ” instead of ”Á(x0).

Example 1.5.4. Let f(x) = x2 and x0 = 3. We have f(x0) = 9 and

lim
xæ3

f(x) = f(x0) = 9.

Therefore the function f is continuous at x0 = 3.

Exercise 1.5.5. Say whether the following function are continuous at x0

1. f(x) = 6x + 5 and x0 = 1

2. g(x) = x2 + 5x + 3 and x0 = 3

3. h(x) = x + 3
x ≠ 1 and x0 = 1
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4. i(x) =
Ô

x + 3 and x0 = ≠2

5. j(x) = 1
x

and x0 = 0.

Below we establish some properties for continuous functions. We will establish
if f is a continuous function at x0 œ Df and ⁄ a real number the function ⁄ f is
continuous at x0.

Lemma 1.5.6. Let f be a real function which is continuous at x0 œ Df . We
consider a constant real number ⁄. Then the real function ⁄ f is a continuous at
x0.

Proof. We consider a function f which is continuous at x0. If ⁄ = 0, the function
⁄ f © 0. We know the constant function 0 is continuous.

Now we take ⁄ œ Rú. Hence for all Á > 0, we can find ” > 0, such that for all
x œ R, |x ≠ x0| < ” =∆

--f(x) ≠ f(x0)
-- < Á

|⁄| ·
Let x œ R, such that |x ≠ x0| < ”. Then,

--⁄f(x) ≠ ⁄f(x0)
-- =

--⁄
----f(x) ≠ f(x0)

-- < |⁄| Á

|⁄| = Á.

Therefore the function ⁄f is continuous at x0.

In this proof we choose ” > 0 such that |x ≠ x0| < ” implies
--f(x) ≠ f(x0)

-- <
Á

|⁄|

in order to simplify notations.
But one can take ” such that

|x ≠ x0| < ” implies
--f(x) ≠ f(x0)

-- < Á. (1.5.3)

In this case we obtain some ÁÕ = |⁄| Á. Indeed let us consider ” as in (1.5.3) then,
--⁄ f(x) ≠ ⁄ f(x0)

-- =
--⁄

-- --f(x) ≠ f(x0)
-- <

--⁄
-- Á = ÁÕ.

Let f and g be two functions defined in some interval I. We assume the functions
f and g continuous at x0 œ I, we can prove f + g is continuous at x0.

Lemma 1.5.7. Let f and g be two real functions defined in an interval I µ Df flDg.
We consider a real number x0 œ I. We assume that f and g are continuous at x0.
Then, the function f + g is a continuous at x0.

Proof. Let Á > 0 and x0 œ I. Since f and g are continuous at x0, we can find ” > 0,
such that, for every x œ I, such that, |x ≠ x0| < ” implies

---f(x) ≠ f(x0)
--- <

Á

2 and
---g(x) ≠ g(x0)

--- <
Á

2 ·

Take x œ I such that |x ≠ x0| < ”. Therefore
---(f + g)(x) ≠ (f + g)(x0)

--- Æ
---f(x) ≠ f(x0)

--- +
---g(x) ≠ g(x0)

--- < Á.

Then the function f + g is continuous at x0.
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We can give a more simplest proof by pointing out that,

lim
xæx0

!
f(x) + g(x)

"
= lim

xæx0
f(x) + lim

xæx0
g(x).

Proof 2. Let f and g be two continuous functions at x0. Thus, we have

lim
xæx0

f(x) = f(x0) and lim
xæx0

g(x) = g(x0).

Using Theorem 1.1.4, we have

lim
xæx0

f(x) + g(x) = lim
xæx0

f(x) + lim
xæx0

g(x) = f(x0) + g(x0).

Then f + g is a continuous function at x0.

Take two real functions f and g, which we suppose continuous at x0 œ Df fl Dg.
One may wonder whether the function f · g is continuous at x0. The answer to this
question is given in the following lemma.

Lemma 1.5.8. Let f and g be two real functions defined in an interval I µ Df flDg.
We consider a real number x0 œ I. We assume the function f and g continuous at
x0. Then, the real function f · g is a continuous at x0.

Proof. Let f and g be two continuous functions at x0. Thus we have

lim
xæx0

f(x) = f(x0) and lim
xæx0

g(x) = g(x0).

Then by Theorem 1.1.6,

lim
xæx0

f(x) · g(x) = lim
xæx0

f(x) · lim
xæx0

g(x) = f(x0) · g(x0) =
1

f · g
2

(x0).

The function f · g is continuous function at x0.

Using similar arguments we can prove that the division of continuous function
at x0 is also continuous at x0.

Lemma 1.5.9. Let f and g be two real functions defined in some interval I µ
Df flDg. We consider a real number x0 œ I. We assume that f and g are continuous

at x0 and g(x0) ”= 0. Then the function f

g
is continuous at x0.

Proof. Let f and g be two continuous functions at x0. By definition of continuity,
we have

lim
xæx0

f(x) = f(x0) and lim
xæx0

g(x) = g(x0).

Since g(x0) ”= 0, we deduce from Theorem 1.1.7, that

lim
xæx0

f(x)
g(x) = limxæx0 f(x)

limxæx0 g(x) = f(x0)
g(x0) .

The function f

g
continuous at x0.



24 CHAPTER 1. INTRODUCTION TO LIMITS AND CONTINUITY

Some functions are more regular. They can be continuous at each point of their
domains. In this case we say the are continuous in their domains. We state the
following definition.

Definition 1.5.10. Let f be a real function defined in I. We say that f is contin-
uous on I if it continuous at each point x0 of I.

Example 1.5.11. Let f(x) = x2+2x+3 and I = [2 , 3]. This function is continuous
at each point of I. Then, the function f is continuous on I.

Exercise 1.5.12. Prove that the following functions are continuous in the given
interval I

1. f(x) = 3x + 2 and I = [0 , 3]

2. h(x) = 1
x + 2 and I = (≠3 , 6]

3. i(x) =
Ô

x + 5 and I = (≠6 , 10].

One can prove without any di�culties that the following functions are continuous
in their domains.

Lemma 1.5.13. The following statements hold:

• Polynomial functions are continuous

• The function f(x) = 1
x

is continuous in its domain Df = R\{0}

• The function f(x) =
Ô

x is continuous in its domain.

As in the case of functions which are continuous at some point x0 we have
following the following result.

Theorem 1.5.14. Let f and g be two real functions defined in some interval I µ
Df fl Dg. We suppose f and g are continuous on I. Then,

1. the function f + g is continuous on I

2. the function f · g is continuous on I

3. if g(x) ”= 0, for every x œ I, the function f/g is continuous on I.

Example 1.5.15. Let f(x) = x + 1 and g(x) = x2 + 1. The functions f and g are
continuous. Then using the theorem above, we obtain

1. h(x) = f(x) + g(x) = x2 + x + 2 is continuous on R

2. p(x) = f(x) · g(x) = x3 + x2 + x + 1 is continuous on R

3. q(x) = x + 1
x2 + 1 is continuous on R.

Exercise 1.5.16. Find the domain of continuity of the following functions

f(x) = x + 3
2x + 3 + 3x2 + 2x, g(x) = x2 + 4x + 3, h(x) = x + 6

3x + 5 ·
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We can observe that, all elementary functions are continuous in their domains.
Combining this with theorem 1.5.14 and composition of functions, we obtain the
following results.

Lemma 1.5.17. Let f be a continuous function in its domain I. We define the
subset I+ =

)
x œ I f(x) Ø 0

*
. Then,the function

g(x) =


f(x),

is continuous on I+

In other words the function g is continuous at any point x, such that, f(x) Ø 0.

Example 1.5.18. We consider f(x) =
Ô

x2 + 3x + 2. We know the function f is
defined if and only if x2 + 3x + 2 Ø 0. This correspond to the set

Df = (≠Œ , ≠2] fi [≠1 , +Œ).

Applying the previous theorem we conclude, the function f is continuous in its
domain.

Exercise 1.5.19. Find the domain of continuity of the following functions

f(x) =


2x2 + 6x + 2, g(x) =
Ú

x + 1
3x + 5 , h(x) =


(x2 + 6x + 8)(x2 + 3x + 7) .

Lemma 1.5.20. Let f be a continuous function with domain I. We define the
subset Iú =

)
x œ I f(x) ”= 0

*
. Then, the function

g(x) = 1
f(x)

is continuous on Iú.

The function g is continuous at any x, such that f(x) ”= 0.

Example 1.5.21. We take the function f(x) = 1
x+2 . This function is defined if

and only if x ”= ≠2. This implies the function f is continuous on R\{≠2}.

Exercise 1.5.22. Find the domain of continuity of the following functions

f(x) = 1
x2 + 3x + 2 , g(x) = 3x + 3

5x + 3 , h(x) = x + 3Ô
2x + 7

, i(x) =
Ô

x2 + 4x + 3
2x + 3 ·

We remind that for equations including polynomial function of degree three one
can sometimes use Cardan’ formulas to find solutions to the equation f(x) = 0. But
for polynomial function with degree n Ø 4 or a general function we cannot most
of the time find a formula which gives the solutions of this equation. In such a
situation what we usually do is:

1. to prove that equation (1.5.4) has a solution which belongs in some interval

2. to give an approximation of solution of equation (1.5.4).
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Below we will see that using the continuity of a function, we can say if whether
equation : find x œ R, such that,

f(x) = 0. (1.5.4)

has a solution or not. We draw the readers attention that theorems which will be
stated say just there exist solutions, but do not give any information on what such
solutions look like.

Theorem 1.5.23 (Intermediate Value Theorem(IVT) ). Let f : [a , b] æ R be a
continuous function on [a , b]. Then, for all k œ f([a , b]), there exist at least one
x0 œ [a , b], such that,

f(x0) = k. (1.5.5)

Corollary 1.5.24. Let f : [a , b] æ R be a continuous function. We assume

f(a) · f(b) < 0.

Then, there exists at least one x0 œ (a , b), such that, f(x0) = 0.

Some authors prefer to formulate the IVT theorem in this way. But you can see
that the formulation below is just a corollary of the IVT theorem.

Theorem 1.5.25. Let f : [a , b] æ R be a continuous function. Then, the set
f

!
[a , b]

"
is an interval of R.

Example 1.5.26. To prove that the equation x3 + x + 1 = 0 has a solution in the
interval [≠1 , 1], we proceed in this way:

We define the function f(x) = x3 + x + 1 which is continuous in R. Then, its
restriction in [≠1 , 1] is a continuous function.

We have f(≠1) = (≠1)3 + (≠1) + 1 = ≠2 + 1 = ≠1 < 0. On the other hand we
have f(1) = 3. Then, one deduces

f(≠1) · f(1) = ≠3 < 0.

Using corollary 1.5.24, we conclude that, there exists x0 œ (≠1 , 1), such that,
f(x0) = 0 Hence the equation x3 + x + 1 = 0 has a solution in [≠1 , 1].

Exercise 1.5.27. Say whether the following equations have solutions in the indi-
cated interval.

1. x5 + 3x + 1 = 0 and I = [≠1 , 2]

2. x6 ≠ 3x4 + 5x = 1 and I = [≠2 , 1]

3.
Ô

x2 + 3x + 3 = 3 and I = [1 , 3].

Corollary 1.5.28. Let f : [a , b] æ R be a continuous and increasing function. We
assume f(a) < 0 and f(b) > 0. Then, there exists a unique x0 œ (a , b), such that,

f(x0) = 0.

Corollary 1.5.29. Let f : [a , b] æ R be a continuous and decreasing function. We
assume f(a) > 0 and f(b) < 0. Then, there exists a unique x0 œ (a , b), such that,

f(x0) = 0.



1.5. CONTINUITY OF FUNCTIONS 27

In the next chapter, we will define increasing and decreasing functions.
Until now, we never pay attention to the form of the interval we used. Now we

need to make the di�erent between open and closed interval. We have to specify
what we mean by a segment.

Definition 1.5.30. An interval I is open if it has one of the following form,
(≠Œ , a) or (a , b) or (b , +Œ), a and b are real numbers such that a < b.

Definition 1.5.31. An interval I is closed if it has one of the following form,
I = (≠Œ , a] or [a , b] or I = [b , +Œ), a and b are real numbers such that a < b.

In some books we can find these notations (≠Œ , a) =] ≠ Œ , a[, (a , b) =]a , b[,
(b , +Œ) =]b , +Œ[, (≠Œ , a] =] ≠ Œ , a] and [b , +Œ) = [b , +Œ[.

Definition 1.5.32. An interval I is called a segment if there exist two real numbers
a and b, a < b, such that

I = [a , b].

In the last theorem of this chapter, we show that a function which is continuous
on a segment reaches its maximum and its minimum.

Theorem 1.5.33. Let f : [a , b] æ R be a continuous function on [a , b]. Then
there exist x1 and x2 in [a , b], such that,

f(x1) = max
xœ[a b]

f(x) and f(x2) = min
xœ[a , b]

f(x).

Example 1.5.34. We consider f(x) = ≠x2 + 2x ≠ 1 and I = [0 , 2]. The function
f is continuous in I and reaches it maximum at 1. Then

f(1) = max
xœ[0 , 2]

f(x) = 0.

Example 1.5.35. Let f(x) = x2 and I = [≠1 , 1]. The function f is continuous in
I, and has a minimum at 0.

A Combination of the theorem above and IVT theorem gives the following lemma

Lemma 1.5.36. Let f be a continuous function on I. We consider a segment
[a , b] µ I. Then,

f
1

[a , b]
2

is a segment.
In other words, there exist two real numbers m and M , m < M , such that,

f
1

[a , b]
2

= [m , M ].
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In the previous chapter, we study continuity of functions. At its end we introduce
the notion of increasing and decreasing functions. We promised that we will come
back to the definitions of these properties. Now we consider a function f : [a , b] æ R
and two arbitrary elements of [a , b] x and y such that, a Æ x < y Æ b. We say that
f is an increasing function, if f(x) Æ f(y). The function f is said to be decreasing,
if f(x) Ø f(y).

In other words, the function f : [a ; b] æ R is increasing, if for all x and y in
[a , b], such that a Æ x < y Æ b the following inequality holds f(y)≠f(x) Ø 0. Since
y ≠ x > 0, this yields

f(y) ≠ f(x)
y ≠ x

= f(x) ≠ f(y)
x ≠ y

Ø 0.

The function f : [a ; b] æ R is decreasing, if for all u and v in [a , b], such that
a Æ u < v Æ b, f(u) ≠ f(v) Ø 0. As we know that u ≠ v < 0, then,

f(u) ≠ f(v)
u ≠ v

Æ 0·

The quantity
�f(x) = f(x) ≠ f(y)

x ≠ y
(2.0.1)

is called the rate of increase of the function f . As we can observe it, the real
number �f(x) seems to be the determinant element to characterize variation of
functions. Using �f(x) we can easily check whether a function is increasing or
decreasing in a given interval.

29
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Lemma 2.0.1. Let f be a real function defined on [a , b]. We consider two arbitrary
elements x and y in [a , b], such that, a Æ x < y Æ b. Then,

• the function f is increasing in [a , b], if �f(x) Ø 0,

• the function f is decreasing in [a , b], if �f(x) Æ 0.

We precise that a function f is strictly increasing if �f(x) > 0. It is strictly
decreasing, if �f(x) < 0.

The main purpose of this chapter is to define a method which allows us to study
easily variations of functions. This chapter is organized as follows: in section 1, we
define the derivative of a function. In the second section, we explain what we mean
by the study of a function. In the last section we use di�erentiation to characterize
some property of functions.

2.1 Derivative at some Point x0

In this section, we define, the derivative of a function at some real point. Applying
this definition to an arbitrary element of the domain of the domain of a function
we establish that the function is di�erentiable in its domain. Using the derivatives
we will be able tocharacterize increasing and decreasing functions.

We remind that the sets (a , b) an ]a , b[ represent the same open interval. We
will use both notations in this chapter

Definition 2.1.1. Let f be a real function which is defined in the interval ( a , b ).
We consider a fixed real number x0 œ (a , b). We say that the function f is derivable
or di�erentiable at x0, if the following limit exists:

lim
xæx0
x”=x0

f(x) ≠ f(x0)
x ≠ x0

· (2.1.1)

We recall that the expression x æ x0 means that x is as close as possible to x0.
That is, we can find a real number h > 0 as small as possible such that x = x0 + h.
The best way to represent this in our minds is to let h going to 0. Using this concept,
we can reformulate Definition 2.1.1.

Definition 2.1.2. We consider the function f : (a , b) æ R and a real number
x0 œ (a , b). The function f is di�erentiable at x0 if

lim
hæ0
h”=0

f(x0 + h) ≠ f(x0)
h

exists.

When the limit (2.1.1) exists, we denote it

lim
xæx0

f(x) ≠ f(x0)
x ≠ x0

= lim
hæ0

f(x0 + h) ≠ f(x0)
h

= f Õ(x0) = df

dx
(x0)· (2.1.2)

In this case we call it the derivative or (di�erential) of the function f at x0.
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Example 2.1.3. We take f(x) = 2 x+1 and x0 = 0. Then we have f(0+h) = 2 h+1
and f(0) = 1. From this we deduce,

f(0 + h) ≠ f(0)
h

= 2. Hence lim
hæ0

f(0 + h) ≠ f(0)
h

= 2.

We conclude that f Õ(0) = 2.

Exercise 2.1.4. Compute f Õ(x0)

1. f(x) = 3x + 2, x0 = 1, 2. g(x) = x2 + 6x + 1, x0 = 2, 3. h(x) = 1
x

, x0 = 4

4. i(x) =
Ô

x, x0 = 1, 5. j(x) = 12, x0 = 1.

Let f be a real function, which is derivable at x0. Therefore, limhæ0
!
f(x0 +

h) ≠ f(x0)
"
/h is finite. We can find some real number k, such that,

lim
hæ0

f(x0 + h) ≠ f(x)
h

= k.

Now we take a real number h ”= 0. We write

f(x0 + h) ≠ f(x0) = f(x0 + h) ≠ f(x0)
h

· h.

Letting h to 0, we obtain

lim
hæ0

!
f(x0 + h) ≠ f(x0)

"
= lim

hæ0

3
f(x0 + h) ≠ f(x0)

h
· h

4

= lim
hæ0

f(x0 + h) ≠ f(x0)
h

· lim
hæ0

h = k · 0 = 0.

Hence limhæ0 f(x0 + h) = f(x0). This is equivalent to

lim
xæx0

f(x) = f(x0)

when we define x = x0 + h. This establish the function f is continuous at x0. This
leads to the following theorem.

Theorem 2.1.5. Let f be a real function with domain ( a , b ). We suppose the
function f di�erentiable at x0 œ ( a , b ). Then, the function f is continuous at x0.

The reverse of this theorem is not true. A function can be continuous at some
point x0, without being di�erentiable at this point. As an example we consider the
function f(x) = |x|. This function is continuous at 0. Indeed we have

lim
xæ0

f(x) = f(0) = 0.

But the function |x| is not di�erentiable at 0. Because

lim
xæ0≠

|x|
x

= lim
xæ0≠

≠x

x
= ≠1 and lim

xæ0+

|x|
x

= lim
xæ0+

x

x
= 1.
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Since limxæ0≠
!
|x|/x

"
”= limxæ0+

!
|x|/x

"
, then, limxæ0

!
f(x)/x

"
does not exists.

The function |x| is not derivable at 0.
This theorem proves that derivability or (di�erentiability ) is stronger than con-

tinuity. In other words, a di�erentiable function at x0 is more regular than a
continuous function at x0 in the following interval ( x0 ≠ Á , x0 + Á ).

Definition 2.1.6. Let f be a function with domain D. We take an open interval
I µ D. We say that the function f is derivable in the interval I if it is derivable at
each point x0 in I.

This means that f is di�erentiable in I if for every x0 œ I,

f Õ(x0) = df

dx
(x0) exists.

Example 2.1.7. To establish that the function f(x) = x2 is derivable in R, we
consider an arbitrary real number x0 . Let h ”= 0 be a fixed positive real number.
One has f(x0) = x2

0 and f(x0 + h) = x2
0 + 2x0 · h + h2. From this, we deduce that

lim
hæ0

f(x0 + h) ≠ f(x0)
h

= lim
hæ0

2x0 h + h2

h
= 2x0.

Therefore f is derivable at x0. Since x0 is an arbitrary real number, we conclude
that the function f is derivable in R.

Exercise 2.1.8. Prove that the following functions are derivable in the given in-
tervals.

1. f(x) = 3 x + 2, I =] ≠ Œ , 0], 2. g(x) =
Ô

x, I = [3 , +Œ[,

3. h(x) = 3x2 + 9x + 1, I =] ≠ 3 , 5[, 4. i(x) = 1
x + 1 , I =]0 , 2[,

5. j(x) = 2x ≠ 5
x + 1 , I = [0 , 1], 6. k(x) =

!
x + 2)3 + 1, I = [≠1 , 7].

We know that elementary functions are the bricks that allow to build more
complicated functions. That is why every new operation on the set of functions
should be tested on them, before being generalized. In the following section we
define the derivative of the elementary functions.

2.2 Derivative of Elementary Functions
In this section we define derivative of elementary functions. We start by polynomial
functions. In the second time we define derivative of the inverse and square root
function. We end the section by the derivatives of cosine and sine functions.

The first result of this section deals with constant functions which are the sim-
plest polynomial functions.

Lemma 2.2.1. Let k œ R. We consider the constant real function f(x) = k, for
every x œ R. Then, the constant function is derivable in R and for all x œ R,
f Õ(x) = 0.
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Proof. We consider the constant function f(x) = k. Let x0 œ R be an arbitrary
real number and h ”= 0. We have f(x0) = f(x0 + h) = k. Therefore,

lim
hæ0

f(x0 + h) ≠ f(x0)
h

= 0 = f Õ(x0).

Since x0 is an arbitrary real number the function f(x) = k is di�erentiable in R
and ’x œ R, f Õ(x) = 0.

Example 2.2.2. For all x œ R, we define the function f(x) = 2.Then, the function
f is di�erentiable in R. The derivative of f is f Õ(x) = 0 for all x œ R.

Now we consider an a�ne function f(x) = ax + b, with a ”= 0. Let x0 œ R be
an arbitrary real number and h ”= 0 small enough. We have f(x0) = ax0 + b and
f(x0 + h) = ax0 + ah + b. This involves

lim
hæ0

f(x0 + h) ≠ f(x0)
h

= a = lim
hæ0

ax0 + ah + b ≠ ax0 ≠ b

h
= f Õ(x0).

Then for all x œ R, f Õ(x) = a.

Lemma 2.2.3. Let f(x) = ax + b, with a ”= 0 be an a�ne function. Then, the
function f is derivable in R and for all x œ R, f Õ(x) = a.

Example 2.2.4. We take the function f(x) = 7x+5. The domain of f is R. Since
f is a�ne, it is derivable in R and for all x œ R, f Õ(x) = 7.

Exercise 2.2.5. Find the derivative of the following function

1. f(x) = x + 2, 2. g(x) = 6x, 3. h(x) = 3x + 1, 4. i(x) = 5, 5. j(x) = 4x + 5.

To deal with derivative of polynomial functions of degree n Ø 2, we introduce
the following definitions.

We define the natural number n! as follows:

0! = 1
1! = 1
n! = 1 · 2 · 3 · · · (n ≠ 1) · n, ’ n Ø 2.

Example 2.2.6. From the definition above one deduces

2! = 1.2 = 2
3! = 1.2.3 = 6
6! = 1.2.3.4.5.6 = 720.

Using the definition of n! we introduce the following notations. The natural

number
3

n
k

4
= Cn

k
is defined by

3
n
k

4
= n!

(n ≠ k)! k! ·

As examples we have
3

n
0

4
=

3
n
n

4
= 1 and

3
n

n ≠ 1

4
=

3
n
1

4
= n.
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Lemma 2.2.7. Let n Ø 1 be a natural number. For any natural numbers k, such
that, 0 Æ k < n the following holds

3
n

k + 1

4
=

3
n ≠ 1

k

4
+

3
n ≠ 1
k + 1

4
.

Proof. To prove this lemma we point out that
3

n ≠ 1
k

4
= (n ≠ 1)!

(n ≠ k ≠ 1)! k! and
3

n ≠ 1
k + 1

4
= (n ≠ 1)!

(n ≠ k ≠ 2)! (k + 1)! ·

This implies
3

n ≠ 1
k

4
+

3
n ≠ 1
k + 1

4
= (n ≠ 1)!

(n ≠ (k + 1))! (k + 1)!

Ë
k + 1 + n ≠ k ≠ 1

È

= (n ≠ 1)!n
(n ≠ (k + 1))! (k + 1)! = n!

(n ≠ (k + 1))!(k + 1)! =
3

n
k + 1

4

This completes the proof.

Using this lemma above one can define Pascal’s Triangle

n = 0, 1
n = 1, 1 1
n = 2, 1 2 1
n = 3, 1 3 3 1
n = 4, 1 4 6 4 1
n = 5, 1 5 10 10 5 1
· · · · · · · · · · · · · · · · · ·

In High School we often use Pascal’s triangle to define the following identities.

(x + y)2 = x2 + 2xy + y2

(x + y)3 = x3 + 3x2y + 3xy2 + y3

(x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4.

The generalization of the formulas above is given by the so called Newton’s binomial
Formula:

Lemma 2.2.8. Let n Ø 1 be a natural number, then

(x + y)n =
nÿ

k=0

3
n
k

4
xn yn≠k. (2.2.1)

We remark that (x + y)0 = 1 and the coe�cient
3

n
k

4
is sometimes denoted Cn

k
.

Exercise 2.2.9. Using Newton’s binomial Formula give the expression of the fol-
lowing functions

1. f(x) = (x + 3)6, 2. g(x) = (x + a)7, 3. h(x) = (x ≠ 1)13.
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We consider the function f(x) = xn, with n Ø 2.Let x0 œ R be an arbitrary real
number and h ”= 0 small enough. One has f(x0) = xn

0 and f(x0 + h) = (x0 + h)n.
Using Newton’s binomial formula, we obtain

(x0 + h)n =
nÿ

k=0

3
n
k

4
xk

0 · hn≠k = xn

0 +
n≠1ÿ

k=0

3
n
k

4
xk

0 · hn≠k.

From this we deduce that

f(x0 + h) ≠ f(x0) =
3

n
n ≠ 1

4
xn≠1

0 h +
n≠2ÿ

k=0

3
n
k

4
xk

0 · hn≠k.

Since n ≠ k Ø 2, and

1
h

n≠2ÿ

k=0

3
n
k

4
xk

0 · hn≠k =
n≠2ÿ

k=0

3
n
k

4
xk

0 · hn≠k≠1,

we have limhæ0
q

n≠2
k=0

3
n
k

4
xk

0 · hn≠k≠1 = 0. This yields

lim
hæ0

f(x0 + h) ≠ f(x0)
h

=
3

n
n ≠ 1

4
xn≠1

0 .

On the other hand we know that
3

n
n ≠ 1

4
= n. Therefore f Õ(x) = nxn≠1. This

leads to the following lemma

Lemma 2.2.10. Let f(x) = xn, with n Ø 2 be a real function. Then, the function
f is derivable in R and for every x œ R, we have f Õ(x) = nxn≠1.

Example 2.2.11. We consider the following functions

f(x) = x2, g(x) = x6 and h(x) = x7.

These functions are di�erentiable in R. For all real number x we have

f Õ(x) = 2x, gÕ(x) = 6x5 and hÕ(x) = 7x6.

Exercise 2.2.12. Determine the derive of the following functions

1. f(x) = x5 + 2x9 + 5, 2. g(x) = x3 + 3x2 + 5x + 2, 3. i(x) = x8 + x7 + 2
4. h(x) = x10 + 2x8 + 3x6 + 2x + 3, 5. j(x) = x5 + 4x3 + x2 + 2.

Let x œ Rú and f(x) = 1
x

. For x0 œ Rú and h ”= 0 be small enough, we have

f(x0) = 1
x0

and f(x0 + h) = 1
x0 + h

· Then,

lim
hæ0

f(x0 + h) ≠ f(x0)
h

= lim
hæ0

1
x0 + h

≠ 1
x0

h
= lim

hæ0

x0 ≠ x0 ≠ h

h(x0 + h)x0

= ≠ lim
hæ0

1
x0(x0 + h) = ≠ 1

x2
0

·

We conclude that for all x œ Rú, f Õ(x) = ≠ 1
x2 ·
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Lemma 2.2.13. Let f(x) = 1
x

· Then, the function f is di�erentiable in Rú and
for all x ”= 0, we have

f Õ(x) = ≠ 1
x2 ·

Let x be a real number such that x ”= 0. We know that 1
xn

= x≠n. From this
we deduce that

f Õ(x) = ≠nx≠n≠1 = ≠ n

xn+1 .

This proves the following lemma

Lemma 2.2.14. Let n Ø 2 be an integer. For any x ”= 0 we define the function
f(x) = 1

xn
· Then, the function f is di�erentiable in R\{0} and for every x ”= 0, we

have
f Õ(x) = ≠n

1
xn+1 ·

Example 2.2.15. We consider the function f(x) = 1
x5 · Then, the function f is

di�erentiable in Rú and for all x ”= 0, we have

f Õ(x) = ≠ 5
x6 .

Exercise 2.2.16. Find the derivative of the following functions

1. f(x) = 1
x3 , 2. g(x) = 1

x2 , 3. h(x) = 1
x11 ·

Let x belong to [0 ; +Œ). We define the function f(x) =
Ô

x. We take an
arbitrary real number x0 in ]0 ; +Œ). For some real number h ”= 0 which is assumed
to be small enough. We write f(x0 + h) ≠ f(x0) =

Ô
x0 + h ≠ Ô

x0. Multiplying
this expression by (

Ô
x0 + h + Ô

x0)/(
Ô

x0 + h + Ô
x0). we obtain

f(x0 + h) ≠ f(x0) =


x0 + h ≠
Ô

x0 =

1Ô
x0 + h ≠ Ô

x0
21Ô

x0 + h + Ô
x0

2

Ô
x0 + h + Ô

x0

= hÔ
x0 + h + Ô

x0
·

Therefore

lim
hæ0

f(x0 + h) ≠ f(x0)
h

= lim
hæ0

h

h(
Ô

x0 + h + Ô
x0)

= lim
hæ0

1Ô
x0 + h + Ô

x0
= 1

2Ô
x0

·

Lemma 2.2.17. Let f(x) =
Ô

x be a function defined on [0 , +Œ). Then the
function is di�erentiable in x œ (0 ; +Œ). For all x > 0,

f Õ(x) = 1
2
Ô

x
·

Remark 2.2.18. We point out again that f Õ(0) is not defined.
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Below we list some properties which allow to define easily the derivative of sine
and cosine functions.

Lemma 2.2.19. Let x be a positive real number, such that, 0 < x < fi/2. Then,

cos(x) Æ x

sin(x) Æ 1
cos(x) · (2.2.2)

The proof of this lemma is based on the following geometrical observation. We
can see in the figure below, the triangle OAM is included is the part of the disc
delimited by the lines OB and OM. We denote this part of the disc OBM. This
latter is included in the triangle OBN. As indicated below

O

N

A

M

x

B

Here the circle we consider is the trigonometric circle. That is, the distance OB =
OM = 1. We know that the distance OA = cos(x) and AM = sin(x). Using
Thales’s theorem we find BN = tan(x).

On the other hand we have

Area(OAM) = sin(x) · cos(x)
2 , Area(OBM) = x

2fi
· fi = x

2 ,

Area(OBN) = sin(x)
2 cos(x) ·

Combining this, with the fact that the

Area(OAM) Æ Area(OBM) Æ Area(ABN),

we obtain
sin(x) · cos(x)

2 Æ x

2 Æ sin(x)
2 cos(x) ·

Since x œ (0 , fi/2), sin(x) ”= 0, then we can divide by sin(x). Multiplying the
previous inequalities by 2

sin(x) , we obtain cos(x) Æ x

sin(x) Æ 1
cos(x) ·

Lemma 2.2.20. Let x be a real number which is di�erent to 0. Then, the following
holds

lim
xæ0

sin(x)
x

= 1. (2.2.3)
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Proof. We consider x œ (0 , fi/2). Using (2.2.2) we have

cos(x) Æ x

sin(x) Æ 1
cos(x) ·

We know that cos(x) ”= 0 and sin(x)
x

”= 0. Because 0 < x < fi/2. We can calculate
the inverse of each term in (2.2.2). This involves

cos(x) Æ sin(x)
x

Æ 1
cos(x) ·

Since limxæ0 cos(x) = 1, then, using Sandwich theorem we obtain

lim
xæ0

sin(x)
x

= 1.

Lemma 2.2.21. Let h be a real number which is x ”= 0. Then,

lim
hæ0

cos(h) ≠ 1
h

= 0. (2.2.4)

Proof. Let x ”= 0. On one hand we have

cos(x) ≠ 1
x

= cos(x) ≠ 1
x

· cos(x) + 1
cos(x) + 1 = cos2(x) ≠ 1

x
!

cos(x) + 1
" = ≠ sin2(x)

x
!

cos(x) + 1
"

= ≠ sin(x)
x

· sin(x)
cos(x) + 1 ·

On the other hand we have

lim
xæ0

≠ sin(x)
x

= 1 and lim
xæ0

sin(x)
cos(x) + 1 = 0.

Therefore, we have
lim
xæ0

cos(x) ≠ 1
x

= 0.

For the convenience of the readers we remind the following properties shared by
the functions sine and cosine. Let a and b be two real numbers. Then, the following
identities hold

sin(a + b) = sin(a) cos(b) + cos(a) sin(b),
sin(a ≠ b) = sin(a) cos(b) ≠ cos(a) sin(b),
cos(a + b) = cos(a) cos(b) ≠ sin(a) sin(b),
cos(a ≠ b) = cos(a) cos(b) + sin(a) sin(b).

Now we consider the function f(x) = sin(x) and x0 œ R an arbitrary real
number. We know for all h œ Rú,

sin(x0 + h) = sin(x0) cos(h) + cos(x0) sin(h).
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Dividing by h we get

sin(x0 + h) ≠ sin(x0)
h

= sin(x0)cos(h) ≠ 1
h

+ cos(x0) sin(h)
h

·

Using (2.2.3) and (2.2.4), we obtain

lim
hæ0

sin(x0 + h) ≠ sin(x0)
h

= cos(x0).

Therefore for all x œ R, f Õ(x) = cos(x).

Lemma 2.2.22. Let f(x) = sin(x). Then, the function is di�erentiable in R and
for all x œ R,

f Õ(x) = cos(x).

We take x œ R and we define the function f(x) = cos(x). Let x0 be an arbitrary
real number and h ”= 0 a fixed real number. One knows that
cos(x0 + h) = cos(x0) cos(h) ≠ sin(x0) sin(h). That is,

f(x0 + h) ≠ f(x0)
h

= cos(x0)cos(h) ≠ 1
h

≠ sin(x0) sin(h)
h

.

Therefore,

lim
hæ0

f(x0 + h) ≠ f(x0)
h

= ≠ sin(x0).

This leads to the following lemma

Lemma 2.2.23. Let f(x) = cos(x). Then, the function f is di�erentiable in R and
for all x œ R,

f Õ(x) = ≠ sin(x).

We can summarize all these properties in the following table.

f(x) Domain of f f Õ(x) Domain of f Õ

a R 0 R
ax + b R a R

ax2 + bx + c R 2ax + b R
xn R nxn≠1 R
1
x

R\{0} ≠ 1
x2 R\{0}

1
xn

, n Ø 2 R\{0} ≠ n

xn+1 R\{0}
Ô

x [0 ; +Œ) 1
2
Ô

x
(0 ; +Œ)

cos(x) R ≠ sin(x) R
sin(x) R cos(x) R

We recall that general function are constructed from elementary ones by sum-
ming, multiplying or dividing etc. In the next section we deal with derivative of
sum, multiplication, division, square root of such elementary functions.
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2.3 Operation on the Di�erentiable Functions
This section is organized as follows. Firstly we define derivative of sum of functions.
Secondly we study derivative of multiplication and division of functions. We end
this section by dealing with square root an general composition of functions.

Let u and v be two di�erentiable functions in some open interval I. We consider
the function f(x) = u(x) + v(x). Take an arbitrary real number x0 œ I. We fixed
h ”= 0 a real number which is small enough. The definition of the function f gives

f(x0) = u(x0) + v(x0) and f(x0 + h) = u(x0 + h) + v(x0 + h).

Dividing by h and considering the limit when h goes to 0 we obtain

lim
hæ0

u(x0 + h) + v(x0 + h) ≠ u(x0) ≠ v(x0)
h

= lim
hæ0

u(x0 + h) ≠ u(x0)
h

+ lim
hæ0

v(x0 + h) ≠ v(x0)
h

= uÕ(x) + vÕ(x)·

This proves the following lemma.

Lemma 2.3.1. Let u and v be two di�erentiable functions in some open interval
I. Then, the function f(x) = u(x) + v(x) is di�erentiable in I and for all x œ I

f Õ(x) = uÕ(x) + vÕ(x).

Example 2.3.2. Let f(x) = 2x2 +3x+1+ 1
x

· The domain of the function f is Rú.
From the previous section we know the function u(x) = x2 + 3x + 1 is di�erentiable
in R and the function v(x) = 1

x
is di�erentiable in Rú. Then, the function f = u+v

is di�erentiable in R\{0} and we have,

f Õ(x) = 4x + 3 ≠ 1
x2 ·

Exercise 2.3.3. Define the derivatives of the following functions

1. f(x) = 6x + 1
x

, 2. g(x) = 3
x3 + x2 + x + 1

6 , 3. h(x) = 1
x5 + 2

x6 + 1
x2 ·

We consider two functions u and v which are di�erentiable in an open interval
I. We define the function f(x) = u(x) · v(x) for all x œ I. We take an arbitrary real
number x0 œ I, and fix h ”= 0 small enough. We have f(x0) = u(x0) · v(x0) and
f(x0 + h) = u(x0 + h) · v(x0 + h). Thus dividing f(x0 + h) ≠ f(x0) by h, we obtain

f(x0 + h) ≠ f(x0)
h

= u(x0 + h) · v(x0 + h) ≠ u(x0) · v(x0)
h

= u(x0 + h) · v(x0 + h) ≠ u(x0) · v(x0 + h)
h

+ u(x0) · v(x0 + h) ≠ u(x0) · v(x0)
h

= v(x0 + h) · u(x0 + h) ≠ u(x0)
h

+ u(x0) · v(x0 + h) ≠ v(x0)
h

·



2.3. OPERATION ON THE DIFFERENTIABLE FUNCTIONS 41

We know that limhæ0 v(x0 + h) = v(x0). Using the definition of di�erentiablity at
the point x0, we have

lim
hæ0

f(x0 + h) ≠ f(x0)
h

= uÕ(x0) · v(x0) + u(x0) · vÕ(x0).

That is, for every x œ I,

f Õ(x) = uÕ(x) · v(x) + u(x) · vÕ(x).

Lemma 2.3.4. Let u and v be two di�erentiable functions in an open interval I.
We define f(x) = u(x) · v(x). Then, the function f is derivable in I and for all
x œ I,

f Õ(x) = uÕ(x) · v(x) + u(x) · vÕ(x).

Example 2.3.5. We define the function f(x) = (3x + 1)(x + 1). We set
u(x) = 3x + 1 and v(x) = x + 1. Then uÕ(x) = 3 and vÕ(x) = 1. We deduce

f Õ(x) = 3(x + 1) + (3x + 1) = 3x + 3 + 3x + 1 = 6x + 4.

Exercise 2.3.6. Find the derivative of the following functions

1 f(x) = (x2 + 4x + 6)(x3 + 5x + 1), 2. g(x) = (x4 + 3x + 5x + 6) · 1
x

3. h(x) = (6x + 2) ·
Ô

x.

Let x and y be in R, such that x ”= 0. We define q = y

x
and we define the

sequence ;
u0 = 1
un+1 = q un, ’n Ø 0.

The sequence (un)nØ0 is geometric with common ratio q = y

x
and initial term

u0 = 1. Then, if y

x
”= 1, the sum of the n first terms of the the sequence (un) is

1 + y

x
+ · · · +

1 y

x

2n≠1
=

1 ≠ yn

xn

1 ≠ y

x

·

The expression above is equivalent to,
1

1 ≠ y

x

2 3
1 + y

x
+ · · · +

1 y

x

2n≠14
= 1 ≠ yn

xn
·

Multiplying by xn the identity above, we obtain

(x ≠ y)
!
xn≠1 + xn≠2y + · · · + yn≠1"

= (x ≠ y)
n≠1ÿ

k=0
xn≠k≠1yk = xn ≠ yn.

Lemma 2.3.7. Let x and y be two real numbers. Then, we have

xn ≠ yn = (x ≠ y)
n≠1ÿ

k=0
xn≠k≠1yk.
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Lemma 2.3.8. Let u be a di�erentiable function in an open interval I and n be a
natural number greater than 2. We define the function f(x) =

1
u(x)

2n

. Then f is
di�erentiable in I and for all x œ I,

f Õ(x) = n uÕ(x)
1

u(x)
2n≠1

.

Proof. Let u be a di�erentiable function in an open interval I. We denote
f(x) = (u(x))n. We consider an arbitrary real number x0 œ I. For all real number
h ”= 0 small enough, we have f(x0) =

!
u(x0)

"n and f(x0 +h) =
!
u(x0 +h)

"n. From
the lemma above we deduce

f(x0 + h) ≠ f(x0)
h

= un(x0 + h) ≠ un(x0)
h

·

We obtain

un(x0 + h) ≠ un(x0)
h

= u(x0 + h) ≠ u(x0)
h

·
A

n≠1ÿ

k=0
un≠k≠1(x0 + h)uk(x0)

B
.

For k, such that, 0 Æ k Æ n ≠ 1, we have

lim
hæ0

un≠k≠1(x0 + h) = un≠k≠1(x0).

Hence

lim
hæ0

n≠1ÿ

k=0
un≠k≠1(x0 + h)uk(x0) =

n≠1ÿ

k=0
lim
hæ0

un≠k≠1(x0 + h)uk(x0) =
n≠1ÿ

k=0
un≠1(x0)

= nun≠1(x0).

This involves

lim
hæ0

f(x0 + h) ≠ f(x0)
h

= lim
hæ0

un(x0 + h) ≠ un(x0)
h

= lim
hæ0

u(x0 + h) ≠ u(x0)
h

· lim
hæ0

n≠1ÿ

k=0
un≠k≠1(x0 + h)uk(x0)

= nuÕ(x0) un≠1(x0).

That is, for all x œ I f Õ(x) = nuÕ(x) un≠1(x).

Example 2.3.9. We define the function f(x) = (x3 + 3x2 + 2x + 7)4. It is di�er-
entiable in R. Setting u(x) = x3 + 3x2 + 2x + 7 we obtain uÕ(x) = 3x2 + 6x + 2.
Therefore,

f Õ(x) = 4 (3x2 + 6x + 2) (x3 + 3x2 + 2x + 7)3.

Exercise 2.3.10. Find the derivative of the following functions

1. f(x) = (3x + 5)3, 2. g(x) = (x2 + 5x + 1)5, 3. h(x) = (2x + 5)3/2.
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Now we consider a function u which is di�erentiable in an open interval I.
Moreover we assume for every x œ I, u(x) ”= 0 and we define f(x) = 1

u(x) . Let
x0 œ R be an arbitrary real number. We take h ”= 0 small enough. We have
f(x0) = 1

u(x0) and f(x0 + h) = 1
u(x0 + h) · Then, we have

lim
hæ0

f(x0 + h) ≠ f(x0)
h

= lim
hæ0

1
u(x0 + h) ≠ 1

u(x0)
h

= lim
hæ0

u(x0) ≠ u(x0 + h)
h · u(x0 + h) · u(x0)

= lim
hæ0

1
u(x0 + h) · u(x0) · lim

hæ0

≠(u(x0 + h) ≠ u(x0))
h

·

Since u is di�erentiable in I, it is continuous in I. Then, limhæ0 u(x0 + h) = u(x0).
We obtain

lim
hæ0

1
u(x0 + h) · u(x0) = 1

u2(x0) and lim
hæ0

≠(u(x0 + h) ≠ u(x0))
h

= ≠uÕ(x0).

Consequently we have

lim
hæ0

f(x0 + h) ≠ f(x0)
h

= ≠ uÕ(x0)
u2(x0) ·

That is, for every x œ I, f Õ(x) = ≠ uÕ(x)
u2(x) ·

This leads to the following lemma.
Lemma 2.3.11. Let u be a di�erentiable function in an open interval I, such
that, for all x œ I, u(x) ”= 0. We define f(x) = 1

u(x) · Then, the function f is
di�erentiable in I and for every x œ I,

f Õ(x) = ≠ uÕ(x)
u2(x) ·

Example 2.3.12. We define the function f(x) = 1
x + 1 . The function f is defined

for all x in R\{≠1}. We set u(x) = x + 1. The function f is derivable in Rú and
the derivative of the function u is uÕ(x) = 1. Using the previous lemma, we have

f Õ(x) = ≠ uÕ(x)
u2(x) = ≠ 1

(x + 1)2 ·

Exercise 2.3.13. Find the derivative of the following functions

1. f(x) = 1
5x + 8 , 2. g(x) = 1

2x2 + 5x + 2 , 3. h(x) = 1
x ≠ 1 ·

The lemma above is a particular case of the the following one.
Lemma 2.3.14. We consider a natural number n Ø 2. Let u be a di�erentiable
function in an open interval I. We suppose that, for all x œ I, u(x) ”= 0 and we
define the function f(x) = 1

un(x) · Then, the function f is di�erentiable in I and
for all x œ I,

f Õ(x) = ≠nuÕ(x)
un+1(x) ·
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Proof. We consider u a di�erentiable function in the open interval I. We take a
natural number n Ø 2. Remarking that f(x) = 1

un(x) = u≠n(x) we get

f Õ(x) = ≠n uÕ(x) u≠n≠1 = ≠n uÕ(x)
un+1(x) ·

Example 2.3.15. Let f(x) = 1
(2x+1)4 · The function f is defined in R\{≠1/2}. It is

also di�erentiable in R\{≠1/2}. To find the derivative of the function f we define
u(x) = 2x + 1. The function u is di�erentiable in R and we have uÕ(x) = 2. Hence

f Õ(x) = ≠4 ◊ 2
(2x + 1)5 = ≠8

(2x + 1)5 ·

Exercise 2.3.16. Find the derivative of the following functions

1. f(x) = 1
(x2 + 5x + 1)3 , 2. g(x) = 1

(3x + 4)8 , 3. h(x) = 1
(x3 + 6x2 + 1)5 ·

Let u and v be two di�erentiable functions in the open interval I, such that for
all x œ I, v(x) ”= 0. We define f(x) = u(x)

v(x) . For any x0 œ I and h ”= 0, we have

f(x0 + h) ≠ f(x0)
h

=

u(x0 + h)
v(x0 + h) ≠ u(x0)

v(x0)
h

= u(x0 + h)v(x0) ≠ u(x0)v(x0 + h)
h v(x0 + h)v(x0)

= 1
v(x0 + h)v(x0) · u(x0 + h) ≠ u(x0)

h
v(x0)

≠ 1
v(x0 + h)v(x0) · v(x0 + h) ≠ v(x0)

h
u(x0).

Since v is a continuous function, limhæ0 v(x0 + h) = v(x0). This implies

lim
hæ0

1
v(x0 + h)v(x0) = 1

v2(x0) , lim
hæ0

u(x0 + h) ≠ u(x0)
h

v(x0) = uÕ(x0).v(x0) and

lim
hæ0

v(x0 + h) ≠ v(x0)
h

u(x0) = u(x0).vÕ(x0).

Consequently we have

lim
hæ0

f(x0 + h) ≠ f(x0)
h

= uÕ(x0)v(x0) ≠ u(x0)vÕ(x0)
v2(x0) ·

Since x0 is an arbitrary element of I, we have the following lemma.

Lemma 2.3.17. Let u and v be two di�erentiable functions in the open interval I,
such that for all x œ I, v(x) ”= 0. We define f(x) = u(x)

v(x) · Then f is di�erentiable
in I and for all x œ I,

f Õ(x) = uÕ(x)v(x) ≠ u(x)vÕ(x)
v2(x) ·
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Example 2.3.18. We consider the function f(x) = x + 3
2x + 1 · This function is dif-

ferentiable in its domain R\{≠1/2}. To find f Õ we consider u(x) = x + 3 and
v(x) = 2x + 1. Then uÕ(x) = 1 and vÕ(x) = 2. This implies that for every
x œ R\{≠1/2},

f Õ(x) = uÕ(x)v(x) ≠ u(x)vÕ(x)
v2(x) = 2x + 1 ≠ 2(x + 3)

(2x + 1)2 = ≠5
(2x + 1)2 ·

Exercise 2.3.19. Find the derivative of the following function

1. f(x) = 3x + 5
x2 + x + 1 , 2. g(x) =

Ô
x + x + 1
x + 2 , 3. h(x) = 5x ≠ 6

≠4x + 1 ·

For the square root we have the following result.

Lemma 2.3.20. Let u be a di�erentiable function in an open interval I, such that
for every x œ I, u(x) > 0. Then the function f(x) =


u(x) is di�erentiable in I

and for every x œ I

f Õ(x) = uÕ(x)
2


u(x)

·

We can prove this lemma easily by observing that f(x) =
!
u(x)

"1/2. Then, the
derivative of f is

f Õ(x) = 1
2uÕ(x)

!
u(x)

"≠1/2 = uÕ(x)
2


u(x)
·

But here we will give another proof.

Proof. Let u be as in the lemma. We set f(x) =


u(x). We take x0 œ I and h ”= 0
small enough. We have f(x0 + h) =


u(x0 + h) and f(x0) =


u(x0). Therefore

we have

f(x0 + h) ≠ f(x0)
h

=


u(x0 + h) ≠


u(x0)
h

= u(x0 + h) ≠ u(x0)
h (


u(x0 + h) +


u(x0))

= u(x0 + h) ≠ u(x0)
h

· 1
u(x0 + h) +


u(x0)

·

We have
lim
hæ0

u(x0 + h) ≠ u(x0)
h

= uÕ(x).

Since
Ô

u is a continuous function, we obtain

lim
hæ0

1
u(x0 + h) +


u(x0)

= 1
2


u(x0)
·

Then
lim
hæ0

f(x0 + h) ≠ f(x0)
h

= uÕ(x0)
2


u(x0)
·
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Example 2.3.21. Let f(x) =
Ô

2x + 2. The function f is defined in [≠1 ; +Œ). It
is di�erentiable in the interval (≠1 , +Œ), for every x œ (≠1 ; +Œ), the derivative
of f is defined by

f Õ(x) =
2
Ô

2x + 2
·

Exercise 2.3.22. Find the derivative of the following functions

1. f(x) =
Ô

3x + 2, 2. g(x) =


2x2 + 3x + 5, 3. h(x) =
Ô

2x + 3.

We take a function u and an open interval I. We suppose u di�erentiable in I.
Now we define the function f(x) = cos(u(x)). For x0 œ I and h ”= 0, we calculate
(f(x0 + h) ≠ f(x0))/h. Then, we obtain

f(x0 + h) ≠ f(x0)
h

= cos(u(x0 + h)) ≠ cos(u(x0)
h

= cos(u(x0 + h)) ≠ cos(u(x0))
h

· u(x0 + h) ≠ u(x)0)
u(x0 + h) ≠ u(x0)

= cos(u(x0 + h)) ≠ cos(u(x0))
u(x0 + h) ≠ u(x0) · u(x0 + h) ≠ u(x)0)

h
·

Since u is di�erentiable in I it is continuous on I. Then, limhæ0 u(x0 + h) = u(x0).
This means that when h æ 0, u(x0 + h) æ u(x0). In other words if we set
y = u(x0 + h) and y0 = u(x0), we obtain

lim
hæ0

cos(u(x0 + h)) ≠ cos(u(x0))
u(x0 + h) ≠ u(x0) = lim

yæy0

cos(u(y)) ≠ cos(y0))
y ≠ y0

= ≠ sin(y0)

= ≠ sin(u(x0)).

Since
lim
hæ0

u(x0 + h) ≠ u(x0)
h

= uÕ(x0),

we conclude that

lim
hæ0

f(x0 + h) ≠ f(x0)
h

= ≠uÕ(x0) sin(u(x0)).

Lemma 2.3.23. Let u bea di�erentiable function in the interval I. Then, the
function f(x) = cos(u(x)) is di�erentiable in I and for all x œ I, we have

f Õ(x) = ≠uÕ(x) · sin(u(x)).

Similarly we can establish the following result

Lemma 2.3.24. Let u be di�erentiable function in an open interval I. Then, the
function f(x) = sin(u(x)) is di�erentiable in I and for all x œ I, we have

f Õ(x) = uÕ(x) · cos(u(x)).

Example 2.3.25. We define the following functions

f(x) = cos(3x + 1) and g(x) = sin(5x + 2).

Then, we have

f Õ(x) = ≠3 sin(3x + 1) and gÕ(x) = 5 cos(5x + 2).
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Exercise 2.3.26. Give a proof of lemma 2.3.24.

Exercise 2.3.27. Find the derivative of the following functions

1. f(x) = cos(4x + 6), 2. g(x) = sin(x2 + x + 2), 3. h(x) = cos(
Ô

x + 1),
4. i(x) = sin(7x + 3), 5. j(x) = cos(x ≠ 1).

The last three lemmas we stated are just particular cases of the following general
theorem.

Theorem 2.3.28. Let u be a di�erentiable function in some open I and f a dif-
ferentiable function in some open interval J . We suppose u(I) µ J and we define
the function

g(x) = f(u(x)).

Then, the function g is di�erentiable in I and for every x œ I, we have

gÕ(x) = uÕ(x) · f Õ(u(x)). (2.3.1)

Proof. We consider u and f as in the theorem. Let x0 be an arbitrary element of I
and h ”= 0. We have

lim
hæ0

g(x0 + h) ≠ g(x0)
h

= lim
hæ0

f(u(x0 + h)) ≠ f(u(x0))
h

= lim
hæ0

f(u(x0 + h)) ≠ f(u(x0))
h

· u(x0 + h) ≠ u(x0)
u(x0 + h) ≠ u(x0)

= lim
hæ0

f(u(x0 + h)) ≠ f(u(x0))
u(x0 + h) ≠ u(x0) · lim

hæ0

u(x0 + h) ≠ u(x0)
h

When h æ 0, y = u(x0 + h) æ y0 = u(x0). This implies

lim
hæ0

f(u(x0 + h)) ≠ f(u(x0))
u(x0 + h) ≠ u(x0) = lim

yæy0

f(y)) ≠ f(y0))
y ≠ y0

= f Õ(y0) = f Õ(u(x0)).

On the other hand we have

lim
hæ0

u(x0 + h) ≠ u(x0)
h

= uÕ(x0).

Thus we conclude that

lim
hæ0

g(x0 + h) ≠ g(x0)
h

= gÕ(x0) = uÕ(x0) · f Õ(x0).

All the results stated in section can be summarized in the following table. To
make the presentation clear we will write u and uÕ instead of u(x) and uÕ(x). We
denote by Du the domain of the function u and DuÕ represent the domain of uÕ. We
use also the following notations:

D1 = {x œ R : u(x) ”= 0}, D2 = {x œ R : u(x) Ø 0} and

D3 = {x œ R : u(x) > 0}.
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f(x) Domain of f f Õ(x) Domain of f Õ

u Du uÕ DuÕ

u2 Du 2uÕ.u DuÕ

un Du nuÕ.un≠1 DuÕ

1
u

D1 ≠ uÕ

u2 D1

1
un

, n Ø 2 D1 ≠ nuÕ

un+1 D1


u(x) D2
uÕ

2
Ô

u
D3

cos(u) Du ≠uÕ. sin(u) Du

sin(u) Du uÕ. cos(u) Du

Let f and g be two functions. We aim to calculate this limit

lim
xæx0

f(x) ≠ f(x0)
g(x) ≠ g(x0) ,

where we assume g(x) ”= g(x0). If both functions f and g go to 0 when x æ x0, we
will have

lim
xæx0

f(x) ≠ f(x0)
g(x) ≠ g(x0) = 0

0 ·

We know, this is undefined. The second case is when

lim
xæx0

f(x) ≠ f(x0)
g(x) ≠ g(x0) = ±Œ

±Œ ·

To decide these two cases use the following result.

Theorem 2.3.29 (De Hopital’s Rule). Let f and g be two di�erentiable functions
at x0. We suppose g(x) ”= g(x0) for every x ”= x0. Then, we have

lim
xæx0

f(x) ≠ f(x0)
g(x) ≠ g(x0) = f Õ(x0)

gÕ(x0) ·

Proof. The proof this is quite simple. Let us assume g(x) ”= g(x0) for every x ”= x0.
In this case we can write

f(x) ≠ f(x0)
g(x) ≠ g(x0) =

f(x) ≠ f(x0)
x ≠ x0

g(x) ≠ g(x0)
x ≠ x0

·

Since we assumed that the functions f and g are di�erentiable at x0, we have

lim
xæx0

f(x) ≠ f(x0)
x ≠ x0

= f Õ(x0) and lim
xæx0

g(x) ≠ (x0)
x ≠ x0

= gÕ(x0).

Therefore we have,
lim

xæx0

f(x) ≠ f(x0)
g(x) ≠ g(x0) = f Õ(x0)

gÕ(x0) ·
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Example 2.3.30. We consider the following function f(x) = sin(x)
x

. We have

lim
xæ0

sin(x)
x

= lim
xæ0

sin(x) ≠ sin(0)
x ≠ 0 = cos(0) = 1.

Exercise 2.3.31. Find the following limits

1. lim
xæ0

cos(x) ≠ 1
x

, 2. lim
xæ0

tan(x)
x

, 3. lim
xæ≠1

x3 + 1
x + 1 ·

In the previous sections we study derivatives of functions. In the next section
we will see some applications of these derivatives.

2.4 Applications
In this section we enumerate some applications of the derivatives. In the first part we
use derivative to study variations of functions. After this we show how derivatives
can allow us to characterize a maximum and a minimum.

Theorem 2.4.1. Let f be a di�erentiable function in an open interval I. Then,

• the function f is increasing in I if and only if, for every x œ I, f Õ(x) Ø 0

• the function f is decreasing in I if and only if, for every x œ I, f Õ(x) Æ 0.

Remark 2.4.2. We specify the following notations

• the function f is strictly increasing in I if and only if, for every x œ I,

f Õ(x) > 0

• the function f is strictly decreasing in I if and only if, for every x œ I,

f Õ(x) < 0.

Example 2.4.3. We consider the function f(x) = x3 + 1. This function is polyno-
mial then it is defined and derivable in R. For every real number x the derivative
of f is given by f Õ(x) = 3x2. Then, f Õ(x) Ø 0. We conclude that the function f is
increasing in R.

Example 2.4.4. Let g(x) = ≠2x + 1. The function g is di�erentiable in R and
for all real number x we have gÕ(x) = ≠2 < 0. Hence the function g is strictly
decreasing in R.

Exercise 2.4.5. Study the variations of the following functions

1. f(x) = x2 + 3x + 6, 2. g(x) = x + 2
x ≠ 1 , 3. h(x) = (x2 + 2x + 4)(x + 5).

Below we remind the definition of a local maximum of a given function.

Definition 2.4.6. Let f be a continuous function and I µ Df an interval. We say
the function f has local maximum at x0 œ I, if for all x œ I, f(x0) Ø f(x).
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Theorem 2.4.7. Let f be a di�erentiable function, a and b two real numbers in Df ,
such that, a < b and [a , b] µ Df . We consider x0 œ (a , b), such that the function f
is increasing in [a , x0] and decreasing in [x0 , b]. Then, the function f has a local
maximum at x0. The value of this local maximum is f(x0).

Proof. Let f , a and b satisfy the conditions in the theorem. The function f is
increasing in [a , x0]. Then f Õ(x) Ø 0 for all x œ [a , x0]. From this we deduce that
for all x œ [a , x0],

f(x0) ≠ f(x)
x0 ≠ x

Ø 0

. Multiplying the inequality above by x0 ≠ x > 0, we obtain f(x0) ≠ f(x) Ø 0 This
implies f(x0) Ø f(x), for every x œ [a , x0].

On the other hand we know the function f is decreasing in [x0 , b]. Hence f Õ(x) Æ
0, for all x œ [x0 ; b]. That is, for every x œ [x0 ; b],

f(x) ≠ f(x0)
x ≠ x0

Æ 0.

As we know that x ≠ x0 Ø 0, then, f(x) ≠ f(x0) Æ 0. Therefore for all x œ [x0 , b]
we have

f(x0) Ø f(x).
We have proved that for every x œ [a , b],

f(x0) Ø f(x).

The function f has a local maximum at x0. The value of this maximum is f(x0).

Example 2.4.8. We take the function f(x) = ≠x2 + 2x + 1. The function f is
derivable in R and we have f Õ(x) = ≠2x + 2. We can observe that f Õ(x) Ø 0 for
all x œ (≠Œ , 1]. Therefore f is increasing in (≠Œ , 1]. The function f Õ(x) Æ 0
for all x œ [1 , +Œ). Then f is a decreasing in [1 , +Œ). Applying the theorem
above we deduce that f has a maximum at x0 = 1. The value of this maximum is
f(1) = ≠12 + 2 · 1 + 1 = 2.

Theorem 2.4.9. Let f be a di�erentiable function and I µ Df an interval. We
consider x0 œ I and we assume that f has a local maximum at x0. Then f Õ(x0) = 0.

Proof. Let f be a di�erentiable function which has a local maximum at x0 œ I.
Then for all x < x0, we have f(x)≠f(x0)

x≠x0
Ø 0. From this we deduce that

lim
xæx0

f(x) ≠ f(x0)
x ≠ x0

= f Õ(x0) Ø 0. (2.4.1)

On the other hand for any x Ø x0, we have f(x)≠f(x0)
x≠x0

Æ 0. This implies

lim
xæx0

f(x) ≠ f(x0)
x ≠ x0

= f Õ(x0) Æ 0. (2.4.2)

From (2.4.1) and (2.4.2), we deduce that 0 Æ f Õ(x0) Æ 0. Therefore f Õ(x0) = 0.

Example 2.4.10. We consider the function f(x) = ≠x2 + 2x + 1. We have
f Õ(x) = ≠2x + 2. We proved that the function f has a maximum at x0 = 1. We can
see that f Õ(1) = ≠2.(1) + 2 = 0.
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In the definition below, we recall the definition of a local minimum of a function.

Definition 2.4.11. Let f be a continuous function and I µ Df an interval. The
function f has local minimum at x0 œ I, if for every x œ I, f(x) Ø f(x0).

Theorem 2.4.12. Let f be a di�erentiable function a and b two real numbers in Df ,
such that, a < b and [a , b] µ Df . We consider x0 œ (a , b), such that f is decreasing
in [a , x0] and increasing in [x0 , b]. Then the function f has a local minimum at
x0. The value of this local minimum is f(x0).

Proof. Let f , a and b be as in the theorem. Since the function f is decreasing in
[a , x0]. Then f Õ(x) Æ 0. From this we deduce that for all x œ [a , x0],

f(x0) ≠ f(x)
x0 ≠ x

Æ 0.

Since x0 ≠ x > 0, we have f(x0) ≠ f(x) Æ 0. This implies that f(x0) Æ f(x), for
every x œ [a , x0].

On the other hand, the function f is increasing in [x0 , b]. Hence f Õ(x) Ø 0, for
all x œ [x0 , b]. That is, for all x œ [x0 , b], f(x)≠f(x0)

x≠x0
Ø 0. The fact that x ≠ x0 Ø 0,

involves f(x) ≠ f(x0) Ø 0. Therefore, for every x œ [x0 , b], f(x0) Æ f(x). We have
proved that for all x œ [a , b] f(x0) Æ f(x). The function f has a local minimum at
x0. The value of this minimum is f(x0).

Example 2.4.13. We take the function f(x) = x2 ≠ x + 1. The derivative of f is
f Õ(x) = 2x ≠ 1. We can observe that f Õ(x) Æ 0, for all x in (≠Œ ; 1/2]. Therefore
f is decreasing in (≠Œ ; 1/2]. The function f Õ is positive in [1/2 ; +Œ[. Then f
is a increasing in [1/2 ; +Œ[. Applying the theorem above we deduce that f has a
minimum at x0 = 1/2 and we get f Õ(1/2) = 2(1/2) ≠ 1 = 0.

Theorem 2.4.14. Let f be a di�erentiable function and I µ Df which is an
interval. We consider x0 œ I and we assume that f has a local minimum at x0.
Then

f Õ(x0) = 0.

Proof. Let f be a di�erentiable function which has a local manimum at x0, then
for all x < x0, we have f(x) ≠ f(x0)

x ≠ x0
Æ 0. Then,

lim
xæx0

f(x) ≠ f(x0)
x ≠ x0

= f Õ(x0) Æ 0. (2.4.3)

On the other hand, for any x Ø x0, we have f(x) ≠ f(x0)
x ≠ x0

Ø 0. This implies
that

lim
xæx0

f(x) ≠ f(x0)
x ≠ x0

= f Õ(x0) Ø 0. (2.4.4)

From (2.4.3) and (2.4.4), we deduce that 0 Æ f Õ(x0) Æ 0. Therefore f Õ(x0) = 0.

Example 2.4.15. Let f(x) = x2 ≠ 2x + 1. The function f is di�erentiable in
R and f Õ(x) = 2x ≠ 2. The function f has a minimum at x0 = 1, and we have
f Õ(1) = 2.(1) ≠ 2 = 0.
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Exercise 2.4.16. Say whether the following functions have local maximum or local
minimum.

1. f(x) = x2 + 3x + 2, 2. g(x) = ≠3x2 + 5x + 1, 3. h(x) = x + 1
x2 + 3x + 4 ·

A general case where f Õ(x0) = 0 holds is in Rolle’s theorem.

Theorem 2.4.17 (Rolle’s Theoerem). Let f be a real function defined on [a , b].
We suppose

• the function f is continuous on [a , b]

• the function f is di�erentiable in (a , b)

• we have f(a) = f(b).

Then, there exist x0 œ (a , b), such that, f Õ(x0) = 0

Proof. In this proof we will distinguish two cases.

Case 1: We assume for every x œ [a , b], f(x) = f(a).

In this case the function f is constant. Therefore, for all x œ]a , b[, f Õ(x) = 0.

Case 2: We assume the function f is not constant.

Since the function f is continuous on [a , b], then the function f reaches its maximum
and minimum. There are x0 and x1 in [a , b], such that

m := min
xœ[a , b]

f(x) and M := max
xœ[a , b]

f(x).

In this case,we have one of the following situation either m < f(a) or M > f(a).
Here we suppose m < f(a) = f(b). Then, there exists x0 œ]a , b[, such that,

f(x0) = m. Since the function f has a local minimum at x0, we have f Õ(x0) = 0.

We emphasize Rolle’s Theorem is a particular case of the following theorem.

Theorem 2.4.18 (Mean Value Theorem). Let f be a real function defined on [a , b].
We suppose that

• the function f is continuous on [a , b]

• the function f is di�erentiable in (a , b)

Then, there exists c œ (a , b), such that,

f(b) ≠ f(a) = (b ≠ a) f Õ(c). (2.4.5)

If we take f(a) = f(b) in this theorem, we obtain Rolle’s theorem. The proof of
this theorem is simple.

Proof. Let x œ [a , b]. We define the function g(x) = f(x) ≠ f(a) ≠ (x ≠ a) f(b)≠f(a)
b≠a

·
The function g satisfies these properties:

• the function g is continuous on [a , b]
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• the function g is derivable in (a , b) and gÕ(x) = f Õ(x) ≠ f(b)≠f(a)
b≠a

,

• we have g(a) = g(b).

Then, applying Rolle’s theorem to g, we find c œ (a , b) such that gÕ(c) = 0. This
involves

f Õ(c) = f(b) ≠ f(a)
b ≠ a

·

We remark that the identity (2.4.5) holds only in R. When the dimension n of
the space is greater than 1, (for example n Ø 2), we get an inequality..

Theorem 2.4.19. Let f be a real function defined on [a , b]. We assume that

• the function f is continuous on [a , b]

• the function f is di�erentiable in (a , b)

• there exists a real number M > 0, such that, for every x œ (a , b),

|f Õ(x)| Æ M.

Then, --f(b) ≠ f(a)
-- Æ M |b ≠ a|. (2.4.6)

Proof. To prove this theorem we consider a function f satisfying the condition of
the theorem. Then, there exists c œ]a , b[, such that

|f(b) ≠ f(a)| = |f Õ(c)| |b ≠ a|.

Since c œ]a , b[, we have |f Õ(c)| Æ M . Hence, we obtain

|f(b) ≠ f(a)| Æ M |b ≠ a|

To end this section we show how to use the derivative of a function to find a local
linear approximation of a function. The most known of this type of approximation
is the tangent line of the graph C of the function at the point x0. Here we will have
the privilege of showing when using second order derivative we can obtain more
precise approximations of a function.

Definition 2.4.20. Let f be a di�erentiable function. We consider x0 œ Df and
we suppose the function f di�erentiable at x0. The equation of the tangent line of
the curve of f at x0 is defined by,

(Tx0) : y = f Õ(x0)(x ≠ x0) + f(x0). (2.4.7)

Sometimes we use the notation tangent line of f at x0 instead of tangent line of
the curve of f at x0.

Example 2.4.21. Let f(x) = x2 + 4x + 2. Find the tangent line of f at x0 = 0.
We have f Õ(x) = 2x + 4. Then f Õ(0) = 4 and f(0) = 2. The equation of the tangent
line of f at x0 = 0 is given by

T0 : y = 4(x ≠ 0) + 2 = 4x + 2.
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Exercise 2.4.22. Define the equation of the tangent line of the following functions
at x0.

1. f(x) = x3 + 2x + 1, x0 = 1, 2. g(x) =
Ô

x + 2, x0 = 2, 3. h(x) = 1
x + 1 , x0 = 1

4. i(x) = x + 7
x + 2 , x0 = 3, 5. j(x) = (x + 5)(x2 + 5x + 9), x0 = 0.

Convex functions share some nice properties with their tangent line. Below we
will establish that the curve of a convex function lives above its tangent lines. To
present this clearly, we need some preliminary results.

Lemma 2.4.23. Let f be a convex and di�erentiable function in an open interval
I. We consider three real numbers x1, x2 and x3 in I, such that x1 < x2 < x3.
Then,

f(x2) ≠ f(x1)
x2 ≠ x1

Æ f(x3) ≠ f(x1)
x3 ≠ x1

Æ f(x3) ≠ f(x2)
x3 ≠ x2

· (2.4.8)

Proof. We take f convex in I, x1, x2 and x3 in I such that, x1 < x2 < x3. Since
the segment [x1 , x3] is convex, there is t œ]0 , 1[, such that, x2 = t x1 + (1 ≠ t) x3.
Using the definition of convex functions we have,

f(x2) = f(tx1 + (1 ≠ t) x3) Æ tf(x1) + (1 ≠ t) f(x3).

This implies f(x2) ≠ f(x1) Æ (1 ≠ t)
!
f(x3) ≠ f(x2)

"
. Dividing by x2 ≠ x2 > 0, we

obtain
f(x2) ≠ f(x1)

x2 ≠ x1
Æ (1 ≠ t)f(x3) ≠ f(x1)

x2 ≠ x1
·

From the definition of x2, we observe that x3 ≠x1 = (x2 ≠x1)/(1≠ t). This involves

f(x2) ≠ f(x1)
x2 ≠ x1

Æ (1 ≠ t)f(x3) ≠ f(x1)
x2 ≠ x1

= (1 ≠ t) f(x3) ≠ f(x1)

(1 ≠ t)x2 ≠ x1
1 ≠ t

= f(x3) ≠ f(x1)
x3 ≠ x1

·

This establish the first part of (2.4.8).
To prove the second part of (2.4.8) we need remark that

t(f(x3) ≠ f(x1) Æ f(x3) ≠ f(x2).

Now we divide in booth sides this inequality by x3 ≠ x2 > 0, then,

t
(f(x3) ≠ f(x1)

x3 ≠ x2
Æ (f(x3) ≠ f(x2)

x3 ≠ x2
·

As we know that x3 ≠ x2 = t(x3 ≠ x1) one has

t
(f(x3) ≠ f(x1)

x3 ≠ x2
= t

f(x3) ≠ f(x1)

t
x3 ≠ x1

t

= f(x3) ≠ f(x1)
x3 ≠ x1

Æ (f(x3) ≠ f(x2)
x3 ≠ x2

·

This is the second part of inequality (2.4.8). Therefore we have (2.4.8).

This lemma implies the following theorem.
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Theorem 2.4.24. Let f be a convex and di�erentiable function in an open interval
I. Then, for all x and x0 in I, we have

f(x) Ø f Õ(x0)(x ≠ x0) + f(x0).

Proof. Let f be a convex function. We assume x0, x. Then, for every y œ [x0 , x],
we

f(y) ≠ f(x0)
y ≠ x0

Æ f(x) ≠ f(x0)
x ≠ x0

·

Taking the limit when y goes to x0, we obtain

lim
yæx0

f(y) ≠ f(x0)
y ≠ x0

= f Õ(x0) Æ f(x) ≠ f(x0)
x ≠ x0

·

Remark 2.4.25. The proof is the same when we assume x0 > x.

Considering again (2.4.8), we can see that if we let x2 æ x1 and x2 æ x3, we
obtain the following theorem which mention that the derivative of a convex function
is increasing.

Theorem 2.4.26. Let f be convex and di�erentiable function in I. Then, the
function f Õ is an increasing function.

Proof. Let f be a convex function. From (2.4.8), we know that for any x1, y and
x2 in I, such that x1 < y < x2, we have,

f(y) ≠ f(x1)
y ≠ x1

Æ f(x2) ≠ f(x1)
x2 ≠ x1

Æ f(x) ≠ f(y)
x2 ≠ y

·

First we consider the limit when y æ x1. In this case we have

f Õ(x1) Æ f(x2) ≠ f(x1)
x2 ≠ x1

· (2.4.9)

Now we take the limit when y æ x2. Thus, we get

f(x2) ≠ f(x1)
x2 ≠ x1

Æ lim
yæx2

f(x) ≠ f(y)
x ≠ y

= f Õ(x2). (2.4.10)

We conclude that the function f Õ is increasing. Because f Õ(x1) Æ f Õ(x2).

Remark 2.4.27. The reciprocal of this theorem is also true. If f is a function such
that, f Õ is increasing, then f is convex.

The proof of this is based on the mean value theorem.

Let f be a convex function. The theorem above implies the function f Õ is
an increasing function in the interval I. This means that if the function f Õ is
di�erentiable in the interval I, then , its derivative f ÕÕ is positive for all x œ I.

Reversely if the function f ÕÕ is positive, then f Õ is an increasing function. Con-
sequently the function f is convex.

This establish the following theorem.
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Theorem 2.4.28. Let f be a di�erentiable function in an interval I. We suppose
f Õ di�erentiable on I. Then, the function f is convex if and only if, for all x œ I,

f ÕÕ(x) Ø 0.

Example 2.4.29. Let f(x) = x2 + 3x + 2. The function f is di�erentiable in R.
For every x œ R,

f Õ(x) = 2x + 3 and f ÕÕ(x) = 2 > 0.

We conclude that the function f is convex in R.

Exercise 2.4.30. Say whether the following functions are convex

1. f(x) = ≠3x2 + 4x + 1, 2. g(x) = 5x2 ≠ 6, 3. h(x) = x3 + 3x2 + 2x + 4.

With this exercise we close the parenthesis on convex function and go back to
approximation of functions.

In general we can establish that any function can be approximated by a poly-
nomial function. This holds in a neighborhood of some point x0. To present this in
a simple way we introduce the following notations

Definition 2.4.31. Let f be a real function defined in the interval I.

• We say the function f is C 0 in I if the function f is continuous in I

• the function f is C 1 in I if f Õ is continuous in I

We call the second derivative of the function f , the derivative of the function
f Õ. We denote it f ÕÕ. The third derivative of f is denoted f ÕÕÕ or f (3). The fourth
derivative of f is denoted f (4). In general, we denote the nth derivative of f , f (n).

Definition 2.4.32. Let f be a real function defined in the interval I.

• We say the function f is C 2 in I, if f is two times di�erentiable and f ÕÕ is
continuous in I

• The function f is a C n function if the function f is n times di�erentiable and
the function f (n) is continuous in I.

For the sake of clarity we use the following notations. The set of all continuous
functions on I is denoted C 0!

I
"
. For any n Ø 1 we use C n

!
I
"

to mean the set of
all C n functions in I.

Definition 2.4.33. We define the function Á : R ≠æ R+, satisfying the following
properties:

1. the function Á is continuous in R

2. the function Á satisfies

lim
xæ0

Á(x) = 0 and lim
xæ0

Á(1) = 0

Definition 2.4.34. Let f be a real function defined in I. We assume the function
f admits first and second derivative at x0 œ I. Let ” > 0 be small enough. For any
x œ (x0 ≠ ” , x0 + ”) we define the second order Taylor series of f at x0 as follows

f(x) = f(x0)+f Õ(x0) · (x ≠ x0)
1! +f ÕÕ(x0) · (x ≠ x0)2

2! +(x≠x0)2Á((x≠x0)). (2.4.11)
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Remark 2.4.35. When we take x0 = 0 in (2.4.11), we obtain

f(x) = f(0) + f Õ(0)
1! · x + f ÕÕ(0)

2! · x2 + x2Á(x). (2.4.12)

Another way to reformulate (2.4.11) is to define x = x0 + h for some small real
number h. In this case we have h = x ≠ x0. Replacing in (2.4.11) one gets

f(x0) = f(x0) + f Õ(x0) · h

1! + f ÕÕ(x0) · h2

2! + h2Á(h).

In truth we can define a n degree polynomial function which is an approximation
of f in a neighborhood of a point. This polynomial function is called the nth order
Taylor Series of f .

Definition 2.4.36. Let f be a real function defined in I. We suppose f is n times
derivable at x0 œ I. Let ” > 0 be a fixed real number. For any x œ (x0 ≠ ” , x0 + ”),
we define the nth order Taylor Series of f at x0 as follows

f(x0 + h) = f(x0) +
nÿ

k=1
f (k)(x0) · hk

k! + hn · Á(h), (2.4.13)

where h = x ≠ x0.

Example 2.4.37. We consider the function f(x) = cos(x). The function f is
di�erentiable in R. We have f Õ(x) = ≠ sin(x) and f ÕÕ(x) = ≠ cos(x). Taking x0 = 0
we have f(0) = 1, f Õ(0) = sin(0) = 0 and f ÕÕ(0) = ≠1. Therefore the second order
Taylor Series of f is defined by

cos(x) = f(0) + f Õ(0) · x + f ÕÕ(0) · x2

2! + x2 · Á(x)

= 1 + 0 · x ≠ x2

2 + x2 · Á(x) = 1 ≠ x2

2 + x2 · Á(x).

Using this Taylor series we can easily find this limit limxæ0
cos(x)≠1

x
· Indeed, for

x ”= 0, we have
cos(x) ≠ 1

x
= ≠x

2 + x · Á(x).

Since
lim
xæ0

cos(x) ≠ 1
x

= ≠ lim
xæ0

x

2 + lim
xæ0

x · Á(x) = 0

Example 2.4.38. Let f(x) = sin(x). The function f is 3 times di�erentiable in
R. Therefore, the function f is 3 times di�erentiable at 0. We have f Õ(x) = cos(x),
f ÕÕ(x) = ≠ sin(x) and f ÕÕÕ(x) = ≠ cos(x). I this case we get f(0) = sin(0) = 0,
f Õ(0) = cos(0) = 1, f ÕÕ(0) = sin(0) = 0 and f ÕÕÕ(0) = ≠1. This leads to the following
third order Taylor series of f at 0

f(x) = f(0) + f Õ(0) · x + f ÕÕ(0) · x2

2 + f ÕÕÕ(0) · x3

3! + x3 · Á(x)

= 0 + x + 0 · x2

2 ≠ x3

6 + x3 · Á(x) = x ≠ x3

6 + x3 · Á(x).
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From this Taylor series we deduce that , for any x ”= 0,

sin(x) ≠ x

x
= ≠x2

6 + x2 · Á(x).

Hence
lim
xæ0

sin(x) ≠ x

x
= ≠ lim

xæ0

x2

6 + lim
xæ0

x2 · Á(x) = 0.

We know what is a Taylor series, now we want to have criterion which will allows
us to say whether a function has a Taylor series.

Theorem 2.4.39. Let I be an open interval and f a real function. We suppose
f œ C n

!
I
"
. Then, the function f admit a nth order Taylor Series at any point

x0 œ I.

Theorem 2.4.40. Let f be a polynomial function in I. Then, the function f is its
own Taylor series.

Exercise 2.4.41. Find the 4th order Taylor series of the following functions at the
indicated point

1. f(x) = 1
1 ≠ x

, x0 = 1, 2. g(x) =
Ô

1 + x, x0 = ≠1, 3. h(x) = 1
1 ≠ x2 , x0 = 1.
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In chapter 1 we defined limits of functions. We specified that the limits at
the bounds of the domain of definition lead to the important concept of asymptote.
Using limits again we defined continuity. We studied continuous functions and their
properties in that chapter. In chapter 2 we defined derivative of one variable real
functions. We showed several applications of derivatives.

The main purpose of this chapter is to gather all the properties studied in
chapters 1 & 2. Studying together all these properties is called: study of functions.
In short, studying a function consists of :

1. finding its domain

59
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2. finding the limits at the bound of the domain

3. finding asymptotes

4. studying the continuity of the function

5. calculating derivative of the function

6. studying variations of the function

7. giving the table of variations

8. finding tangent lines

9. sketching the graph of f .

This chapter is organized as follows : in section 1, we study elementary functions.
The section 2, is devoted to the study of second order polynomial functions. In the
last section we deal with general functions.

3.1 Study of Elementary Functions
The aim of this section is to study elementary functions. We remind that elementary
are bricks from which all complicated functions are constructed. Here we deal with
the a�ne functions ax + b, the function x2, the function

Ô
x and the function 1

x
·

As we will see it, using algebraic operations and composition on these functions,
we will be able to study more complicated functions. This will be done in section
2.

The most elementary functions are a�ne functions. That is why we start the
study of functions with them. We recall that an a�ne function is a function in the
form

f(x) = ax + b,

where a and b are constant real numbers such that a ”= 0.

3.1.1 Study of A�ne Functions
Let f(x) = ax + b be an a�ne function. We know from the previous chapters that
the domain of f is R. Now we undertake to study f.

We start by finding the limits at the bounds of the domain of f

Limits at the Bounds of the Domain
To compute correctly the limits of the function at the bounds of the domain, we
have to distinguish two cases according to the sign of the real number a.

Case 1: a > 0 When the real number a is positive, the following limits hold

lim
xæ≠Œ

f(x) = ≠Œ and lim
xæ+Œ

f(x) = +Œ.

Case 2: a < 0 If the real number a is negative, one has the following limits

lim
xæ≠Œ

f(x) = +Œ and lim
xæ+Œ

f(x) = ≠Œ.
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We observe that a�ne functions do not have horizontal asymptotes. Since a�ne
functions are defined in R they do not have vertical asymptotes. The next step
consists of finding the derivative of f.

Derivative of an A�ne Function
We established that a�ne function are di�erentiable in R and for every real number
x we have

f Õ(x) = a.

Here again we will use the sign of the real number a to determine the variations of
f. There are two cases:

Case 1: a > 0. In this case the function f is strictly increasing in R. Because for
every x œ R, we have f Õ(x) > 0.

Case 2: a < 0. Here f Õ(x) < 0 for every x œ R. This implies the function f is
strictly decreasing in R.

Remark 3.1.1. We point out that when a = 0, f is a constant function. Constant
functions are a critical case. Because we can consider them either increasing or
decreasing functions.

Variational Table of an A�ne Function
Below we define the variational table of f. This table was established in concordance
with the sign of a.

We obtain the following table:

Case 1: a > 0. When the real number a is positive we obtain the following table

x ≠Œ +Œ
sign of f Õ +

variatons of +Œ
f ¬

≠Œ

This table shows that the function f is increasing from ≠Œ to +Œ.

Case 2: a < 0. In this case the following variational table holds

x ≠Œ ≠Œ
sign of f Õ ≠

variatons of +Œ
f √

≠Œ

From this table we deduce the function f is decreasing from +Œ to ≠Œ.

Example 3.1.2. We consider the function f(x) = 2x+4. The function f is defined
in R. Since a = 2 > 0, we have

lim
xæ≠Œ

f(x) = ≠Œ and lim
xæ+Œ

f(x) = +Œ.
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We know the function f is di�erentiable in R and for every real number x f Õ(x) = 2.
Therefore the function f is increasing in R. Then, it follows that we have the
following variational table

x ≠Œ +Œ
sign of f Õ +

variatons of +Œ
f ¬

≠Œ

The function f is represented by the following graph
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Example 3.1.3. Let g(x) = ≠x + 1. The function g is defined in R and we have

lim
xæ≠Œ

g(x) = +Œ and lim
xæ+Œ

g(x) = ≠Œ.

The function g is di�erentiable in R and for all x œ R, we have f(x) = ≠1 < 0.
Then g is a decreasing function. The following variational table holds

x ≠Œ ≠Œ
sign of gÕ ≠

variatons of +Œ
g √

≠Œ

Below we sketch the graph of g
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Exercise 3.1.4. Study the following a�ne functions

1. f(x) = ≠3x + 5, 2. g(x) = 5x + 7, 3. h(x) = ≠4x + 9, 4. i(x) = 11x + 33.

in the following subsection we study the square function.

3.1.2 Study of the Square Function
Let f(x) = x2. We have established that Df = R. The next step consist of finding
its limits

Limits at the Bounds of the Domain
Since for any real number x, we have x2 Ø 0, we deduce

lim
xæ≠Œ

f(x) = +Œ and lim
xæ+Œ

f(x) = +Œ.

Hence the function f(x) = x2 does not have horizontal asymptotes. The function
f is defined in the whole set of real numbers R. Therefore, the function does not
admit vertical asymptotes.

On the other hand we have,

lim
xæ≠Œ

f(x)
x

= ≠Œ and lim
xæ+Œ

f(x)
x

= +Œ.

This show that, we do not have oblique asymptotes at ±Œ.

Derivative of the Square Function
From previous chapters, we know that the function f is di�erentiable in R and for
every x œ R, f Õ(x) = 2x.

To determine the variations of the function we need to study the sign of f Õ.
Observing that f Õ is a linear function, we deduce that f Õ(x) Æ 0 for every x œ!

≠ Œ , 0
$
, and f Õ(x) Ø 0 for all x œ

#
0 , +Œ

"
.
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Variations of the Square Function

Using the sign of the function f Õ we conclude the function

• f(x) = x2 is decreasing in (≠Œ , 0]

• f is increasing in [0 , +Œ).

Variational Table of the Square Function

The variations of the function f will allow to define the following table:

x ≠Œ 0 +Œ
f Õ(x) ≠ 0 +

+Œ +Œ
f(x) √ ¬

f(0)

Tangent Line at 0

The tangent line of f(x) = x2 at 0 is given by the following formula (T0) : y =
f Õ(0)(x ≠ 0) + f(0) = 0.

Since the function f is decreasing in (≠Œ , 0] and increasing in [0 , +Œ). Then
the function f has a minimum at x0 = 0. This minimum is equal to f(0) = 0.

Below we represent the function f(x) = x2.

≠1 ≠0.5 0.5 1 1.5 2 2.5

0.2

0.4

0.6

0.8

1

Exercise 3.1.5. Study the following functions

1. f(x) = ≠x2, 2. g(x) = x2 + 3, 3. h(x) = ≠x2 + 3.

3.1.3 Study of the Inverse Function

Now we consider the function f(x) = 1
x

· This function is defined in R\{0}.
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Limits at ±Œ

The limits of the function at ±Œ are

lim
xæ+Œ

f(x) = 0 and lim
xæ≠Œ

f(x) = 0.

This involves the line y = 0 is a horizontal asymptote at ±Œ.

Limits at 0

As it was shown in the chapter 1 we have

lim
xæ0≠

f(x) = ≠Œ and lim
xæ0+

f(x) = +Œ.

This means that the line x = 0 is a vertical asymptote of f at the point x0 = 0.

Derivative of the Inverse Function

The function f is di�erentiable in R\{0}. Let x œ Rú one has

f Õ(x) = ≠ 1
x2 ·

This means that f Õ(x) < 0, for all x œ R\{0}. That is, f is a decreasing function in
R\{0}.

Variational Table of f

The variations of the function f lead to the following variational table

x ≠Œ 0 +Œ
f Õ(x) ≠ ≠

0 +Œ
f(x) √ √

≠Œ 0

The function f does have not a global maximum neither a global minimum.

Remark 3.1.6. We point out that the graph of a function do never cross its vertical
asymptote. Vertical asymptotes hold only at point on which the function is not
defined. In other words if the line x = a is a vertical asymptote then the function f
is not defined at a.

The graph of the inverse function is given below.
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As we proved it above the inverse function has a vertical asymptote at 0. We can
observe that, here the graph of the inverse function do not cross the vertical line
x = 0 below we sketch the graph of f.

3.1.4 Study of the Square Root Function
The aim of this subsection is to study the function f(x) =

Ô
x. We denote its domain

[0 , +Œ). The function f is defined at 0 and f(0) = 0.

Limit at +Œ

The limit of the function square root at +Œ is +Œ. This means that the function
goes to +Œ when x approaches +Œ. This involves

lim
xæ+Œ

f(x) = +Œ.

From this we deduce that the function does not have a horizontal asymptote at
+Œ.

On the other hand, we have

lim
xæ+Œ

f(x)
x

= lim
xæ+Œ

1Ô
x

= 0·

Therefore f does not have an oblique asymptote at +Œ. In the same way we
observe that the curve of f does not have a vertical asymptote.

Derivative of the Square Root Function
The function f is di�erentiable in (0 , +Œ). For all real number x, such that, x > 0
we have

f Õ(x) = 1
2
Ô

x
·
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As we can observe it the function f Õ is not defined at 0. Hence the domain of
the function f Õ is (0 , +Œ). For every x in the domain of f Õ we have f Õ(x) > 0. This
yields the function f is increasing [0 , +Œ).

Variational Table of the Square Root Function

The previous step allows us to establish that the following variational table

x 0 +Œ
f Õ +

+Œ
f ¬

0

Let x œ [0 ; +Œ). Then one has f(x) Ø f(0) = 0. The function f has a global
minimum at 0. The value of this minimum is f(0) = 0.

The graph of the square root function is given below.

≠1 1 2 3

0.5

1

1.5

2

In the next section we study second order polynomial functions. We remind that
a second order polynomial functions is a function of the form f(x) = ax2 + bx + c,
where a, b and c are constant real numbers, such that a ”= 0.

3.2 Second Order Polynomial Functions
This section deals with variations of second order polynomial functions.In a second
time, we study maximum and minimum of second order polynomial functions.

3.2.1 Variations of Second Order Polynomial Functions
In this subsection we study variations of polynomial functions of degree 2. Let
f(x) = ax2 + bx + c. Since f is a polynomial function, then it is di�erentiable in R.
For any real number x, f Õ(x) = 2ax + b. The derivative of f is an a�ne function.

On the other hand, the variations of the function f are determined by the sign of
the function f Õ. Then, according to the sign of the real number a, we can establish
the following theorems.
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Theorem 3.2.1. Let f(x) = ax2 + bx + c, such that, a > 0. We define the real
number – = ≠b

2a
· Then, the function f is decreasing in (≠Œ , –] and increasing in

[– , +Œ).

Proof. We consider f(x) = ax2+bx+c. Then, we have f Õ(x) = 2ax+b. The function
f Õ is negative in (≠Œ , –] and positive in [– , +Œ). Therefore, the function f is
decreasing in (≠Œ , –] and increasing in [– , +Œ). We obtain the following table:

x ≠Œ – +Œ
f Õ ≠ 0 +

+Œ +Œ
f √ ¬

—

As we can see it in the variational table above, the function f is decreasing
in (≠Œ , –] and increasing in [– , +Œ). Hence the function f has a minimum at
x0 = –. The value of this minimum is f(–) = —.

Lemma 3.2.2. We consider the function f(x) = ax2 + bx + c such that a > 0.
Then the function f has a minimum at –. The value of this minimum is

f(–) = — = ≠ �
4a

·

≠3 ≠2 ≠1 1 2

≠1

1

2

3

–

—

Example 3.2.3. We consider the function f(x) = 3x2 + 2x + 1. The function f is
defined in R. Now we define the real numbers – and —:

– = ≠ b

2a
= 2

6 = ≠1
3 and — = f(–) = ≠ �

4a
= ≠4 ≠ 12

12 = 2
3 ·

Thus the canonical form of f is f(x) = 3
3

x + 1
3

42
+ 2

3 · Since a = 3 > 0, the

function f is decreasing in (≠Œ , ≠1/3] and increasing in [≠1/3 , +Œ). Then the
function f has a minimum at – = ≠1

3 . The value of this minimum is equal to

f(–) = 2
3 ·
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x ≠Œ ≠1
3 +Œ

f Õ ≠ 0 +
+Œ +Œ

f √ ¬
2
3

Lemma 3.2.4. Let f(x) = ax2 +bx+c be a second order polynomial function, such
that, a < 0. We define the real number – = ≠ b

2a
. Then the function f is increasing

in (≠Œ , –] and decreasing in [– , +Œ).

Proof. Let f(x) = ax2 + bx + c. The function f is di�erentiable in R and for every
real number x, f Õ(x) = 2ax + b. Then, the function f Õ is positive in (≠Œ , –] and
negative in [– , +Œ). Thus, the function f is increasing in (≠Œ , –] and decreasing
in [– , +Œ).

This yields the following variational table

x ≠Œ – +Œ
f Õ + 0 ≠

—
f ¬ √

≠Œ ≠Œ

Since the function f is increasing in (≠Œ , –] and decreasing in [– , +Œ), one
deduces that, f has a maximum at –. This maximum is equal to f(–) = —.

Lemma 3.2.5. Let f(x) = ax2 + bx+ cbe a second order polynomial function, such
that a < 0. Then, f has a maximum at – which is equal to f(–) = —.

≠1 1 2 3 4

≠2

≠1

1

2

3

–

—

Example 3.2.6. Let f(x) = ≠2x2 + x + 1. The domain of f is R. The limits at
the bounds of the domain of f are :

lim
xæ≠Œ

f(x) = ≠Œ and lim
xæ+Œ

f(x) = ≠Œ.
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We define the real numbers

– = ≠ b

2a
= ≠ 1

≠4 = 1
4 and — = ≠1 ≠ 4.(≠2).1

4.(≠2) = 9
8 ·

Applying the previous theorem we deduce that the function

f(x) = ≠2
3

x ≠ 1
4

42
+ 9

8 ·

is increasing in (≠Œ , 1/4]and decreasing in [1/4 , +Œ).
This means that f has a maximum at – = 1

4 which is equal to f(–) = 9
8 ·

x ≠Œ 1
4 +Œ

f Õ + 0 ≠
9
8

f ¬ √
≠Œ ≠Œ

Exercise 3.2.7. Study the following functions

1. f(x) = 2x2 + 3x + 1, 2. g(x) = ≠x2 + 5x + 1, 3. h(x) = x2 ≠ 3x + 7,

4. i(x) = ≠3x2 + 4x + 2, 5. j(x) = x2 + 2x.

Now we are interested in the study of general functions. In the next section we
show how to deal with general functions

3.3 Study of General Functions
The main objective of this section, is not to study all general functions, but to
give a kind of short user manual to deal with functions of the following form:
ax3 + bx2 + cx + d, un(x),


u(x), 1

u(x) , 1
un(x) , u(x) · v(x) and u(x)

v(x) ·

3.3.1 Study of Polynomial Function of Degree Three
This subsection is devoted to polynomial function of degree three. We recall a
polynomial function of degree three is a function of the form

f(x) = ax3 + bx2 + bx + c,

with a ”= 0. The domain of the function f is R. Thus, we remark the function f
does not have vertical asymptote.

To find the limit of this function at the bounds of its domain, we distinguish
two cases according to the sign of a.

Case 1: a > 0. When the real number a is strictly positive, we have

lim
xæ≠Œ

f(x) = ≠Œ and lim
xæ+Œ

f(x) = +Œ.
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An interpretation of these limits is, the graph of the function f does not have
horizontal asymptotes. Calculating the limit of f(x)/x we obtain

lim
xæ≠Œ

f(x)
x

= +Œ and lim
xæ+Œ

f(x)
x

= +Œ.

Consequently the graph of the function f does not admit oblique asymptotes.

Case 2: a < 0. In this case the following limits at the bounds of the domain hold

lim
xæ≠Œ

f(x) = +Œ and lim
xæ+Œ

f(x) = ≠Œ.

This involves the graph of f does not have horizontal asymptotes. We observe
that

lim
xæ±Œ

f(x)
x

= ≠Œ.

This means that, we do not have oblique asymptotes.

The function f is di�erentiable in R, because it a polynomial function. For every
real number x the function f Õ is given by

f Õ(x) = 3ax2 + 2bx + c.

To determine the variations of the function f we need to study the sign of f Õ.
Here the function f Õ is a second order polynomial function. To study the sign of a
second order polynomial, we compute � = 4b2 ≠4◊3ac. Since here we have bÕ = 2b
we can calculate �Õ = b2 ≠ 3ac instead of �. Thus according to the sign of � and
the sign of a one of the following cases holds

Case 1: a > 0 and � > 0 . As it was established in the previous chapters, when
� > 0, the function f Õ(x) = 3ax2 + 2bx + c, has two real roots x1 and x2.
Here we assume x1 < x2. We know also that the sign of f Õ depends on the
sign of a. Since a > 0, then the following sign table holds

x ≠Œ x1 x2 +Œ
f Õ(x) + 0 ≠ 0 +

Using the sign of f Õ, we conclude that the function f is increasing in
(≠Œ , x1] fi [x2 , +Œ) and decreasing in [x1 , x2]. This leads to the following
variational table.

x ≠Œ x1 x2 +Œ
f Õ + 0 ≠ 0 +
f f(x1) +Œ

¬ √ ¬
≠Œ f(x2)

Example 3.3.1. We consider the following function f(x) = x3 + 2x2 + x + 1. The
domain of the function is R. We have

lim
xæ≠Œ

f(x) = ≠Œ, lim
xæ+Œ

f(x) = +Œ.
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The polynomial function f is di�erentiable in R and for every real number x we
have

f Õ(x) = 3x2 + 4x + 1.

This implies � = 16 ≠ 12 = 4. Then, the function f Õ has two real roots

x1 = ≠4 ≠ 2
6 = ≠1, x2 = ≠4 + 2

6 = ≠1
3 ·

Applying the result above we conclude that the function f is increasing in
(≠Œ , ≠1] fi [≠1/3 , +Œ), and decreasing in [≠1 , ≠1/3].

x ≠Œ ≠1 ≠1
3 +Œ

f Õ + 0 ≠ 0 +
f f(≠1) +Œ

¬ √ ¬

≠Œ f

3
≠1

3

4

Case 2: a > 0 and � = 0 . In this case the function f Õ has only one real root x0
and f Õ is positive. We deduce that, f is increasing function R. This allows to
establish the following variational table

x ≠Œ x0 +Œ
f Õ + 0 +

+Œ
f ¬

≠Œ

Example 3.3.2. Let f(x) = x3 + 3x2 + 3x + 7. The function f is defined in the
whole set of real number R. The limits at the bounds of the domain are

lim
xæ≠Œ

f(x) = ≠Œ and lim
xæ+Œ

f(x) = +Œ.

Since the function f is polynomial, it is di�erentiable in R. For every real number
x, f Õ(x) = 3x2 + 6x + 3. In this example, � = 36 ≠ 4 ◊ 9 = 36 ≠ 36 = 0. The
function f Õ has only one real root x0 = ≠ 6

6 = ≠1. We conclude the function f is
increasing in R.

x ≠Œ +Œ
f Õ + 0 +

+Œ
f ¬

≠Œ

Case 3: a > 0 and � < 0. In this case the function f Õ does not have real roots,
and is strictly positive. Then, f is an increasing function.

x ≠Œ +Œ
f Õ + +

+Œ
f ¬

≠Œ



3.3. STUDY OF GENERAL FUNCTIONS 73

Example 3.3.3. We define the function f(x) = x3 + x2 + 3x + 5. This function is
defined in R. The limits at the bounds of the domainare

lim
xæ≠Œ

f(x) = ≠Œ and lim
xæ+Œ

f(x) = +Œ.

Since f is a polynomial function it is di�erentiable in R and for all x œ R

f Õ(x) = 3x2 + 2x + 3.

We see that � = 4 ≠ 4 ◊ 9 = ≠32. Therefore, the function f Õ does not have real
roots and for every x œ R, f Õ(x) > 0. Hence, the function f is increasing in R.

x ≠Œ +Œ
f Õ + +

+Œ
f ¬

≠Œ

Case 4: a < 0 and � > 0 . In this case the function f Õ has two real roots x1 and
x2. We obtain the following sign table for f

x ≠Œ x1 x2 +Œ
f Õ ≠ 0 + 0 ≠

This means that, the function f is decreasing in (≠Œ , x1] fi [x2 , +Œ) and
increasing in [x1 , x2].

x ≠Œ x1 x2 +Œ
f Õ ≠ 0 + 0 ≠
f +Œ f(x2)

√ ¬ √
f(x1) ≠Œ

Example 3.3.4. We consider the function f(x) = ≠x3 + 2x2 ≠ x + 1. We know
that Df = R and

lim
xæ≠Œ

f(x) = +Œ, lim
xæ+Œ

f(x) = ≠Œ.

The function f is di�erentiable in R, because it is a polynomial function. Let x œ R.
Then, f Õ(x) = ≠3x2 + 4x ≠ 1. From this we deduce � = 16 ≠ 12 = 4. Hence we
have two real roots

x1 = ≠4 + 2
≠6 = 1

3 , x1 = ≠4 ≠ 2
≠6 = 1·

We can see the function f Õ is negative in (≠Œ , 1/3] fi [1 , +Œ) and f Õ is positive
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[1/3 , 1]. The variations of f are given in the following table

x ≠Œ 1
3 1 +Œ

f Õ(x) ≠ 0 + 0 ≠
f +Œ f(1)

√ ¬ √

f

3
1
3

4
≠Œ

Case 5: a < 0 and � = 0, When a < 0 and � = 0 , the function f Õ has only one
real root x0. On the other hand we know the function f Õ and a have the
same sign. That is, the function f Õ is negative in R . Hence the function f is
decreasing in R.

x ≠Œ +Œ
+Œ

f(x) √
≠Œ

Example 3.3.5. Let f(x) = ≠x3 + 3x2 ≠ 3x + 7. Then Df = R and

lim
xæ≠Œ

f(x) = +Œ and lim
xæ+Œ

f(x) = ≠Œ.

The function f is di�erentiable in R, and f Õ(x) = ≠3x2 + 6x ≠ 3, for any x œ R.
From this, we deduce that � = 36 ≠ 4 ◊ 9 = 36 ≠ 36 = 0. The real root of f Õ is then
given by x0 = ≠ 6

≠6 = 1 . Since the function f Õ is negative in R, one deduces the
function f is decreasing R.

x ≠Œ +Œ
f Õ ≠ 0 ≠

+Œ
f(x) √

≠Œ

Case 6:a < 0 and � < 0. When � is strictly negative, the function f Õ does not
have real roots. Moreover, since a < 0, the function f Õ is strictly negative.
This implies the function f is decreasing in R.

x ≠Œ +Œ
f Õ ≠ ≠

+Œ
f √

≠Œ

Example 3.3.6. Let f(x) = ≠x3 + x2 ≠ 3x + 5. Then Df = R and we have

lim
xæ≠Œ

f(x) = +Œ and lim
xæ+Œ

f(x) = ≠Œ.

We emphasize, there is no horizontal, no vertical and no oblique asymptotes. The
function f is di�erentiable in R, because it is a polynomial function. The derivative
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of f is f Õ(x) = ≠3x2 + 2x ≠ 3. From this, we deduce � = 4 ≠ 4 ◊ 9 = ≠32. The
function f Õ does not have real roots and for all x œ R, f Õ(x) < 0. Therefore the
function f decreasing in R.

x ≠Œ +Œ
f Õ ≠ ≠

+Œ
f √

≠Œ

Exercise 3.3.7. Study the following functions

1. f(x) = x3 + 3x2 ≠ 2x ≠ 3, 2. g(x) = x3 + 2x ≠ 4, 3. h(x) = ≠2x3 + 6x2 + x + 1,

4. i(x) = ≠3x3 + 2x2 + x + 2, 5. j(x) = x3 + x + 5.

3.3.2 Study of the Function un

This subsection deals with function of the form f(x) = un(x), where u is a real
function. To show how to study such type of functions we proceed by examples.

Example 3.3.8. Let f(x) =
!
2x + 3

"2. In this case Df = R and the following
limits hold

lim
xæ≠Œ

f(x) = +Œ and lim
xæ+Œ

f(x) = +Œ.

The a�ne function 2x+3 is di�erentiable in R and the function x2 is also di�eren-
tiable in R. Since the function f is the composition of two die�erentiable functions,
then f is di�erentiable. Here we set u(x) = 2x+3 and we observe that f(x) = u2(x).
Therefore, for every real number x the derivative of f is defined by

f Õ(x) = 2uÕ(x) · u(x) = 4(2x + 3).

We see that the sign of the function f Õ is given by the sign of the a�ne function
2x + 3. Since 2x + 3 is negative in the interval (≠Œ , ≠3/2] and positive in the
interval [≠3/2 , +Œ). We conclude that the function f is decreasing in (≠Œ , ≠3/2],
and increasing in [≠3/2 , +Œ).

x ≠Œ ≠3
2 +Œ

f Õ(x) ≠ 0 +
+Œ +Œ

f(x) √ ¬

f

3
≠3

2

4

Since the function f is decreasing in (≠Œ , ≠3/2], and increasing in [≠3/2 , +Œ),
it has a minimum at x0 = ≠3/2. This minimum is given byf(≠3/2) = 0.

Example 3.3.9. We consider the function f(x) =
!

≠ x2 + 5x + 1
"3

. The domain
of the function f is R and one has

lim
xæ≠Œ

f(x) = ≠Œ and lim
xæ+Œ

f(x) = ≠Œ.
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The function f(x) = u3(x), with u(x) = ≠x2 + 5x + 1, is the composition of two
di�erentiable functions in R, then, f is di�erentiable in R. For every x œ R,

f Õ(x) = 3(≠2x + 5)(≠x2 + 5x + 1)2.

Since for all x œ R, 3(≠x2 + 5x + 1)2 Ø 0, then the function f Õ and ≠2x + 5 have
the same sign. Therefore we have the following table:

x ≠Œ 5
2 +Œ

f Õ(x) + 0 ≠
f

! 5
2
"

f(x) ¬ √
≠Œ ≠Œ

The function f is increasing in (≠Œ , 5/2], and decreasing in [5/2 , +Œ). Therefore
it has a maximum at x0 = 5/2.

Exercise 3.3.10. Study the following function

1. f(x) = (x3 + 3x + 1)5, 2. g(x) = (3x + 6)4, 3. h(x) = (2x2 + 4x + 1)3,

4. i(x) = (x + 1)6, 5. j(x) = (2x + 4)7.

3.3.3 Study of the Function 1
u

This section is devoted to functions of the form f(x) = 1/u(x), where u is a real
function. As in the previous subsection here we proceed again by examples.

Example 3.3.11. Let f(x) = 1
x + 2 · The function f is defined in R\{≠2}. We

obtain
lim

xæ≠Œ
f(x) = 0 and lim

xæ+Œ
f(x) = 0.

Then, the line y = 0 is horizontal asymptote of Cf at +Œ and at ≠Œ.
On the other hand we have,

lim
xæ≠2≠

f(x) = ≠Œ and lim
xæ≠2+

f(x) = +Œ.

This means, the line x = ≠2 is a vertical asymptote of Cf . The function f is in the
form f(x) = 1/u(x), where u(x) = x + 2. For any x ”= ≠2, the denominator u(x)
is di�erent to 0. This involves the function f is di�erentiable in R\{≠2} and for
every x œ R\{≠2},

f Õ(x) = ≠ uÕ(x)
u2(x) = ≠1

(x + 2)2 ·

As we can see it the function f Õ is negative. Therefore the function f is a decreasing
function in R\{≠2}.

x ≠Œ ≠2 +Œ
f Õ ≠ ≠

0 +Œ
f √ √

≠Œ 0
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Exercise 3.3.12. Study the following functions

1. f(x) = 1
x2 + 3x + 1 , 2. g(x) = 1

x + 5 , 3. h(x) = 2
x2 + 6x + 5 ,

4. i(x) = 3
x3 + 5x2 + x + 1 , 5. j(x) = 1

x + 1 ·

3.3.4 Study of the Function 1
un

In this section, we study functions of the form f(x) = 1/un(x), where u is a real
function and n Ø 2 a natural number. To explain the methodology we consider the
following example.

Example 3.3.13. We consider the function f(x) = 1
(x + 1)2 . The function f is

defined for any x ”= ≠1. That is, Df = R\{≠1}. The limits at the bounds of the
domain are defined by

lim
xæ≠Œ

f(x) = 0 and lim
xæ+Œ

f(x) = 0.

We conclude the line y = 0 is a horizontal asymptote of Cf at +Œ and ≠Œ.
One knows that

lim
xæ≠1≠

f(x) = +Œ and lim
xæ≠1+

f(x) = +Œ.

This means that the line x = ≠1 is a vertical asymptote of Cf . The function f
which is in the form 1/u2(x) is di�erentiable at any x such that u(x) ”= 0. Then it
is di�erentiable in R\{≠1} and for any x ”= ≠1,

f Õ(x) = ≠uÕ(x)
u2(x) = ≠2

(x + 1)3 ·

We deduce the following variational table

x ≠Œ ≠1 +Œ
f Õ(x) + ≠

+Œ +Œ
f(x) ¬ √

0 0

Exercise 3.3.14. Study the following functions

1. f(x) = 1
(3x + 2)2 , 2. g(x) = 1

(x2 + 2x + 3)4 , 3. h(x) = 1
(2x + 6)3 ,

4. i(x) = 1
(x3 + 2x2 + 5x + 1)5 , 5. j(x) = 1

(x + 2)8 ·

3.3.5 Study of the Function
Ô

u

Let u be a real function. We consider the function
Ô

u. The aim of this subsection
is to study the function

Ô
u. To study these type of functions we use the following

example.
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Example 3.3.15. Let u(x) = x + 3 be a real function. We define the function
f(x) =

Ô
x + 3. The function f is defined if and only x + 3 Ø 0. The domain of f

is [≠3 + Œ). We have f(≠3) = 0 and

lim
xæ+Œ

f(x) = +Œ.

The function u is di�erentiable in R and the function
Ô

· is di�erentiable in (0, +Œ)
Since the function f is the composition of two di�erentiable functions, then it is
di�erentiable. For every x Ø 3, we have

f Õ(x) = uÕ(x)
2
Ô

x + 3
= 1

2
Ô

x + 3
·

We can observe that , f is not di�erentiable at ≠3. For all x > ≠3, f Õ(x) > 0. The
function f is increasing in [≠3 ; +Œ). Then the following table holds

x ≠3 +Œ
+Œ

f(x) ¬
0

Exercise 3.3.16. Study the following functions

1. f(x) =


x2 ≠ 2x, 2. g(x) =


x2 + 2x + 4, 3. h(x) =
Ô

x + 2,

4. i(x) =


x2 + 1, 5. j(x) =
Ô

x + 1.

3.3.6 Study of the Function u(x) · v(x)
As we pointed it out above, we will study functions by using examples. To study
the function of the form u · v we consider the following function.

f(x) = (3x + 6)(x ≠ 2).

The domain of f is R. We have

lim
xæ≠Œ

f(x) = +Œ and lim
xæ+Œ

f(x) = +Œ.

Since u(x) = 3x + 6 and v(x) = x ≠ 2 are di�erentiables in R, the function f is
di�erentiable in R and for every x œ R,

f Õ(x) = uÕv + uvÕ = 3(x ≠ 2) + (3x + 6) = 6x.

The function f Õ and x have the same sign. Hence the f Õ is positive in [0 ; +Œ)
and negative in (≠Œ ; 0]. This leads to the following conclusions: the function f is
decreasing in (≠Œ ; 0] and increasing in [0 ; +Œ).

x ≠Œ 0 +Œ
f Õ ≠ 0 +

+Œ +Œ
f √ ¬

≠12
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Exercise 3.3.17. Study the following functions

1. f(x) = (x2 + 3x + 1)(2x + 1), 2. g(x) = (x + 1)(3x + 9),
3. h(x) = (x2 + x + 1)(2x2 + 1), 4. i(x) = (

Ô
x + 1)

Ô
x + 5,

5. j(x) = (2x + 1)(3x + 2).

3.3.7 Study of the Function u

v
To study these type of functions, we consider the following example.

Example 3.3.18. We define f(x) = 3x + 6
≠x + 1 · The domain of the function f is

R\{1}. We know
lim

xæ≠Œ
f(x) = ≠3.

The line y = ≠3 is a horizontal asymptote of Cf at ≠Œ. We have

lim
xæ+Œ

f(x) = ≠3.

This means the line y = ≠3 is a horizontal asymptote of Cf at +Œ.
On the other hand we have

lim
xæ1≠

f(x) = +Œ and lim
xæ1+

f(x) = ≠Œ.

This involves the line x = 1 is a vertical asymptote of Cf .
The functions u(x) = 3x + 6 and v(x) = ≠x + 1 are di�erentiable in R. Then

for any x ”= 1 the function u(x)/v(x) is di�erentiable. Then, the function f is
di�erentiable in R\{1} and for all x œ R\{1}

f Õ(x) = u Õv ≠ u vÕ

v2 = 3(≠x + 1) + (3x + 6)
(≠x + 1)2 = 9

(≠x + 1)2 ·

The function f Õ is strictly positive. Then, the function f is increasing in R\{≠1}.
Therefore we have the following table

x ≠Œ ≠1 +Œ
f Õ + +

+Œ ≠3
f ¬ ¬

≠3 ≠Œ

Exercise 3.3.19. Study the following functions

1. f(x) = x + 1
x2 + 3x + 1 , 2. g(x) = x2 + 1

x + 3 , 3. h(x) = ≠x + 5
x + 2 ,

4. i(x) = x2 + 4x + 1
x2 + 2x + 5 , 5. j(x) =

Ô
x + 1
x

·
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There exist several ways to introduce the exponential function. The method,
which we use here to define this function is, to consider a functional equation.
Indeed, we are looking for a continuous function f : R æ Rú

+, such that, for any x
and y in R

Y
]

[

f(x + y) = f(x) · f(y)

f(0) = 1.
(4.0.1)

The solution of the functional equation (4.0.1) is called the exponential function.
We denote this function

f(x) = exp(x) = ex.

We point out that this function is one of the most important function in Math-
ematics. The graphic of the function exp is drawn below

81
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≠2 ≠1 1 2

1

2

3

4

We specify that when x = 1, we write e instead of e1. We specify exp(0) = 1.
The main objective of this chapter is to study the function exp and its properties.

We organize this chapter as follows: In section 1 we define some properties of exp.
In section 2 we solve equations using exp. Section 3 is devoted to the variations of
exp. The last section deals with the following functions cosh, sinh and tanh.

4.1 Some Properties of Exponential
This section is devoted to the study of some properties of the function exp. We will
establish that the function exp has some nice properties. Indeed let x œ R, we have

exp(x) · exp(≠x) = exp(x ≠ x) = exp(0) = 1.

Using (4.0.1), one deduces that, exp(x ≠ x) = exp(x) · exp(≠x) = 1. As we pointed
it out above, exp(x) > 0, for all x œ R. Then, one can divide by exp(x) in the
identity above. Therefore

exp(≠x) = 1
exp(x) · (4.1.1)

Lemma 4.1.1. For any real number x, exp(≠x) is defined by (4.1.1).

From this lemma we deduce that for any real numbers a and b we have

exp(a)
exp(b) = exp(a) · 1

exp(b) = exp(a ≠ b). (4.1.2)

Example 4.1.2. Using (4.1.1) (4.1.2) we can establish the following identities

1.
1
e3 = e≠3, 2.

1
ex2 = e≠x

2
, 3.

ex

e3 = ex≠3.

Example 4.1.3. We consider the function f(x) = e2x·e≠2

ex2 · Using (4.1.1) and (4.1.2)
we obtain

f(x) = e2x≠2≠x
2

= e≠x
2+2x≠2.
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Exercise 4.1.4. Simplify the expression of the following functions

1. f(x) = e3x

e6x
, 2. g(x) = e5 · e4x · ex

2
, 3. h(x) = e2x · e6x

e≠7x
,

4. i(x) = e2(x+1)2

ex2+2x+1 , 5. j(x) = ex
2+6x+1

ex+1 · e5x+3 ·

Let x œ R. We consider n œ Nú and we define f(x) = (ex)n . From (4.0.1), we
deduce that

f(x) = ex · · · · · ex

¸ ˚˙ ˝
n times

= e

n times˙ ˝¸ ˚
x + · · · + x = enx.

This proves the following lemma

Lemma 4.1.5. Let x œ R and n œ Nú. Then, (exp(x))n = exp(n x).

Remark 4.1.6. Combining this lemma and (4.1.1) we establish that

(exp(x))≠n = exp(≠n x) = 1
exp(n x)

Example 4.1.7. We consider the following function f(x) = (ex)6 . Then, we have

f(x) = e6x.

Exercise 4.1.8. Simplify the following expressions

1. f(x) = (ex)3 · e≠3x, 2. g(x) =
!
e3"≠2 · (ex)5

(e2x)2 , 3. h(x) =

1
e≠2x

2+1
22

(e≠x+5)3 ,

4. i(x) =
!
e2"n

2

e2 n2 , 5. j(x) = 1
(e≠x)n ·

Let a be a fixed real number. We are looking for x œ R, such that, exp(x) = a.
In the next section we will study these types of equations.

4.2 Solutions of Some Equations
In this section we are interested in equations of the form: find x œ such that
exp(x) = a where a is a fixed real number. We can point out that, when a Æ 0,
the equation does not have solutions. Because for any real number x, exp(x) > 0.
In section (4.3.2) we will prove for every strictly positive real number b there exists
a unique y œ R, such that exp(y) = b. This allows us to restrict our selves in the
study of equation in the form exp(x) = exp(a).

Let x and a be two real numbers, such that, exp(x) = exp(a). Since for any real
number a, exp(a) > 0, one can divide the equation above by exp(a). This holds

exp(x)
exp(a) = exp (x ≠ a) = exp(0).

Therefore, x ≠ a = 0. This leads to the identity, x = a. We can summarize all these
steps in the following lemma.
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Lemma 4.2.1. Let a be a fixed real numbers. Then, the unique solution of the
equation exp(x) = exp(a) is x = a.

Example 4.2.2. Find the solution of the following equations

1. exp(x) = exp(3), 2. exp(x + 1) = exp(5), 3. exp(3x + 2) = exp(x + 6).

Solution:
1. Applying the lemma above we find that, the solution of the equation

exp(x) = exp(3) is x = 3.

2. The equation exp(x + 1) = exp(5) is equivalent to x + 1 = 5. This implies
the solution is x = 4.

3. The equation exp(3x + 2) = exp(x + 6) is equivalent to the following equation
3x + 2 = x + 6. Then, we have 2x = 4. This means that x = 2.

Exercise 4.2.3. Find the solution of the following equations

1. exp(x2 + 5x + 1) = exp(2x + 1), 2. exp(3x + 5) = exp(x2 + 4x + 4),

3.
1

exp(x2 + 5x + 3) = exp(2), 4.
exp(x3 + 5x2 ≠ 3)

exp(x3 + 2x2) = 1,

5. exp(x + 1) = exp(≠x + 2), ·

To simplify notations we will sometimes write ex instead of exp(x). As we did
it previously for other functions, here also we study continuity and variations of the
function exponential.

4.3 Study of the Exponential Function
The aim of this section is to study the function exp. This section is organized as
follows. In the first subsection we deal with limits at the bounds of the domain.
Since the domain of exp is R, we will compute the limits at +Œ and ≠Œ. The
second subsection is devoted to variations of the function exp. Using variations of
the function we will be able to find solutions of inequations.

4.3.1 Limits at the Bounds of the Domain
In this subsection we define the limit of exp at +Œ and at ≠Œ. In a second time,
we compare exp to polynomial functions, when x goes to ±Œ. A glance on its graph
allows us to set the following definition.

Definition 4.3.1. Let f(x) = exp(x). We have

lim
xæ+Œ

ex = +Œ and lim
xæ≠Œ

ex = 0. (4.3.1)

We can remark from this definition that the line y = 0 is a horizontal asymptote
of Cf at ≠Œ.

Since we defined limxæ+Œ f(x) = +Œ, we want to know how fast the function
exp goes to infinity. To this end we compare the function exp to polynomial func-
tions at +Œ. Let n Ø 1 be a natural number. We fix x œ (0 ; +Œ) and we define
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the functions f(x) = exp(x) and g(x) = xn. We want to know, between xn and exp
which one of them increases more fast than the other one. Here we will prove that
the function ex increases more fast than any power of x when x > 0. This is the
content of the following lemma.

Lemma 4.3.2. Let n Ø 1 be a natural number. We define n! = 1 ◊ 2 ◊ · · · ◊ n.
Then, for every x in (0 , +Œ)

xn

n! Æ ex. (4.3.2)

We agree that 0! = 1.

Proof. We will prove (4.3.2) by induction. Let x œ R+, and n Ø 0 be a natural
number.
Step 1: Since for n = 0, x0 = 1 and 0! = 1, we have x0

0! = 1 Æ ex. Then, the
property is true for n = 0.
Step 2: We assume that the property is true for some natural number k. This
means that x

k

k! Æ ex.
Step 3: Now we need to prove that the property holds for k + 1. In other words,
we have to prove that

xk+1

(k + 1)! Æ ex.

To establish this inequality, we define the function g(x) = x
k+1

(k+1)! ≠ex. Here we admit
the derivative of ex is ex. The function g is di�erentiable in R and for all x œ R,

gÕ(x) = (k + 1)xk

(k + 1)! ≠ ex = xk

k! ≠ ex.

Since we assumed that xk

k! Æ ex, then gÕ(x) Æ 0. Hence g is decreasing in [0 , +Œ).
We know that the maximum of g in [0 , +Œ) is g(0) = ≠1. Therefore g is negative.
Hence x

k+1

(k+1)! Æ ex.

We conclude that for all x Ø 0, xn

n! Æ ex.

Considering n = 1 in the lemma we obtain x Æ ex, for every x > 0. From this
we get

lim
xæ+Œ

x Æ lim
xæ+Œ

ex.

This is a confirmation of definition (4.3.1).
Another consequence of the lemma above is the following result. Take x > 0.

Let n Ø 1 be a natural number. From the lemma above, we know that x
n+1

(n+1)! Æ ex·
As we have chosen x > 0, then xn ”= 0. Hence we can divide by xnin the inequality
above. We get

x

(n + 1)! Æ ex

xn
·

Since
lim

xæ+Œ

x

(n + 1)! = +Œ,
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we conclude that
lim

xæ+Œ

ex

xn
= +Œ.

This involves the following theorem.

Theorem 4.3.3. Let n Ø 1 be a natural.Then,

lim
xæ+Œ

ex

xn
= +Œ. (4.3.3)

As we can see it, this theorem needs some explanations. Because if we split
computations by considering limxæ+Œ ex = +Œ and limxæ+Œ xn = +Œ. Then,
we obtain

lim
xæ+Œ

f(x) = +Œ
+Œ = undefined !

But what this theorem illustrates is, the fact that, the function ex goes to +Œ more
fast than the function xn. That is why, we have

lim
xæ+Œ

ex

xn
= +Œ·

Example 4.3.4. Let f(x) = ex

x3 . Then, we have limxæ+Œ f(x) = +Œ.

Example 4.3.5. We consider the following function g(x) = ex

x + 1 · We set

X := x + 1,

we can see that limxæ+Œ x + 1 = limxæ+Œ X = +Œ. Then,

f(x) = 1
e · eX

X
·

Therefore,

lim
xæ+Œ

f(x) = lim
Xæ+Œ

1
e · eX

X
= +Œ·

Exercise 4.3.6. Determine the following limits

1. lim
xæ+Œ

xn + 1
ex

, 2. lim
xæ+Œ

ex

x ≠ 1 , 3. lim
xæ+Œ

ex+5

x2 ·

Let x > 0 be a real number. For any natural number n Ø 0 we define

f(x) = xnex.

We want to determine the limit of f at ≠Œ. We emphasize that, if we consider
u(x) = ex and v(x) = xn we will have

lim
xæ≠Œ

u(x) = lim
xæ≠Œ

ex = 0 and lim
xæ≠Œ

v(x) = lim
xæ≠Œ

xn = ±Œ.

Then,
lim

xæ≠Œ
f(x) = undefined !.

However we know that the function exp goes to 0 more fast than xn goes to
±Œ.Hence, this limit exists and it is given in the following theorem
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Theorem 4.3.7. Let n Ø 1 be a natural number. Then, for every x œ R

lim
xæ≠Œ

xnex = 0.

Proof. When x = 0, there is nothing to prove, because xn ex = 0. When n = 0 we
apply the definition (4.3.1).

Now, we consider x œ Rú, and a natural number n Ø 1. We define f(x) = xnex

and we set t := ≠x. Thus, we have limxæ≠Œ t = +Œ. On the other part, we observe
that

f(x) = xnex = (≠1)n tne≠t = (≠1)ntn

et
= (≠1)n

et

tn

·

Since
lim

tæ+Œ

et

tn
= +Œ, then, lim

xæ≠Œ
f(x) = lim

tæ+Œ

(≠1)n

et

tn

= 0·

Example 4.3.8. We consider the function f(x) = xex. Then, we have

lim
xæ≠Œ

f(x) = 0

Exercise 4.3.9. Determine the following limits

1. lim
xæ≠Œ

x10ex, 2. lim
xæ≠Œ

x2ex, 3. lim
xæ≠Œ

x5e≠x, 4. lim
xæ+Œ

x9e≠x
2
.

4.3.2 Variation of Exponential Function
In this subsection we study the variations of exp. We point out that, another way
to introduce the exponential function is to use the relation between function exp
and its derivative. The exponential function satisfies the following equation: Find
a C 1 function f : R æ (0 , +Œ) that satisfies,

f Õ(x) = f(x) and f(0) = 1, (4.3.4)

for every real number x. We admit the following theorem.

Theorem 4.3.10. Let f(x) = ex. The function f is di�erentiable in R and for
every x œ R, we have

f Õ(x) = ex.

From this definition, we can observe that f Õ(x) = ex > 0. Then the function f
is increasing in R.

Using the limits established in the previous subsection, we obtain the following
variational table

x ≠Œ +Œ
+Œ

f ¬
0
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From this table we are able to state the following theorem.

Theorem 4.3.11. Let f(x) = exp(x). Then the function f is increasing in R.

Now, we consider a real function u. Since the domain of exp is R, we can
always define exp(u(x)), for all x œ Du. We define g(x) = ex and f(x) = eu(x).
We can observe that, f(x) = g(u(x)). We assume the function u is di�erentiable
in its domain. Using the chain rule property, (or the derivative of composition of
functions), we obtain

f Õ(x) = uÕ(x) ◊ gÕ(u(x)) = uÕ(x)eu(x).

Theorem 4.3.12. Let u be a di�erentiable real function in an open interval I µ Du.
We define the function f(x) = eu(x). Then the function f is di�erentiable in I, and
for every x œ I,

f Õ(x) = uÕ(x)eu(x).

Consider f(x) = eu(x), we know from the theorem above that f Õ(x) = uÕ(x)eu(x).
Since for all x in the domain of u , eu(x) > 0, therefore, f Õ and uÕ have the same
sign. This means that the function u and exp(u) have the same variations.

Example 4.3.13. We consider the function f(x) = ex+1. This function is defined
in R. Now we set u(x) := x+1. Since u and ex are di�erentiable in R, the function
f(x) = ex+1 is di�enrentiable in R. Let x be a real number. We have uÕ(x) = 1.
Applying the theorem above we obtain

f Õ(x) = uÕ(x) · eu(x) = 1 · ex+1 = ex+1 > 0.

We conclude that the function f is increasing in R, because for every x œ R,
ex+1 > 0.

On the other hand we have

lim
xæ≠Œ

ex+1 = 0 and lim
xæ+Œ

f(x) = +Œ.

Indeed setting X := x + 1, we see that, limxæ≠Œ X = ≠Œ. Hence

lim
xæ≠Œ

ex+1 = lim
Xæ≠Œ

eX = 0.

This holds the following variational table

x ≠Œ +Œ
+Œ

f(x) ¬
0

Example 4.3.14. Let g(x) = e≠2x+3. The function g is defined in R. Now, we
define u(x) = ≠2x+3. The functions u and ex are di�erentiable in R. Since e≠2x+3

is the composition of the function exp and u, then e≠2x+3 is di�erentiable in R. The
derivative of the function u is uÕ(x) = ≠2 for every x œ R. Therefore

gÕ(x) = ≠2e≠2x+3.

As we know e≠2x+3 > 0, for every real number x, then gÕ(x) = ≠2e≠2x+3 < 0. The
function f is decreasing in R.
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Now we introduce the following variable X := ≠2x + 3. One can see that

lim
xæ≠Œ

X = +Œ and lim
xæ+Œ

X = ≠Œ.

Therefore, the following limits hold

lim
xæ≠Œ

e≠2x+3 = lim
Xæ+Œ

eX = +Œ and lim
xæ+Œ

e≠2x+3 = lim
Xæ≠Œ

eX = 0

Consequently we are able to establish this variational table.
x ≠Œ +Œ

+Œ
g √

0

Example 4.3.15. In this example we take the following function h(x) = ex
2+x+1.

This function is defined in R. We define the function u(x) = x2 + x + 1 for any real
number x. The function eu(x) is di�erentiable in R, because it is the composition of
two di�erentiable functions u and ex in R. Let x œ R, the derivative of the function
u is uÕ(x) = 2x + 1. This implies

hÕ(x) = (2x + 1)ex
2+x+1.

Since exp
!
x2 +x+1

"
> 0, then the sign of hÕ depends on the sign of uÕ(x) = 2x+1.

Hence we obtain the following variational table
x ≠Œ ≠1/2 +Œ
hÕ ≠ 0 +

+Œ +Œ
h √ ¬

h (≠1/2)

The function h is decreasing in (≠Œ ; ≠1/2] and increasing in [≠1/2 , +Œ).
Exercise 4.3.16. Study the variation of the following functions

1. f(x) = ex
3+2x+1, 2. g(x) = e3x+2, 3. h(x) = e≠x+6x+1.

In the section above we proved the function exp is a strictly increasing function in
R. This means that for two real numbers a and b, such that a Æ b, we have exp(a) Æ
exp(b). In the following subsection we want establish the reverse implication. Let
a and b be two real numbers such that exp(a) Æ exp(b). Does it mean that a Æ b ?
To answer this question we introduce the following subsection.

4.3.3 Solutions of Some Inequations
Let a be a strictly positive real number. The function exp is continuous and strictly
increasing from 0 to +Œ. Then, the IVT theorem implies there exist a unique
x0 œ R such that

exp
!
x0

"
= a.

In this subsection, we deal with inequations. This means that if we take a fixed real
number b, we look for all real number x, such that

exp(x) Æ b.

According to b two situations hold:
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Situation 1: b Æ 0. When the real number b is negative or equal to 0, the inequa-
tion exp(x) Æ b does not have solutions. Indeed we know for every real number
x, exp(x) > 0. Then, there are no real number satisfying exp(x) Æ 0. In this
case we say the set of solutions is empty and we denote S = ÿ

Situation 2: b > 0. In this case there is x0 œ R such that

exp(x) Æ exp(x0).

From this we remark that we can restrict our selves in inequations of the form find
x œ R such that

exp(x) Æ exp(x0) or exp(x) Ø exp(x0).

Since the function exp is continuous and increasing there exist an increasing function
denoted f≠1 : (0 , +Œ) æ R, such that

’ x œ R f≠1 (exp(x)) = x and ’y œ (0 , +Œ), exp
!
f≠1(y)

"
= y. (4.3.5)

In general we can prove the following theorem

Theorem 4.3.17. Let I and J be two intervals in R and f : I æ J . We assume
that the function f continuous and strictly monotone. Then there exist a function
g : J æ I, such that

’ x œ I g (f(x)) = x and ’y œ J, f (g(y)) = y.

We point out that the function g is continuous and strictly monotone. Moreover
if the function f is increasing, then the function g is an increasing function. If
the function f is decreasing, then the function g is also decreasing. The graph of
g denoted Cg is symmetric to the graph of f denoted Cf with respect to the line
y = x.

From (4.3.5) and theorem 4.3.17 we deduce there exist a strictly increasing
function f≠1 defined from (0 , +Œ) to R, such that if exp(a) Æ exp(b), we have

a = f≠1 (exp(a)) Æ b = f≠1 (exp(b)) .

Using this function we can state the following lemma

Lemma 4.3.18. Let a and b be two real numbers. Then, we have

1. exp(a) Æ exp(b) is equivalent to a Æ b

2. exp(a) Ø exp(b) is equivalent to a Ø b

Let a be a fixed real number. We consider the inequation: find x œ R, such
that, exp(x) Ø exp(a).

Applying the lemma above we obtain x Ø a. The real numbers which satisfy the
inequation exp(x) Ø exp(a) are the real numbers that belong to [a , +Œ). In this
case we write

S = [a , +Œ).
On the other hand if we consider the inequation exp(x) Æ exp(a), we obtain

S = (≠Œ , a].
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Lemma 4.3.19. Let a be a fixed real number. Then,

1. the solutions of the inequation exp(x) Æ exp(a) are given by S = (≠Œ , a]

2. the solutions of the inequation exp(x) Ø exp(a) are given by S = [a , +Œ).

Example 4.3.20. To find the solutions of the inequation ex Ø e3 we point out that
this inequation is equivalent to x Ø 3. Hence S = [3 ; +Œ).

Example 4.3.21. To define the solutions of the inequation ex Æ e3, we remark
that It is equivalent to the inequality x Æ 3. Therefore S = (≠Œ ; 3].

Example 4.3.22. Find the solutions of this inequation e3x+1 > e≠2.
Since exp is a continuous and increasing, this inequality is equivalent to

3x + 1 > ≠2.

That is, 3x > 3. This implies that x > ≠1. Hence S = (≠1 ; +Œ).

Example 4.3.23. Find the solutions of ex+1 < e2.
The solutions are given by this inequality

x + 1 < 2.

This leads to x < 1. Then S = (≠Œ ; 1).

Exercise 4.3.24. Find the solutions of the following inequations

1. e3x+1 > ex
2+4x+1, 2. ex

2+2x+1 Æ 1, 3. e≠3x+1 Ø e2x+4,

4. ex Æ ex
2+5x+6, 5. ex

2+6x+7 < e2x
2+3x+5.

Using the function exp as an elementary function, we are able to construct new
functions. In the next section we define hyperbolic cosinus and sinus

4.4 Hyperbolic Cosinus and Sinus
In this section, we will construct functions from exp which is considered here as an
elementary function. We will also study variation of these new functions.To end the
section we will give some properties of these functions by making an analogy with
trigonometric functions.

Definition 4.4.1. Let x œ R, we define the hyperbolic cosinus of x denoted cosh(x)
or ch(x) as follows:

cosh(x) = ch(x) = ex + e≠x

2 ·

Definition 4.4.2. Let x be a real number. We define the hyperbolic sinus of x,
denoted sinh(x) or sh(x) by

sinh(x) = sh(x) = ex ≠ e≠x

2 ·

The definitions of these two functions show clearly that their domain is R.
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4.4.1 Study of Hyperbolic cosinus
Let us consider the following function f(x) = (exp(x) + exp(≠x)) /2. The function
f is the sum of functions which are defined in R. Then the domain of the function
f is R. Now we consider an arbitrary real number x, we have

f(≠x) = e≠x + e≠(≠x)

2 = e≠x + ex

2 = ex + e≠x

2 = f(x).

We have proved that ch(x) = ch(≠x). In other words ch is an even function.

Lemma 4.4.3. The function ch is an even function.

A possible graphical interpretation of this lemma, is the following one: The
graph of f denoted Cf is symmetric with respect to the y ≠ axis.

Theorem 4.4.4. Let f(x) = cosh(x). Then,

lim
xæ≠Œ

f(x) = +Œ and lim
xæ+Œ

f(x) = +Œ.

Proof. To prove this theorem, we set X := ≠x. One knows, limxæ≠Œ X = +Œ.
Thus we obtain,

lim
xæ≠Œ

e≠x

2 = lim
Xæ+Œ

eX

2 = +Œ.

Since limxæ≠Œ
ex

2 = 0, then,

lim
xæ≠Œ

f(x) = lim
xæ≠Œ

ex

2 + lim
xæ≠Œ

e≠x

2 = +Œ.

For the limit at +Œ, we need just to emphasize that, limxæ+Œ X = ≠Œ. From
this, we deduce that

lim
xæ+Œ

e≠x

2 = lim
Xæ≠Œ

eX

2 = 0.

As we know, limxæ+Œ
ex

2 = +Œ, therefore,

lim
xæ≠Œ

f(x) = lim
xæ≠Œ

ex

2 + lim
xæ≠Œ

e≠x

2 = +Œ.

This completes the proof.

Theorem 4.4.5. Let f(x) = cosh(x). Then,

1. f is decreasing in (≠Œ , 0] and increasing in [0 , +Œ).

2. The function f has a minimum at 0, which is equal to 1.

3. The equation of tangent line of Cf at 0 is given by

(T0) : y = 1.

What says the property 3 of the theorem above is the function f has a horizontal
tangent line at x0 = 0.
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Proof. Let f(x) = ch(x).
proof of 1 : To prove 1, we show at first that f is de�erentiable in R. Indeed the
functions ex and e≠x are di�erentiable in R. This implies that ch(x) is di�erentiable
in R. For every real number x

f Õ(x) = ex ≠ e≠x

2 = sh(x)·

To determine the variations of f we need to study the sign of f Õ. We know that,
f(x) Ø 0 if and only if ex ≠ e≠x Ø 0. This is equivalent to ex Ø e≠x. This leads to
the following inequality x Ø ≠x. This means that 2x Ø 0. That is, f Õ is negative
in (≠Œ , 0], and positive in [0 , +Œ). In other words, f is decreasing in (≠Œ , 0],
and increasing in [0 , +Œ).

x ≠Œ 0 +Œ
f Õ(x) ≠ 0 +

+Œ +Œ
f √ ¬

1

proof of 2 : To prove 2, we point out that, f is decreasing in (≠Œ , 0] and increasing
in [0 , +Œ). Then, the function f reaches its minimum at 0. The value of this
minimum is

f(0) = e0 + e≠0

2 = 1.

proof of 3 : We recall that the tangent line of Cf at some point x0 is defined by

(Tx0) : y = f Õ(x0)(x ≠ x0) + f(x0).

Here we take x0 = 0. We know f Õ(0) = 0 and f(0) = 1. Therefore,

(T0) : y = f Õ(0)(x ≠ 0) + f(0) = 1.

This proves the theorem. The graph of cosh is given below

≠3 ≠2 ≠1 1 2 3

2

4

In the following subsection we list some properties of the function sh.
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4.4.2 Study of the Hyperbolic Sinus Function
Let f(x) = sh(x). The domain of f is Df = R. We consider an arbitrary real
number x. we have

f(≠x) = e≠x ≠ e≠(≠x)

2 = e≠x ≠ ex

2 = ≠ex ≠ e≠x

2 = ≠f(x).

Lemma 4.4.6. Let f(x) = sh(x). Then, the function f is an odd function.

Theorem 4.4.7. Let f(x) = sh(x). Then, we have

lim
xæ≠Œ

f(x) = ≠Œ and lim
xæ+Œ

f(x) = +Œ.

Proof. Let x œ R. We define X := ≠x. We have limxæ≠Œ X = +Œ. From this, we
deduce that

lim
xæ≠Œ

e≠x

2 = lim
Xæ+Œ

eX

2 = +Œ.

Therefore,

lim
xæ≠Œ

f(x) = lim
xæ≠Œ

ex

2 ≠ lim
xæ≠Œ

e≠x

2 = ≠Œ.

On the other hand, we have limxæ+Œ X = ≠Œ. Then,

lim
xæ+Œ

e≠x

2 = lim
Xæ≠Œ

eX

2 = 0.

Hence

lim
xæ+Œ

f(x) = lim
xæ+Œ

ex

2 ≠ lim
xæ+Œ

e≠x

2 = +Œ.

Theorem 4.4.8. Let f(x) = sh(x). Then, the function f is increasing in R.

Proof. The function f is di�erentiable in R, because it is the sum of two di�er-
entiable functions in R. Indeed the functions ex/2 and e≠x/2 are di�erentiable
functions in R. For every x œ R,

f Õ(x) = ex + e≠x

2 = ch(x).

Since for all x œ R, ex > 0 and e≠x > 0, we deduce the function f Õ(x) = ch(x) > 0.
Hence, the function f is increasing in R

x ≠Œ +Œ
+Œ

f ¬
≠Œ

The graph of sinh is given below
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≠3 ≠2 ≠1 1 2 3

≠4

≠2

2

4

Let x be a real number. We have

ch(x) + sh(x) = ex and ch(x) ≠ sh(x) = e≠x.

This involves

ch2(x) ≠ sh2(x) =
!
ch(x) ≠ sh(x)

"!
ch(x) + sh(x)

"
= ex · e≠x = 1.

Thus, we have proved the following lemma.

Lemma 4.4.9. For any real number x we have

ch2(x) ≠ sh2(x) = 1. (4.4.1)

In the following theorem we give some properties shared by cosh and sinh.

Theorem 4.4.10. Let a and b be two real numbers. Then,

1. ch(a + b) = ch(a)ch(b) + sh(a)sh(b),

2. ch(a ≠ b) = ch(a)ch(b) ≠ sh(a)sh(b),

3. sh(a + b) = sh(a)ch(b) + ch(a)sh(b),

4. sh(a ≠ b) = sh(a)ch(b) ≠ ch(a)sh(b).

Proof. We will just prove 1 and 3. Because the proof of 2 is similar to 1 and the
proof of 4 is the same as 3.
proof of 1 : We consider two real numbers a and b. We obtain

ch(a)ch(b) + sh(a)sh(b) =
!
ea + e≠a

"!
eb + e≠b

"

4 +
!
ea ≠ e≠a

"!
eb ≠ e≠b

"

4

= 2ea+b + 2e≠(a+b)

4 = ch(a + b).



96 CHAPTER 4. EXPONENTIAL FUNCTION

proof of 3 : We consider two real numbers a and b. Then, we have

sh(a)ch(b) + ch(a)sh(b) =
!
ea ≠ e≠a

"!
eb + e≠b

"

4 +
!
ea + e≠a

"!
eb ≠ e≠b

"

4

= 2ea+b ≠ 2e≠(a+b)

4 = sh(a + b).

This completes the proof of the theorem.

Making a parallel with trigonometric function, we define for every x œ R, the
function

f(x) = sh(x)
ch(x) = ex ≠ e≠x

ex + e≠x
·

We can observe

f(x) = ex ≠ e≠x

ex + e≠x
= ex(1 ≠ e≠2x)

ex(1 + e≠2x) = 1 ≠ e≠2x

1 + e≠2x
·

The function f defined above is called the hyperbolic tangent function.It is denoted
f(x) = tanh(x) = th(x). In the following subsection we study the function tanh.

4.4.3 Study of Hyperbolic Tangent
Let f(x) = th(x). Since for all x œ R, we have ch(x) ”= 0. The function f is well
defined in R.

Now we take an arbitrary real number x and we consider the function f(x) =
th(x). One has

tanh(≠x) = sh(≠x)
ch(≠x) = ≠ sh(x)

ch(x) ·

Lemma 4.4.11. Let f(x) = tanh(x). Then, the function f is odd.

Theorem 4.4.12. Let f(x) = tanh(x). Then, the following limits hold

lim
xæ≠Œ

f(x) = ≠1 and lim
xæ+Œ

f(x) = 1.

Proof. We start by defining X = ≠2x. We have

lim
xæ+Œ

f(x) = lim
Xæ≠Œ

1 ≠ eX

1 + eX
= 1.

On the other hand we have limXæ+Œ
1

eX
= 0. Therefore,

lim
xæ≠Œ

f(x) = lim
Xæ+Œ

1 ≠ eX

1 + eX
= lim

Xæ+Œ

1
eX

≠ 1
1

eX
+ 1

= ≠1.

The meaning of these limits is

• The line y = ≠1 is a horizontal asymptote of Cf at ≠Œ.
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• The line y = 1 is a horizontal asymptote of Cf at +Œ.

Theorem 4.4.13. Let f(x) = tanh(x). Then, the function f is increasing in R.

Proof. We define f(x) = tanh(x) = sinh(x)/ cosh(x). The functions sinh and cosh
are di�erentiable in R and for all x œ R, cosh(x) ”= 0. Then, the function f is
di�erentiable in R. For every x œ R,

f Õ(x) = cosh2(x) ≠ sinh2(x)
cosh2(x)

= 1
cosh2(x)

> 0.

Hence, f is an increasing function in R. Below we plot the graph of tanh

≠3 ≠2 ≠1 1 2 3

≠1

1



98 CHAPTER 4. EXPONENTIAL FUNCTION



CHAPTER 5

LOGARITHMIC FUNCTIONS

Contents
5.1 Some Properties of the Natural Logarithm . . . . . . . 100
5.2 Study of the Logarithmic Function . . . . . . . . . . . . 103

5.2.1 Continuity of the Function ln . . . . . . . . . . . . . . . 104
5.2.2 Variations of the Function ln . . . . . . . . . . . . . . . 104
5.2.3 Solutions of Some Equations . . . . . . . . . . . . . . . 108
5.2.4 General Equations . . . . . . . . . . . . . . . . . . . . . 109

5.3 Solutions of Some Inequalities . . . . . . . . . . . . . . . 112
5.3.1 Some Particular Limits . . . . . . . . . . . . . . . . . . 116

5.4 Logarithm in Basis a . . . . . . . . . . . . . . . . . . . . 120
5.5 Study of Functions loga . . . . . . . . . . . . . . . . . . . 121
5.6 General Exponentials . . . . . . . . . . . . . . . . . . . . 122

Let x œ R. In the previous chapter we defined the function exp(x) and studied
it. We established the function exp is continuous and strictly increasing. Then,
there is a unique function f : (0 , +Œ) æ R, such that, f(exp(x)) = x, ’ x œ R.
In this case we know the function f satisfies

Y
____]

____[

f(ex) = x, for all x œ R,

exp (f(x)) = x, for all x > 0,

f(1) = 0.

(5.0.1)

This function f is called the Naperian Logarithm or the Natural Logarithm and we
denote it by ln(x). Using the notation ln we can simplify (5.0.1), in the following
way:

ln (ex) = x, ’ x œ R,

exp(ln(x)) = x, ’ x > 0,

ln(1) = 0.

99
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The graph of the function ln is drawn below

1 2 3

≠1

1

Let a be a strictly positive real number. We consider the equation, find x in R,
such that, exp(x) = a. Using the function ln we obtain ln (exp(x)) = ln(a). Since
ln (exp(x)) = x, we have x = ln(a).

The objective of this chapter is to study the properties of the function ln . We
will see that the function ln has interesting properties.

To make the presentation clear, we organize this chapter as follows. In section
1 we give a list of properties satisfied by ln. In section 2, we deal with variations of
ln. We will also solve equations using the function ln. The last section is devoted
to the logarithm in basis a > 0 denoted Log

a
.

5.1 Some Properties of the Natural Logarithm
Let x > 0 be a real number. We consider the function f(x) = ln(x). We know the
function f is continuous and strictly monotone. We established also the function
f is di�erentiable in (0 , +Œ). Here we prove some other properties satisfied by f .
Before going further, we point out that we can define the function ln by using a
functional equation : find a continuous function f that satisfies

f(x · y) = f(x) + f(y) and f(1) = 0.

In section (5.2) we will see all there is another way to define the function ln by
using its derivative. Indeed, we can seek for a di�erentiable function f defined in
(0 , +Œ) that satisfies

f Õ(x) = 1
x

·

In this section we establish at first elementary properties of the function ln .
Let a and b be in Rú

+. We define X := ln(a·b) and Y = ln(a)+ln(b). Using (5.0.1),
we have exp (X) = exp (ln(a · b)) = a · b and exp (Y ) = exp (ln(a) + ln(b)). Using
the properties of the function exp we obtain exp

!
ln(a)

"
· exp

!
ln(b)

"
= a · b. This

means that exp
!
X

"
= exp

!
Y

"
. Therefore, X = Y. That is, ln(a · b) = ln(a) + ln(b).

Proposition 5.1.1. Let a and b be two strictly positive real numbers. Then,

ln(a · b) = ln(a) + ln(b) (5.1.1)
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Example 5.1.2. Using the proposition above, we have

ln(10) = ln(2 · 5) = ln(2) + ln(5) and ln(21) = ln(3 · 7) = ln(3) + ln(7).

Exercise 5.1.3. Simplify the following expressions:

(1). ln(6) + 2 ln(3) ≠ ln(2) = · · · , (2). ln(14) ≠ 3 ln(7) + ln(2) = · · · ,

(3). ln(21) ≠ 5 ln(3) + ln(9) = · · · ·

We consider two real numbers a and b, which are strictly positive. We define
X := ln

1a

b

2
and Y := ln(a) ≠ ln(b). We have

exp
!
X

"
= exp

1
ln

1a

b

22
= a

b
, and expY = exp (ln(a) ≠ ln(b)) = eln(a) · e≠ ln(b)

Since, exp (≠ ln(b)) = 1/ exp (ln(b)) = 1/b. This implies that, eY = a · 1
b

= a

b
·

Therefore, eX = eY . This means that X = Y. That is,

ln
1a

b

2
= ln(a) ≠ ln(b).

Proposition 5.1.4. Let a and b be in (0 , +Œ). Then,

ln
1a

b

2
= ln(a) ≠ ln(b). (5.1.2)

Remark 5.1.5. If we fix a = 1 in Proposition 5.1.4, we obtain

ln
3

1
b

4
= ln(1) ≠ ln(b).

On the other hand, we know by definition ln(1) = 0. Hence ln
3

1
b

4
= ≠ ln(b).

Example 5.1.6. We have

ln
3

3
2

4
= ln(3) ≠ ln(2) and ln

3
1
7

4
= ≠ ln(7).

Exercise 5.1.7. Simplify the following expressions

(1). ln
3

5
2

4
≠ 3 ln(5) + 2 ln(2) = · · · , (2). 2 ln(3) + ln

3
4
3

4
+ 3 ln(4) = · · · ,

(3). ln
3

6
7

4
≠ ln(3) = · · · ·

Proposition 5.1.8. Let x œ (0 , +Œ). We consider a natural number n Ø 2. Then,

ln (xn) = n ln(x). (5.1.3)

Proof. We prove this proposition by induction. We take x œ (0 , +Œ). We fix a
natural number n Ø 2.
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Step 1 : We consider n = 2, we have ln
!
x2"

= ln(x · x) = ln(x) + ln(x) = 2 ln(x).
The property is true for n = 2.
Step 2 : We assume the property true for some natural number k. This means that,

ln
!
xk

"
= k ln(x).

Step 3 : We need to prove that the property holds for k + 1. In other words, we
want to establish that,

ln
!
xk+1"

= (k + 1) ln(x). (5.1.4)

To prove (5.1.4), we set X = xk. Then, we have

ln
!
xk+1"

= ln(X · x) = ln(X) + ln(x).

By step 2, we know that ln(X) = ln
!
xk

"
= k ln(x). Hence,

ln
!
xk+1"

= k ln(x) + ln(x) = (k + 1) ln(x).

The property is true for k + 1.
Conclusion: for every x œ ]0 , +Œ[, and n Ø 2, ln

!
xn

"
= n ln(x).

Let x œ (0 , +Œ). We consider a natural number n Ø 2. We define X = xn.
Using (5.0.1), we have

eln(X) = eln(x
n) = en ln(x) =

1
eln(x)

2n

= (x)n = xn.

This proves the following lemma

Lemma 5.1.9. Let x be a real number in (0 , +Œ). Then, for any natural number
n Ø 2,

xn = exp (n ln(x)) .

Now, we consider, x œ (0 , +Œ). Let p and q be two natural numbers , such
that, q > 0. We define r = p

q
· The number r is called a rational number. For every

x œ (0 , +Œ), we have

xp/q = (xp)1/q =
1

ep ln(x)
21/q

= e(p ln(x))/q = er ln(x).

Lemma 5.1.10. Let x œ (0 , +Œ) and r be a positive rational number. Then, the
following identity holds

xr = exp (r ln(x)) .

Now we recall the following theorem which is admitted.

Theorem 5.1.11. Let x be a real number. Then, there is a rational sequence
(rn)nØ0, such that,

x = lim
næ+Œ

rn.

The theorem 5.1.11 means that real numbers are obtained as limits of rational
sequences.
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Now we consider real number y. From theorem 5.1.11 we deduce there is a
rational sequence (rn)nØ0, such that, y = limnæ+Œ rn. Let x > 0 be a real number.
We have

lim
næ+Œ

rn ln(x) = ln(x) lim
næ+Œ

rn = y ln(x).

Since the function exp is continuous, we obtain

lim
næ+Œ

xrn = lim
næ+Œ

exp(rn ln(x)) = exp
!

lim
næ+Œ

rn ln(x)
"

= exp
!
y ln(x)

"
.

This allows us to establish the following result.

Lemma 5.1.12. Let x belongs to (0 , +Œ). Then, for every real number y, we have

xy = ey ln(x).

Example 5.1.13. For all x œ ]0 , +Œ[, we have,

1. x3 = exp
!
3 ln(x)

"
, 2. x1/5 = exp (ln(x)/5) , 3.

Ô
x = exp (ln(x)/2) .

Exercise 5.1.14. For any x > 0 define the following powers

(1). xz, z œ R, (2). x1/n, ’ n Ø 1, (3). nn
n

, ’ n Ø 1.

In the next section we continue to study the properties of this function. Here
we investigate continuity and variations of the function ln .

5.2 Study of the Logarithmic Function
The aim of this section is to study continuity and variations of ln. We will start
by giving its limits at the bounds of its domain. In a second time, we define its
derivative and specify its variations. At the end of this section, we will study
functions of the form ln(u(x)), where u(x) is a real function such that, u(x) > 0,
for all x œ Du, and we deal with equations using ln and exp.

A look on the graph of ln allows us to set the following theorem.

Theorem 5.2.1. Let x œ (0 ; +Œ). We define the function f(x) = ln(x). Then,

lim
xæ0

f(x) = ≠Œ and lim
xæ+Œ

f(x) = +Œ. (5.2.1)

To establish the limits of the function at the bounds of the domain, we emphasize
that the graph of ln and the graph of exp are symmetric with respect to the line y =
x. Indeed, we know that if f is a continuous and strictly monotone then, f admits
a reciprocal function f≠1 ,such that, for every x œ Df , we have f≠1!

f(x)
"

= x and
for every y in the range of f , we have f

!
f≠1(y)

"
= y. Geometrically speaking, the

graph of f , and the graph of the function f≠1 are symmetric with respect to the
line y = x.

From this we deduce, that

lim
xæ+Œ

exp(x) = lim
xæ+Œ

ln(x) = +Œ
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Let x œ R, we define the function f(x) = ln
!

exp(x)
"
. This means that f(x) = x.

We consider the variable X := exp(x). We know that

lim
xæ≠Œ

X = lim
xæ≠Œ

exp(x) = 0.

Using the limit above, we obtain

lim
Xæ0

ln(X) = lim
xæ≠Œ

x = ≠Œ.

5.2.1 Continuity of the Function ln
In this subsection we study the continuity of the function ln. The continuity of ln
is a consequence of the continuity of the function exp. The following theorem is
admitted

Theorem 5.2.2. The function f(x) = ln(x) is continuous in the interval (0 , +Œ).

In the following subsection we study the variations of the function ln

5.2.2 Variations of the Function ln
This subsection is devoted the the variations of the function ln. Indeed we want to
know if the natural logarithm is whether increasing or decreasing.

Let us consider a real number x. We define the function f(x) = exp(x). We
know from the definition of ln, that ln

!
exp(x)

"
= x.

From this we deduce the function ln
!

exp(x)
"

is di�erentiable in R. To simplify
notations, we denote g(x) = ln(x) for any x > 0. Applying the theorem of derivative
of composition of functions, we obtain

1
g
!

exp(x)
"2Õ

= gÕ! exp(x)
"

· exp(x) = 1.

This involves
gÕ! exp(x)

"
= 1

exp(x) ·

Setting X := exp(x), we obtain
1

ln
!
X)

"2Õ
= 1

X
, for any X œ (0 , +Œ).

We have established the following theoerem

Theorem 5.2.3. Let x œ (0 ; +Œ). We define f(x) = ln(x). Then the function f
is di�erentiable in (0 ; +Œ) and for every x œ (0 ; +Œ), we have

f Õ(x) = 1
x

·

Since the real number x belongs to (0 , +Œ), we have f Õ(x) > 0. This implies
the function f is increasing in (0 , +Œ).

Theorem 5.2.4. Let x œ (0 ; +Œ). Then, the function f(x) = ln(x) is increasing
(0 , +Œ).
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Let x belong to (0 , +Œ). We define the function f(x) = ln(x). Using theorem
5.2.3 we have f Õ(x) = 1

x
> 0. The following variational table holds

x 0 +Œ
+Œ

f ¬
≠Œ

As we know ln(1) = 0 and f is an increasing function, we are able to establish
the following sign table

x 0 1 +Œ
ln(x) ≠ 0 +

Now, we consider a function u : Du µ R æ (0 ; +Œ). We know that the function
ln : (0 ; +Œ) æ R. Since u(Du) is included in the domain of ln, we can define the
function

f(x) = ln(u(x)).

Hence the function ln(u(x)) has domain Du. Let us assume that the function u
is di�erentiable in some open interval I µ Du. Then, the function f which is
the composition of di�erentiable functions is di�erentiable in the open interval I.
Denoting g(x) = ln(x) for every x œ (0 , +Œ) and using the chain rule derivation,
we obtain

f Õ(x) = uÕ(x)gÕ(u(x)) = uÕ(x)
u(x) · (5.2.2)

This proves the following theorem.

Theorem 5.2.5. Let u : Du æ (0 , +Œ) be a real function and I µ Du an open
interval. We suppose that the function u is di�erentiable in I. Then, the function
f(x) = ln(u(x)) is di�erentiable in I, and for every x œ I, the derivative of the f
is given by (5.2.2)

We emphasize that this theorem means that the function ln(u(x)) is di�eren-
tiable in its domain.

Example 5.2.6. As an example, we consider the function f(x) = ln(x2 + 2). The
domain of f is Df = R. The function u(x) = x2 + 2 is di�erentiable in R, and
uÕ(x) = 2x. Then, the function f is di�erentiable in R and for every real number
x, we have

f Õ(x) = 2x

x2 + 2 ·

Example 5.2.7. We define the function g(x) = ln(x + 5). This function is defined
in the interval I = (≠5 , +Œ). The function u(x) = x + 5 is di�erentiable in
(≠5 , +Œ) and for every x œ (≠5 , +Œ ) we have uÕ(x) = 1. Therefore, the function
is di�erentiable in I and for any x œ I, one has

gÕ(x) = 1
x + 5 ·
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Example 5.2.8. In this example we consider the function f(x) = ln(x2 + 4x + 3).
We define the function u(x) = x2+4x+3. In this case, we have � = 16≠12 = 4 > 0.
We have two real roots,

x1 = ≠4 ≠ 2
2 = ≠3 and x2 = ≠4 + 2

2 = ≠1·

We can establish the following sign table for u

x ≠Œ ≠3 ≠1 +Œ
x2 + 4x + 3 + 0 ≠ 0 +

This implies for any x in (≠Œ , ≠3) fi (≠1 ; +Œ), we hvae u(x) > 0. Hence Df =
(≠Œ , ≠3) fi (≠1 ; +Œ). Let x œ Df , the derivative of u is uÕ(x) = 2x + 4. This
leads to the following identity

f Õ(x) = 2x + 4
x2 + 4x + 3 ·

Exercise 5.2.9. Find the derivative of the following functions

1. f(x) = ln(3x + 1), 2. g(x) = ln(x2 + 5x + 6), 3. h(x) = ln
1

x2 + 4x + 4
2

,

4. i(x) = ln
3

x + 5
2x + 3

4
, 5. j(x) = ln((x + 1)(x + 4)).

Let us consider again a real function u. We know that the following function
f(x) = ln(u(x)) is defined if and only if u(x) > 0. Hence the domain of the function
f is D = {x œ R : u(x) > 0}. Moreover, if we suppose that u is di�erentiable in
D, we obtain

f Õ(x) = uÕ(x)
u(x) ·

Since u(x) > 0 for every x œ D, we conclude that f Õ and uÕ have the same sign.
This leads to the following theorem

Theorem 5.2.10. Let u : D ≠æ ( 0 , +Œ ) be a di�erentiable function. For every
x œ D, we define the function f(x) = ln(u(x)). Then, the functions f and u have
the same variations in D.

Example 5.2.11. We consider the following function f(x) = ln(2x + 4) and we
set u(x) = 2x + 4. We can see that u(x) > 0 if and only if x œ (≠2 , +Œ ). The
function ln(2x + 4) is defined in the open interval ] ≠ 2 ; +Œ [. In other words we
have, Df = (≠2 , +Œ ).
Limits at the bounds:

We set X = 2x + 4. We have

lim
xæ+Œ

X = +Œ and lim
xæ≠2+

2x + 4 = 0+.

This implies that,

lim
xæ+Œ

ln(2x + 4) = lim
Xæ+Œ

ln(X) = +Œ.
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and lim
xæ≠2+

ln(2x + 4) = lim
Xæ0+

ln(X) = ≠Œ.

We conclude that the function f does not have horizontal asymptote at +Œ and the
line x = ≠2 is a vertical asymptote of f .
Variations of f :

To study the variations of f we start by remarking that the function
u(x) = 2x+4 is di�erentiable in (≠2 ; +Œ ). Therefore the function f(x) = ln(2x+
4) is di�erentiable in the interval ] ≠ 2 ; +Œ[. Since uÕ(x) = 2 for all x > ≠2, we
have

f Õ(x) = 2
2x + 4 > 0·

From this we deduce that the function f is an increasing function in (≠2 ; +Œ)
because the function u is increasing.

x ≠2 +Œ
+Œ

f ¬
≠Œ

Example 5.2.12. Let f(x) = ln
!
x2 + 2x

"
. We can easily check that the domain of

this function is D = (≠Œ , ≠2 ) fi (0 , +Œ ). Defining X := x2 + 2x, we establish
that

lim
xæ±Œ

X = +Œ, lim
xæ≠2≠

X = 0 and lim
xæ0+

X = 0 (5.2.3)

From (5.2.3) one deduces

lim
xæ±Œ

f(x) = lim
Xæ+Œ

ln(X) = +Œ, lim
xæ≠2≠

f(x) = lim
Xæ0+

ln(X) = ≠Œ

and lim
xæ0+

f(x) = lim
Xæ0+

ln(X) = ≠Œ.

These limits have the following interpretations:

• the limits at ±Œ mean that we do not have horizontal asymptotes at ±Œ

• the limit at ≠2 has the following meaning. The line x = ≠2 is a vertical
asymptote of the curve of f

• the limit at 0 means that the line x = 0 is a vertical asymptote of Cf .

Since the function f is the composition of di�erentiable functions in D, it is di�er-
entiable in D. Then, for every x œ D, we have

f Õ(x) = 2x + 2
x2 + 2x

·

The sign of the function f Õ allows to establish the following variational table

x ≠Œ ≠2 0 +Œ
+Œ +Œ

f √ ¬
≠Œ ≠Œ
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Exercise 5.2.13. Study the following functions

1. f(x) = ln(5x + 1), 2. g(x) = ln(x3 ≠ 1), 3. h(x) = ln
3

3x + 5
x + 3

4
·

Let x be a strictly positive real number. We set f(x) = ln(x). The function f
is continuous from (0 , +Œ) into R. It is also strictly increasing. Hence we deduce
from the IVT theorem and its corollaries , that, for all b œ R, there exists a unique
x œ (0 , +Œ), such that, ln(x) = b. In the next section we show how to find solution
of equations including the function ln. To make the presentation clear we will
distinguish two type of equations
First Form: Let a > 0. Find x œ (0 , +Œ), such that, ln(x) = ln(a).
Second Form: Let c be a fixed real number. Find x œ (0 , +Œ), such that,

ln(x) = c.

5.2.3 Solutions of Some Equations
The objective of this subsection is to give solutions of equation of the first and
second form.

Solutions of the First Form
Let a > 0 be a fixed real number. We aim to find a strictly positive real number x
solution to the equation ln(x) = ln(a). We remark that, this equation is equivalent
to eln(x) = eln(a). That is, x = a. This proves the following lemma

Lemma 5.2.14. We consider fixed real number a which is strictly positive. Let x
belongs to (0 , +Œ), such that, ln(x) = ln(a). Then, x = a.

This is a consequence of the fact that the function ln is continuous and strictly
increasing, then, it is a bijection. In this case we have

ln(x) = ln(a) … x = a.

Example 5.2.15. We consider the equation ln(x) = ln(5). Using the lemma above
we have, x = 5.

Example 5.2.16. We consider the following equation find x œ R such that,
ln(x + 1) = ln(3). We know that the function ln(x + 1) is defined if and only if
x œ (≠1 , +Œ). On the other hand the equation above is equivalent to x + 1 = 3.
Hence, x = 2. Since 2 œ (≠1 , +Œ), the solution of the equation is x = 2.

Exercise 5.2.17. Find the solutions of the following equations:

1. ln(3x + 2) = ln(4), 2. ln(x2 + 5x + 2) = ln(2x + 3), 3. ln(x + 5) = ln(x + 6),
4. ln(x2 + 2x + 1) = ln(x + 1), 5. ln(2x + 4) = ln(2).

Solution of the Second Form
Let b be any fixed real number. We consider the following equation find x in R,
such that, ln(x) = b. Using the function exp, one obtains exp

!
ln(x)

"
= exp(b).

This leads to the identity x = eb.
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Lemma 5.2.18. We consider a fixed real number b. Let x belongs to (0 ; +Œ),
such that, ln(x) = b. Then, x = eb.

Example 5.2.19. We consider the equation ln(x) = 2. Therefore, x = e2.

Example 5.2.20. To find solutions to the equation ln(x + 3) = ≠1 we proceed
in this way. First we remind that, ln(x + 3) is defined in (≠3 ; +Œ). The equation
ln(x+3) = ≠1 is equivalent to x+3 = e≠1. Thus, we obtain the identity x = e≠1 ≠3.
We can easily check that e≠1≠3 œ (≠3 ; +Œ). Therefore, the solution is x = e≠1≠3.

Exercise 5.2.21. Find the solutions to the following equations

1. ln(x + 1) = 3, 2. ln(3x + 1) = 5, 3. ln(x + 6) = 1, 4. ln(7x + 2) = 2,

5. ln(2x + 5) = ≠5.

Using the previous subsection we can deal with more general equations includ-
ing exponential and logarithmic functions. In the next subsection, we will solve
equations of the following form: Find x œ]0 ; +Œ[

a ln2(x) + b ln(x) + c = 0, (5.2.4)

where a, b and c are constant real numbers such that a ”= 0.

5.2.4 General Equations
To deal with (5.2.4), we introduce the following substitution. We define X := ln(x).
Thus the equation (5.2.4) becomes

aX2 + bX + c = 0. (5.2.5)

Equation (5.2.5) is more familiar to us. To find solutions to (5.2.5) we have to
distinguish three cases according to the sign of � = b2 ≠ 4ac.

Case 1: � > 0. In this case, we have two real solutions

X1 = ≠b ≠
Ô

�
2a

= ln(x1) and X2 = ≠b +
Ô

�
2a

= ln(x2).

This allows to state that (5.2.4) has two real solutions

x1 = eX1 and x2 = eX2 .

Example 5.2.22. We consider the following equation : find a strictly positive real
number x, such that,

(ú) : ln2(x) + 4 ln(x) + 3 = 0.

Setting X := ln(x), one obtains X2 + 4X + 3 = 0. Thus, we have

� = 16 ≠ 12 = 4 > 0.

We have two real solutions

X1 = ≠4 ≠ 2
2 = ≠3 and X1 = ≠4 + 2

2 ≠ 1.

This means ln(x1) = ≠3 and ln(x2) = ≠1. Therefore equation (ú) has two solu-
tions

x1 = e≠3 and x2 = e≠1.



110 CHAPTER 5. LOGARITHMIC FUNCTIONS

Case 2: � = 0. In this case, we have only one real solution X0 = ≠ b

2a
· In this

case (5.2.4) has only one solution x0 = eX0 .

Example 5.2.23. To find a strictly positive real number x solution to the equation

(úú) : ln2(x) + 4 ln(x) + 4 = 0,

we define X := ln(x). Then we obtain X2 +4X +4 = 0. This implies, � = 16≠16 =
0. Therefore, we have only one solution X0 = ≠4

2 = ≠2. From this we deduce that,
equation (úú) has only one solution x0 = e≠2.

Case 3: � < 0. In this case there is no real solutions.

Example 5.2.24. Let x belong to (0 , +Œ), such that,

(ú ú ú) : ln2(x) + ln(x) + 2 = 0.

Setting X := ln(x), we have X2 + X + 2 = 0. Thus, we get � = 1 ≠ 8 = ≠7 < 0.
We conclude that (ú ú ú) does not have real solutions.

Exercise 5.2.25. Find solutions to the following equations

1) ln2(x) + 3 ln(x) + 1 = 0, 2) 2 ln2(x) + 5 ln(x) + 2 = 0,

3) ln2(x) + 2 ln(x) + 1 = 0, 4) 2 ln2(x) + ln(x) + 1 = 0,

5) ln2(x) + 2 ln(x) = 0.

In chapter 4 we solve equations of the form exp(x) = exp(a) for some real
numbers x and a. We did not investigate equations of the form exp(x) = a for some
real number a. The purpose of this paragraph is to use the function ln, to deal
with this latter. Let a be a real number we consider the equation find exp(x) = a.
We know for any x in R, we have exp(x) > 0, then, when a < 0, the equation
exp(x) = a does not have solutions.

Lemma 5.2.26. Let a be a negative real number, then the equation exp(x) = a,
does not have real solutions. In this case we write

S = ÿ.

In the same way we can establish that the equation exp(x) = 0 does not have
solution. This means that when a Æ 0 the equation exp(x) = a does not have
solutions. We say the set of real solutions is empty.

Now we consider a real number b which is strictly positive. We are looking for
real numbers x, such that, exp(x) = b. Using the function ln, and the fact that
ln

!
exp(x)

"
= x, one obtains ln

!
exp(x)

"
= ln(b). This implies x = ln(b)

Lemma 5.2.27. Let b œ R be a strictly positive. Then, the solution of the equation
exp(x) = b is given by

x = ln(b).

Example 5.2.28. We consider the following equation exp(x) = 5. Therefore ,
x = ln(5).
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Example 5.2.29. Find a real number x, such that, exp(3x + 1) = 7. We know the
equation is equivalent to, 3x + 1 = ln(7). Hence

x = ln(7) ≠ 1
3 ·

Example 5.2.30. Find the solution of the following equation exp(x) = ≠5. We
know that for all x œ R, exp(x) > 0. Then, the equation ex = ≠5 does not have
solution. Hence we have

S = ÿ.

Exercise 5.2.31. Find solutions to the following equations

1. exp(x + 2) = 7, 2. exp(6x + 2) = ≠1, 3. exp(2x + 6) = 3,

4. exp(≠x + 5) = 1, 5. exp(x2 + 2x + 1) = 2, 6. exp(x2 + 3x + 2) = 4,

7. exp(≠x + 1) = ≠2.

Now let a, b and c be three real numbers. We consider the following equation:
find x in R, such that,

a e2x + b ex + c = 0. (5.2.6)

We set X = exp(x). Then equation (5.2.6), becomes

(ú) : a X2 + b X + c = 0.

We know that to find the solution of (ú) we have to compute � = b2≠4ac. According
to the sign of � we have to distinguish three cases.

Case 1: � > 0. We know that, when � > 0, the equation (ú) has two real solutions
X1 and X2. In this case one of the following situation holds for equation
(5.2.6):

1. X1 < 0 and X2 < 0: there is no solution.
2. X1 > 0 and X2 < 0: we have only one solution x1 = ln(X1)
3. X1 < 0 and X2 > 0: we have only one solution x2 = ln(X2)
4. X1 > 0 and X2 > 0: we have two solutions

x1 = ln(X1) and x2 = ln(X2).

Example 5.2.32. We consider the following equation : find x in R, such that,

(1) : e2x ≠ 3ex + 2 = 0.

To find the solutions of (1) we set X := exp(x). Using the variable X we rewrite
(1) in this way

X2 ≠ 3X + 2 = 0.

Thus we have � = 9 ≠ 8 = 1 > 0. This means that the equation X2 ≠ 3X + 2 = 0
has two real solutions

X1 = 3 ≠ 1
2 = 1 or X2 = 3 + 1

2 = 2.
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Since X1 > 0 and X2 > 0 equation (1) has two real solutions which are

x1 = ln(X1) = ln(1) = 0 and x2 = ln(X2) = ln(2).

In other words we obtain
S =

Ó
0 ; ln(2)

Ô
.

Case 2: � = 0. When � = 0 the equation aX2 +bX +c = 0 has only one solution
which is X0 = ≠ b

2a
. In this case two situations occur for (5.2.6)

1. X0 < 0. Then X0 < 0, equation (5.2.6) does not have solutions.
2. X0 > 0. Then x0 > 0, equation (5.2.6) has one solution x0 = ln(X0).

Example 5.2.33. Find the solution of the following equation

(2) : e2x ≠ 4ex + 4 = 0.

We use the substitution X = exp(x) to obtain

(ı) X2 ≠ 4X + 4 = 0.

In this case we have � = 16 ≠ 16 = 0. Therefore equation (ı) has only one solution
which is defined by

X0 = 4
2 = 2.

From this we deduce that the unique solution of (2) is x0 = ln(2).

Case 3: � < 0. In this case (5.2.6) does not have solution.

Exercise 5.2.34. Determine solutions to the following equations

1. ≠ e2x + 5ex + 4 = 0, 2. 2e2x ≠ ex + 1 = 0, 3. e2x + ex ≠ 1 = 0,

4. e2x + 2ex + 1 = 0, 5. e2x + 6ex + 8 = 0, 6. ≠ e2x + ex + 1 = 0,

7. 3e2x + 5ex + 2 = 0.

Let a and b be two real numbers which we want to compare between them. We
consider one of the following inequalities:

ln(a) Æ ln(b), ln(a) Ø ln(b), ln(a) Ø b.

Using only the continuity and the variations of ln, we will be able to treat the
two first one. For the last one we need to use the function exp to define the set of
solutions.

5.3 Solutions of Some Inequalities
We start this subsection by studying the last inequation. Let a be a fixed real
number. We consider the following inequation ln(x) Ø a. Using the function exp
we obtain

ln(x) Ø a ≈∆ exp
!

ln(x)
"

Ø exp(a) ≈∆ x Ø exp(a).

Hence the solutions are the real numbers that are gratter than exp(a).
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Lemma 5.3.1. Let a be a real number. Then, the solution of the inequation
ln(x) Ø a is the set of all positive real numbers that are gratter than exp(a). We
denote S = [ ea , +Œ ).

Example 5.3.2. Find the solution of the following inequation ln(x) Ø 3.
We know that this is equivalent to x Ø exp(3). This implies S = [exp(3) , +Œ).

Example 5.3.3. Find x, such that ln(x + 5) Ø 7.
The function ln(x + 5) is defined if and only if x + 5 > 0. This means that

x > ≠5. In other words ln(x + 5) is defined if and only if x œ (≠5 , +Œ). On the
other hand, we know that

ln(x + 5) Ø 7 ≈∆ x + 5 Ø e7 ≈∆ x Ø e7 ≠ 5.

Then,
S = (≠5 , +Œ) fl [exp(7) ≠ 5 , +Œ) = [exp(7) ≠ 5 , +Œ[.

In the same way we can establish the following lemma

Lemma 5.3.4. Let a be a real number. Then, the solution of this inequation
ln(x) Æ a is the interval ( 0 , ea].

Example 5.3.5. Let x be a strictly positive real number such that

ln(x) Æ 2.

Using the function exp we obtain x Æ exp(2). Therefore we have S = ( 0 , exp(2) ].

Example 5.3.6. Find the solution of the inequation ln(x) Æ 5.
Using the lemma above we can see that the solutions of this inequation is the set

of all real numbers x, such that, x Æ exp(5). Hence, we have S = (0 , exp(5) ].

Example 5.3.7. We Consider the following inequality ln(x+2) Æ 1. The function
ln(x + 2) is defined in (≠2 ; +Œ). On the other hand, we have

ln(x + 2) Æ 1 ≈∆ x + 2 Æ e1 ≈∆ x Æ e ≠ 2.

This means that, S = (≠2 ; e ≠ 2].

Exercise 5.3.8. Determine the solutions of the following inequalities

1. ln(x2 + x + 1) Ø 0, 2. ln(x + 5) Ø 3, 3. ln(2x + 3) Ø ≠1,

4. ln(2x + 5) Æ 3, 5. ln(x2 + 3x + 2) Æ 0, 6. ln(x + 5) Æ 1.

In the next paragraph we focus on the inequalities of the form

ln(X) Ø ln(a) or ln(x) Æ ln(a),

for some positive real numbers X and a.
Now we fixed a positive real number a. We are looking for real numbers x such

that, ln(x) Ø ln(a). Since the function ln is continuous and strictly increasing the
inequality ln(x) Ø ln(a) is equivalent to x Ø a. The solutions of the inequation
ln(x) Ø ln(a) are the set of all real numbers x which are gratter than a. Hence
S = [ a , +Œ [.
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Lemma 5.3.9. Let a be a fixed positive real number. Then, the solutions are defined
by the interval [ a , +Œ ).

Example 5.3.10. We consider the inequation: find a real number x such that,
ln(x) Ø ln(3).

The solutions of this inequation is gigen by the interval [ 3 , +Œ ).

Example 5.3.11. Find the solutions of the inequation ln(x + 1) Ø ln(2).
Since ln is an increasing function, we have x + 1 Ø 2. Therefore x Ø 1. Hence

S =] ≠ 1 , +Œ ) fl [ 1 , +Œ ) = [ 1 , +Œ ) .

Similar results can be established for the inequation ln(x) Æ ln(a) for some fixed
positive real number a.

Lemma 5.3.12. If a is a fixed positive real number, then , the solutions of inequa-
tion ln(x) Æ ln(a) are S = ( 0 , a ].

Example 5.3.13. We consider the following inequation ln(x) Æ ln(5). Then, the
solution of the inequation are defined by S = ( 0 , 5 ].

Example 5.3.14. Find x, such that, ln(x + 1) Æ ln(2). The function ln(x + 1) is
defined in (≠1 ; +Œ). Since

ln(x + 1) Æ ln(2) ≈∆ x + 1 Æ 2 ≈∆ x Æ 1,

then,
S = (≠1 , +Œ ) fl (≠Œ , 1 ] = (≠1 , 1 ].

Exercise 5.3.15. Define the set of solutions for the following inequalities

1. ln(3x + 1) Æ ln(x + 1), 2. ln(x + 3) Ø ln(≠x + 2),
3. ln(x2 + 6x + 5) Ø ln(2), 4. ln(x2 + 4x + 1) Æ ln(3).

Let a and b be two fixed real numbers. We wounder if there exist x in R such
that

exp(x) Æ a or exp(x) Ø b.

To make the presentation clear, we separate the two inequations and we start
with the inequation, find x in R, such that, exp(x) Æ a, where a is a fixed real
number. If the real number a Æ 0, then there is no solutions. Because for every
x œ R we have exp(x) > 0.

Lemma 5.3.16. If a is a real number which is less than or equal to 0, then, the
inequation exp(x) Æ a does not solutions.

Now we suppose a strictly positive. In this case the inequality exp(x) Æ a is
equivalent to

ln(ex) Æ ln(a) ≈∆ x Æ ln(a).

Consequently S = ( ≠Œ , ln(a) ]. This proves the following lemma

Lemma 5.3.17. If a is a strictly positive real number, then, the solutions of the
inequation exp(x) Æ a are given by the interval (≠Œ , ln(a) ].
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Example 5.3.18. Find x in R such that exp(x + 1) Æ ≠6. Since for all x œ R,we
have exp(x + 1) > 0. Therefore there is no solution. Hence S = ÿ.

Example 5.3.19. Find x œ R, such that, exp(x + 2) < 11. This inequality is
equivalent to x+2 < ln(11). Therefore, x < ln(11)≠2. We have S = (≠Œ , ln(11)≠
2 [.

Exercise 5.3.20. Define the set of solution for the following inequalities

1. exp(2x + 9) < 5, 2. exp(x + 4) Æ ≠2, 3. exp(x2 + 2x ≠ 1) Æ 3,

4. exp(x + 5) < 7, 5. exp(x + 1) Æ ≠3.

Now we focus on the inequation exp(x) Ø b, where b is a fixed real number. When
the real number b is such that b Æ 0, then for every x in R, we have exp(x) > 0 Ø b.
This means that any real number satisfies the inequality. Therefore S = R.

When the real number b is strictly positive, the following chain of equivalence
holds

exp(x) Ø b ≈∆ ln
!

exp(x)
"

Ø ln(b) ≈∆ x Ø ln(b).

Therefore the set of solutions is equal to the set of all real numbers which are greater
than ln(b). In this case we have S = [ ln(b) , +Œ ).

Example 5.3.21. Find the solution of the following inequation exp(x + 1) Ø ≠2.
Since ≠2 < 0, then, S = R.

Example 5.3.22. We consider the inequation exp(x + 2) Ø 6.
This is equivalent to x + 2 Ø ln(6). This leads to the following inequality

x Æ ln(6) ≠ 2. We obtainS = [ln(6) ≠ 2 , +Œ).

Exercise 5.3.23. Find the solution of the following inequalities

1. exp(x) Ø 0, 2. exp(3x + 5) > 8, 3. exp(x + 9) > 4,

4. exp(x2 + 2x + 1) Ø 7, 5. exp(≠x + 2) Ø ≠1.

Let x > 0. We consider the functions f(x) = ln(x) ≠ x and g(x) = ln(x)/x. We
aim to find limxæ+Œ f(x) and limxæ+Œ g(x). If we calculate separately the limit
of each term in f , we will get

lim
xæ+Œ

ln(x) = +Œ and lim
xæ+Œ

≠x = ≠Œ.

In this case we have

lim
xæ+Œ

f(x) = +Œ ≠ Œ = undefined.

For the function g we point out that

lim
xæ+Œ

ln(x) = +Œ and lim
xæ+Œ

x = +Œ.

Therefore
lim

xæ+Œ

ln(x)
x

= +Œ
+Œ = undefined.

To find the limits of these functions, we need to compare them to polynomial
functions. This will be done in the next subsection.
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5.3.1 Some Particular Limits
At the beginning of this section we defined the limit of the function ln. We said
that it goes to +Œ when x goes to +Œ. Now we want to know how fast it goes to
+Œ. To this end we compare it to the function xn. To make the presentation easy
to read, we state the following lemmas.

Lemma 5.3.24. For any x œ ( 0 , +Œ ) we have ln(x) Æ x.

Proof. To prove this lemma, we define the function f(x) = ln(x) ≠ x. The function
f is di�erentiable in ( 0 , +Œ ) and we have

f Õ(x) = 1
x

≠ 1 = 1 ≠ x

x
·

Then, the following variational table holds

x 0 1 +Œ
f Õ(x) + 0 ≠

≠1
f ¬ √

Since for all x œ ( 0 , +Œ ), f(x) Æ ≠1, we have,

ln(x) ≠ x Æ 0 ∆ ln(x) Æ x.

The previous lemma is a particular case of the following theorem.

Theorem 5.3.25. If x œ (0 , +Œ ) and n Ø 1 is a natural number, then,

ln(x) Æ xn. (5.3.1)

Proof. To prove this theorem, we define g(x) = ln(x) ≠ xn. The function g is di�er-
entiable in ( 0 , +Œ ) and for every x > 0, we have

gÕ(x) = 1
x

≠ nxn≠1 = 1 ≠ nxn

x
·

We know that gÕ(x) = 0 is equivalent to this identity nxn ≠ 1 = 0. This leads to
the following equation : find x > 0, such that

xn ≠ 1
n

= 0

Setting y = n

Ò
1
n

, we obtain

xn ≠ 1
n

= xn ≠ yn = (x ≠ y)
1

xn≠1 + xn≠2 · y + · · · + x · yn≠2 + yn≠1
2

= 0.

For every x > 0, the factor
1

xn≠1 + xn≠2 · y + · · · + x · yn≠2 + yn≠1
2

> 0. Hence
nxn ≠ 1 = 0 is equivalent to x ≠ y = 0. This implies

x = n

Ú
1
n

.
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From this we deduce xn ≠ yn and x ≠ y have the same sign. Since

g

A
n

Ú
1
n

B
= 1

n
ln

3
1
n

4
≠ 1

n
= ≠ ln(n)

n
≠ 1

n
= ≠ ln(n) + 1

n
< 0.

The following variational table holds,

x 0 n

Ò
1
n

+Œ
gÕ(x) + 0 ≠

≠ ln(n)+1
n

g ¬ √

The variational table implies, for all x œ ] 0 , +Œ [, we have g(x) Æ ≠ ln(n) + 1
n

·
Therefore

ln(x) ≠ xn Æ 0 =∆ ln(x) Æ xn.

This completes the proof.

These two lemmas leads to the following theorem.

Theorem 5.3.26. If n Ø 1 is a natural number, then, for any x > 0, we have,

lim
xæ+Œ

ln(x)
xn

= 0. (5.3.2)

If we take n = 1 in this theorem above, we obtain

lim
xæ+Œ

ln(x)
x

= 0.

Proof. Let x œ [ 1 , +Œ ). We consider a natural number n Ø 1. Then, the following
inequalities hold 0 Æ ln(x) Æ x. Since x Ø 1, we can divide by xn. Dividing by xn

one gets
0 Æ ln(x)

xn
Æ 1

xn≠1 ·

We know that,
lim

xæ+Œ

1
xn≠1 = 0.

Applying Sandwich theorem, we conclude that

lim
xæ+Œ

ln(x)
xn

= 0.

Example 5.3.27. Find the limit of the following sequence:

un = n
Ô

n = n1/n, ’ n Ø 1.

We know that, un = exp (ln(n)/n) and

lim
næ+Œ

ln(n)
n

= 0.
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Consequently, we have

lim
næ+Œ

n
Ô

n = lim
næ+Œ

eln(n)/n = e0 = 1.

Exercise 5.3.28. Determine the following limits

1. lim
næ+Œ

n1/2n, 2. lim
næ+Œ

n2/n, 3. lim
næ+Œ

n5/4n, 4. lim
xæ+Œ

ln(x)
x4 .

Let x œ (0 , +Œ). We consider a natural number n Ø 1. Using the properties
of the function ln we can write on one hand

ln(x) = n

n
ln(x).

On the other hand, we have ln(xn) = n ln(x). This implies

n

n
ln(x) = 1

n
ln(xn).

Since, we know that ln(x) = ≠ ln
3

1
x

4
. We deduce that,

ln(x) = ≠ 1
n

ln
3

1
xn

4
·

This leads to the following identity

xn ln(x) = 1
n

xn ln(xn) = ≠ 1
n

xn ln
3

1
xn

4
·

Now, we define X := 1
xn , then, limxæ0 X = +Œ. As we know that,

xn ln(x) = ≠ 1
n

ln(X)
X

·

Therefore,

lim
xæ0

xn ln(x) = ≠ 1
n

lim
Xæ+Œ

ln(X)
X

= 0·

This allows us to state the following theorem.

Theorem 5.3.29. If n Ø 1 is a natural number and x œ ( 0 , +Œ ), then,

lim
xæ0

xn ln(x) = 0.

Setting n = 1 in the theorem above, we are able to establish the following
corollary

Corollary 5.3.30. For any x in ( 0 , +Œ ), we have

lim
xæ0

x ln(x) = 0.
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Example 5.3.31. To determine the limit limxæ≠1(x+1) ln(x+1), we define X :=
x + 1. Hence, one has

lim
xæ≠1

X = 0.

From this we deduce that

lim
xæ≠1

(x + 1) ln(x + 1) = lim
Xæ0

X ln(X) = 0.

Exercise 5.3.32. Specify the following limits

1. lim
xæ≠2

(x + 2) ln(x + 2), 2. lim
xæ1

(x2 ≠ 1) ln(x ≠ 1), 3. lim
xæ3

(x ≠ 3) ln(x ≠ 3).

Remark 5.3.33. What this subsection established clearly is the following properties:

1. polynomial functions increase more fast than ln,

2. polynomial functions go to 0 more than ln goes to ≠Œ.

To illustrate this, we represent below the graph of the functions f(x) = x and
g(x) = ln(x).

≠1 1 2 3

≠1

1

We remind that, we defined ln, such that, ’x œ R, ln(ex) = x. This means
that, ln(e) = ln(e1) = 1. Now we introduce the following notations

loge(x) = ln(x)
ln(e) = ln(x).

We say that ln is the logarithm in basis e. Let a > 0 be a real number. The
expression ln(a) make a sense. From now on we assume a ”= 1. In this case we can
define the logarithm in basis a in this way

log
a
(x) = ln(x)

ln(a) · (5.3.3)

In the next section we will study the function log
a

.
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5.4 Logarithm in Basis a
We start this section by reminding the definition of the logarithm in basis a.

Definition 5.4.1. Let a œ (0 , 1) fi (1 , +Œ) be a fixed real number. For any
x œ (0 , +Œ) we define the logarithm in basis a by

log
a
(x) = ln(x)

ln(a) ·

We specify the following notations

• when a = e, we use the notation loge(x) = ln(x)

• when a = 10, we denote log10(x) = log(x)

We remark that for all a œ (0 , 1) fi (1 , +Œ), we have

log
a
(a) = ln(a)

ln(a) = 1·

Example 5.4.2. As an illustration we give the following examples

1. f(x) = log(x) = ln(x)
ln(10) , 2. g(x) = log3(x) = ln(x)

ln(3) ,

3. h(x) = log100(x) = ln(x)
ln(100) ·

Below we represent the graph of the function ln in blue and log in red

1 2 3

≠0.5

0.5

1

1.5

Theorem 5.4.3. If a œ (0 , 1) fi (1 , +Œ) and for all x and y in ( 0 , +Œ ),then,
the function log

a
satisfies the following properties

1. log
a
(x · y) = log

a
(x) + log

a
(y)

2. log
a

3
x

y

4
= log

a
(x) ≠ log

a
(y)
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3. log
a
(xn) = n log

a
(x).

Proof. Let x and y be in (0 ; , +Œ). Then, we have

log
a
(x · y) = ln(x · y)

ln(a) = ln(x) + ln(y)
ln(a) = log

a
(x) + log

a
(y).

To prove 2, we point out that

log
a

3
x

y

4
=

ln
3

x

y

4

ln(a) = ln(x) ≠ ln(y)
ln(a) = log

a
(x) ≠ log

a
(y).

To prove 3, we observe that,

log
a
(xn) = ln(xn)

ln(a) = n ln(x)
ln(a) = n log

a
(x).

Proposition 5.4.4. Let a œ (0 , 1)fi(1 , +Œ). Then, for any natural number n Ø 1
we have

log
a
(an) = n.

The proof of this proposition is simple. We need just to point out that,

log
a
(an) = ln(an)

ln(a) = n ln(a)
ln(a) = n·

Proposition 5.4.5. Let a œ (0 , 1) fi (1 , +Œ). Then, for any , x œ ( 0 , +Œ )

aloga(x) = x

The proof of this proposition is based on the fact that

aloga(x) = exp (log
a
(x) ln(a)) .

Since log
a
(x) ln(a) = ln(x)

ln(a) ln(a) = ln(x). Then, aloga(x) = exp (ln(x)) = x.

Example 5.4.6. For instance we have

log(100) = log(102) = 2 and 10log(2.5) = 2.5.

Let a > 0 be a real number which we assume di�erent to 1. We define the
function log

a
(x) for any x in ( 0 , +Œ ). The next step consist of studying such type

of functions

5.5 Study of Functions loga

Leta œ (0 , 1) fi (1 , +Œ). For any real number x which is strictly positive we define
the function

f(x) = log
a
(x) = ln(x)

ln(a) ·
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The function f is di�erentiable in its domain. For every real number x in ( 0 , +Œ ),
the derivative of f is defined by

f Õ(x) = 1
x ln(a) ·

Since the real number x belongs to ( 0 , +Œ ), we observe that the sign of f Õ

depends on ln(a). Hence we have to distinguish two cases

Case 1: a œ ( 0 , 1 ). In this case we see that ln(a) < 0. From this we deduce that
f(x) < 0, for every x œ (0 , +Œ ). Therefore the function f is decreasing in
( 0 , +Œ )

Case 2: a œ (1 , +Œ ). In this case, the real number ln(a) is strictly positive.
Then, we deduce that f Õ(x) > 0, for every x œ ( 0 , +Œ ). This means the
function f is increasing in ( 0 , +Œ).

Theorem 5.5.1. If a œ (0 , 1 ), the function f(x) = log
a
(x) is decreasing in

( 0 , +Œ ).

Theorem 5.5.2. If a œ (1 , +Œ ), the function f(x) = log
a
(x) is increasing in

( 0 , +Œ ).

Before ending this chapter, we specify some definitions. Indeed, in the previous
chapter we studied the function exp. We called it exponential. To be rigourous we
should called it the Naperian exponential in order to show that it is the reciprocal
function to the naperian logarithm.

Using the function log
a

for some positive real number a di�erent to 1, we can
define general exponentials.

5.6 General Exponentials
Let a > 0 be a real number. If a = 1, we have ax = 1 for any real number x. Now
assume that a ”= 1, we have log

a
(ax) = x for any real number x. On the other hand

if we take a strictly positive real number x we will have aloga(x) = x .
Now we take x œ (0 , +Œ), and we define f(x) = log

a
(x). The function f is

continuous and strictly monotone in (0 , +Œ), then it admits a reciprocal function
g, such that, Y

]

[

log
a

(g(y)) = y, ’ y œ R

g (log
a
(x)) = x, ’ x > 0.

As we know that the reciprocal function of log
a

is uniqe, then, the function g
should correspond to ax. Hence we define

g(x) = ax, ’ x œ R.

This function is called the general exponential .

Definition 5.6.1. Let a be a strictly positive real number which is di�erent to 1.
For any real number x we call exponential of x the function

f(x) = ax,

defined, such that, log
a

!
ax

"
= x.
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Thus if x and y are two real and a is as in the definition, we have

log
a
(ax · ay) = log

a
(ax) + log

a
(ay) = x + y. (5.6.1)

On the other part, we kow that if x and y are two real numbers, then,

x + y = log
a
(ax+y). (5.6.2)

From (5.6.1) and (5.6.2), we deduce that

ax · ay = ax+y,

for any real number x and y. This proves the following proposition

Proposition 5.6.2. Let a œ (0 , 1) fi (1 , +Œ). Then, for any real numbers x and
y, we have

ax · ay = ax+y.
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To introduce this chapter, we consider a real function f defined in some interval
I. We represent this function by its graph. Let [ a , b ] be a subinterval of I. Our
main goal now is to calculate the area of the domain D , [ the part of the real plan
] which is between the vertical lines x = a, x = b, the x ≠ axis, and the curve Cf of
f. In other words we aim to find the colored area of the figure below.
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Since from elementary school we know how to find the area of a rectangle, the
first idea which comes up to our mind is to subdivide the domain in many small
rectangles in this way: Let [ a , b ] be an interval. We divide [ a , b ] to n subinterval
[ xi , xi+1 ], where x0 = a, xn = b and for 0 Æ i Æ n ≠ 1 we have xi+1 = xi + b ≠ a

n
·

b
••a •

x1
•
x2

•
xn≠1

· · · · · · • •
xn≠2

•

Since xi = xi≠1 + b ≠ a

n
we obtain after i iterations

xi = x0 + i
b ≠ a

n
· (6.0.1)

The elements of the set { x0, x1, · · · , xn≠1, xn} satisfy the following property

a = x0 < x1 < · · · < xn≠1 < xn = b.

The finite family { x0, x1, · · · , xn≠1, xn} is called a subdivision of the interval [ a , b ].
The real number

�x = xi+1 ≠ xi = b ≠ a

n
(6.0.2)

is the step of the subdivision.
Now we decompose the domain D into n small rectangles with lenght �x [where

�x is a small real number ] and height f(xi) for some real number xi. The vertices
of the small rectangle number i + 1 (0 Æ i Æ n) are the points (xi , 0), (xi+1 , 0),
(xi , f(xi+1) ) and (xi+1 , f(xi+1) ). Another choce is possible we can take (xi , 0),
(xi+1 , 0), (xi , f(xi) ) and (xi+1 , f(xi) ). as the vertices of the rectangle number
i + 1



127

Then, the area of the small rectangle number i + 1 is Ri+1 = �x · f(xi+1).
To find the area of the whole domain, we need just to sum the area of all small
rectangles. In this case we obtain

Area of all Small Rectangles =
n≠1ÿ

i=0
�x · f(xi+1) =

n≠1ÿ

i=0
Ri+1. (6.0.3)

As we can observe it , the area of all small rectangle is just an approximation of
the area of the domain. This approximation is as good as the the step �x is small
enough. This suggests us to let �x go to 0. But the problem here is, the relation
between �x and n. The real number �x goes to 0 means that n should go to +Œ.
This leads to an infinite sum, which we do not know how to deal with. When the
infinite sum has a mathematical meaning [when

q
Ri converges ], we write

Area of D = lim
næ+Œ

nÿ

i=1
Ri =

Œÿ

i=1
Ri (6.0.4)

If this limit exists we take it as the exact value of the area of the domain D . We
denote it the integral of the function f in the interval [ a , b ]. We write

Area of D =
⁄

b

a

f(x) dx. (6.0.5)

We mean by (6.0.5): Area of D is equal to the integral from a to b of f . The symbols
is the letter S. We use it to mean we are summing from a to b.
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In this chapter, we will only deal with elementary theory of integrations. To
define the value of an integral we introduce the notion of primitive of a function.
In a second time, we will study some properties of integrals. To end this chapter,
we calculate integral of some elementary functions.

6.1 Primitive of Functions
This section is devoted to primitive of functions. After elementary definitions, we
study primitives of elementary functions. In the second subsection we deal with
primitives of general functions.

Definition 6.1.1. Let f : I æ R be a continuous function. We consider a di�er-
entiable function F : I æ R. We say that the function F is a primitive of f in I,
if for every real number x in I,

F Õ(x) = f(x). (6.1.1)

Remark 6.1.2. We draw the readers attention that primitive and integral have
similar meanings. But here we reserved the term integral for another use.

Example 6.1.3. To help readers to better understand the notion of primitives, we
introduce the following examples

1. Let a be any real number. We define the function F (x) = a. The function F
is di�erentiable and for every real number x, F Õ(x) = 0. Therefore the function F
is a primitive of f(x) = 0.

2. Let a and b be two real numbers. We define the a�ne function F (x) = ax+b.
It is di�erentiable in R and for every real number x we have F Õ(x) = a. Then, the
function F is a primitive of the function f(x) = a.

3. Let x be a real number. We consider the function F (x) = xn+1

n + 1 · Since the
function F is a monomial, it is di�erentiable and for every real number x we have
F Õ(x) = xn. This implies the function F is a primitive of f(x) = xn.

From definition 6.1.1 we know what is a primitive. Now we need to define a
condition which allows us to have a primitive. A necessary condition is given in the
lemma below.

Lemma 6.1.4. Let f be a continuous function in I. Then the function f has a
primitive defined in the interval I.

We deduce from this lemma that, a continuous function has several primitives.
Now we want to know what type of relations can exist between these primitives.

Theorem 6.1.5. Let f defined in I be a continuous function. We consider F and
G two primitives of the function f in I. Then, there exists a constant real number
C, such that,

G(x) = F (x) + C, ’ x œ I. (6.1.2)

Proof. Let F and G be two primitives of f in I. They are di�erentiable in I and
for every real number x in I, we have F Õ(x) = f(x) and GÕ(x) = f(x). For every
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x in I we define the function H(x) = G(x) ≠ F (x), Since the functions F and G are
di�erentiable in I, the function H is di�erentiable in I. In this case we have

H Õ(x) = GÕ(x) ≠ F Õ(x) = f(x) ≠ f(x) = 0.

From this, we deduce that H is a constant function. Consequently there exists a
real number C, such that, H(x) = G(x) ≠ F (x) = C. This means that
G(x) = F (x) + C. This completes the proof of the theorem.

Example 6.1.6. We consider the function f(x) = 2x + 1. Then, the function
F (x) = x2 +x is a primitive of f . We can find another primitive of f by adding any
real number to F . For example the functions G(x) = x2+x+3 and H(x) = x2+x+5
are primitives of the functions f . Generally speaking, for any real number C the
function P (x) = x2 + x + C is a primitive of f .

We learn from the theorem 6.1.5
1. a primitive of a function is defined up to a constant
2. a functions has infinite number of primitives
Because of these two remarks, we cannot write the function F is the primitive

of the function f . But we must say the function F is a primitive of f
At this level we know what is the definition of a primitive. We define also the

relation between two primitives of a function. The next step will consist of finding
primitives of some elementary functions .

6.1.1 Primitive of Elementary Functions
As we pointed it out in the previous chapters elementary functions are the bricks
used to build a large part of functions. That is why we start with them here in order
to show how our theory runs. In this section we will define primitives of polynomial
functions, square root functions, inverse, ln and exp.

Let C be any constant real number. For every x in R we define the function
F (x) = C. We emphasize the function F is di�erentiable in R and for every real
number x the derivative of the function F is defined by F Õ(x) = 0. Hence we have
proved the following lemma.

Lemma 6.1.7. Let x be a real number. We define the function f(x) = 0. Then,
the function F (x) = C, where C is any constant real number is a primitive of the
function f .

Example 6.1.8. For every real number x, we consider the constant function
F (x) = 13. It is a primitive of the function f(x) = 0, for every x œ R.

Now we take two real numbers a and b, such that, a ”= 0. For x in R we define
the function F (x) = ax + b. Since the function F is a�ne, then it is di�erentiable
in R and for every x œ R, we have F Õ(x) = a. This leads to the following lemma.

Lemma 6.1.9. Let a be a constant real numbers which is di�erent to 0. For all
x œ R, we define the constant function f(x) = a. Then, the function F (x) = ax+C,
where C is a constant real number, is a primitive of the function f .

Example 6.1.10. We consider the function f(x) = 7. Then, the a�ne function
F (x) = 7x + 1 is a primitive of f . Another primitive of the function f can be given
by G(x) = 7x + C, where C is any constant real number.
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Exercise 6.1.11. Define primitives to the following functions

1. f(x) = 11, 2. g(x) = 3, 3. h(x) = 5, 4. u(x) = C, 5. v(x) = 2.

Let x be a real number . We consider the function F (x) = x2

2 · This function
is di�erentiable in R and for all x œ R, we have F Õ(x) = x. This establishes the
following lemma.

Lemma 6.1.12. Let x belong to R and f(x) = x. Then, the function F (x) = x2

2
is a primitive of f .

We consider a natural number n Ø 2. For every real number x we define the

F (x) = xn+1

n + 1 · Then, the function F is di�erentiable and for all x œ R, F Õ(x) = xn.

This leads to the following lemma.

Lemma 6.1.13. Let n Ø 2 be a natural number. For x in R we consider the
function f(x) = xn. Then, the function F (x) = xn+1

n + 1 is a primitive of f .

Example 6.1.14. We consider the function f(x) = x3. A primitive of f can be

defined by F (x) = x3+1

3 + 1 = x4

4 ·

Exercise 6.1.15. Define a primitive for each of the following function

1. f(x) = x5, 2. g(x) = x7, 3. h(x) = x11, 4. u(x) = 3x2, 5. v(x) = xk0 .

Let x ”= 0 be a real number. We define the function F (x) = 1
x

· We know that

F is di�erentiable in Rú and for every real number x ”= 0, we have F Õ(x) = ≠ 1
x2 ·

Consequently we can state the following result.

Lemma 6.1.16. Let x ”= 0 be a real number. For any x œ Rú we define the function
f(x) = 1

x2 · Then, the function F (x) = ≠ 1
x

is a primitive of f.

Let n Ø 2 be a natural number and x belong to R\{0}. We define the function
F (x) = ≠ 1

(n ≠ 1)xn≠1 · This function is di�erentiable in its domain and for all real

number x ”= 0 we have F Õ(x) = 1
xn

·

Lemma 6.1.17. Let n Ø 2 be a natural number. For every real number x ”= 0
we define the function f(x) = 1

xn
· Then, the function F (x) = ≠ 1

(n ≠ 1)xn≠1 is a
primitive of f.

Example 6.1.18. For every real number x ”= 0 we consider the function f(x) = 1
x6 ·

A primitive of this function f is defined by F (x) = ≠ 1
5x5 ·
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Exercise 6.1.19. Determine a primitive to each of the following functions

1. f(x) = 1
x5 , 2. g(x) = 1

x9 , 3. h(x) = ≠ 7
x8 , 4. u(x) = 1

x7 ·

Let x Ø 0 be a real number. We define the function F (x) = 2
Ô

x. This function
is di�erentiable in [ 0 , +Œ ). For every x > 0 we have F Õ(x) = 1Ô

x
· Therefore, we

have the following result.

Lemma 6.1.20. Let x > 0 be a real number. We define the function f(x) = 1Ô
x

.

Then, the function F (x) = 2
Ô

x is a primitive of f.

We consider the two following functions F (x) = ≠ cos(x) and G(x) = sin(x).
These two functions are di�erentiable in R. For x œ R, we have F Õ(x) = sin(x) and
GÕ(x) = cos(x).

Lemma 6.1.21. Let f(x) = sin(x). Then, F (x) = ≠ cos(x) is a primitive of f .

Lemma 6.1.22. Let g(x) = cos(x). Then, G(x) = sin(x) is a primitive of g.

Let x > 0 be a real number. We consider the function F (x) = ln(x). The
function F is di�erentiable in ( 0 , +Œ ), and for every x > 0, we have F Õ(x) = 1

x
·

Then, we can state the following lemma

Lemma 6.1.23. Let x > 0 be a real number. We define the function f(x) = 1
x

·
Then, the function F (x) = ln(x) is a primitive of f.

Let x œ R. We define F (x) = ex. This function is di�erentiable and we have
F Õ(x) = ex.

Lemma 6.1.24. Let f(x) = ex. Then, the function F (x) = ex is a primitive of f .

In the following table we sum up some primitives of elementary functions.

f(x) Domain of f F (x) Domain of F

0 R C R
a R ax + C R

x R x2

2 + C R

xn R xn+1

n + 1 + C R
1
x2 R\{0} ≠ 1

x
+ C R\{0}

1
xn

, n Ø 2 R\{0} ≠ 1
n ≠ 1 · 1

xn≠1 + C R\{0}
1Ô
x

( 0 , +Œ ) 2
Ô

x + C [ 0 , +Œ )

cos(x) R sin(x) + C R
sin(x) R ≠ cos(x) + C R
exp(x) R exp(x) + C R

1
x

( 0 , +Œ ) ln(x) + C ( 0 , +Œ )
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Example 6.1.25. We consider f(x) = x5. Using the table above, we set n = 5. A

primitive of f is given by F (x) = x
5+1

5+1 + C = x6

6 + C, where C is a constant.

Example 6.1.26. For every real number x ”= 0 we define the function g(x) = 1
x3 ·

Setting n = 3, we have G(x) = ≠ 1
3 ≠ 1 · 1

x3≠1 + C = ≠ 1
2 x2 + C·

Exercise 6.1.27. Define a primitives for each of the following functions

1. f(x) = x7, 2. g(x) = 0, 3. h(x) = 3, 4. i(x) = 1
x3

5. j(x) = sin(x), 6. u(x) = 1
x11 7. ¸(x) = x4.

Theorem 6.1.28. Let f and g be two continuous functions in some interval I with
respective primitives F and G. We consider a real number k and the functions

h(x) = k · f(x) and ¸(x) = f(x) + g(x).

Then,

• the function H(x) = k · F (x) + C, is a primitive of h

• the function L(x) = F (x) + G(x) + C is a primitive of ¸,

where C is a constant real number.

Proof. Let f , g, F , G and k be as in the theorem. We define H(x) = k · F (x) + C.
Then, H is di�erentiable and for every x œ I, we have H Õ(x) = k · F Õ(x) = k · f(x).
This implies the function H is a primitive of k · f.

Now we set L(x) = F (x) + G(x) + C. The function L is a di�erentiable and
for every x œ I, we have LÕ(x) = F Õ(x) + GÕ(x) = f(x) + g(x). This involves the
function F + G is a primitive of f + g.

Example 6.1.29. Find a primitive of the following function f(x) = 2x2 + 3x + 1.

We know that a primitive of x2 is given by x3

3 · The function x2

2 is a primitive of
the function x and the function x is a primitive of 1. Therefore,

F (x) = 2x3

3 + 3x2

2 + x

is a primitive of f . In this example we have taken C = 0.

Example 6.1.30. We consider the following function for every real number in
( 0 , +Œ ),

g(x) = cos(x) + 4x3 + 5x + 2 + 1
x

+ 1
x2 + ex,

Since the function g is continuous in ( 0 , +Œ ), g has primitives. A primitive of g
can be defined by

G(x) = sin(x) + x4 + 5
2x2 + 2x + ln(x) ≠ 1

x
+ ex + C.
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Exercise 6.1.31. Find the domain of the following functions and define a primitive
for each them in its domain

1. f(x) = x7 + x6 + 2x5 + 3x4, 2. f1(x) = 4x3 + 3x2 + 1
2x + 7,

3. f2(x) = 2 cos(x), 4. g(x) = cosh(x) + 1
x2 + sin(x), 5. g1(x) = 1

x3 ≠ 5
x

+ x,

6. g2(x) = sin(x) + sinh(x) + 4ex + 2
x5 + x2, 7. h(x) = 4x3 ≠ 3x + 5 + 2

x2 + ex.

An easy way to construct general functions is to use composition of elementary
functions. In the next section, we will define primitives of general functions from
primitives of elementary functions.

6.1.2 Primitive of General Functions
This section deals with primitives of general functions. Indeed here we study prim-
itives of function of the forms un,

Ô
u, 1

u
, cos(u), sin(u). We specify, here u is

a real function. These functions are obtained by using composition of elementary
functions and u.

We consider a di�erentiable function u : R ≠æ R. For any natural number

n Ø 1, we define the function F (x) = un+1(x)
n + 1 · We know from previous chapters,

the function F is di�erentiable in Du. Because it is a composition of di�erentiable
functions. Let x œ Du, then, we have, F Õ(x) = uÕ(x) un(x)· This leads to the
following theorem.

Theorem 6.1.32. Let u : R ≠æ R be a di�erentiable function . For any natural
number n Ø 1 and x œ Du, we define the function f(x) = uÕ(x)un(x). Then, the

function F (x) = un+1(x)
n + 1 is a primitive of f.

If we take n = 1 in the theorem above we obtain the following corollary.

Corollary 6.1.33. Let u : R ≠æ R be a di�erentiable function. For every x œ Du

we define the function f(x) = uÕ(x)u(x). Then, the function F (x) = u2(x)
2 is a

primitive of f.

Example 6.1.34. For every real number x we define the function f(x) = 3(3x+1)5.
To determine a primitive of f we define the function u(x) = 3x+1. The function

u is di�erentiable in R. Because, it is an a�ne function. For all x œ R, we get
uÕ(x) = 3. Setting n := 5, we observe that f is in the form f(x) = uÕ(x)u5(x).

Therefore, the function F (x) = u6(x)
6 = (3x + 1)6

6 is a primitive of f.

Example 6.1.35. Let f be the function defined by f(x) = (2x + 2)(x2 + 2x + 3).
To find a primitive to the function f we define the real function u(x) = x2 + 2x + 3.
This function is di�erentiable in R and for all x œ R, we have uÕ(x) = 2x + 2. This

involves f(x) = uÕ(x) u(x). Therefore the function F (x) = u2(x)
2 = (x2 + 2x + 3)2

2
is a primitive of f.
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Example 6.1.36. We consider the function f(x) = (2x+5)11. To define a primitive
to the function f we set u(x) = 2x + 5. Then the function u is di�erentiable in R
and uÕ(x) = 2. From this, we deduce that,

f(x) = u11 = 1
2 · 2 (2x + 5)11 = 1

2 · uÕ(x)u11(x).

Hence a primitive of f is defined by F (x) = 1
2 · u12(x)

12 = (2x + 5)12

24 ·

Remark 6.1.37. In general if the function f is in the form f(x) = (ax + b)n, with
a real number a ”= 0. A primitive of the function f is

F (x) = 1
a

· un+1(x)
n + 1 + C,

where C is a real number.

Exercise 6.1.38. Define a primitive for each of the following functions.

1. f(x) = 2(2x + 3)3, 2. g(x) = (3x2 + 2x + 1)(x3 + x2 + x + 11)4,

3. h(x) = (x + 3)(x2 + 6x + 2) 4. u(x) = (5x + 3)2, 5. v(x) = (4x + 9).

Let u : I ≠æ Rú be a di�erentiable function. For every x œ I we define the
function F (x) = 1

u(x) · Then, the function F is di�erentiable in I and we have

F Õ(x) = ≠ uÕ(x)
u2(x) ·

Lemma 6.1.39. Let u : I ≠æ Rú be a di�erentiable function. For every x œ I,
we consider the function f(x) = uÕ(x)

u2(x) · Then, the function F (x) = ≠ 1
u(x) is a

primitive of f .

Example 6.1.40. We consider the function f(x) = 2x + 3
(x2 + 3x + 4)2 · To find a

primitive to f , we define the function u(x) = x2 + 3x + 4. The function u is

di�erentiable in R and uÕ(x) = 2x + 3. This means, f(x) = uÕ(x)
u2(x) · Therefore, the

following function F (x) = ≠ 1
x2 + 3x + 4 is a primitive of f .

Exercise 6.1.41. Find a primitive to each of the following function

1. f(x) = 5
(5x + 6)2 , 2. g(x) = 6x2 + 2x + 1

(2x3 + x2 + x)2 , 3. h(x) = 1
(4x + 3)2 ·

Now we take a natural n Ø 2 and a function u : I ≠æ Rú which is di�erentiable
di�erentiable in I. We define the function F (x) = ≠1

(n ≠ 1)un≠1(x) · Since the func-
tion F is a composition of di�erentiable functions it is di�erentiable in I. For every
real number x, which belongs to I, we can establish

F Õ(x) = uÕ(x)
un(x) ·
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Theorem 6.1.42. Let u : I ≠æ Rú be a di�erentiable function. For any natural
number n Ø 2 and x œ I, we define the function f(x) = uÕ(x)

un(x) ·Then, the function

F (x) = ≠1
(n ≠ 1)un≠1(x) is a primitive of f.

Example 6.1.43. Let f(x) = 6
(6x + 1)4 · We know the domain of f is D =

R\{≠1/6}. To determine a primitive to the function f , we set u(x) = 6x + 1.
The function u is di�erentiable in R, then,it is di�erentiable in R\{≠1/6} and

uÕ(x) = 6. From this , we deduce that, for all x ”= ≠1
6 , f(x) = uÕ(x)

u4(x) · Applying the

theorem above, we obtain F (x) = ≠1
3(6x + 1)3 ·

Exercise 6.1.44. Find a primitive to each of the following function

1. f(x) = 4
(4x + 3)3 , 2. g(x) = 3x2 + 10x + 2

(x3 + 5x2 + 2x + 1)7 , 3. h(x) = 1
(3x + 5)5 ·

Let u : I ≠æ (0 ; +Œ) be a di�erentiable functions . We consider the function
F (x) = ln(u(x)). We know the function F is di�erentiable as a composition of
di�erentiable functions. For all x œ I, the derivative of F is

F Õ(x) = uÕ(x)
u(x) ·

Theorem 6.1.45. Let u : I ≠æ ( 0 , +Œ ) be a di�erentiable function. We define

f(x) = uÕ(x)
u(x) · Then, the function F (x) = ln(u(x)) is a primitive of f .

Example 6.1.46. Let x œ ( 2 , +Œ ) and f(x) = 2
2x ≠ 4 · We define the function

u(x) = 2x ≠ 4. The function u is di�erentiable and for every x œ ( 2 , +Œ ) , we

get uÕ(x) = 2. Hence the function f is in the form f(x) = uÕ(x)
u(x) . Therefore the real

function F (x) = ln(2x ≠ 4) is a primitive of f.

Exercise 6.1.47. Determine a primitive to each of the following functions.

1. f(x) = 2x

(x2 + 1) , 2. g(x) = 2
(2x + 5 , 3. h(x) = 1

6x + 5 , 4. u(x) = x2 + 1
x3 + 3x

,

5. v(x) = 1
7x

, 6. w(x) = 2x

3x2 + 2 , 7. z(x) = 5
3x ≠ 2 ·

Now we consider the function F (x) = exp(u(x)) where u : I ≠æ R is any
di�erentiable real function. The function F is di�erentiable in I and for every real
number x in I, F Õ(x) = uÕ(x) exp(u(x)).

Theorem 6.1.48. Let u : I ≠æ R be a di�erentiable function. We define the
function f(x) = uÕ(x) exp(u(x)). Then, the function F (x) = exp(u(x)) a primitive
of f .
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Example 6.1.49. We consider the function f(x) = 2 exp(2x + 5) and we define
u(x) = 2x + 5. The function u is di�erentiable and for every real number x we
have uÕ(x) = 2. Consequently we obtain f(x) = uÕ(x) exp(u(x)). This implies the
function F (x) = exp(2x + 5) is a primitive of f .

Exercise 6.1.50. Define a primitive to each of the following function

1. f(x) = xex
2+1, 2. g(x) = 4e4x+6, 3. h(x) = e6x+1,

4. u(x) = x3ex
4+3, 5. v(x) = (x2 + 2x + 1)ex

3+3x
2+3x+1.

Let us consider a di�erentiable function u : I ≠æ ( 0 , +Œ ). For every x in
the interval I we introduce the function F (x) = 2


u(x) . Since u is di�erentible

in I and the square root function is di�erentible in ( 0 , +Œ ), the function F is
di�erentiable in I.

Let x belong to I, then, we obtain

F Õ(x) = uÕ(x)
u(x)

·

Theorem 6.1.51. Let u : I ≠æ ( 0 , +Œ ) be a di�erentiable function. For every

x œ I we define f(x) = uÕ(x)
u(x)

· Then, the function F (x) = 2


u(x) is a primitive

of f .

Example 6.1.52. We consider the following function f(x) = 2Ô
2x + 4

, which is

defined in ( ≠2 , +Œ ). Setting u(x) = 2x + 4, one has uÕ(x) = 2. The function f

is in the following form: f(x) = uÕ(x)
u(x)

. Since the function f is continuous it has

primitive and a primitive of f is defined by F (x) = 2
Ô

2x + 4.

Example 6.1.53. Let f(x) = 2x + 1Ô
x2 + x + 1

· The function f is defined in R. Now

we take u(x) = x2 + x + 1, the derivative of u is uÕ(x) = 2x + 1. Hence the function

f(x) = uÕ(x)
u(x)

· As the function f is continuous in I it has primitives. The function

F (x) = 2
Ô

x2 + x + 1 is a primitive of f .

Exercise 6.1.54. Define a primitive to each of the following functions

1. f(x) = 1Ô
3x + 2

, 2. g(x) = 2x + 3Ô
x2 + 5x + 1

, 3. h(x) = 5Ô
7x + 1

·

Let u : I ≠æ R be a di�erentiable function. For every real number x in I, we
define F (x) = cos(u(x)). Since u is di�erentiable in I and cos is di�erentiable in
R, the function cos(u(x)) is di�erentiable in I. For any x œ I, we have F Õ(x) =
≠uÕ(x) sin(u(x)). Then the following theorem holds.

Theorem 6.1.55. We consider a di�erentiable function u : I ≠æ R. For x œ I, we
define the function f(x) = uÕ(x) sin(u(x)). Then, the function F (x) = ≠ cos(u(x))
is a primitive of f .
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Example 6.1.56. Let f(x) = 5 sin(5x + 3. We set u(x) = 5x + 3. The function
u is di�erentiable in R and uÕ(x) = 5. We obtain f(x) = uÕ(x) sin(u(x)). Since f
is a continuous in R, it has primitives. A primitive of f is defined by the function
F (x) = ≠ cos(5x + 3).

Example 6.1.57. We consider the following function f(x) = sin(3x+2). We define
u(x) = 3x + 2. Then, uÕ(x) = 3. From this, we define

f(x) = 1
3 · 3 sin(3x + 2) = 1

3uÕ(x) sin(u(x)).

Since f is a continuous function, it admits primitives. A primitive of f is given by
F (x) = ≠1

3 cos(3x + 2).

Exercise 6.1.58. Find a primitive to each of the following functions

1. f(x) = (2x + 1) sin(x2 + x + 3), 2. g(x) = sin(6x + 1), 3. h(x) = ≠ sin(3x).

Now, we consider a di�erentiable function u : I æ R. For any x œ I, we define
the function F (x) = sin(u(x)). Since u is di�erentiable in I and sin is di�erentiable
in R, then, sin(u(x)) is di�erentiable in I. We have F Õ(x) = uÕ(x) cos(u(x)). This
proves the following theorem

Theorem 6.1.59. Let u : I ≠æ R be a di�erentiable function. We consider the
function f(x) = uÕ(x) cos(u(x)). Then, the function F (x) = sin(u(x)) is a primitive
of f .

Example 6.1.60. We define f(x) = 6 cos(6x + 1). The function f is continuous
in R. We define u(x) = 6x + 1. Therefore uÕ(x) = 6. The function f is in the form
f(x) = uÕ(x) cos(u(x)). Hence F (x) = sin(6x + 1) is a primitive of f .

Exercise 6.1.61. Find a primitive to each of the following function.

1. f(x) = 25 cos(5x + 3), 2. g(x) = cos(x + 3), 3. h(x) = ≠ cos
3

5
2x + 5

4
.

To refresh memory to the readers, we give the following table.

f(x) Domain of f F (x) Domain of F

uÕ.u Du

u2

2 Du

uÕ.un Du

un+1

n + 1 Du

uÕ

u2 D1 ≠ 1
u

D1

uÕ

un
, n Ø 2 D1

≠1
(n ≠ 1)un≠1 , D1

uÕ
Ô

u
D3 2


u(x) D2

uÕ. sin(u) Du ≠ cos(u) Du

uÕ. cos(u) Du sin(u) Du

uÕ. exp(u) Du exp(u) Du

uÕ

u
D3 ln(u) D3
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Here we define D1 = {x œ R : u(x) ”= 0}, D2 = {x œ R : u(x) Ø 0} and

D3 = {x œ R : u(x) > 0}.

One may ask, why we are trying to determine primitives of functions. Why
we engage in such complicated work . Do we need to spend so much time in
finding such primitives. To answer this question, we consider a function F which is
di�erentiable in some interval I, such that F Õ(x) = f(x). Let x0 belong to I. For
some real number h > 0 , we define the quantity

�F = F (x0 + h) ≠ F (x0)
x0 + h ≠ x0

= F (x0 + h) ≠ F (x0)
h

·

For h small enough [h tends to 0 but remains di�erent to 0], we have

�F = F (x0 + h) ≠ F (x0)
h

ƒ f(x0).

Multiplying by h we obtain F (x0 +h)≠F (x0) ƒ h ·f(x0). To simplify the presenta-
tion we assume f(x0) > 0. Then the positive real h·f(x0) is the area of the rectangle
that has vertices the points (x0 , 0), (x0 + h , 0), (x0 , f(x0) ) and (x0 + h , f(x0) ).
This area is an approximation of the function in the interval [ x0 , x0 + h ]. In other
words, when h goes to 0, we have

F (x0 + h) ≠ F (x0) =
⁄

x0+h

x0

f(t) dt (6.1.3)

As we can see it identity (6.1.3) justifies why we went to so much trouble to define
primitives. In the next section we show the close link that exists between primitives
and integrals.

6.2 Intriduction to Integration
This section deals with integration. Indeed , here we define an integral. We also
specify that integrals are just some particular primitives. We will define some
properties of integrals. To end this section we introce integration by parts and
integration by using substitution method.

6.2.1 Defitions and Notations
Let f be a continuous function in [a , b], with a < b. We denote

⁄
b

a

f(x)dx, (6.2.1)

to mean the integral from a to b of f . One may wonder how to find the value of
(6.2.1). That is why we state the following definition.

Definition 6.2.1. Let f be a continuous function in [a , b]. We consider a function
F which is a primitive of f in [a , b]. We define the integral from a to b of f by

⁄
b

a

f(x)dx =
Ë
F (x)

Èb

a

= F (x)
---
b

a

= F (b) ≠ F (a). (6.2.2)
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Remark 6.2.2. We make the following remarks

• The name of the variable x in which we integrate does not matter. We can
integrate in the variable y or u or t. Indeed, we have

⁄
b

a

f(x) dx =
⁄

b

a

f(y) dy =
⁄

b

a

f(t) dt =
⁄

b

a

f(u) du

• To find the value of the integral of f from a to b,
s

b

a
f(x) dx, we should follow

at least three steps:

– Step 1: to define the function F a primitive of the function f

– Step 2: we compute F (a) and F (b).
– Step 3: To finish we write

⁄
b

a

f(x) dx = F (b) ≠ F (a).

We make the precision that it is not necessary to observe these steps or to follow
them by dot. They can be done in one step by writing directly the value of the
integral.

Example 6.2.3. To define the integral
s 2

0 2x dx we set f(x) = 2x. Since f is an
a�ne function, it is continuous in the interval [0 , 2]. Then it has primitives in
[ 0 , 2 ].

• Step 1: We know from what that a primitive of the function 2 x can be defined
by F (x) = x2.

• Step 2: Now, we have to find F (2) and F (0), which are: F (2) = 22 = 4,
F (0) = 02 = 0

• Step 3: In this step, we define the value of the integral:
⁄ 2

0
2x dx =

Ë
x2

È2

0
= x2

---
2

0
= 22 ≠ 02 = 4.

Example 6.2.4. Compute the value of the following integral
s 2

1 x2 + 2x + 1 dx. We
define the function f(x) = x2 + 2x + 1. The function

F (x) = x3

3 + x2 + x

is a primitive of f.
On the other hand we have F (2) = 8

3 + 4 + 2 = 26
3 and F (1) = 1

3 + 1 + 1 = 7
3 .

Therefore we obtain
⁄ 2

1
(x2 + x + 1) dx = F (2) ≠ F (1) = 26

3 ≠ 7
3 = 19

3 ·

Exercise 6.2.5. Define the value of the following integrals
⁄ 3fi

0
cos(x) dx,

⁄ e

2

1
x

dx,

⁄ 5

3

1Ô
x + 3

dx,

⁄ 7

0
x ex

2+3 dx,

⁄ 3

1
(3x + 2)2 dx.
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Before going further we specify the following notations.

Theorem 6.2.6. Let f be continuous function in the interval [a , b]. For every real
number x in [a , b] we define the function

F (x) =
⁄

x

f(t) dt (6.2.3)

Then, the function F is a primitive of f.

In the next subsection, we study properties of integrals

6.2.2 Some Properties of Integrals
In this section, we deal with some properties of integrals. We do not pretend to
give the full list of such properties.

Let f be a continuous function in [a , b]. We consider the function F which is a
primitive of f in [a , b]. Using the definition above one deduces

⁄
a

a

f(x) dx = F (a) ≠ F (a) = 0.

Lemma 6.2.7. Let f be a continuous function in the interval [a , b]. Then, we have
⁄

a

a

f(x) dx = 0

Example 6.2.8. We have
s 2

2 x2 + 2x dx = 0.

Lemma 6.2.9. Let f be a continuous function in the interval [a , b]. Then, the
following property holds

⁄
a

b

f(x) dx = ≠
⁄

b

a

f(x) dx.

Proof. Let f be a continuous function in [a , b]. Then, the function f has primitives.
We take one among such primitives and we denote it F . Therefore, we have

⁄
a

b

f(x) dx = F (a) ≠ F (b) = ≠
1

F (b) ≠ F (a)
2

= ≠
⁄

b

a

f(x) dx.

Example 6.2.10. We have
⁄ 1

2

1
x

dx = ≠
⁄ 2

1

1
x

dx = ≠ ln(2).

Lemma 6.2.11. Let f be a continuous function in [a , b] and k a real number.
Then, ⁄

b

a

k f(x) dx = k

⁄
b

a

f(x) dx.
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Proof. Let f be a continuous function in [a , b]. Therefore f has primitives. We
consider the function F as one of such primitives. Then, for any real number k, the
function k F is a primitive of k f . Consequently

⁄
b

a

k f(x) dx = k F (b) ≠ k F (a) = k (F (b) ≠ F (a)) = k

⁄
b

a

f(x) dx.

Example 6.2.12. Let f(x) = 3 sin(x), we have

I =
⁄

fi

0
3 sin(x) dx = 3

⁄
fi

0
sin(x) dx = 3

Ë
≠ cos(x)

Èfi

0
= 3(≠ cos(fi) + cos(0)) = 6.

Exercise 6.2.13. Determine the following integrals
⁄ 2

0
2x dx,

⁄ 3

2

5
u

du,

⁄ 7

5

3
x4 dx,

⁄
fi/2

fi/6

1
2 cos(t) dt,

⁄ 2

0
4ey dy·

Lemma 6.2.14. Let f and g be two continuous functions in [a , b]. Then,
⁄

b

a

(f(x) + g(x)) dx =
⁄

b

a

f(x) dx +
⁄

b

a

g(x) dx.

Proof. We consider two functions F and G that are respective primitives of f and
g. The function F + G is a primitive of the function f + g. This implies that,

⁄
b

a

f(x) + g(x) dx = F (b) + G(b) ≠ F (a) + G(a) = F (b) ≠ F (a) + G(b) ≠ G(a)

=
⁄

b

a

f(x) dx +
⁄

b

a

g(x) dx.

Example 6.2.15. We consider the following integral
⁄ 1

0
x2 + 3x + 1 dx.

To compute this integral , we proceed as follows
⁄ 1

0
(x2 + x + 1) dx =

⁄ 1

0
x2 dx +

⁄ 1

0
3x dx +

⁄ 1

0
dx =

5
x3

3

61

0
+

5
3x2

2

61

0
+

Ë
x

È1

0

= 1
3 + 3

2 + 1 = 17
6 ·

Exercise 6.2.16. Determine the values of the following integrals
⁄

fi

0
x2 + sin(x) + ex dx,

⁄ 3

1

1
x

+ cos(x) + 1Ô
x

dx,

⁄ 1

5

1
x3 + 1

x2 dx.

Exercise 6.2.17. Compute the values of the following integrals
⁄

fi

0
x2 + 1

x
+ x + ex dx,

⁄ 3

1

1Ô
x

+ x3 + 3x + 1 dx,

⁄ 1

6
ex + x2 dx.
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Theorem 6.2.18 (Chasles Relation). Let f be a continuous function in [a , b]. We
consider some real number c in (a , b). Then, we have

⁄
c

a

f(x) dx +
⁄

b

c

f(x) dx =
⁄

b

a

f(x) dx.

Proof. Let F be a primitive of f in [a , b]. Therefore we have
⁄

c

a

f(x) dx +
⁄

b

c

f(x) dx = (F (c) ≠ F (a)) + (F (b) ≠ F (c)) = F (b) ≠ F (a)

=
⁄

b

a

f(x) dx.

Example 6.2.19. As an example we take
⁄

fi

≠fi

≠ sin(x) dx =
⁄ 0

≠fi

≠ sin(x) dx +
⁄

fi

0
≠ sin(x) dx =

Ë
cos(x)

È0

≠fi

+
Ë

cos(x)
Èfi

0

= (cos(0) ≠ cos(≠fi)) + (cos(fi) ≠ cos(0)) = cos(fi) ≠ cos(≠fi) = 0

Below we give three important theorems without proofs.

Theorem 6.2.20. Let f be continuous function in [a , b]. For every real number x
in [a , b] we define the function

F (x) =
⁄

x

a

f(x) dx.

Then, the function F is the primitive of f , that satisfies , F (a) = 0.

Remark 6.2.21. From this theorem, we deduce, any continuous function has a
primitive.

Theorem 6.2.22 (Mean Value Theorem). Let f be a continuous function in [a , b].
Then, there exists at least a real number c in ]a , b[, such that,

µ = f(c) = 1
b ≠ a

⁄
b

a

f(x) dx.

Remark 6.2.23. We point out that, here, the real number f(c) is the mean value
of the function f in the interval [a , b]. In other words, if it was possible to list all
values taken by f in [a , b] and to calculate the average of these values, we will find
f(c). But here, we know that it is not possible to get the full list of all values taken
by f in [a , b].

Example 6.2.24. Let f(x) = 2x + 1. The mean value of f in [1 , 3] is

µ = 1
3 ≠ 1

⁄ 3

1
2x + 1 dx = 1

2

Ë
x2 + x

È3

1
= 1

2(9 + 3 ≠ 1 ≠ 1) = 10
2 = 5.



6.2. INTRIDUCTION TO INTEGRATION 143

Exercise 6.2.25. Determine the mean value of the following functions in the given
interval I.

1. f(x) = ex + x, I = [≠1 , 1] 2. g(x) = 1
x

+ x2, I = [2 , 5]

3. h(x) = sin(x), I =
Ë
≠fi

2 , fi
È

.

Theorem 6.2.26 (Fundamental Theorem of Analysis). Let f be a di�erentiable
function in [a , b]. Moreover, we assume the function f Õ is continuous in [a , b].
Then, for all x and y in [a , b],

f(y) ≠ f(x) =
⁄

y

x

f Õ(t) dt. (6.2.4)

Here, we define a table which allows us to give integrals of some elementary
functions . We consider a continuous function in [a , b]

s
b

a
f(u(x)) dx F (b) ≠ F (a)

s
b

a
uÕ(x).u(x) dx

u2(b) ≠ u2(a)
2

s
b

a
uÕ.un(x) dx

un+1(b) ≠ un+1(a)
n + 1s

b

a

u
Õ(x)

u2(x) dx ≠ 1
u(b) + 1

u(a)
s

b

a

u
Õ(x)

un(x) dx, n Ø 2 ≠ 1
(n ≠ 1)un≠1(b) + 1

(n ≠ 1)un≠1(a)s
b

a

u
Õ(x)Ô
u(x)

dx 2


u(b) ≠ 2


u(a)
s

b

a
uÕ. sin(u(x)) dx ≠ cos(u(b)) + cos(u(a))s

b

a
uÕ(x). cos(u(x)) dx sin(u(b)) ≠ sin(u(a))s

b

a
uÕ(x). exp(u(x)) dx exp(u(b)) ≠ exp(u(a))s

b

a

u
Õ(x)

u(x) dx ln(u(b)) ≠ ln(u(a))

Example 6.2.27. To Determine the value of the following integral
⁄ 2

1
3(3x + 1) dx,

we define, u(x) = 3x + 1, then, uÕ(x) = 3. Hence,
⁄ 2

1
3 (3x + 1) dx =

⁄ 2

1
uÕ(x) u(x) dx =

5
(3x + 1)2

2

62

1
= 49

2 ≠ 16
2 = 33

2 ·

Exercise 6.2.28. Determine the values of the following integrals
⁄ 1

0
2(2x + 3) dx,

⁄ 5

1
(2x + 3)(x2 + 3x + 1) dx,

⁄ 3

2
(7x + 5) dx.

Example 6.2.29. To find the value of the following integral
⁄ 1

0
2(2x + 1)3 dx,
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we set u(x) = 2x + 1, then, uÕ(x) = 2. Therefore,
⁄ 1

0
2(2x + 1)3 dx =

⁄ 2

1
uÕ(x) u3(x) dx =

5
(2x + 1)4

4

61

0
= 34

4 ≠ 1
4 = 20·

Exercise 6.2.30. Determine the exact value of the following integrals
⁄ 1

0
(3x2 + 2x)(x3 + x2)4 dx,

⁄ 2

1
(2x + 3)(x2 + 3x)5 dx,

⁄ 3

2

1
2
Ô

x
(
Ô

x + 4)2 dx.

Example 6.2.31. Now we want to determine the following integral
⁄ 2

1

2x

(x2 + 1)2 dx.

To this end we define the function u(x) = x2 + 1. Then, uÕ(x) = 2x. From this one
deduces,

⁄ 2

1

2x

(x2 + 1)2 dx =
⁄ 2

1

uÕ(x)
u2(x) dx =

5
≠ 1

x2 + 1

62

1
= ≠1

5 + 1
2 = 3

10 ·

Exercise 6.2.32. Find the values of the following integrals
⁄ 6

5

7
(7x + 1)2 dx,

⁄ 1

0

1
(4x + 1)2 dx,

⁄ 5

3

x3 + 2x

(x4 + 4x2 + 7)2 dx.

Example 6.2.33. We consider the following integral
⁄ 1

0

4
(4x + 1)5 dx.

To determine the value of the integral above we set u(x) = 4x+1. The derivative
of u is uÕ(x) = 4. This implies ,

⁄ 1

0

4
(4x + 1)5 dx =

⁄ 1

0

uÕ(x)
u5(x) dx =

5
≠ 1

(4x + 1)4

61

0
= ≠1

4

3
1
54 ≠ 1

4
·

Exercise 6.2.34. Determine the following integrals
⁄ 3

2

2x + 1
(x2 + x + 7)3 dx,

⁄ 1

0

1
(5x + 2)6 dx,

⁄ 4

3

1
(3x + 5)4 dx.

Example 6.2.35. We consider this integral
⁄ 1

0

1Ô
x + 1

dx.

To compute its value we define the function u(x) = x + 1. Then, uÕ(x) = 1.
Therefore one has

⁄ 1

0

1Ô
x + 1

dx =
⁄ 1

0

uÕ(x)
u(x)

dx =
Ë
2
Ô

x + 1
È1

0
= 2

Ô
2 ≠ 2

Ô
1 = 2

Ô
2 ≠ 2.
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Exercise 6.2.36. Determine the following integrals
⁄ 2

1

2x + 1Ô
x2 + x + 3

dx,

⁄ 3

2

1Ô
5x + 1

dx,

⁄ 7

4

1Ô
2x + 3

dx.

Example 6.2.37. To determine the value of the integral
⁄

fi

0
4 sin(4x + fi) dx,

we set u(x) = 4x + fi. Then, we have uÕ(x) = 4. From, this we deduce,
⁄

fi

0
4 sin(4x + fi) dx =

⁄
fi

0
uÕ(x) sin(u(x)) dx = [≠ cos(4x + fi)]fi0

= ≠ cos(5fi) + cos(fi) = ≠ cos(fi) + cos(fi) = 0.

Exercise 6.2.38. Determine the value of the following integrals
⁄ 0

≠fi

3 sin(3x)) dx,

⁄
fi/2

fi/6
sin(2x) dx,

⁄
fi/2

fi/4
sin

3
1
2x + fi

4

4
dx.

Example 6.2.39. We consider the following integral
⁄

fi/2

0
2 cos(2x) dx.

To find its value we define u(x) = 2x. We have uÕ(x) = 2. Hence,

⁄
fi/2

0
2 cos(2x) dx =

⁄
fi/2

0
uÕ(x) cos(u(x)) dx = [sin(2x) ]fi/2

0 = 0.

Exercise 6.2.40. Compute the following integrals
⁄ ≠fi/2

≠fi

3 cos(3x + fi) dx,

⁄
fi/6

0
cos(4x) dx,

⁄ 3fi/4

fi/4
cos(5x) dx.

Example 6.2.41. To determine the following integral
⁄ 3

2
2e2x+3 dx,

we consider the function u(x) = 2x + 3. Then, uÕ(x) = 2. Hence, we have
⁄ 3

2
2e2x+3 dx =

⁄ 3

2
uÕ(x) eu(x) dx =

Ë
e2x+3

È3

2
= e9 ≠ e7.

Exercise 6.2.42. Determine the following integrals
⁄ 1

0
e3x+5 dx,

⁄ 3

2
ex+2 dx,

⁄ 3

2
e7x≠5 dx.



146 CHAPTER 6. INTRODUCTION TO INTEGRATION

Example 6.2.43. Now we consider the following integral
⁄ 4

2

5
5x + 1 dx.

We define the function u(x) = 5x+1. Therefore we obtain uÕ(x) = 5. Consequently,
⁄ 4

2

5
5x + 1 dx =

⁄ 4

2

uÕ(x)
u(x) dx =

Ë
ln(5x + 1)

È4

2
= ln(21) ≠ ln(11) = ln

3
21
11

4
.

Exercise 6.2.44. Find the value of the following integrals
⁄ 3

2

2
2x + 5 dx,

⁄ 1

0

x

x2 + 1 dx,

⁄ 5

4

11
11x + 1 dx.

In the next subsection, we introduce one of the most famous technique to cal-
culate integrals. In the theory of integration we call this method integration by
parts.

6.3 Introduction to Integration by Parts
This section is devoted to inetgration by parts. Here we explain how runs this
important method in the theory of integration.

Before defining integration by parts, we specify some notations.

Definition 6.3.1. Let f be a real function defined in the interval I. We say the
function f is of class C 1, if it satisfies these properties

• f is di�erentiable in I and

• the derivative of f , f Õ is continuous in I.

When the function f is of class C 1, we say f is a C 1 function. We denote
f œ C 1(I).

Now, we consider two functions f and g which are of class C 1 in the interval
[ a , b ]

#
f œ C ([a ; b]) and g œ C 1 ([a ; b]) .

$
Since f and g are di�erentiable, the

fnction f · g is di�erentiable in [a , b]. Let x œ [a , b], then, we have

(f · g)Õ(x) = f Õ(x)g(x) + f(x)gÕ(x).

From the identity above, we deduce the function f · g is a primitive of the function
h(x) = f Õ(x) g(x) + f(x) gÕ(x). Consequently, we obtain

⁄
b

a

h(x) dx =
Ë
f(x)g(x)

Èb

a

.

Replacing h by its expression, involves
⁄

b

a

(f Õ(x)g(x) + f(x)gÕ(x)) dx =
Ë
f(x)g(x)

Èb

a

.
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As we know ,
⁄

b

a

(f Õ(x)g(x) + f(x)gÕ(x)) dx =
⁄

b

a

f Õ(x)g(x) dx +
⁄

b

a

f(x)gÕ(x) dx

Therefore,
⁄

b

a

f Õ(x)g(x) dx +
⁄

b

a

f(x)gÕ(x) dx =
Ë
f(x)g(x)

Èb

a

.

This leads to the following identity
⁄

b

a

f Õ(x)g(x) dx =
Ë
f(x)g(x)

Èb

a

≠
⁄

b

a

f(x)gÕ(x) dx. (6.3.1)

Theorem 6.3.2 (Integration by Parts). Let f and g be two functions of class C 1

in [a , b]. Then, we have

⁄
b

a

f Õ(x)g(x) dx =
Ë
f(x)g(x)

Èb

a

≠
⁄

b

a

f(x)gÕ(x) dx.

Example 6.3.3. We consider the following integral

I0 =
⁄ 2

1
x ln(x) dx.

To find the value of this integral, we define f Õ(x) = x and g(x) = ln(x). There-

fore, we have f(x) = x2

2 and gÕ(x) = 1
x

· Using (6.3.1), we obtain

⁄ 2

1
x ln(x) dx =

5
x2

2 ln(x)
62

1
≠

⁄ 2

1

x2

2 · 1
x

dx =
3

4
2 ln(2) ≠ 1

2 ln(1)
4

≠ 1
2

⁄ 2

1
x dx

= 2 ln(2) ≠ 1
2

5
x2

2

62

1
= 2 ln(2) ≠ 1

2

5
4
2 ≠ 1

2

6
= 2 ln(2) ≠ 3

4 ·

Example 6.3.4. Now we aim to find the value of the following integral
⁄ 1

0
x ex dx.

To this end we set f Õ(x) = exp(x) and g(x) = x. Then, f(x) = exp(x) and
gÕ(x) = 1 Applying theorem 6.3.2, we obtain

⁄ 1

0
xex dx =

Ë
xex

È1

0
≠

⁄ 1

0
ex · 1 dx =

1
e ≠ 0

2
≠

⁄ 1

0
ex dx = e ≠

Ë
ex

È1

0
= 1.

Exercise 6.3.5. Determine the value of the following integrals

1.

⁄
fi

0
x cos(x) dx, 2.

⁄ 3

2

ln(x)
x2 dx, 3.

⁄ 5

0
x sin(x) dx.
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Now we consider the function f(x) = xÔ
x2 + 3

· Let us define the variable u =

x2 + 3. The variable u depends on x. Therefore the variable u is a function of x.

From this we deduce uÕ(x) = 2x. This means that x = uÕ

2 · If we substitute in the
expression of f , we obtain

f(x) = uÕ

2
Ô

u
·

Now it is easy to find a primitive to the function f . Indeed we know the function
F (x) =

Ô
u =

Ô
x2 + 3 is one of such primitives. As this example showed it is

sometimes usefull to make a change in variable in which we integrate in order to be
able to find easily a primitive. Here we made a substitution of the variable. In the
next subsection we will set the theory of the substitution method.

6.4 Introduction to the Substitution Method
The objective of this subsection is to settle the theory of the substitution method.
This technique is one of the most important in the elementary theory of integration.
It can be summed up in the following theorem. We assume the set I is an interval.

Theorem 6.4.1. Let „ : [a , b] ≠æ I be a C 1- function. We consider the function
f : I ≠æ R and for every x in [a , b], we define u = „(x). Then,

⁄
b

a

f
!
„(x)

"
„Õ(x) dx =

⁄
„(b)

„(a)
f(u) du. (6.4.1)

Proof. Let „ : [a , b] ≠æ I be a function of class C 1. We consider the function F
a primitive of f . We define the function F ¶ „ which is di�erentiable in [a , b]. For
every real number x œ [a , b],

Ë
F („(x)

ÈÕ
= F Õ(„(x)) · „Õ(x) = f(„(x)) · „Õ(x).

From this we deduce
⁄

b

b

#
F („(x)

$Õ
dx =

⁄
b

a

f(„(x)) · „Õ(x) dx = F („(b)) ≠ F („(a)).

Now we introduce the following substitution. For every x in [ a , b ], we define

u = „(x).

When x = a, the variable u takes the value „(a). When x = b, we have u = „(b).
Formally speaking one has du

dx
= d„

dx
Multiplying formally by dx, we obtain

du = „Õ(x) dx.

This leds to the identity

F („(b)) ≠ F („(a)) =
⁄

a

b

f(„(x)) · „Õ(x) dx =
⁄

„(b)

„(a)
f(u) du

This completes the proof.
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When we make a substitution, we should be careful. Because most of the stu-
dents forget to change the bounds of the integral.

Example 6.4.2. We consider the following integral

I0 =
⁄ 1

0

x + 1Ô
x2 + 2x + 1

dx.

To calculate the value of this integral, we define u = x2 + 2x + 1. We see when
x = 0, we have u = 1. If we take x = 1, the value of the variable u is 4. In this
case du = 2 (x + 1)dx. This involves du

2 = (x + 1)dx.

I0 =
⁄ 1

0

x + 1Ô
x2 + 2x + 1

dx =
⁄ 4

1

du

2
Ô

u
·

Therefore,

I0 =
⁄ 4

1

du

2
Ô

u
=

ËÔ
u

È4

1
=

Ô
4 ≠

Ô
1 = 2 ≠ 1 = 1

Example 6.4.3. We define the following integral

I1 =
⁄ 2

1

ln(t)
t

dt.

To compute the value of I1, we set u = ln(t). In this case when t = 1 u = ln(1) = 0.
Taken t = 2, we have u = ln(2). The function u is di�erentiable and du = 1

t
dt.

This implies

I1 =
⁄ 2

1

ln(t)
t

dt =
⁄ ln(2)

0
u du =

5
u2

2

6ln(2)

0
=

1
ln(2)

22

2 ·

Exercise 6.4.4. Compute the following integrals

1.

⁄ 2

0
x2 ex

3+6 dx, 2.

⁄ 1

0

1Ô
2x + 3

dx, 3.

⁄ 3fi/4

fi/3
cos

!
3x ≠ fi

"
dx.
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After staying at home more than two months, because of Covid 19, Gunay,
Tanya, Nubar, Allahverdi, Farida, Kanan, Suad, Arzu, Lala, and Khumar were
bored. Thus they decided to organize a trip for a week-end, in order to enjoy their
selves. They rent a car. After a day of travel, they decided to calculate the distance
traveled.

- Gunay : Since the distance is a function depending on the time, we can denote
the distance by x(t).

- Tanya : Yes I agree with you. But the problem is how to calculate it?
-Kanan : I have seen somewhere this formula x(t) = v · t. Here v is the speed of

the car and t represent the time.
Automatically, students remember, they learned from their physical course, that

v(t) = dx(t)
dt

·

-Nubar : If we replace v(t) by dx

dt
in the formula given by Kanan we will have

t · dx

dt
= x(t). (7.0.1)

151
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This equation is equivalent to

t · dx

dt
≠ x(t) = 0.

Thus, students get a relation between a function and its derivative. They, were a
little bit confused, because they never face this types of equation.

After enjoying their week-end, students came back to school. A nice surprise
awaited for them: Chemestry teachers planned to organize a practical work. They
gave them a subject in which they can read: we consider the following chemical
reaction

2 C4H10 + 13 O2 æ 8 CO2 + 10 H20

• we denote by C(t) the concentration of the reagent C4H10

• the velocity of the reaction is defined by : dC(t)
dt

• The velocity is proportional to the concentration of the reagent

It was asked to students to find a relation between the concentration and the velocity
of the reaction.

After three or five minutes thinking, Allahverdiyev put up his hand. Yes Al-
lahverdiyev says the teacher.

- Allahverdiyev : Since the velocity is proportional to the concentration, we can
find a constant real number k, such that,

k
dC(t)

dt
= C(t). (7.0.2)

Oh my God, exclaimed one of the students, we got this type of equations before.
They asked to the professor how do we call these types of equations?

- Chimistry Teacher: These type of equations are called Ordinary Di�erential
Equations. To shorten it, they are called ODEs.

If you want to learn more about these equations, you need to have a discussion
with maths teachers.

Once Chimistry teacher finished, students went to o�ce 211, in order to meet
Professor Ulviya. They want to know more about ordinary di�erential equations.
Students knocked the door and enter the room.

-Students : Hi Teacher !
-Maths Teacher: How you are students? Can I do something for you?
-Students : Dear Professor, we were facing ordinary di�erential equations, but

we did not know what were their applications and how to solve them.
Ordinary di�erential equations have several applications. They can be used in

physics, biology, chemistry, geo-sciences. To study ordinary di�erential equations
we will proceed step by step.

-Suad : What is a di�erential equation?
To answer Suad’s question the teacher stated the following definition

Definition 7.0.1. An ordinary di�erential equation in an interval I is a relation
between a function and its derivatives.

To simplify notations, we write f Õ instead of df

dt
(x) to mean the derivative of

the function f .
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Example 7.0.2. We consider the following examples

1. 2yÕ(x) + 3y(x) = (x2 + 2), 2. 5yÕÕ(x) + 2yÕ(x) + 3y(x) = 0,

3. yÕÕÕ(x) + 3yÕÕ(x) + 2x yÕ(x) + 3x2y(x) = (4x + 5).

Here, you can see in the first equation,we have a relation between a function y
and its first derivative. In the second equation, we have a relation between a function
and its first and second derivatives. In the third equation, we have a relation between
y, yÕ, yÕÕ and yÕÕÕ.

Remark 7.0.3. As we can observe it, in these equations the unknown is a func-
tion. This means, to solve these type of equations, we should find a function, which
satisfies the relation.

The first equation in the previous example is called a first order ordinary di�er-
ential equations.

- Nubar : teacher what do you mean by first order di�erential equation ?
To make himself understood by students he stated the following definition

Definition 7.0.4. We say that an ordinary di�erential equation is of the first order
if we have a relation between a function and its firstderivative.

Example 7.0.5. The following di�erential equations are ordinary di�erential equa-
tions of first order

1. yÕ + 2x y = (2x2 + 3), 2. 2yÕ + 5y2 = 0, 3. x yÕ + y5 = ln(x).

In the same way we defined second order ordinary di�erential equations.

Definition 7.0.6. A di�erential equation is said to be of second order, if we have
a relation between a function and its first and second derivative.

Example 7.0.7. The following equations are second ordinary di�erential equations

1. yÕÕ + 2yÕ + 2y = 0, 2. x2 yÕÕ + y = x2ex, 3. x yÕÕ + 3x2yÕ + y = ex.

In this chapter, we will study first order ordinary di�erential equations. To
make the presentation clear, we organize it as follows. In the first section, we will
define and study homogeneous first order linear di�erential equations. In the second
section, we study nonhomogeneous first order linear di�erential equations. In the
section 3 we study lsecond order linear di�erential equations.

We specify again in this course we will only deal with linear ordinary di�erential
equations.

7.1 First Order linear Di�erential Equations
In this section, we define first order linear di�erential equations. We study some
properties of the solutions. We show how to solve first order linear di�erential
equations.

Before going further we need to specify the following definitions and notations.

Definition 7.1.1. Let E be a set. We say the set E is a real vector space if it
satisfies these conditions:
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1. the null vector 0 is in E

2. for all x and y in E,the sum x + y is in E

3. for all ⁄ œ R and x œ E, ⁄ · x œ E.

We reexplain this definition by saying a real vector space E is a set which
contains the vector 0 and which is stable by addition of vector and multiplication
by a real number.

To clarify its definition the teacher introduce the following example

Example 7.1.2. Let E = R denote the set of all real numbers. Then, E is a vector
space. Indeed we have

• 0R belongs to R

• if x and y are real numbers then, x + y is a real number.

• if ⁄ and x are real number, ⁄ · x is a real number.

The set of real numbers satisfies the conditions of the definition. Therefore the set
R is a real vector space.

Students were surprise to discover how it was easy to find vector spaces. To
make the presentation undurstandable, the teacher added another example.

Example 7.1.3. Let E = C denote the set of all complex numbers . Then, C is a
real vector space.

To prove this, we check,

• the complex number 0 belongs to C

• if z1 and z2 are in C, therefore z1 + z2 is in C because z1 + z2 is a complex
number.

• if we take k œ R and z œ C, then k · z is a complex number.

Hence we conclude the set C is a real vector space.

Definition 7.1.4. Let E be a real vector space. We say F µ E is a real vector
subspace of E, if F satisfies these two conditions:

• 0E œ F

• for any real numbers – and —, and vectors x and y in F , the vector – x + — y
belongs to F

Let E and F be two vector spaces, we study how to define correspondance
between two vector spaces. We start by defining linear applications

Definition 7.1.5. Let E and F be two vector spaces. We consider an application
L : E ≠æ F. We say L is linear if it satisfies the following conditions:

• for every x and y in E, we have L(x + y) = L(x) + L(y)

• for all k œ R and x œ E, L(k x) = k L(x).
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Remark 7.1.6. From the definition above, we deduce when x belongs to the vector
space E, L(x) = L(x + 0) = L(x) + L(0). Hence L(0) = 0.

Example 7.1.7. The application f : R ≠æ R defined by f(x) = 2x is linear.

Example 7.1.8. Generally speaking if E is a vector space and a a real number, the
application g : E ≠æ E, defined by g(x) = a x is linear.

Definition 7.1.9. Let I be an interval. A first order ordinary di�erential equations
is called a first order linear di�erential equations if it is in the form

a(x) yÕ(x) + b(x) y(x) = f(x), (7.1.1)

where a, b, f and y are functions defined in I.

Students , did not understand why the teacher claimed equation (7.1.1) is linear.
To explain this, the teacher defined the application

L(y) = a(x)yÕ + b(x)y. (7.1.2)

He took y1 and y2 two functions satisfying equation (7.1.1). He showed that

L(y1 + y2) = a(x)(yÕ
1 + yÕ

2) + b(x)(y1 + y2)
=

#
a(x)yÕ

1 + b(x)y1
$

+
#
a(x)yÕ

2 + b(x)y2
$

= L(y1) + L(y2).

On the other hand, if y is a function satisfying (7.1.1) and k a real number, then
we have

L(k y) = a(x)(k yÕ) + b(x)(k y) = ka(x)yÕ + kb(x)y = k
#
a(x)yÕ + b(x)y

$
= kL(y).

Therefore, the application L is linear. From this, we deduce that the equation
(7.1.1) can be rewritten as follows:

L(y) = f(x). (7.1.3)

Since the left hand side part is linear, we say that (7.1.1) is linear.
In other words a di�erential equation L(y) = f(x) is linear if the left hand side

part L(y) is linear.
Let us consider the following di�erential equation a(x)yÕ + b(x)y = f(x) defined

in the interval I. According to the value of f , we say the linear di�erential equation
is homogeneous or nonhomogeneous. We make the following definitions:

Definition 7.1.10. We say a first order linear di�erential equation is homogeneous
if it is in the form

a(x)yÕ + b(x)y = 0. (7.1.4)

To clarify the definition and illustration its meaning the teacher gave the follow-
ing examples

Example 7.1.11. These di�erential equations are homogeneous:

1. gÕ + 3g = 0, 2. 2x yÕ + 1
x

y = 0, 3. (x2 + 2x + 1) yÕ + ex y = 0.
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Once the teacher finished to write its examples on the board, Gunay asked to
the teacher, what happed when f ”© 0. We recall that f ”© 0 means f is a nonzero
function. When the second member f is a nonzero function we have the following
definition:

Definition 7.1.12. Let f be a nonzero function. The first order linear di�erential
equations

a(x)yÕ + b(x)y = f(x),

is called nonhomogeneous di�erential equations.

Example 7.1.13. The following di�erential equations are nonhomogeneous

1. yÕ + 5xy = (x3 + 2x + 2), 2. x2yÕ + ln(x) y = (x2 + x + 3) ln(x),
3. (2x + 7)yÕ + exy = e2x+1.

Let a, b and f be three functions defined in the interval I. We consider the
di�erential equation

(ú) : a(x)yÕ + b(x)y = c(x).

We call equation (ú) a generalized di�erential equation.
This terminology is justified by definition 7.1.14 which will be stated below. To

make the definition easy to understand, we specify the following notations. We
define the set Iú as follows: Iú = {x œ I ; a(x) ”= 0}. We can observe that for every
x œ Iú,we have a(x) ”= 0. Therefore , if we restrict our selves in the set Iú, we can
divide by a(x). This means that in Iú the equation (ú) is equivalent to the following
equation

yÕ + b(x)
a(x)y = c(x)

a(x) · (7.1.5)

The first order linear di�erential equation (7.1.5) is called a normalized first order
linear di�erential equation. In this case we set the following definition.

Definition 7.1.14. We say a first order linear di�erential equation defined in I is
normalized , if it is in the form:

yÕ + a(x) y = f(x), (7.1.6)

where a, y and f are functions defined in the interval I.

Example 7.1.15. The following di�erential equations are normalized di�erential
equations:

1. yÕ + 2y = 2x + 1, 2. yÕ + (x2 + x + 1)y = 0, 3. yÕ + 1
x + 1y = (x3 + 2).

After the definitions generalized and normalized, Nubar was a little bit confused.
She wanted to know the technique which allows to pass from a generilazed to a
normalized equation. To answer her question the teacher explain the following
general rule: Let b, c and d be functions defined in the interval I. We consider the
equation

(úú) : b(x)yÕ + c(x)y = d(x).



7.1. FIRST ORDER LINEAR DIFFERENTIAL EQUATIONS 157

We define I1 µ I, such that, for all x œ I1, b(x) ”= 0. Therefore, in the interval I1,
(úú) is equivalent to

yÕ + c(x)
b(x) y = d(x)

b(x) ·

Setting a(x) := c(x)
b(x) and f(x) := d(x)

b(x) , we obtain the following equation

yÕ + a(x)y = f(x).

This is the rule to obtain normalized equations from general equations.

Example 7.1.16. Take the general di�erential equation 2yÕ +3y = x+1. To obtain
a normalized form, we divide both sides by 2. Then, we have

yÕ + 3
2 y = x + 1

2 ·

Example 7.1.17. We consider the general di�erential equation (x+1)yÕ+2xy = ex.
Let x ”= ≠1, then x + 1 ”= 0. In this case we can divide by x + 1 and we obtain,

for all x œ R\{≠1},

yÕ + 2x

x + 1 y = ex

x + 1 ·

Example 7.1.18. Now we consider the equation x yÕ + ln(x)y = 0 defined in
(0 , +Œ). For all x > 0, we divide by x and obtain the following normalized equation

yÕ + ln(x)
x

y = 0·

Suad did not understand why we were defining normalized di�erential equations.
To convince him to the usefulness of this form the teacher made the following parallel
parallel with exponential function.

Let f(x) = ex. The function f is di�erentiable in R and f Õ(x) = ex. That is ,
f(x) = ex is the solution to the following di�erential equation

yÕ ≠ y = 0,

which satisfies y(0) = 1. Generaly speaking if we define the function

g(x) = exp(A(x)),

where the function A is a primitive of the function a, we can easily check that

gÕ(x) = a(x) exp(A(x)).

Then, the function g is a solution to the di�erential equation yÕ ≠ a(x) y = 0. We
see from these examples that the normalized form, can help to simplify calculations.

In the next subsection, we study homogeneous linear di�erential equations.
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7.1.1 Homogeneous Linear Di�erential Equations
In this subsection we deal with homogeneous di�erential equation. Here we start
by defining some properties shared by solution of homogeneous linear equations.

Now, we consider the following homogeneous equation: find a function y in
C 1(I), which satisfies, for all x œ I,

yÕ + a(x)y = 0. (7.1.7)

Having a look on this equation, Gunay pointed out that the function y(x) = 0,
for all x œ I is a solution to (7.1.7). This leads to the following lemma.

Lemma 7.1.19. The function y © 0 is a solution to any homogeneous linear dif-
ferential equation.

The function defined by y(x) = 0, for every x œ I is called the evident solution
of a linear homogeneous di�erential equation.

Remark 7.1.20. We remark that the evident solution is not so interesting. That
is why, solving a homogeous di�erential equation means to find a nonzero function.
That is, here we are looking for a function y ”© 0, which satisfies (7.1.7).

Let us consider the set of all solutions of (7.1.7) defined in the interval I. We
denote it E (I). We take two functions y1 and y2 solutions to (7.1.7) which are
elements of E (I). Since y1 and y2 are solutions of (7.1.7), we have

yÕ
1 + a(x) y1 = 0 and yÕ

2 + a(x) y2 = 0.

Therefore, we have

yÕ
1 + a(x) yÕ

1 + yÕ
2 + a(x) y2 = (y1 + yÕ

2) + a(x) (y1 + y2) = 0.

Defining the function z = y1 + y2, we obtain the equation zÕ + a(x)z = 0.
This means that , the function y1 + y2 is a solution of (7.1.7). In other words

the function y1 + y2 belongs to E (I).
Let k be a real number and y a solution of (7.1.7). The function y œ E (I). On

the other hand, we know (k y)Õ = k yÕ. This implies

(k y)Õ + a(x)(k y) = k yÕ + ka(x) y = k(yÕ + a(x) y) = 0.

Hence, the function z1 = k y satisfies the di�erential equation zÕ
1 + a(x) z1 = 0.

The function k y is a solution of (7.1.7). That is, k y œ E (I). Since the function
y © 0 œ E (I), this involves the following lemma

Lemma 7.1.21. Let E (I) be the set of all solutions of the di�erential equation
yÕ + a(x) y = 0 defined in I. Then, E (I) is a vector space.

Now we aim to establish the set E (I) is not reduce to the null solution. The
chalenge is now to find conditions under which equation (7.1.7) has a solution y ”© 0
in I. To this end we consider a function a which is continuous on I. We look at the
di�erential equation: find a di�erentiable function, y on I solution to

yÕ(x) + a(x) y(x) = 0.
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This equation is equivalent to yÕ(x) = ≠a(x) y(x). Since the function a is continuous
and y is di�erentiable, then yÕ is continuous. We know that y ”© 0. This means that
there exists x1 œ I, such that y(x1) ”= 0. We can find a subinterval I1 µ I, such
that for all x œ I1, y(x) ”= 0. In I1 the equation yÕ + a(x) y = 0 is equivalent to

yÕ(x)
y(x) = ≠a(x).

The function yÕ

y
is continuous in I1, then it has a primitive. To make the presenta-

tion clear and simplest, we assum y(x) > 0 for every x œ I1. Hence we have
⁄

x yÕ(t)
y(t) dt = ln(y) = ≠

⁄
x

a(t) dt + C.

Using the exponential function we obtain, for all x œ I1,

y(x) = exp
3

≠
⁄

x

a(t) dt + C

4
= K exp

3
≠

⁄
x

a(t) dt

4
,

where K = exp(C). Therefore, there exists y œ C 1(I1) solution to the homogeneous
linear di�erential equation yÕ + a(x) y = 0.

Theorem 7.1.22. Let a be a continuous function on I. Then there exists a function
y œ C 1(I) solution to the homogeneous linear di�erential equation (7.1.7)

This theorem is a corollary of one of the most important theorem in analysis:
the Cauchy-Lipschitz theorem. We will recall this theorem in the next subsection.

Tanya pointed out that since we stated in the previous theorem that equation
(7.1.7) has solutions, they wanted to know what these solutions look like. In other
words they wounder if there were an explicite formula for these solutions. To answer
this question the teacher enunciate the following theorem.

Theorem 7.1.23. Let a be a continuous function on I and A be a primitive of the
function a on I. Then, a general solution to di�erential equation (7.1.7) are defined
by the function

y(x) = K · exp(≠A(x)), (7.1.8)

for every x œ I and K œ R.

Proof. We will do the proof in two steps
Step 1: Let a be a continuous function on I. We consider the function A a primitive
of a on I. For every x œ I, we define the function y(x) = K exp(≠A(x)). Thus the
function y is di�erentiable in I and we have

yÕ(x) = ≠AÕ(x)K exp(≠A(x)) = ≠a(x)K exp(≠A(x)).

Since the function a is continuous, then, yÕ is continuous on I. Therefore, y œ C 1(I)
and yÕ(x) + a(x)Ke≠A(x) = 0. As the function K exp(≠A(x)) is nothing but y, we
get the following equation: for all x œ I, yÕ + a(x)y = 0. This means that (7.1.8) is
a solution to (7.1.7)
Step 2: Now we consider the equation

(ú) : yÕ + a(x)y = 0,
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where a is a continuous function on I. We take the function A as a primitive of a
in I. We multiply (ú) by exp(A(x)). The following equation holds in I

exp(A(x)) yÕ + a(x) exp(A(x)) y = 0.

Setting z(x) = exp(A(x)) for every x œ I , one has zÕ(x) = a(x) exp(A(x)). Substi-
tuting in the equation above, we obtain z yÕ + y zÕ = 0. We know that

yÕz + zÕy = (zy)Õ = 0.

This implies (z · y)Õ = 0. In this case one can find a constant real number K, such
that, z · y = K. This is equivalent to

exp(A(x)) y(x) = K,

for every x œ I. Since exp(A(x)) ”= 0, for all x œ I, we can divide by exp(A(x)).
However, dividing by exp(A(x)) is equivalent to multiply by exp(≠A(x)). Conse-
quently, we have y(x) = K exp(≠A(x)).

Example 7.1.24. We consider the following di�erential equation yÕ + 2x y = 0
defined in R
Solution: In this example we define the function a(x) = 2x. This function is contin-
uous in R. A primitive of a is defined by the function A(x) = x2. Applying theorem
7.1.23, we obtain y(x) = K exp(≠x2), for all x œ R and K œ R.
Example 7.1.25. Find solutions of the equation yÕ + 1

x
y = 0 in the interval

( 0 , +Œ ).
Solution : Let x œ ( 0 , +Œ ). We define the function a(x) = 1

x
· Then, the function

a is continuous on ( 0 , +Œ ). The function A(x) = ln(x) is a primitive of a in
( 0 , +Œ ). Applying theorem 7.1.23, we obtain

y(x) = K exp(≠ ln(x)) = K

exp(ln(x)) = K

x
,

for all x œ ( 0 , +Œ ) and K œ R.
Example 7.1.26. Let x œ (≠1 , +Œ). Find the solution of the following homoge-
neous linear di�erential equation yÕ ≠ 1

x + 1 y = 0.

Solution : Here we define the function a(x) = ≠ 1
x + 1 · The function A(x) =

≠ ln(x + 1) is a primitive of a. Therefore, the function y(x) = K exp(ln(x + 1)) =
K (x + 1), for all x œ ( 0 , +Œ ) and K œ R.

Exercise 7.1.27. Find solutions to the following di�erential equations in the indi-
cated interval I

1. yÕ + 2 y = 0, I = R, 2. yÕ + (x2 + 2x + 6) y = 0, I = R,

3. yÕ + (x3 + 3x + 1) y = 0, I = R.

Exercise 7.1.28. Find solutions to the following homogeneous di�erential equa-
tions in the indicated interval I

1. yÕ + 2x

x2 + 1 y = 0, I = R, 2. yÕ + 1
(x2 + 1) y = 0, I = R

3. yÕ + 2
(2x + 4) y = 0, I = (≠2 , +Œ ).
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Exercise 7.1.29. Find solutions to the following di�erential equations on the in-
dicated interval I

1. yÕ + cos(x) y = 0, I = R, 2. yÕ + 2 sin(2x + 3) y = 0, I = R
3. yÕ + tan(x) y = 0, I = (≠fi/2 , fi/2).

Exercise 7.1.30. Find solutions to the following di�erential equations in the indi-
cated interval I

1. yÕ + ln(x + 2)
x + 2 y = 0, I = (≠2 + Œ ), 2. yÕ + ex y = 0, I = R

3. yÕ + (2x + 1)(x2 + x + 1) y = 0, I = R, 4. yÕ + 3(3x + 1)3 y = 0, I = R

5. yÕ + 1
(x + 2)2 y = 0, I = R\{≠2}.

Exercise 7.1.31. Find the normalized form and the solutions of each of the fol-
lowing equations

1. x3 yÕ + x y = 0, 2. (x3 + 2x + 5) yÕ + (3x2 + 2) y = 0,

3. (2x + 3) yÕ + 2 y = 0, 4. ex
3+2 yÕ ≠ 3x2 y = 0, 5. sin(x) yÕ + cos(x) y = 0.

After a little break Sanan make the following observations. Teacher we could
see that each time we change the constant K in the expression (7.1.8) we get a
new solution . We wanted to know how to obtain a unique solution. The teacher
explained that to find a unique solution we join to the di�erential equation an initial
condition. Then, if we wanted to have a unique solution we have to study what we
call a Cauchy problems.

7.1.2 Homogeneous Linear Cauchy Problem
Formally speaking, a Cauchy problem is a di�erential equation to which we join
an initial condition. An initial condition is just a starting point. Mathematically
speaking we define a Cauchy Problem by :

Definition 7.1.32. Let a be a continuous function on I. We consider x0 œ I
and y0 œ R. A homogeneous first order linear Cauchy problem is a system in the
following form Y

]

[

yÕ + a(x) y = 0, x œ I

y(x0) = y0, x = x0.

The di�erential equation yÕ + a(x) y = 0 is called the dynamic. Because, it
describes the evolution of phenomenon studied. The expression y(x0) = y0 is called
the initial condition. It is the starting point. This means that we start studying the
system at the time x0 or when x = x0 and we consider this system after x = x0.

Example 7.1.33. Below,we can see two examples of Cauchy problems.
Y
]

[

yÕ + (3x + 1) y = 0, x œ R

y(0) = 3, x = 0,
,

Y
_]

_[

yÕ + 1
x2 y = 0, x œ R\{0}

y(1) = 5, x = 1.
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The examples shown, Farida asked how to find a solution to a Cauchy problem.
The teacher replayed: before solving Cauchy problem, we would prove the existence
and uniqueness of a solution to the Cauchy problem in a first time. In a second
time we would give the expression of the solution to a Cauchy problem.

We know from theorem 7.1.22, the homogeneous linear di�erential equation

(ú) : yÕ + a(x)y = 0

has solutions which belong to C 1(I). Let A be a primitive of a. Solution of
(ú) are given by y(x) = K exp(≠A(x)), for some real number K. Since y(x0) =
K exp(≠A(x0)) = y0, we have K = y0 · exp(A(x0). From this we deduce a unique
value of K which gives the unique solution

y(x) = y0 exp
1

≠
#
A(x) ≠ A(x0)

$2
.

This proves the following theorem we prove.

Theorem 7.1.34. Let a be a continuous function on some interval I. We consider
a real number x0 œ I. For some real number y0 œ R, we define the following Cauchy
Problem : Y

]

[

yÕ + a(x) y = 0, x œ I

y(x0) = y0, x = x0.
(7.1.9)

Then, there exists a unique function y œ C 1(I) solution to (7.1.9).

To find the solution of a Cauchy problem we have to follow these two steps.
Step 1: Find solutions to the di�erential equation

yÕ + a(x) y = 0.

We know from previous section, if A is a primitive of a(x) on I. Then, for all
x œ I, the function y(x) = K exp(≠A(x)), where K œ R is a solution to the linear
di�erential equation above.
Step 2: We use the initial condition to determine the value of the constant real num-
ber K. Indeed the initial condition allows to establish y(x0) = K exp(≠A(x0)) = y0.
This implies that K = y0 exp(A(x0)). The solution of the Cauchy problem is defined
by y(x) = y0 exp

1
≠

#
A(x) ≠ A(x0)

$2
. This leads to the following theorem.

Theorem 7.1.35. Let a be a continuous function on I. We consider x0 œ I and
y0 œ R. Then, the expression of the unique solution to the Cauchy problem

Y
]

[

yÕ + a(x) y = 0, x œ I

y(x0) = y0, x = x0

is given by
y(x) = y0 · exp

1
≠

#
A(x) ≠ A(x0)

$2
. (7.1.10)

To illustrate this theorem, we consider the following examples
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Example 7.1.36. Let us define the following example: for x œ R, find the function
y, such that, Y

]

[

yÕ + 3x y = 0,

y(0) = 2.

Solution : We follow steps decribe above
Step 1: We define the homogeneous linear di�erential equation yÕ + 3xy = 0. Here
we take a(x) = 3x. Therefore, A(x) = 3

2 x2 is a primitive of the function a. Its
solution is defined by

y(x) = K exp
1

≠ 3x2/2
2

.

Step 2: Using the initial condition y(0) = 2, one obtains y(0) = K exp(0) = 2. That
is, K = 2. In this case the unique solution to the Homogeneous Cauchy problem is

y(x) = 2 exp
1

≠ 3x2/2
2

.

Example 7.1.37. Find the solution to the following Cauchy problem
Y
]

[

yÕ + 2y = 0,

y(1) = 3.

Solution
Step1: We consider the linear homogeneous di�erential equation yÕ +2y = 0. To find
the solution to this di�erential equation we set a(x) = 2. The function A(x) = 2x
is a primitive of the function a. Therefore,

y(x) = K exp
!

≠ 2x
"

is a solution of the previous di�erential equation.
Step 2: Now we use the initial condition y(1) = 3, to determine the value of the
constant real number K. We know that y(1) = K exp(≠2) = 3. This implies,
the constant real number K = 3 exp(2). Consequently the unique solution of the
Homogeneous Cauchy problem is

y(x) = 3 exp
1

≠ 2x + 2
2

.

Example 7.1.38. Find the function y defined in x œ ( 0 , +Œ ), solution to the
following di�erential equation

Y
_]

_[

yÕ + 1
x

y = 0,

y(3) = 4.

Solution
Step 1: Let x belongs to ( 0 , +Œ ) . We define the di�erential equation yÕ + 1

x
y = 0.

We define the function a(x) = 1
x

· Therefore, the function A(x) = ln(x) is a primitive
of the function a. Therefore,

y(x) = K exp
1

≠ ln(x)
2

= K

x
·
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Step 2: From the initial condition we deduce y(3) = K

3 = 4. This involves K = 12.

The unique solution is of the Cauchy problem is

y(x) = 12
x

·

Now we consider y as a variable and we separate function depending on y to
functions depending on x. This method is called the ”Method of separation of
variables”.

7.1.3 Method of Separation of Variables
The main objective of this method consist of separating functions depending on x
to function depending on the variable y. In this section and only in this section, we
consider y as a variable.

Let us take a first order homogeneous linear di�erential equation

yÕ + a(x) y = 0

To study the previous linear equation we remark when a is continuous in I the
problem admits a nonzero solution. We mean by nonzero function a function f ”© 0.
Since y ”© 0, there exists an interval I1 µ I, such that, for all x œ I1, y(x) ”= 0. In
this sub interval I1, the equation yÕ + a(x) y = 0 is equivalent to

yÕ

y
= ≠a(x).

We gather functions depending on y between them. We did the same with functions
depending x in this way
Step 1 : Integration. We put functions depending on y on the left hand side and
functions depending on x on the right hand side:

yÕ

y
= ≠a(x).

Since the functions yÕ/y and a are continuous on I1, we can find their integrals in
this way : ⁄

x yÕ

y
dt = ≠

⁄
x

a(t) dt.

The integral on the left hand side is equal to
⁄

x yÕ

y
dt = ln

1
|y(x)|

2
+ C =∆ ln

1
|y(x)|

2
= ≠

⁄
x

a(t) dt + C Õ, with, C Õ = ≠C.

Step 2: Composition with exp Function. Using exponential function we obtain

|y(x)| = exp
1

C Õ
2

· exp
3

≠
⁄

x

a(t) dt

4
.

Setting K = exp(C Õ) and A(x) =
s

x
a(t) dt, one has |y(x)| = K · exp

!
≠ A(x)

"
.

Step 3: Expression of the solution y. According to the signe of the function y we
distinguish two cases.
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Case 1 : y Ø 0. When, for every x œ I1, we have y(x) Ø 0, then, the absolute
value of y(x) is equal to y(x). That is |y(x)| = y(x). Hence, the following
identity holds

y(x) = exp(C Õ) · exp
3

≠
⁄

x

a(t) dt

4
.

Case 2: y < 0. If for every x œ I1, the following inequality y(x) < 0 holds, one
has |y(x)| = ≠y(x). Therefore, the general solution of homogeneous linear
di�erential equation is

y(x) = ≠ exp(C Õ) · exp
3

≠
⁄

x

a(x) dx

4
.

Remark 7.1.39. We emphasize this method can be used if and only if we can
separate functions depending on y to functions depending x. Otherwise it cannot be
applied. One more advantage is the fact that it works also for nonlinear di�erential
equations.

As applications we consider the following examples.

Example 7.1.40. Let x œ R. Find solutions of the following di�erential equation:

yÕ + 2x y = 0.

Solution : Let x œ R, such that, y(x) ”= 0. Then we have, yÕ

y
= ≠2x. Integrating in

x, we obtain the following identity

ln(|y(x)|) = ≠
⁄

x

2t dt = ≠x2 + C

This implies that, |y(x)| = exp(C) · exp
!

≠ x2"
. Now we define the sets I1 and I2,

such that, R = I1 fi I2 We assume that for all x œ I1, y(x) < 0 and for all x œ I2,
y(x) Ø 0. Then, we obtain the following expression of the solution y:

y(x) =

Y
]

[

≠Ke≠x
2
, if, x œ I1

Ke≠x
2
, if x œ I2,

where K = exp(C).

Example 7.1.41. Let x belongs to (≠Œ , 0 ). Find solutions to the following dif-
ferential equation:

yÕ + 1
x

y = 0.

Solution: Let x œ (≠Œ , 0 ). We assume y(x) ”= 0. for every x œ (≠Œ , 0). The
equation above is equivalent to

yÕ

y
= ≠ 1

x
·

This yields ln(|y|) = ≠ ln(|x|) + C. From this, we deduce

|y(x)| = exp(C) · exp
!

≠ ln(|x|)
"

= exp(C)
|x| ·
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Since x œ (≠Œ , 0), we obtain

|y(x)| = ≠exp(C)
x

·

Now, we define the set J1 and J2 as follows:

J1 =
Ó

x œ (≠Œ , 0) ; y(x) < 0
Ô

and J2 =
Ó

x œ (≠Œ , 0) ; y(x) Ø 0
Ô

.

Therefore, the expression of y is

y(x) =

Y
__]

__[

K

x
, if, x œ J1

≠K

x
, if x œ J2,

here, we set K = exp(C).

Remark 7.1.42. We remark again we can use the method for nonlinear equation
and the principle is the same.

After these examples the students were woundering, what happens if the second
member f is di�erent to 0. To remove any ambiguity the teacher introduce the
nonhomogeneous linear di�erential equations.

7.2 Nonhomogeneous Linear Equation
In this section we study the first order di�erential equations with second member
f ”© 0. Here we will explain a general method to solve these type of di�erential
equations.

Arzu asked if there was possible to recall the definition of nonhomogeneous
linear di�erential equation. The teacher accessed to Arzu’s request. He stated this
definition

Definition 7.2.1. We call nonhomogeneous first order linear di�erential equation
a linear di�erential equation which is in the following form

yÕ(x) + a(x) y(x) = f(x). (7.2.1)

We take f ”© 0, and we consider equation (7.2.1). We aim to establish an exis-
tence theorem for nonhomogeneous equation. To this end we assume the functions
a and f are two continuous functions on I. Let y be a di�erentiable function in I,
such that,

yÕ + a(x) y = f(x).

We consider a function A which is a primitive of a. The solution of the homogeneous
equation yÕ

H
+ a(x) yH = 0 is yH(x) = K exp

!
≠ A(x)

"
.

Let k be a di�erentiable function on I. We define the function

y(x) = k(x) · exp(≠A(x))
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and we assume that y is a solution to the nonhomogeneous di�erential equation
(7.2.1). The function y is di�erentiable in I and we have

yÕ(x) = exp
!

≠ A(x)
"#

kÕ(x) ≠ k(x) a(x)
$
.

Substituting in (7.2.1) we obtain

exp(≠A(x))
#
kÕ(x) ≠ k(x) a(x) + k(x) a(x)

$
= kÕ(x) exp(≠A(x)) = f(x).

This implies kÕ(x) = f(x) exp(A(x)). From this, we deduce that

k(x) =
⁄

x

f(t) · eA(t) dt.

This leads to the following formula: for every x œ I

y(x) = e≠A(x)
⁄

x

eA(t)f(t) dt =
⁄

x

e≠(A(x)≠A(t)) · f(t) dt.

This means that if a and f are continuous functions on I, there exist a solution
to the nonhomogeneous equation (7.2.1).

Theorem 7.2.2. Let a and f be two continuous functions on I. Then, there exists
a function y œ C 1(I) solution to (7.2.1).

In this case we say equation (7.2.1) has at least a particular solution.
Students pointed out that refering to the previous section they know how to find

yH(x) = K exp(≠A(x)), they woundered if there was e�cient methods to determine
particular solutions yp.

7.2.1 Methods to Define a Particular solution
This subsection devoted to methods which will allow to find a particular solution.
We define a particular solution as

Definition 7.2.3. We say that yp is a particular solution of the nonhomgeneous
equation if yp satisfies equation (7.2.1).

To determine yp, there are several methods but here we will only study two of
them:

1. Method of Variations of constant

2. Method of undetermined coe�cients

Method of Variations of Constant
We consider the nonhomogeneous linear di�erential equation yÕ + a(x) y = f(x) We
know the homogeneous equation yÕ

H
+ a(x) yH = 0 has solution

yH(x) = K exp(≠A(x)),

where K is a real number and the function A is a primitive of a. To find a particular
solution yp, we replace the constant K in the expression of yH by a function ⁄(x)
depending on x. Hence, we define

yp(x) = ⁄(x) exp(≠A(x)).
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The function yp is di�erentiable and

yÕ
p
(x) =

!
⁄Õ(x) ≠ a(x)⁄(x)

"
exp(≠A(x)).

Now we must find the expression of the function ⁄. Since the function yp is a
particular solution of the equation yÕ + a(x) y = f(x), then, we have

yÕ
p

+ a(x) yp =
1

⁄Õ(x) ≠ a(x)⁄(x)
2

exp(≠A(x)) + a(x)⁄(x) exp(≠A(x)) = f(x).

This implies ⁄Õ(x) exp(≠A(x)) = f(x). Multiplying by exp(A(x)), one has

⁄Õ(x) = f(x) exp(A(x)).

This means the function ⁄ is a primitive of the function f(x) exp(A(x)). Conse-
quently

⁄(x) =
⁄

x

exp(A(t)) f(t) dt.

Example 7.2.4. Find a particular solution to the equation yÕ + 2y = x2 exp(≠2x).
A general solution of the homogeneous equation yÕ

H
+ 2yH = 0 is

yH(x) = K exp(≠2x).

To determine a particular solution to the equation, we apply the method of vari-
ations of constant. We define the function yp(x) = ⁄(x) exp(≠2x). Then, we have

yÕ
p
(x) =

!
⁄Õ(x) ≠ 2 ⁄(x)

"
exp(≠2x).

The function yp satisfies
!
⁄Õ(x) ≠ 2 ⁄(x)

"
exp(≠2x) + 2⁄(x) exp(≠2x) = x2 exp(≠2x).

This implies the identity ⁄Õ(x) = x2. From this we deduce ⁄(x) = x
3

3 · This means
that

yp(x) = x3

3 exp
!

≠ 2x
"
.

Example 7.2.5. Determine a particular solution to the nonhomogeous linear dif-
ferential equation yÕ + 2x y = x exp

!
≠ x2"

.
We start by emphasizing that the homogeneous equation yÕ

H
+ 2 x yH = 0 has

solution
yH(x) = K exp

1
≠ x2

2
.

Now we define the function yp(x) = ⁄(x) exp
!

≠ x2"
as a particular solution to

the equation above. It then, follows

yÕ
p
(x) =

1
⁄Õ(x) ≠ 2x · ⁄(x)

2
exp

1
≠ x2

2
.

Since yp is a particular solution of yÕ + 2xy = x exp(≠2x), we have
1

⁄Õ(x) ≠ 2x · ⁄(x)
2

exp
1

≠ x2
2

+ 2x · ⁄(x) exp
1

≠ x2
2

= x · exp
1

≠ x2
2

.
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This is equivalent to ⁄Õ(x) = x. This involves

⁄(x) = x2

2

From this we deduce
yp(x) = x2

2 exp
1

≠ x2
2

.

Example 7.2.6. Define a particular solution to the following di�erential equation
xyÕ ≠ 2y = x2. For any real number x ”= 0, the equation above is equivalent to

yÕ ≠ 2
x

y = x.

A general homogeneous solution of this latter is defined by

yH(x) = Keln(x
2) = K x2,

where K is a real number.
We define the function yp(x) = ⁄(x) · x2 as a particular solution to the equation

above . Hence we have yÕ
p
(x) = x2⁄Õ(x) + 2x⁄(x). The function yp is a particular

solution to the nonhomogeneous then, we have

⁄Õ(x)x2 + 2x⁄(x) ≠ 2x⁄(x) = x.

This equation is equivalent to ⁄Õ(x) = 1
x

, for every x ”= 0. Consequently, we get
⁄(x) = ln(|x|) One deduces

yp(x) = x2 ln(|x|).

Example 7.2.7. Define a particular solution to the following nonhomogeneous lin-
ear di�erential equation

(2x + 1) yÕ = 2x + 2 y

This equation is equivalent to (2x+1) yÕ ≠2y = 2 x. Let x be a real number such that
x ”= ≠1

2 . Dividing the equation above by 2x + 1, we obtain the following equation

yÕ ≠ 2
2x + 1 y = 2x

2x + 1 ·

The associated homogeneous equation is yÕ
H

≠ 2
2x+1 yH = 0. For every x ”= ≠1

2 the
solution of this latter is defined by

yH(x) = K exp
1

ln(|2x + 1|)
2

= K |2x + 1|.

Hence

yH(x) =

Y
__]

__[

K(2x + 1), if x > ≠1
2

≠K(2x + 1), if x < ≠1
2

where K is a real number.
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Now we consider x > ≠ 1
2 and we define the function

yp(x) = ⁄(x) (2x + 1).

We have yÕ
p
(x) = ⁄(x)Õ(2x + 1) + 2 ⁄(x) Replacing in the nonhomogeneous equation

one has (2x + 1)2 ⁄Õ(x) + 2 (2x + 1) ⁄(x) ≠ 2 (2x + 1) ⁄(x) = 2x. This implies

⁄Õ(x) = 2x

(2x + 1)2 = 2x + 1 ≠ 1
(2x + 1)2 = 1

2x + 1 ≠ 1
(2x + 1)2 ·

Therefore,
⁄(x) = 1

2

1
ln(2x + 1) + 1

2x + 1

2
.

For every x > ≠1
2 , we have

yp(x) = 1
2(2x + 1) ln(2x + 1) + 1

2 ·

Here we suppose x < ≠ 1
2 , and we take the function yp(x) = ≠⁄(x)(2x + 1)

Then, we obtain yÕ
p
(x) = ≠⁄Õ(x)(2x + 1) ≠ 2⁄(x) Substuting in the nonhomogeneous

equation one gets

≠⁄Õ(x)(2x + 1)2 ≠ 2(2x + 1)⁄(x) + 2(2x + 1)⁄(x) = 2x.

That is, ⁄Õ(x) = ≠ 2x

(2x + 1)2 . This means for every x < ≠1
2

⁄(x) = ≠1
2

3
ln(≠2x ≠ 1) + 1

2x + 1

4
.

In this case we have

yp(x) = 1
2 ((2x + 1) ln(≠2x ≠ 1) + 1) ,

for every x < ≠ 1
2 ·

Finally we obtain the following particular solution

y(x) =

Y
__]

__[

1
2(2x + 1) ln(2x + 1) + 1

2 , if x > ≠1
2

1
2(2x + 1) ln(≠2x ≠ 1) + 1

2 , if x < ≠1
2

Example 7.2.8. Find a particular solution to the following nonhomogeneous dif-
ferential equation

sin(x)yÕ + cos(x) y = x.

Let x œ (≠fi , 0 ) fi ( 0 , fi ). The homogeneous equation associated to the previous
equation is

sin(x)yÕ
H

+ cos(x)yH = 0.

Dividing by sin(x) for x œ (≠fi , 0 ) fi ( 0 , fi ) one obtains the following equivalent
equation

yÕ
H

+ cos(x)
sin(x) yH = 0.
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For every x œ (≠fi , 0 ) fi ( 0 , fi ), we define a(x) = cos(x)
sin(x) = uÕ

u
· A primitive of a

is defined by A(x) = ln(| sin(x)|). Then, a general homogeneous solution is defined
by yH(x) = K exp(≠ ln(| sin(x)|)) = K

| sin(x)| , where K is a real number. Hence we
have

yH(x) =

Y
___]

___[

≠K

sin(x) , if x œ (≠fi , 0 )

K

sin(x) , if x œ ( 0 , fi )

Let x œ ( 0 , fi ), we define the function yp(x) = ⁄(x)
sin(x) · Then we have

⁄Õ(x)
sin(x) = x

sin(x) ·

One deduces ⁄Õ(x) = x. That is, ⁄(x) = x2

2 and for every x œ ( 0 , fi ) the particular

solution is defined by yp(x) = x2

2 sin(x) ·

Now we consider x œ (≠fi , 0 ) and we define the function yp(x) = ≠⁄(x)
sin(x) · This

leads to the following identity ≠⁄Õ(x)
sin(x) = x

sin(x) · Then, we have ⁄(x) = ≠x2

2 and

for every x œ (≠fi , 0 ),

yp(x) = ≠ x2

2sin(x) ·

Therefore, we obtain the following solution

y(x) =

Y
____]

____[

≠ x2

2 sin(x) , if x œ (≠fi , 0 )

x2

2 sin(x) , if x œ ( 0 , fi ).

When the second member has particular form we can simplify calculations by
applying the method of undetermined coe�cients. We specify that this method
works only for some particular forms of the second mmber f . Indeed it can be
applied when the second member f has one of the following forms

Form 1: Polynomial Form. when the function f(x) = P (x), where P is a poly-
nomial function.

Form 2 : Polynomial function multiplied by exponential. if the function
f(x) = P (x) e⁄x, where P is a polynomial function and ⁄ is real number.

Form 3: Polynonial function multiplied by cosine or sine. if the funcion
f(x) = – cos(kx) or f(x) = — sin(kx), the function P is a polynomial func-
tion.
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It is important to remark that when the expression of f is di�erent to the form 1,
2, or 3, applying this method is useless. This justify the fact that this method is
adopted to some particular situations. That is why, we say it is particular method.
The second method is more general, but seems to be more di�cult to be applied.
As an example to which we cannot apply the Method of undetermined coe�cients
we take f(x) = ln(x). To illustrate this method we proceed by examples.

7.2.2 Undetermined Coe�cients Methods
The objective of this subsection is to define the method of undetermined coe�cients
Methods. For the sake of clarity and simplicity we proceed by examples to explain
how the method runs.

We start with the case f(x) = P (x), where P is a polynomial function.

The Second Member Polynomial Function
When the second member f is a polynomial function, we define the function

yp(x) =
nÿ

k=0
ak xk = an xn + · · · + a1 x + a0.

To determine the function yp we need just to find the coe�cients a0, · · · , an.

Example 7.2.9. Using the method of undetermined coe�cients, find a particular
solution for the following nonhogeneous linear di�erential equation

yÕ + 2 y = x2 + 2x + 1.

Solution . Here we observe f(x) = x2 + 2x + 1 and a = 2. Then, we can define the
function

yp = bx2 + cx + d.

To determine the function yp we should find a, c and d. One can directly apply the
formulas above and find b, c and d. Indeed we have

b = 1
2 , c = 2

2 ≠ 2 ◊ 1
4 = 1

2 , d = 1
2 ≠ 1

4 = 1
4 ·

Therefore
yp(x) = 1

2
!
x2 + x + 1

2
"
.

To explain in details the previous result, we define yp = bx2+cx+d. The function
yp is di�erentiable in R and yÕ

p
(x) = 2bx + c Replacing in the previous equation one

obtains
2bx + c + 2(bx2 + cx + d) = x2 + 2x + 1.

This is equivalent to

2bx2 + 2(b + c)x + (c + 2d) = x2 + 2x + 1.

We identify the two polynomial functions to get 2b = 1, 2(b + c) = 2 and c + 2d = 1.

This means that b = 1
2 , c = 1

2 , and d = 1
4 · That is,

yp(x) = 1
2x2 + 1

2x + 1
4 ·
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Example 7.2.10. Determine a particular solution to the following nonhomoge-
neous equation

yÕ + 1
2y = 2.

Since f(x) = 2 we define as a polynomial function. That is we define yp = bx + c,
where b and c are real numbers. In this case yÕ

p
(x) = a. Substituting in the equation

we obtain

yÕ
p
(x) + 1

2yp(x) = 2 ≈∆ a + 1
2(ax + b) = 2 ≈∆ 1

2 a x + a + 1
2 b = 2

Identifying the ploynomes one gets 1
2 a = 0 and a + 1

2 b = 2. This involves a = 0 and
b = 4. Therefore, yp(x) = 4.

Example 7.2.11. Find a particular solution to the following equation

yÕ + 3y = x2.

Here we observe the second member f(x) = x2 is a polynomial function. Thus
we define the particular solution as a polynomial function. That is why we consider
yp(x) = ax2 + bx + c. It then follows yÕ

p
(x) = 2ax + b. As yp is a particular solution

of yÕ + 3y = x2, we have 2ax + b + 3(ax2 + bx + c) = x2. This is equivalent to
3 a x2 + (2a + 3b)x + b + 3c = x2. This leads to the following equations 3a = 1,
2a + 3b = 0 and b + 3c = 0. From the previous equations we deduce that a = 1

3 ,

b = ≠2
9 and c = 2

27 · Therefore for any real number x,

yp(x) = 1
3x2 ≠ 2

9x + 2
27 ·

Example 7.2.12. Determine a particular solution to the following di�erential equa-
tion

yÕ + 1
x

y = x.

In this example we have f(x) = x. That is why we can define

yp(x) = ax2 + bx + c.

This involves , yÕ
p
(x) = 2ax + b. Substituting in the previous equation we obtain

3ax + 2b + c

x
= x.

This identity implies 3a = 1, 2b = 0 and c = 0. Therefore, a = 1
3 , and b = c = 0.

The particular solution is
yp(x) = 1

3x2.

Example 7.2.13. Determine a particular solution of yÕ + y = x.
To find a particular solution yp, we point out that f is a polynomial solution.

Hence, we define yp(x) = ax + b. The derivative of yp is yÕ
p

= a. Since yp is a
particular solution, it satisfies a + ax + b = x. This implies a = 1 and a + b = 0.
This means that a = 1 and b = ≠1. The particular solution is defined by

yp(x) = x ≠ 1.
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Polynomial Function Multplied by Exponential

When the second member f = P (x) · exp
!
⁄ x

"
, where P is a polynomial function

and ⁄ a real number di�erent to zero, we define the particular solution yp as a
polynomial function multiplied by an exponential. Indeed, if here we assume the
function f is in the form polynomial function multiplied by exponential:

f(x) =
A

nÿ

i=0
bi xi

B
· exp

1
⁄ x

2
.

In this case we define the particular solution

yp =
A

nÿ

i=0
ai xi

B
· exp

1
⁄ x

2
.

There exist e�cient methods to choose e�ciently the order of the polynome P , but
here we will only show how the method works by using examples.

Example 7.2.14. Determine a particular solution to the equation yÕ + 3y = xex.
The second member f is in the form f(x) = xex. We should determine yp in the

form polynomial multiplied by exponential. That is, we define yp = (bx + c) ex. We
have yÕ

p
(x) = bex + (bx + c)ex. Then, we obtain

yÕ
p
(x) + 3yp(x) = xex ≈∆ ex(bx + b + c) + 3(bx + c)ex = xex.

This is equivalent to 4bx + b + 4c = x. This means that, 4b = 1 and b + 4c = 0.

Therefore b = 1
4 and c = ≠ 1

16 · The particular solution is

yp(x) =
3

1
4x ≠ 1

16

4
ex.

Example 7.2.15. Define a particular solution to di�erential equation

yÕ ≠ 4y = (2x + 5)ex.

Since f(x) = (2x + 5) ex, we define yp(x) = (ax + b) ex. In this case, we have
yÕ

p
(x) = (ax + a + b)ex. This is equivalent to

(≠3ax + a ≠ 3b)ex = (2x + 5)ex.

This equation leads to the following identity We deduce a = ≠2
3 and b = ≠17

9 · This
gives

yp(x) =
3

≠2
3x ≠ 17

9

4
ex.

Second Member in the Form – cos(ax) or — sin(ax)

If the function f is equal to – cos(ax) or — sin(ax), where a, – and — are real
numbers, we define yp as a combination of cos(ax) and sin(ax). In other words, we
set

yp(x) = A cos(ax) + B sin(ax),
where A and B are real numbers. To determine yp, we just need to find the values
of A and B. We show how to find A and B by using examples.
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Example 7.2.16. Determine a particular solution solutions to

yÕ + y = cos(x).

Here the second member f(x) = cos(x). We should define yp as a combination
of cos(x) and sin(x). We set

yp(x) = A cos(x) + B sin(x).

Then, we have
yÕ

p
(x) = ≠A sin(x) + B cos(x).

Substituting in the di�erential equation, we obtain

(B ≠ A) sin(x) + (A + B) cos(x) = cos(x).

This is equivalent to B ≠ A = 0 and A + B = 1. From this we deduce A = 1
2 and

B = 1
2 Therefore,

yp(x) = 1
2 cos(x) + 1

2 sin(x).

As asserted in the previous theorem the existence of a solution to (7.2.1), Gunay
would like to know if the solutions had a known expression. To answer this question
we introduce the following subsection

7.2.3 Solution to the Nonhomogeneous Equation
The teacher confirmed there were one such formulas. But he needed to precise some
propertie shared by thes solutions before establishing their expressions.

He took two functions yH and yp, which are defined in the real interval I and
satisfied these di�erential equations

yÕ
H

+ a(x) yH = 0 and yÕ
p

+ a(x) yp = f(x).

The function yH is a solution to the homogeneous linear equation. We called it
a homogeneous solution. The function yp is called a particular solution to the
nonhomogeneous linear di�erential equation. Now, let x œ I and define the function
z(x) = yH(x) + yp(x). The functions yH and yp were assumed to be di�erentiable.
Then the function z is di�erentiable and the following holds zÕ(x) = yÕ

H
(x) + yÕ

p
(x).

This yields

zÕ(x) + a(x) z = yÕ
H

+ a(x) yÕ
p

+ a(x) (yH + yp) = (yÕ
H

+ a(x) yH) + (yÕ
p

+ a(x) yp).

The functions yH and yp which are in C 1(I) satisfy equations yÕ
H

+ a(x) yH = 0
and yÕ

p
+ a(x) yp = f(x). Hence zÕ + a(x) z = f(x). We conclude the function z is a

solution to (7.2.1).
Let y œ C 1 be a solution to (7.2.1). We assume there are x0 œ I, and y0 œ R,

such that y(x0) = y0. Then, the function y satisfies the nonhomogeous linear
di�erential equation yÕ + a(x) y = f(x). We supposed a to be a continuous function
on I. We define A as the primitive of a on I, which satisfies A(x0) = 0. Multiplying
(7.2.1) by exp(A(x)), we get

yÕ exp(A(x)) + a(x) exp(A(x)) y =
1

y exp(A(x))
2Õ

= exp(A(x)) f(x).
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Integrating from x0 to x œ I, one has
⁄

x

x0

1
y exp(A(t))

2Õ
dt = exp(A(x))y(x) ≠ y0 =

⁄
x

x0

exp(A(t)) f(t) dt.

This leads to the following identity

y(x) = y0 · exp(≠A(x)) + exp(≠A(x))
⁄

x

x0

exp(A(t)) f(t) dt.

We can observe that yH = y0 exp(≠A(x)) is a solution to the homogeneous linear
di�erential equation yÕ

H
+ a(x) yH = 0.

Students asked the signification of the second part of the right hand side of
the formula. To show that the second part corresponds to a particular solution of
(7.2.1), he recalled how to derivate under the sign integral.

Proposition 7.2.17. Let g be a continuous function on the interval [ a , b ]. For
every real number x in [ a , b ], we define the function

F (x) =
⁄

x

g(t) dt.

Then, the function F is di�erential in ( a , b ) and for every x œ (a , b),

F Õ(x) = g(x). (7.2.2)

Now, we take a real number x in I and we consider the function

yp(x) = exp(≠A(x))
⁄

x

x0

exp(A(t)) f(t) dt.

The function yp is a multiplication of two di�erentiable functions. Then, the funcion
yp is di�erentiable. Let x œ I, we have

yÕ
p
(x) = ≠AÕ(x) exp(≠A(x))

⁄
x

x0

exp(A(t)) f(t)dt + exp(≠A(x)) exp(A(x)) f(x).

The Proposition above involves
3⁄

x

x0

exp(A(t)) f(t) dt

4Õ
= exp(A(x)) f(x).

As we defined A, such that, AÕ(x) = a(x). One has

yÕ
p
(x) = ≠a(x) exp(≠A(x))

⁄
x

x0

exp(A(t)) f(t) dt + f(x) = ≠a(x)yp + f(x).

This leads to the identity: yp = ≠a(x) yp + f(x). Therefore yÕ
p

+ a(x) yp = f(x).
Consequently the function yp is a particular solution to (7.2.1). This is equivalent
to say y = yH + yp.

Theorem 7.2.18. Let y be a solution to (7.2.1) in some interval I. Then there
exist two functions yH and yp in C 1(I), such that, for every x œ I

y(x) = yH(x) + yp(x). (7.2.3)

The function yH satisfies yÕ
H

+ a(x) yH = 0 and the function yp is a particular
solution of (7.2.1).
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Example 7.2.19. Find a solution to yÕ + 2 x y = x e≠x
2

We remind that the solution y is defined by

y(x) = yH(x) + yp(x).

where yH satisfies the homogeneous equation yÕ
H

+ 2 x yH = 0 and yp is a particular
solution.

We know from the previous section that a general homogeneous solution is defined
by

yH(x) = Ke≠x
2
.

One can easily check that the function yp(x) = x2

2 exp
!

≠ x2"
is a particular solu-

tion. Therefore a general solution to the nonhomogeneous equation is defined by

y(x) = Ke≠x
2

+ x2

2 e≠x
2

=
3

x2

2 + K

4
exp

!
≠x2"

,

where K is some constant real number.

Example 7.2.20. Find a solution to sin(x)yÕ + cos(x)y = x.
For every x œ (≠fi , 0 ) fi ( 0 , fi ), the equation sin(x)yÕ

H
+ cos(x)yH = 0 is

equivalent to

yÕ
H

+ cos(x)
sin(x) yH = 0

Let x œ (≠fi , 0 ) fi ( 0 , fi ). A general homogeneous solution is defined by

yH(x) = K e≠ ln(| sin(x)|) = K

| sin(x)|

where K is a real number. Hence we have

yH(x) =

Y
___]

___[

≠K

sin(x) if x œ (≠fi , 0 )

K

sin(x) if x œ ( 0 , fi ).

The function

yp(x) =

Y
____]

____[

≠ x2

2 sin(x) , if x œ (≠fi , 0 )

+ x2

2 sin(x) , if x œ ( 0 , fi )

is a particular solution. Then, we obtain the following solution

y(x) =

Y
____]

____[

≠K

sin(x) ≠ x2

2 sin(x) , if x œ (≠fi , 0 )

K

sin(x) + x2

2 sin(x) , if x œ ( 0 , fi )
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Example 7.2.21. Determine a solutions to yÕ + 2y = x2 + 2x + 1.
A general Homogeneous solution is in the form yH(x) = K exp(≠2x). A partic-

ular solution is given by

yp(x) = 1
2

3
x2 + x + 1

2

4

Therefore we have this general solution

y(x) = Ke≠2x + 1
2

3
x2 + x + 1

2

4
.

Let a, f1 and f2 be three continuous functions in I. We consider the follow-
ing linear di�erential equations: Find y1 and y2 in C 1(I) solution to the linear
di�erential equations

yÕ
1 + a(x) y1 = f1(x) (7.2.4)

yÕ
2 + a(x) y2 = f2(x). (7.2.5)

For any real numbers ⁄ and µ , we define the function

y(x) = ⁄ y1(x) + µ y2(x).

The function y satisfies yÕ(x) = ⁄ yÕ
1(x) + µ yÕ

2(x). This involves

yÕ(x) + a(x)y = ⁄ yÕ
1 + µ yÕ

2 + a(x)[⁄ y1 + µ y2] = ⁄
#
yÕ

1 + a(x) y1
$

+ µ
#
yÕ

2 + a(x) y2
$

= ⁄ f1(x) + µ f2(x).

This means the function y is solution to the equation

yÕ(x) + a(x) y = ⁄ f1(x) + µ f2(x).

This is called the ”principle of superposition”. Let the functions fi be continuous in
I for 1 Æ i Æ n. We define the functions yi as solutions to the equations yÕ

i
+a(x) yi =

fi and consider the function

y =
nÿ

i=1
–i yi and f(x) =

nÿ

i=1
–i fi.

Then y is a solution of the equation yÕ + a(x) y = f(x).

Theorem 7.2.22 (Principle of Superposition). Let a, and fi for 1 Æ i Æ n be
n + 1 continuous functions in I. We consider n function yi œ C 1(I) for 1 Æ i Æ n
solution to the equation

yÕ
i
+ a(x) yi = fi(x). (7.2.6)

Then, the function y(x) = –1 y1(x) + · · · + –n yn(x) is solution to the linear di�er-
ential equation

yÕ + a(x) y =
nÿ

i=1
–i fi. (7.2.7)
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Example 7.2.23. Find a solution to yÕ + y = x ≠ ex + cos(x)
Here we use the principle of superposition by defing the function y = y1 +y1 +y3,

where the functions y1, y2 and y3 are solutions of the following equations

yÕ
1 + y1 = x

yÕ
2 + y2 = ≠ex

yÕ
3 + y3 = cos(x).

We point out that the linear di�erential equation yÕ
1 + y1 = x has solution

y1(x) = K1 e≠x + x ≠ 1.

A solution of yÕ
2 + y2 = ≠ex can be given by y2(x) = K2 exp(≠x) ≠ 1

2 exp(x). For
the di�erential yÕ

3 + y3 = cos(x), one has y3(x) = K3 e≠x + 1
2 (cos(x) + sin(x)) .

Applying theorem 7.2.22 we obtain

y(x) = K Õ e≠x ≠ 1
2 ex + x ≠ 1 + 1

2

1
cos(x) + sin(x)

2
,

where K Õ is a constant real number.

To obtain a unique solution for a nonhomogeneous equation, we add an initial
condition. In this case we obtain a nonhomogeneous Cauchy problem

7.2.4 Nonhomogeneous Cauchy Problem
This subsection is devoted to the nonhomogeneous linear Cauchy problem. Indeed,
for x0 œ I and y0 œ R, we are looking for a unique function y in C 1(I) solution to
the following problem Y

]

[

yÕ + a(x) y = f(x)

y(x0) = y0

(7.2.8)

We know that a solution to the di�erential equation yÕ + a(x) y = f(x) is in the
form

y(x) = K exp
3

≠
⁄

x

a(t) dt

4
+ yp(x).

To get uniqueness we need to determine a fix value of K. This value is obtained by
using the initial condition. We have

y0 = y(x0) = K exp
3

≠
⁄

x0

a(t) dt

4
+ yp(x0)

This implies

K =
1

y0 ≠ y(x0)
2

· exp
3⁄

x0

a(t) dt

4
.

in this case we obtain a unique solution.

Theorem 7.2.24. Let a and f be two continuous functions in an interval I. We
consider x0 œ I and y0 œ R. Then, the Cauchy problem (7.2.8) has a unique
solution.
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Example 7.2.25. Determine in I = (0 ; +Œ) the unique solution to the following
Cauchy problem Y

_]

_[

yÕ + 1
x

y = x

y(1) = 3.

We consider the di�erential equation yÕ + 1
x

y = x. The homogeneous solution is
defined by

yH(x) = K exp
!

≠ ln(x)
"

= K

x
,

where K is a constant real number. Since f(x) = x, we define yp(x) = ax2 + bx+ c.
Then, yÕ

p
(x) = 2ax + b. We obtain 3ax + 2b + c

x
= x. this means 3a = 1, 2b = 0 and

c = 0. Therefore, a = 1
3 , and b = c = 0. The particular solution is yp(x) = 1

3x2.

The solution of the general equation is

y(x) = K

x
+ 1

3x2.

Now we have to use the initial condition to find the constant K. We know that
y(1) = 3. Hence , one has K + 1

3 = 3. We obtain K = 3 ≠ 1
3 = 8

3 . This yields the
unique solution to the Cauchy problem is defined by

y(x) = 8
3x

+ 1
3x2.

Example 7.2.26. Determine the unique solution to the Cauchy problem
Y
]

[

yÕ + cos(x) y = cos(x)

y(0) = 2.

We remark that the function yp(x) = 1 is a particular solution to the equation

yÕ + cos(x) y = cos(x).

On the other hand we have yH(x) = K exp(≠ sin(x)), where K is a real number
Then ,

y(x) = K exp(≠ sin(x)) + 1.

Since y(0) = 2, we have K +1 = 2. This means that K = 1. The unique solution
of the initial value problem is defined by

y(x) = e≠ sin(x) + 1.

Example 7.2.27. Find the unique solution to the following Cauchy problem
Y
]

[

yÕ + y = x + ex

y(0) = 0
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The homogeneous equation has solution yH(x) = K exp(≠x), where K is a
constant real number. We can easily check that the function

yp(x) = 1
2 exp(x) + x ≠ 1.

Hence
y(x) = Ke≠x + ex

2 + x ≠ 1.

Now we use the initial condition y(0) = 0. Then, we obtain

y(0) = K + 1
2 ≠ 1 = 0

This implies K = 1
2 . Therefore,

y(x) = 1
2e≠x + ex

2 + x ≠ 1 = ch(x) + x ≠ 1
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This chapter is devoted to second order linear ordinary di�erential equations.
We specify here we will only deal with second order linear di�erential equation with
constant coe�cients: find a function y of class C 2 satisfying

ayÕÕ + byÕ + cy = f(x). (8.0.1)

Here, a, b and c are constant real numbers. Moreover we assume a ”= 0. Otherwise
we will have b yÕ + c y = f(x), which is a first order linear di�erential equation. An
example of such equation is given by

2yÕÕ + yÕ + 3y = x3 + 3x + 1 or 3yÕÕ + 5yÕ + 4y = ex
2+2.

These equations occured in the formulation of Newton’s second law

mẍ =
ÿ

Fext. (8.0.2)

This equation describes the motion of an object of mass m subjected to the forces
Fext. In (8.0.2) we use physicist’s notations ẍ. We mean by ẍ the second derivative
of the trajectory x. Here ẍ representate the acceleration of the mouvement of an
object subjected to the external forces. In other words Newton second Law’s claims
that the acceleration is proportional to the sum of the external forces. Equation
(8.0.2) is one of the most important equation in Physics. Several other physical

183
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phenomenons can be described by these equations. As we did it for first order
linear di�erential equations, we are looking for necessary conditions such that there
will be a solution for (8.0.1).

In the first time we will deal with the homogeneous second order linear di�er-
ential equation ayÕÕ + byÕ + cy = 0. In the second section we will be concerned by
the Cauchy problems.

8.1 Homogeneous Equation
The main purpose of this section is to define a solution to the equation

ayÕÕ + byÕ + cy = 0,

where a, b and c are constant real numbers such that, a ”= 0. As an example of
homogeneous equation we consider the equation yÕÕ + 4yÕ + 9y = 0. In a first time
we will establish an exsitence theorem. In the second part of this section we define
the expression of the solutions to ayÕÕ + byÕ + cy = 0, we remind that the coe�cients
a, b and c are constant real numbers such that a ”= 0.

Let a, b and c be three real numbers such that a ”= 0. We are looking for
a function y which is twice di�erentiable in some interval of R and satisfies the
following di�erential equation

ayÕÕ + byÕ + cy = 0. (8.1.1)

We introduce the following function z(x) := yÕ(x). This involves zÕ(x) = yÕÕ(x).
Substituting in the equation above we obtain

a zÕ + b z = ≠cy.

Since a ”= 0 we can divide by a in both sides in the equation including the function
z. Therefore, one has

zÕ + b

a
z = ≠ c

a
y. (8.1.2)

As we assume y di�erentiable in R , then, the function y is continuous. Consequently
the function f(x) = ≠ c

a
y is continuous in R. One deduces equation (8.1.2) admits

a solution in R. Since (8.1.1) and (8.1.2) are equivalent , we conclude (8.1.1) has a
solution in R. This proves this theorem

Theorem 8.1.1. Let a, b and c be three real numbers such that, a ”= 0. Then, the
second order linear di�erential equation ayÕÕ + byÕ + cy = 0 admits a solution.

As we know there exists a solutions, our next step will consist of studying some
properties of these solutions.

8.1.1 Properties of the Homogeneous Solutions
In this subsection we study the properties of the homogeneous solution.

Let y1 and y2 be two di�erent solutions of (8.1.1). We consider two real num-
bers – and — and we define the function y = – y1 + — y2. The function y is twice
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di�erentiable, because the functions y1 and y2 are twice di�erentiable. We have
yÕ = – yÕ

1 + — yÕ
2 and yÕÕ = – yÕÕ

1 + — yÕÕ
2 . This involves

a yÕÕ + b yÕ + c y = a
!
– yÕÕ

1 + — yÕÕ
2
"

+ b
!
– yÕ

1 + — yÕ
2
"

+ c
!
– y1 + — y2

"

= –
!
a yÕÕ

1 + b yÕ
1 + c y1

"
+ —

!
a yÕÕ

2 + b yÕ
2 + c y2

"

As y1 and y2 are solutions of (8.1.1), therefore a yÕÕ
1 + b yÕ

1 + c y1 = 0 and a yÕÕ
2 +

b yÕ
2 + c y2 = 0. Hence a yÕÕ + b yÕ + c y = 0. This means the function y which is a

combination of solution is also a solution. Since the null function is a solution to
the di�erential equation, we have the following theorem.

Theorem 8.1.2. The set of all solutions of (8.1.1) is a vector space.

We can make the following comments on theorem 8.1.2. We can prove that the
set S0 of all solution of equation (8.1.1) is a vector space of dimension 2. Taking
advantage of the fact that S0 is a vector space of dimension 2, we can define a basis
of two function f1 and f2 on this set. This allows to establish

Theorem 8.1.3. Let S0 be the st of all solution of equation (8.1.1) and
)

f1 ; f2
*

a
basis of S0. Then, for any solution y of (8.1.1) there exist two real numbers – and
— such that

y = – f1 + — f2.

This theorem means that any solution should be a combination of two elements
of a basis of S0. That is, determining S0 consists of finding a basis of this set.

8.1.2 Definition of a Basis to the Set of Solutions
The goal of this subsection is to define a basis of S0. A basis of S0 should be a set
of two functions which are linearly independant.

Definition 8.1.4. Let f1 and f2 be two elements of a set E. We say f1 and f2
are linearly independant if for any real numbers – and —, – f1 + — f2 = 0 implies
– = — = 0.

Example 8.1.5. We consider the vectors u1 = (2 , 5) and u2 = (3 , 0). We consider
two real numbers – and — such that, – u1 + — u2 = 0. This is equivalent to the
following linear system Y

]

[

2– + 3— = 0

5– = 0
This implies – = 0 and — = 0. We conclude u1 and u1 are linearly independant.

Example 8.1.6. Let v1 = (1 , 2 , 5) and v2 = (2 , 3 , 1) be two in R3, which satisfy
– v1 +— v2 = 0 for some real numbers – and —. One has the following linear system

Y
____]

____[

– + 2 — = 0

2– + 3 — = 0

5– + — = 0

This leads to the identities – = ≠2— and – = ≠—/5. Therefore – = — = 0. The
vectors v1 and v2 are linearly independant.
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Example 8.1.7. We consider the vectors w1 = (2 , 3) and w2 = (12 , 18) in R2.
We observe w2 = 6 w1. Then, the vectors w1 and w2 are linearly dependant.

To simplify we say f1 and f2 are linearly independant if they are not collinear.
If elements are not linearly independant, we say they are linearly dependant. Two
linear dependant elements are collinear.

Since we will deal with functions it is important to get a criterion which will
allows us to check whether two functions are linearly independant.

Theorem 8.1.8. Let f1 and f2 be two C 1 functions defined in some interval I.
Then, f1 and f2 are lineraly independant if and only if for all real number x œ I,

f1(x) · f Õ
2(x) ≠ f Õ

1(x) · f2(x) ”= 0.

In truth we can estabblish a more simplest result which is equivalent to the
previous theorem. This theorem is more easy to use in applications.

Theorem 8.1.9. Let f1 and f2 be two C 1 functions defined in some interval I.
Then, f1 and f2 are lineraly independant if and only if there exist x0 œ I,

f1(x0) · f Õ
2(x0) ≠ f Õ

1(x0) · f2(x0) ”= 0.

Example 8.1.10. We consider the function f1(x) = x + 2 and f2(x) = 2x2 + 2.
Since f1 and f2 are di�erentiable, one has f Õ

1(x) = 1 and f Õ
2(x) = 4x. We obtain

f1(0) = 2, f Õ
1(0) = 1, f2(0) = 2 and f Õ

2(0) = 0. This implies

f1(0) · f Õ
2(0) ≠ f Õ

1(0) · f2(0) = 2 ◊ 0 ≠ 1 ◊ 1 = ≠1 ”= 0.

The functions f1 and f2 are linearly independant.

Example 8.1.11. Let a and b be real numbers such that a ”= b. We define the
functions u1(x) = exp(a x) and u2(x) = exp(b x). We have uÕ

1(x) = a exp(ax) and
uÕ

2(x) = b exp(b x). Taking x0 = 0, we obtain u1(0) = 1, u2(0) = 1, uÕ
1(0) = a and

uÕ
2(0) = b. Therefore

u1(0) · uÕ
2(0) ≠ uÕ

1(0) · u2(0) = b ≠ a ”= 0.

The functions u1 and u2 are linearly independant.

Here, we choose 0 in order to simplify notations, but one can choose another
real number.

Exercise 8.1.12. Check whether the following functions are linearly independant

1. f1(x) = cos(x) and f2(x) = sin(x), 2. f1(x) = exp(ax) and f2(x) = exp(≠ax),
3. f1(x) = x4 and f2(x) = x7.

There are several methods to define a basis of a set of function. But here we
favor the less abstract method. In comparasion with first di�erential equation, here
also we are looking for solution in the form exp(A(x)).

Let r be a real or a complex number. For every real number x we define the
function y(x) = exp(rx). We assume the fuction y is a solution to the linear
homogeneous equation ayÕÕ + byÕ + cy = 0. Now our objective is to determine the
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values of the real nmber r. The function y is at least twice di�erentiable and
for every x in R, we have yÕ(x) = r exp(rx) and yÕÕ(x) = r2 exp(rx). Using our
assumption, one obtains

a r2 exp(rx) + b r exp(rx) + c exp(rx) =
!
a r2 + b r + c

"
exp(rx) = 0.

Multiplying the identity above by exp(≠rx), we obtain

a r2 + b r + c = 0. (8.1.3)

Equation (8.1.3) is called the caracteristic equation of (8.1.1). To determine r we
need to solve equation (8.1.3). There are three possibilities according to the sign of

� = b2 ≠ 4ac.

Case 1:� > 0. When � > 0, equation (8.1.3) has two real solution r1 = ≠b ≠
Ô

�
2a

or r2 = ≠b +
Ô

�
2a

· In this case we have

y(x) = exp (r1 x) or y(x) = exp (r2 x) .

The functions f1(x) = exp(r1 x) and f2(x) = exp(r2 x) are indefinitely di�erentiable
and for every real number x we have

(exp(r1 x))Õ = r1 exp(r1 x) and (exp(r2 x))Õ = r2 exp(r2 x).

Taking x0 = 0, we obtain

f1(0) · f Õ
2(0) ≠ f Õ

1(0) · f2(0) = r2 ≠ r1 = �
a

”= 0.

We have established this lemme

Lemma 8.1.13. The functions exp(r1 x) and exp(r2 x) are linearly independant
functions which belong to S0.

We know from linear algebra if E is a vector space of dimension n any linearly
independant familly of n elements is a basis. Since dim

!
S0

"
= 2, any linearly

independant set of two vectors is a basis. Then we have

Lemma 8.1.14. The set of functions
)

exp(r1 x) ; exp(r2 x)
*

is a basis of S0.

On the other hand we know that a combination of solutions is also a solution.
As we have a basis of S0, we can establish

Theorem 8.1.15. Let us consider equation (8.1.1), such that, � = b2 ≠ 4 a c > 0.
We define the real numbers r1 and r2 as the real solutions of the equation

a r2 + b r + c = 0.

Then, yH is a solution of (8.1.1) if there exist real numbers C1 and C2 such that,

yH(x) = C1 exp(r1 x) + C2 exp(r2 x). (8.1.4)
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Proof. The functions exp(r1 x) and exp(r2 x) are solutions of (8.1.1). Then, the
combination C1 exp(r1 x) + C2 exp(r2 x), where C1 and C2 are in R, is a solution
of(8.1.1).

On the other hand the set
)

exp(r1 x) , exp(r2 x)
*

is a basis, then, any function
in S0 is a combination of exp(r1 x) and exp(r2). Therefore one can find real number
C1 and C2 such that, yH(x) = C1 exp(r1 x) + C2 exp(r2 x).

Example 8.1.16. To find solutions of the equation yÕÕ + 4yÕ + 3y = 0 we define its
caracteristic equation

(ú) r2 + 4 r + 3 = 0.

The discriminant � = 16 ≠ 12 = 4 > 0. The real solutions of (ú) are

r1 = ≠4 ≠ 2
2 = ≠3 or r2 = ≠4 + 2

2 = ≠1.

Then, a general solution of the second order linear di�erential equation yÕÕ + 4yÕ +
3y = 0 is defined by

yH(x) = C1 e≠3 x + C2 e≠x,

where C1 and C2 are real numbers.

Example 8.1.17. Find solutions to the following second order linear di�erential
equation

yÕÕ + 3yÕ + 2y = 0.

To solve this equation we define the caracteristical equation

(ı) r2 + 3 r + 2 = 0.

Since � = 9 ≠ 8 = 1 > 0, the second order equation (ı) has solution

r1 = ≠3 ≠ 1
2 = ≠2 or r2 = ≠3 + 1

2 = ≠1.

Hence we can find C1 and C2 such that

yH(x) = C1 e≠2 x + C2 e≠x.

Case 2: � = 0. When � = 0, equation (8.1.3) has only one real solution r0 = ≠ b

2a
·

In this case we obtain
y(x) = exp(r0 x).

To construct a basis of S0 we need to find a second solution y2 of (8.1.1) which is
linearly independant to exp(r0 x).

Now we define the function y2(x) = x exp(r0 x). The function y2 is indefinitely
di�erentiable in R and for any real number x

yÕ
2(x) = (r0 x + 1) exp(r0 x) and yÕÕ

2 (x) =
!
r2

0 x + 2 r0
"

exp(r0 x).

Substituting in (8.1.1) the following holds
!
a r2

0 + b r0 + c
"

x + (2a r0 + b) = 0, ’ x œ R.

Since a r2 + b r + c = 0 and r0 = ≠ b

2a
we conclude that
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Lemma 8.1.18. The function y2(x) = x · exp(r0 x) is a solution to (8.1.1).

Lemma 8.1.19. The functions exp(r0 x) and x ·exp(r0 x) are linearly independant.

Proof. Let us define f1(x) = exp(r0 x) and f2(x) = x · exp(r0 x). From this one
deduces f Õ

1(x) = r0 exp(r0 x) and f Õ
2(x) = (r0 x + 1) exp(r0 x). Choosing x0 = 0 one

has
f1(0) · f Õ

2(0) ≠ f Õ
1(0) · f2(0) = 1 ”= 0.

We conclude f1 and f2 are linearly independant.

From this lemma we deduce the set
)

exp(r0 x) , x · exp(r0 x)
*

is a basis of the
two dimensional vector space S0.

Theorem 8.1.20. We consider the second order linear di�erential equation (8.1.1)
such that, � = b2 ≠ 4a c = 0. We define the real number r0 = ≠b/2a. Then, y is
a real solution of (8.1.1) if there exist real numbers C1 and C2 such that, for every
x œ R,

yH(x) = (C1 x + C2) · exp(r0 x). (8.1.5)

Proof. The functions exp(r0 x) and x · exp(r0 x) are solutions of (8.1.1). Then, any
combination of these two function is a solution. Hence yH is a solution of (8.1.1).

Now we take yH a solution of (8.1.1). The function yH belongs to S0. Since)
exp(r0 x) , x · exp(r0 x)

*
is a basis of S0, then, there exist two real numbers C1

and C2, such that, yH(x) =
!
C1 x + C2

"
· exp(r0 x).

Example 8.1.21. As an example, we consider the second order linear di�erential
equation

yÕÕ + 2yÕ + y = 0.

To find a solution to this equation, we define the equation r2 +2 r+1 = 0. Here � =
0. Therefore r0 = ≠ b

2a
= ≠1 is the unique solution to the equation r2 + 2 r + 1 = 0.

We deduce, for every x in R, the solution of the di�erential equation is

y(x) =
!
C1 x + C2

"
· exp(≠x),

where C1 and C2 are real numbers.

Example 8.1.22. Find the solution of the following second order linear di�erential
equation

yÕÕ ≠ 6 yÕ + 9 y = 0.

The associated caracteristical equation is r2≠6 r+9 = 0. Then, we have � = 36≠
4 ◊ 9 = 0. The solution of the caracteristical equation is r0 = 6

2 = 3. Consequently
we can find two real numbers – and — such that,

y(x) = (– x + —) · exp(3x).

Case 3:� < 0.
Now we assume � < 0. Then, the associated carateriscal equation has two

complex solution r1 and r2. If we define

– = ≠ b

2 a
and Ê =

Ô
≠�
2 a

· (8.1.6)



190 CHAPTER 8. SECOND ORDER LINEAR ODES

We set r1 := – ≠ i Ê and r2 := – + i Ê. In this case we have

y1(x) = exp
!
(– ≠ i Ê) x

"
or y2(x) = exp

!
(– + i Ê) x

"
.

As we can see it these function are complex functions. From this we deduce any
complex combination of exp

!
(– ≠ i Ê) x

"
and exp

!
(– + i Ê) x

"
is a complex solution

of (8.1.1).

Theorem 8.1.23. We consider the second order linear di�erential equation (8.1.1)
such that � = b2 ≠4 a c < 0. Let – and Ê be defined by (8.1.6). Then, y is a complex
solution of (8.1.1), if there exist two comlex numbers C1 and C2 such that, for every
real number x

y(x) = exp
!
– x

"1
C1 exp

!
i Ê x

"
+ C2 exp

!
≠ i Ê x

"2
. (8.1.7)

We specify that (8.1.7) gives us complex solutions. One may wounder if there are
real solutions. To answer this question we consider a real solution y. The function
y satisfies y(x) = y(x). In other words the function

C1 exp
!
(– + i Ê) x

"
+ C2 exp

!
(– ≠ i Ê) x

"

is a real solution if we have the following identity

C1 exp
!
i Ê x

"
+ C2 exp

!
≠ i Ê x

"
= C1 exp

!
≠ i Ê x

"
+ C2 exp

!
(i Ê) x

"
.

This is equivalent to the following identity
1

C1 ≠ C2
2

exp
!
2 i Ê x

"
+

1
C2 ≠ C1

2
= 0. (8.1.8)

Taking x = 0 in (8.1.8), we get C1 ≠ C1 = ≠(C2 ≠ C2). This implies

Im(C1) = ≠Im(C2). (8.1.9)

Fixing x = fi

2 Ê
on the other hand, we obtain ≠(C1 + C1) + (C2 + C2) = 0. This

involves
Re(C1) = Re(C2). (8.1.10)

Combining (8.1.10) and (8.1.9) we conclude that y is a real solution if and only if
C2 = C1. In this case if we define C1 = — + i “, one obtains C2 = — ≠ i “. Therefore

y(x) = exp(– x)
Ë
(— + i “) exp

!
i Ê x

"
+ (— ≠ i “) exp

!
≠ i Ê x

"È
.

Using Euler’s Formula exp(i Ê x) = cos(Ê x) + i sin(Êx), we have

y(x) = exp(– x)
Ë
(— + i “)

!
cos(Ê x) + i sin(Êx)

"
+ (— ≠ i “)

!
cos(Êx) ≠ i sin(Ê x)

"È

= exp(– x)
Ë
2 — cos(Ê x) ≠ 2“ sin(Ê x)

È

Theorem 8.1.24. Let – and Ê be defined by (8.1.6). We consider the second order
linear di�erential equation (8.1.1), such that, � = b2 ≠ 4 a c < 0. Then, y is a real
solution of (8.1.1) if there exist two real numbers C1 and C2, such that,

y(x) = exp(– x)
Ë
C1 cos(Ê x) + C2 sin(Ê x)

È
(8.1.11)
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We learn from this theorem that , if – and Ê are defined by (8.1.6), then, the
familly

)
cos(Ê x) , sin(Ê x)

*
, is a basis of the vector space S0.

Example 8.1.25. Find the solution of the following second order linear di�erential
equation

yÕÕ + 2 yÕ + 3 y = 0.

To solve this equation we define the associated carateriscal equation r2 +2 r +3 = 0.
We have � = 4 ≠ 12 = ≠8 < 0. In this case we obtain

– = ≠2
2 = ≠1 and Ê =

Ô
8

2 = 2
Ô

2
2 =

Ô
2.

The complex solution of the second order linear di�erential equation is

y(x) = C1 exp
11

≠ 1 + i
Ô

2
2

x
2

+ C2 exp
11

≠ 1 ≠ i
Ô

2
2

x
2

,

where C1 and C2 are complex numbers. The real solution of the second order dif-
ferential equation is

y(x) = exp(≠x)
Ë
C3 cos

1Ô
2 x

2
+ C4 sin

1Ô
2 x

2È
,

where the constant C3 and C4 are real numbers.

Example 8.1.26. We consider the second order linear di�erential equation

yÕÕ + yÕ + y = 0.

We can establish that � = b2 ≠ 4a c = 1 ≠ 4 = ≠3. To find a solution solution
we define – = ≠1/2 and Ê =

Ô
3/2. Therefore there are two complex numbers C1

and C2, such that

y(x) = C1 exp
33

≠1 + i
Ô

3
2 x

44
+ C2 exp

33
≠1 ≠ i

Ô
3

2 x

44
.

This solution is a complex function.
The real solution is define by

y(x) = exp
3

≠x

2

4 5
C3 cos

3Ô
3

2 x

4
+ C4 sin

3Ô
3

2 x

46
,

with real numbers C3 and C4.

Example 8.1.27. Find a solution to the following second order linear di�erential
equation

yÕÕ ≠ yÕ + 3 y = 0.

In this case we have � = b2 ≠4a c = 1≠12 = ≠11. We set – = 1
2 and Ê =

Ô
11
2 ·

Hence the complex solution of the second order linear di�erential equation is

y(x) = C1 exp
33

1 + i
Ô

11
2 x

44
+ C2 exp

33
1 ≠ i

Ô
11

2 x

44
,
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where C1 and C2 are complex numbers.
For real numbers C3 and C4, we define a real solution of the second order linear

di�erential equation as follows

y(x) = exp
1x

2

2 5
C3 cos

3Ô
11
2 x

4
+ C4 sin

3Ô
11
2 x

46
.

Exercise 8.1.28. Find real solution to the following second order linear di�erential
equations

1. yÕÕ + 2 yÕ + 3 y = 0, 2. yÕÕ + 3 yÕ + y = 0, 3. 2yÕÕ + 5 yÕ ≠ y = 0, 4. yÕÕ + 5y = 0,

5. yÕÕ + 4 yÕ + 2 y = 0, 6. 3 yÕÕ + 5 yÕ + 2 y = 0, 7. yÕÕ + 3 y = 0, 8. yÕÕ + 3 yÕ = 0.

As we can see it, in the expressions of solutions we have two constant numbers.
To determine the values of these constants we need at least a system of two equations
with two unknown. This means that we have to fix two initial value conditions or
boundaries conditions. This means that we should define initial values problems or
boundary condition values problems.

8.2 Homogeneous Cauchy Problem
In the previous section we established the second order linear di�erential equation
a yÕÕ+b yÕ+c y = 0 has multiple solutions. Indeed each time we change the constants
C1 and C2 in the expression of the solution (8.1.4) we obtain a new solution.

The main goal of this section is to define a unique solution of (8.1.1). This can
be only done if and only if we determine fixed values of C1 and C2 in (8.1.4). To this
end we need to fix two conditions in order to get a linear system of two equations
with two unknowns. According to the nature of these conditions, we will say we
have an initial values problem or a boundary conditions problem.

We start this section by defining initial values and boundary conditions prob-
lems. After these definitions we establish the uniqueness of their solutions.

Definition 8.2.1. Let y1 and y2 be two real numbers and I an interval that contains
x0. We consider a real function y œ C 2(I) and we define the homogeneous initial
values problem satisfied by y in I as follows

Y
]

[

a yÕÕ + b yÕ + c y = 0, in I

y(x0) = y1, yÕ(x0) = y2.
(8.2.1)

Example 8.2.2. As an example we consider the following initial values problem
yÕÕ + 3 yÕ + y = 0 in R, y(0) = 1 and yÕ(0) = 0.

Example 8.2.3. Another example can be given by the following initial values prob-
lem 2 yÕÕ ≠ yÕ + 7y = 0 in R, y(1) = 2 and yÕ(1) = 4.

Taking the values of y at the bounds of an interval one can define the following
boundary conditions problem.
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Definition 8.2.4. Let y1 and y2 be two real numbers and [a , b] an interval of R.

The boundary condition problem satisfied by y œ C 2
1

[a , b]
2

is defined by

Y
]

[

a yÕÕ + b yÕ + c y = 0, in [a , b],

y(a) = y1, y(b) = y2.
(8.2.2)

Example 8.2.5. As an illustration we consider the following boundary conditions
problem in the interval [0 , 1], yÕÕ + 3 yÕ + y = 0 in [0 , 1], y(0) = 0 and y(1) = 2.

Example 8.2.6. We can also consider the following boundary condition problem
in the interval [0 , fi/3], 2 yÕÕ ≠ yÕ + 7y = 0 in [0 , fi/3], y(0) = 0 and y(fi/3) = 1.

8.2.1 Homogeneous Initial Value Problem
Let y1 and y2 be two real numbers. We consider an interval I and some point x0
in I. We define the initial value problem: find y œ C 2(R) solution to

(ú)

Y
]

[

a yÕÕ + b yÕ + c y = 0, in R,

y(x0) = y1, yÕ(x0) = y2.

Definition 8.2.7. We say a function y œ C 2(I) is a solution to the initial value
problem (ú) if for every x œ I, a yÕÕ(x) + b yÕ(x) + c y(x) = 0 and the function y
satisfies y(x0) = y1 and yÕ(x0) = y2.

Example 8.2.8. The real function y(x) = exp(≠x) ≠ exp(≠2 x) defined in R is the
solution to the initial value problem

Y
]

[

yÕÕ + 3 yÕ + 2 y = 0, in R,

y(0) = 0, yÕ(0) = 1.

Indeed, we have yÕ(x) = ≠ exp(≠x)+2 exp(≠2 x) and yÕÕ(x) = exp(≠x)≠4 exp(≠2 x)
Then, one deduces y(0) = 0, yÕ(0) = ≠1 + 2 = 1 and

yÕÕ + 3 yÕ + 2 y = e≠x ≠ 4e≠2x + 3
1

≠ e≠x + 2e≠2x

2
+ 2

1
e≠x ≠ e≠2x

2

= 3e≠x ≠ 3e≠x ≠ 6e≠2x + 6e≠2x = 0.

Let us consider the general initial values problem (8.2.1). We know from the
previous section, when � ”= 0 the solution of the second linear di�erential equation
a yÕÕ + b yÕ + c y = 0 has solutions

y(x) = C1 er1 x + C2 er2 x,

where r1 and r2 are solutions of (8.1.3) and C1 and C2 are constant real numbers.
Using initial conditions one has the following linear system:

Y
]

[

exp(r1 x0) C1 + exp(r2 x0) C2 = y1

r1 exp(r1 x0) C1 + r2 exp(r2 x0) C2 = y2.
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In this linear system the unknowns are C1 and C2.
This linear system is equivalent to the following matricial equation

5
exp(r1 x0) exp(r2 x0)

r1 exp(r1 x0) r2 exp(r2 x0)

6 5
C1
C2

6
=

5
y1
y2

6
(8.2.3)

We know that (8.2.3) has a unique solution if and only if

r2 exp((r1 + r2) x0) ≠ r1 exp((r1 + r2) x0) ”= 0.

Since exp((r1 + r2) x0) ”= 0, this is equivalent to r2 ≠ r1 ”= 0. As we know that
� ”= 0, then r1 ”= r2. Therefore, there exists a unique vector (C1 , C2) solution to
(8.2.3). From we deduce, when � ”= 0 the initial value problem (8.2.3) has a unique
solution.

Now we are interested on the case � = 0. We established in section 8.1 when
� = 0, the expression of solution of (8.1.1) is y(x) = (C1 x + C2) exp(r x), where r
is the unique solution of (8.1.3), C1 and C2 are constant real numbers. This means
yÕ(x) =

!
(r x + 1)C1 + r C2

"
exp(r x). Applying the initial conditions it holds

Y
]

[

C1 x0 + C2 = y1 exp(≠r x0)

C1(r x0 + 1) + C2 r = y2 exp(≠r x0) .

Using matrices one has
5

x0 1
r x0 + 1 r

6 5
C1
C2

6
=

5
y1 exp(≠r x0)
y2 exp(≠r x0)

6
(8.2.4)

The linear system (8.2.4) has a unique solution because r x0 ≠ r x0 ≠ 1 = ≠1 ”= 0.
Hence there exists a unique vector (C1 , C2) solution to (8.2.4). This leads to the
conclusion that when � = 0, the initial value problem (8.2.1) has a unique solution.
We can summarize this study in this

Theorem 8.2.9. We consider the initial values problem (8.2.1). Then, there exists
a unique function y œ C 2(I), solution to (8.2.1).

In other words the initial value problem (8.2.1) admits a unique solution.

Example 8.2.10. Find the unique solution to the following initial value problem
Y
]

[

yÕÕ + 3 yÕ + 2y = 0

y(0) = 0, yÕ(0) = 1 .

In the firt step we consider the equation yÕÕ + 3yÕ + 2y = 0. Here � = 9 ≠ 8 = 1 > 0.

Defining r1 = ≠3 ≠ 1
2 = ≠2 and r2 = ≠3 + 1

2 = ≠1, we obtain

y(x) = C1 exp(≠2 x) + C2 exp(≠x),

with constant real numbers C1 and C2. The function y is di�erentiable in R and for
every real number x,

yÕ(x) = ≠2 C1 exp(≠2x) ≠ C2 exp(≠x).
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Now we use the initial conditions to obtain the following linear system
Y
]

[

y(0) = C1 + C2 = 0

yÕ(0) = ≠2 C1 ≠ C2 = 1 .

This involves C2 = ≠C1. Therefore C1 = ≠1 and C2 = 1. The unique solution to
the initial value problem is

y(x) = exp(≠x) ≠ exp(≠2 x).

Example 8.2.11. Determine the unique solution to the following initial value prob-
lem Y

]

[

yÕÕ + 6 yÕ + 9y = 0

y(0) = 1, yÕ(0) = 0 .

We define � = 36 ≠ 36 = 0. Therefore r = ≠3. This implies

y(x) = (C1 x + C2) exp(≠3 x),

where C1 and C2 are real numbers. From this we deduce

yÕ(x) = (≠3 x + C1 ≠ 3 C2) exp(≠3x).

Since y(0) = 1 and yÕ(0) = 0, we get

C2 = 1 and C1 ≠ 3 C2 = 0.

Consequently we have C1 = 3 C2 = 3. We conclude the unique solution of the initial
values problem is

y(x) = (3x + 1) exp(≠3 x), ’ x œ R.

Example 8.2.12. Find the unique complex solution of the following homogeneous
initial value problem Y

]

[

yÕÕ + yÕ + y = 0

y(0) = 0, yÕ(0) = 1 .

In this case we have � = 1 ≠ 4 = ≠3 < 0. Then we can define

r1 = ≠1 ≠ i
Ô

3
2 and r2 = ≠1 = i

Ô
3

2 ·

This means that y(x) = C1 exp(r1 x) + C2 exp(r2 x), for two complex numbers C1
and C2. The derivative of y is yÕ(x) = r1 C1 exp(r1 x) + r2 C2 exp(r2 x). The initial
value conditions implie y(0) = C1 +C2 = 0 and yÕ(0) = r1 C1 +r2 C2 = 1. Therefore
C2 = ≠C1 and C1(r1 ≠ r2) = 1. Considering the expressions of r1 and r2, we hve

r1 ≠ r2 = ≠1 ≠ i
Ô

3
2 ≠ ≠1 + i

Ô
3

2 = 2i
Ô

3
2 = ≠i

Ô
3.

Hence we obtain ≠i
Ô

3 C1 = 1. This means that, C1 = 1
≠i

Ô
3 = i

Ô
3

3 and C2 = ≠ i
Ô

3
3 ·

The unique complex solution is defined by

y(x) = i
Ô

3
3

3
exp

3
≠1 ≠ i

Ô
3

2 x

4
≠ exp

3
≠1 + i

Ô
3

2 x

4 4
.
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Example 8.2.13. Define the expression of the unique real solution to the following
initial values problem Y

]

[

yÕÕ + 4yÕ + 5y = 0

y(0) = 1, yÕ(0) = 0 .

In this example we have � = 16 ≠ 20 = ≠4. To find the real solution we define
– = ≠4

2 = ≠2 and Ê = 2
2 = 1. The real solution of the equation yÕÕ + 4 yÕ + 5y = 0

is
y(x) = exp(≠2x)

1
C1 cos(x) + C2 sin(x)

2
,

with real numbers C1 and C2. The function y is di�erentiable and for every real
number x,

yÕ(x) =
Ë!

C2 ≠ 2C1
"

cos(x) ≠
!
2 C1 + C2

"
sin(x)

È
exp(≠2 x).

The initial values conditions involves y(0) = C1 = 1 and C2 ≠ 2 C1 = 0. Therefore
we have C2 = 2C1 = 2. This leads to the following solution

y(x) = exp(≠2 x)
Ë

cos(x) + 2 sin(x)
È
.

Exercise 8.2.14. For each of the following initial value problems, determine the
unique solution

1.

Y
]

[

yÕÕ + 3yÕ + y = 0

y(0) = 1, yÕ(0) = 2,
2.

Y
]

[

3 yÕÕ + 5yÕ + 2y = 0

y(0) = 2, yÕ(0) = 1,
3.

Y
]

[

yÕÕ + 2yÕ + y = 0

y(2) = 1, yÕ(2) = 0

4.

Y
]

[

≠2yÕÕ + 5yÕ ≠ 4y = 0

y(1) = 0, yÕ(1) = 1,
5.

Y
]

[

yÕÕ + 2yÕ + 3y = 0

y(0) = yÕ(0) = 2,
6.

Y
]

[

yÕÕ + 4yÕ + 6y = 0

y(0) = yÕ(0) = 1.

8.2.2 Homogeneous Boundary Conditions Problem
We consider two real numbers y1 and y2. On the interval [a , b] µ R we define the
following problem: Find a function y œ C 2!

[a , b]
"

which satisfies
Y
]

[

a yÕÕ + b yÕ + c y = 0

y(a) = y1, y(b) = y2.

In section (8.2) we studied equation a yÕÕ + b yÕ + c y = 0 and we established its
solution has expression y(x) = K1 exp(r1 x) + K2 exp(r2 x) when � = b2 ≠ 4ac ”= 0
we have y(x) =

1
K1 x+k2

2
exp(r x). We remind that r, r1, and r2 are the solutions

of the equation (8.1.3), k1 and K2 are constants.
It is obvious that equation ayÕÕ + byÕ + cy = 0 has infinite number of solutions.

Because each time we change the values of the constants K1 and K1 we get a new
solution. To establish uniqueness of solutions we need to find fixed values for K1 and
K1. This can be done only by asking the solutions to satisfy some more particular
conditions. This means that among the solutions we are looking for such solutions
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which only satisfy these conditions. Here we impose the conditions y(a) = y1 and
y(b) = y2. We are looking for solutions which has these two properties. Using these
assumptions, we will be able to select among all solutions of ayÕÕ + byÕ + cy = 0, the
unique one which satisfies the boundary conditions.

Now we have to apply the boudary condition when � ”= 0 to establish there
is a unique couple (K1 , K2). The first condition y(a) = y1 leads to the equation
K1 exp(r1 a) + K2 exp(r2 a) = y1. The second condition y(b) = y2 gives the equa-
tion K1 exp(r1 b) + K2 exp(r2 b) = y2. Gathering these equations one obtains the
following linear system

Y
]

[

K1 exp(r1 a) + K2 exp(r2 b) = y1

K1 exp(r1 b) + K2 exp(r2 b) = y2.

This system is equivalent to the following matricial equation
5
exp(r1 a) exp(r2 a)
exp(r1 b) exp(r2 b)

6 5
K1
K2

6
=

5
y1
y2

6
(8.2.5)

We remind that K1 and K2 are the unknowns here. Since r1 a + r2 b ”= r2 a + r1 b,
then, exp(r1 a + r2 b) ≠ exp(r1 b + r2 a) ”= 0. Therefore the system (8.2.5) has a
unique solution (K1 , K2). We deduce there exists a unique y œ C 2!

[a , b]
"

solution
to (8.2.2).

We assume � = b2 ≠ 4a c = 0. Applying boundary conditions, one obtain the
following linear system

Y
]

[

K1 a + K2 = exp(≠r a) y1

K1 b + K2 = exp(≠r b) y2.

We rewrite this system by using matrices. Then,
5
a 1
b 1

6 5
K1
K2

6
=

5
exp(≠r a) y1
exp(≠r b) y2

6

As we have a ”= b, there exists a unique vector (K1 , K2) solution to the linear
system above. Therefore we have a unique function y œ C 2!

[a , b]
"

solution to
(8.2.2). We have proved the following theorem.

Theorem 8.2.15. We consider the problem (8.2.2). Then, there exists a unique
function y œ C 2!

[ a , b ]
"

solution to (8.2.2).

Example 8.2.16. Determine the expression of the unique solution to the following
boundary problem defined in [ 0 , 1 ]

Y
]

[

yÕÕ + 3 yÕ + 2 y = 0

y(0) = 1, y(1) = 0.

We consider the equation yÕÕ + 3 yÕ + 2 y = 0. One has � = 9 ≠ 8 = 1 > 0.
Therefore, r1 = ≠3 ≠ 1

2 = ≠2 and r2 = ≠3 + 1
2 = ≠1. This leads to the following

general solution
K1 exp(≠2 x) + K2 exp(≠x),
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with constant real numbers K1 and K2.
To determine the values of K1 and K2, we use the boundary conditions. This

holds the following linear system
Y
]

[

K1 + K2 = 1

K1 e≠2 + K2 e≠1 = 0.

From this one deduces K1 = ≠K2 e and K2 (1 ≠ e) = 1. Thus, we obtain

K2 = 1
1 ≠ e and K1 = ≠ e

1 ≠ e ·

Hence the function

y(x) = 1
1 ≠ e (exp(≠x) ≠ exp(≠2x + 1))

is the unique solution to the problem above.

Example 8.2.17. Find the expression of the unique solution of the problem defined
on [ 0 , 1 ] Y

]

[

yÕÕ + 6 yÕ + 9 y = 0

y(0) = 0, y(1) = 2.

We take the equation yÕÕ + 6 yÕ + 9 y = 0. In this case we obtain � = 36 ≠ 36 = 0.

Then, r = ≠6
2 = ≠3. The general solution of yÕÕ + 6 yÕ + 9 y = 0 is

y(x) =
1

K1 x + K2
2

exp(≠3 x),

with constant real numbers K1 and K2. Now we have to determine fixed values for
K1 and K2. The first condition implies y(0) = K2 = 0. Using the second one we
obtain y(1) = K1 exp(≠3) = 2. Hence K2 = 2 exp(3). This involves the following
unique solution

y(x) = 2 x exp(≠3x + 3).

Example 8.2.18. Give the expression of the unique solution of the following prob-
lem Y

_]

_[

yÕÕ + 3 yÕ + 25
4 y = 0, x œ ( 0 , fi/4 )

y(0) = 1, y(fi/4) = ≠1.

First we study the equation yÕÕ +3 yÕ + 25
4 y = 0, without fixing any conditions. Here

we have � = 9 ≠ 25 = ≠16. We define – = ≠3/2 and Ê = 2. The real solution of
yÕÕ + 3 yÕ + 25

4 y = 0 is

y(x) = exp
3

≠3
2 x

4 Ë
K1 cos(2 x) + K2 sin(2 x)

È
.
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The initial value conditions imply K1 = 1 and K2 exp
3

≠3fi

8

4
= ≠1. Therefore

K2 = ≠ exp
3

3fi

8

4
. Hence the unique solution is

y(x) = exp
3

≠3x

2

4 5
cos(2 x) ≠ exp

3
3fi

8

4
sin(2 x)

6
.
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