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function is defined if an only if x + 1 " = 0.

INTRODUCTION

This book is a course given to L0 students at UFAZ during the second semester of the academic years 2019-2020, 2020-2021 and 2021-2022. The Frecnh-Azerbaijani University called this year the foundation year because it allows to fill the gap that between the French High School program and Azerbaijan High School's program. Its main objective is to give general backgrounds in mathematics to students who integrate UFAZ, in order to allow them to be able to follow first year's courses of the University of Strasbourg. In other words this year corresponds to the "Terminale" of french program. This book is concerned by the first Semester. In this book, we deal with functions, itegration, first oder ordinary di erential equations, second order ordinary di erential equations In each chapter we recall the general results of the topic and give examples that help to understand this subject. We point out that we took some exercises from the list of homework given by Javanshir Azizov (UFAZ) and Loic Célier (UFAZ). Let f be a real function with domain D. Take two points x and y in D, which are close to each other. The images of these points by the function f are f (x) and f (y). We remind the points f (x) and f (y) belong to the set f (D), which is the range of D by the function f . After this transformation, one may wounder if the image of x and y remain close to each other. There are two possible answers:

• the points f (x) and f (y) are close to each other

• the point f (x) is far from f (y).

In the first case we say the function f is continuous at the point x. In the second case the function f is said to be discontinuous at the point x. To say that a point x is near or far from a point y we need to measure the distance between these two points. We want to know from which distance we can say that the point x is close to y. To investigate all these questions we introduce the concept of limit and continuity. The notion of Limit is a key concept in analysis. We can say that it is the very Basis of the analysis. To give an idea of what is a limit, we consider the Now we take x 0 = 2, we can see that when x approaches x 0 the value of the function f (x) approaches f (x 0 ). In other words when x goes to x 0 , the value of f (x) approaches f (x 0 ) = 1 3

• In this case we write lim xaex0 f (x) = f (x 0 ).

(1.0.1)

The expression (1.0.1) reads: limit when x goes to x 0 of f (x) is f (x 0 ). Now we consider x 0 = ≠1, which is not in the domain of the function f . We can see that if x = ≠0.999999, we obtain f (x) = 1000000. We observe that, when x is as close as possible to x 0 , the quantity f (x) is as greater as possible. In this case we write lim xaex0 f (x) = +OE.

May be another example could be helpful to better understand the concept of limit.

Let f be the function defined by

f (x) = Y _ _ _ _ ] _ _ _ _ [ x + 1, x < 0 2, x= 0 2x + 3, x > 0.
We remark when x approaches 0 but remains less than 0 the value of f (x) approaches the value 1. On the other hand when x approaches 0 but remains greater than 0 the value of the function f (x) approaches 3. As we can see it the two limits are di erent to f (0) = 2. We see that the limits are finite but the function is not continuous at the point x 0 = 0. The main objective of this chapter is to define rigorously limits and continuity by providing a method which will allows to measure e ciently the distance between x and x 0 in one part and f (x) and the limit of f in the other part. This chapter is organized as follows: In section 1 we deal with limits at a point which is in the domain of a function f. In section 2, we define the limit at bounds of a domain of a function. The limits at such points lead usually to the concept of asymptotes. In section 3 we study continuity of functions.

Limit at a Point in the Domain of a Function

In this section we study limit at point on which a function is defined. Here we will only deal with functions which have their domains in R. We define the limit of the function f at the point x 0 oe D f , as follows: Definition 1.1.1. Let f be a real function with domain D f µ R. We consider two real numbers ¸and x 0 such that x 0 oe D f . We say that the real number ¸is the limit of f at x 0 , if f (x) approaches ¸when x approaches x 0 . In this case we write ) is when x is near to x 0 , the value of f (x) is approximately ¸. That is, the quantity |f (x) ≠ ¸| is negligible. The error we make to replace f (x) by ¸is small enough. We specify from now on, each time we use Á or ", we refer to strictly positive real numbers that are small enough. The positive real numbers Á and " are as small as we want. By x is approximately equal to y, we means that, the positive real number |x ≠ y| is approximately 0. Then we introduce the following definition. Definition 1.1.4. Let x and y be two reals numbers. We say that x is approximately equals to y if there exists some real number Á > 0 small enough, such that,

|y ≠ x| < Á.
We recall that , |y ≠ x| < Á is equivalent to ≠Á < y ≠ x < Á. This means that x ≠ Á < y < x + Á.

Hence y oe ! x ≠ Á , x + Á " . We can reformulate the previous definition as follows.

Definition 1.1.5. Let x and y be two real numbers. We say y is approximately equal to x if there exist Á > 0 or (" > 0) small enough such that y oe ! x ≠ Á , x + Á " or ! y oe ! x ≠ " , x + " "" .

Example 1.1.6. We take x = 1 and y = 1 + 10 ≠10 . If we fix Á = 10 ≠10 + 10 ≠11 , we have |y ≠ x| = 1 + 10 ≠10 ≠ 1 = 10 ≠10 < Á.

Using Á and " we can rewrite definition 1.1.1. Indeed, we mean by x tends to x 0 , that x is approximately equal to x 0 . That is, |x ≠ x 0 | is small enough. Therefore, we can find some " > 0, such that, |x ≠ x 0 | < ". By f (x) goes to ¸we want to say that, we can make the distance between f (x) and ¸as small as we want. Then for all real number Á > 0, we can choose x near to x 0 so that |f (x) ≠ ¸| < Á. We can summarize this in this way

'Á > 0, ÷" > 0, 'x oe R, ( |x ≠ x 0 | < " ∆ |f (x) ≠ ¸| < Á).
This sentence means that, for all positive real number Á > 0, there exists a positive real number " > 0, such that for any real x oe R that verifies |x ≠ x 0 | < " implies |f (x) ≠ ¸| < Á. We emphasize that the real number " depends on Á. But for the sake of simplicity we will write " instead of "(Á) or " Á .

Then, definition 1.1.1 is equivalent to Definition 1.1.7. Let f be a real function with domain D f µ R. Take x 0 oe D f , and ¸oe R. We say that ¸is the limit of f when x approaches x 0 , if

'Á > 0, ÷" > 0, 'x oe R, ( |x ≠ x 0 | < " ∆ |f (x) ≠ ¸| < Á). (1.1.2)
To illustrate this dependence we consider the following examples.

Example 1.1.8. Let f (x) = 1 x + 3

• We have established that

lim xae1 f (x) = 1 4 •
Now we want to confirm this limit by using Á and ". To this end we take some positive real number Á which is as small as we want. To find " we proceed as follow.

We consider our Á, such that

- - -f (x) ≠ 1 4 - - -< Á. This is equivalent to - - - - 4 ≠ x ≠ 3 4(x + 3) - - - -< Á =∆ - - - - ≠(x ≠ 1) 4(x + 3) - - - -< Á.
Since x tends to 1, we observe that x should be in the interval ! 0 , 2 " . That is x AE 2.

Using this we obtain 4(x + 3) AE 4 ◊ 5 = 20. Consequently

1 20 AE 1 4(x + 3) • This leads to |x ≠ 1| 20 AE |x ≠ 1| 4(x + 3) < Á.
From the inequality above we deduce |x ≠ 1| < 20 Á. Setting " := 20 Á, we obtain for every

x oe D f , |x ≠ 1| < 20 Á we have - - -f (x) ≠ 1 4 - - -< Á.
Therefore one obtains

lim xae1 f (x) = 1 4 •
Example 1.1.9. We consider the function g(x) = Ô x ≠ 2. This function is defined in the interval [2 , +OE). We can observe

lim xae6 g(x) = 2.
We want to prove this property using Á and ". Let Á > 0 such that

- - -g(x) ≠ 2 - - -, AE Á.
Then, we have From now on, we define the limit of a function at a point x 0 which is in the domain. Let x 0 be a real number and f a real function with domain ]a , x 0 [ fi]x 0 , b[. In the definition that will follow we define the limit of the function at the point x 0 . Definition 1.1.11. Let (a , b) be an interval of R. We consider a real number x 0 oe (a , b) and ¸oe R. We consider the real function f with domain (a , b)\{x 0 }. We say that ¸is the limit of f , as x approaches x 0 if 'Á > 0, ÷" > 0, 'x oe R,

- - - Ô x ≠ 2 ≠ 2 - - -AE Á.
- - - - x ≠ 2 ≠ 4 Ô x ≠ 2 + 2 - - - -= - - - - x ≠ 6 Ô x ≠ 2 + 2 - - - -AE Á.
1 |x ≠ x 0 | < " ∆ |f (x) ≠ ¸| < Á 2 . ( 1.1.3) 
In this case we write lim xaex0 f (x) = ¸.

Remark 1.1.12. From this definition we obtain the information that, the limit of a function does not depend on its value at x 0 . Indeed, as we can see it here the function f is not defined at x 0 . This means that the limit can be di erent to f (x 0 ). Because f (x 0 ) is not defined.

Operations in the Set of Limits

In the first year of Bachelor degree,we will be able to prove that the set of all finite limits is an algebra. That is, we can do some operation on limits. Admitting this property, here we calculate sums and multiplications of limits. The first result of this subsection deals with sum of limits. Throughout this subsection we deal only with finite limits.

Theorem 1.1.13. Let f and g be two real functions defined in some interval I, which contains x 0 . We consider ¸1 and ¸2 two real numbers, such that,

lim xaex0 f (x) = ¸1 and lim xaex0 g(x) = ¸2.
Then, we have lim Then for all Á > 0 we can find two real numbers " 1 > 0 and " 2 > 0 such that, for all x oe R,

|x ≠ x 0 | < " 1 , =∆ - -f (x) ≠ ¸1- -< Á 2 |x ≠ x 0 | < " 2 , =∆ - -g(x) ≠ ¸2- -< Á 2 •
Now we define " = min(" 1 ; " 2 ) and we consider x oe R such that |x ≠ x 0 | < ".

(1.1.5)

On the other hand we know that,

- -f (x) + g(x) ≠ (¸1 + ¸2) - -= - -(f (x) ≠ ¸1) ≠ (g(x) ≠ ¸2) - -AE - -f (x) ≠ ¸1- -+ - -g(x) ≠ ¸2- -.
We remind that since |x

≠ x 0 | < ", then |x ≠ x 0 | < " 1 and |x ≠ x 0 | < " 2 . Therefore - -f (x) ≠ ¸1- -< Á 2 and - -g(x) ≠ ¸2- -< Á 2 . This involves, - -(f (x) + g(x)) ≠ (¸1 + ¸2) - -< Á.
Therefore we have proved lim From this, we deduce

lim xae1 ! f + g " (x) = lim xae1 f (x) + lim xae1 g(x) = 8.
Exercise 1.1.15. Find the limit of the following functions

lim xae1 x 3 + 4x 2 + 3x + 1, lim xae2  x 2 + 3x + 1 +  x 2 + 1, lim xae3 1 x + 1 + x + 2, lim xae≠1 1 x 2 + 3x + 1 + 1 x + 3 , lim xae≠3 x + 3 x 2 + 10 +  x 2 + 2x + 1.
A similar result can be established for multiplication of functions.

Theorem 1.1.16. Let f and g be two real functions defined in some interval I. We assume that x 0 belongs to I and we consider two reals numbers ¸1 and ¸2 such that,

lim xaex0 f (x) = ¸1 and lim xaex0 g(x) = ¸2.
Then,

lim xaex0 f (x) • g(x) = ¸1 • ¸2. (1.1.6)
Proof. Let f , g, x 0 , ¸1 and ¸2 be as in the theorem. Then for any Á > 0, there are two real numbers " 1 > 0, and " 2 > 0, such that, for every x oe R,

|x ≠ x 0 | < " 1 , ∆ - -f (x) ≠ ¸1- -< Á 2(1 + |¸2|) |x ≠ x 0 | < " 2 , ∆ - -g(x) ≠ ¸2- -< Á 2(1 + |¸1|) • Let x oe R, we have f (x) • g(x) ≠ ¸1 • ¸2 = f (x) • g(x) ≠ g(x) • ¸1 + g(x) • ¸1 ≠ ¸1 • ¸2 = g(x) 1 f (x) ≠ ¸12 + ¸11 g(x) ≠ ¸22 .
From this we deduce that

- - -f (x) • g(x) ≠ ¸1 • ¸2- - -AE - -g(x) - -• - -f (x) ≠ ¸1- -+ - -¸1- - - -g(x) ≠ ¸2- -.
We point out that -g(x)

- -= - -g(x) ≠ ¸2 + ¸2- -AE - -g(x) ≠ ¸2- -+ - -¸2- -AE 1 + - -¸2- -. This implies that - -f (x) • g(x) ≠ ¸1 • ¸2- -< (1 + |¸1|) • Á 2(1 + |¸1|) + (1 + |¸2|) • Á 2(1 + |¸2|) < Á 2 + Á 2 = Á.
Therefore lim

xaex0 f (x) • g(x) = ¸1 • ¸2.
This completes the proof.

Example 1.1.17. We consider f (x) = x + 3 and g(x) = x + 1. We have x 0 . We consider a real number ¸" = 0, and we assume

lim xaex0 f (x) = ¸.
Then,

lim xaex0 1 f (x) = 1 ¸• (1.1.7)
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Proof. Let f , x 0 and ¸be as in the Lemma. We suppose lim xaex0 f (x) = ¸" = 0.

Hence there exist " > 0, such that |x ≠ x 0 | < ", implies -f (x) ≠ ¸--< Á|¸| 2 2 • One can also find " 0 > 0 such that |x ≠ x 0 | < " 0 , implies -f (x) ≠ ¸--< |¸| 2 • Defining " 1 = min(" ; " 0 ). we have, for all x oe R, such that |x ≠ x 0 | < " 1 ,

- -f (x) ≠ ¸--< Á|¸| 2 2 and - -f (x) ≠ ¸--< |¸| 2 •
This implies that

|¸| = - -¸≠ f (x) + f (x) - -AE - -¸≠ f (x) - -+ - -f (x) - -< |¸| 2 + - -f (x) - -.
From this, we deduce |¸| 2 < -f (x) --. This leads to the following inequality

1 |f (x)| < 2 |¸| •
On the other part, we have ----

1 f (x) ≠ 1 ¸-- - -= - -¸≠ f (x) - - |¸| - -f (x) - -< Á |¸| 2 2 |¸| • 2 |¸| = Á• Therefore lim xaex0 1 f (x) = 1 ¸•
Theorem 1.1.20. Let f and g be two real functions defined in some interval I, which contains x 0 . We consider two real numbers ¸1 and ¸2, such that,

lim xaex0 f (x) = ¸1 and lim xaex0 g(x) = ¸2.
Moreover we assume ¸2 " = 0. Then

lim xaex0 f (x) g(x) = ¸1 ¸2 •
Proof. Let f , g, ¸1 and ¸2 be as in the theorem. In a neighborhood of x 0 , we can write f (x)

g(x) = f (x) • 1 g(x)
• Therefore using Theorem 1.1.16 and Lemma 1.1.19, we obtain 

lim xaex0 f (x) g(x) = lim xaex0 f (x) • lim xaex0 1 g(x) = ¸1 • 1 ¸2 = ¸1 ¸2
x 3 + 2x + 1 x 2 + 3x + 5 •
Sometimes it is more complicate to fine the limit of a function at some points. Because in some cases the limits are undefined. We will explain late on what we mean by undefined limits. Another problem can happen when we deal with oscillating function like cos or sin. In this case it is di cult to to obtain a unique limit. To treat these type of limits what we usually do is to bound the function that we want to find the limit by two other functions that have the same limit. Indeed let f be the function to which we cannot unfortunately find directly a limit. What we do is to use two other functions g and h such that g AE f AE h and g and h have the same limit. From this we deduce the limit of f . But we have a little bit problem because we did not prove that if f AE h, we have lim f AE lim h. To establish this property, we proceed in three steps:

Step 1: we compare f to 0

Step 2: we compare f to a real number M " = 0

Step 3: we compare f to a real function Theorem 1.1.23. Let f be a real function with domain D. We assume for every x oe D, f (x) Ø 0. Then, we have

lim xaex0 f (x) Ø 0.
Before doing the proof of this theorem, we remind the following logical properties . Proving the property (Proposition A =∆ Proposition B) is equivalent to prove the following statement (nonProposition B =∆ nonProposition A) .

Another method which is frequently used in demonstration of theorem is the proof by contradiction. Suppose we have to prove a Proposition A. We assume non-Proposition A holds and we establish that this leads to a contradiction or something which does not make sens.

We mean by nonProposition A the contrary of proposition A. For instance we define, Proposition A: I go to school. Then, nonProposition A : I don't go to school.

Proof. Here we will proceed by contradiction. Let f be a real function with domain D such that for every x oe D we have f (x) Ø 0. We suppose lim xaex0 f (x) = ¸< 0. Let Á > 0 be such that ¸+ Á < 0. We can find " > 0, such that |x ≠ x 0 | < " implies -f (x) ≠ ¸--AE Á. This is possible because lim xaex0 f (x) = ¸. The inequality -f (x) ≠ ¸--AE Á implies f (x) AE ¸+ Á < 0. Then, for every x oe ! ≠ " + x 0 , " + x 0 " , we have f (x) < 0. This is in contradiction with the hypothesis that f (x) Ø 0 for all x oe D. Therefore ¸Ø 0 and we write lim xaex0 f (x) Ø 0.

Remark 1.1.24. We draw the readers attention that strict inequalities do not pass to the limit. In other words if ' x oe D, f (x) > 0, we do not necessarly have

lim xaex0 f (x) > 0.
As a counter example we define the function f (x) = 1 x for any x oe ! 0 , +OE " . Then,for every x > 0, we have f (x) > 0. But we know that lim xae+OE f (x) = 0. Theorem 1.1.25. Let f be a real function with domain D. We consider a real number M and we assume for every x oe D, f (x) Ø M . Then,

lim xaex0 f (x) Ø M.
Proof. To prove this theorem, we define the function g(x) := f (x) ≠ M . Then for all x oe D, we have g(x) Ø 0. Now we apply theorem 1.1.23 to the function g to obtain lim

xaex0 g(x) Ø 0 =∆ lim xaex0 f (x) Ø M.
Theorem 1.1.26. Let f and g be two real functions defined in some interval I.

We suppose that for every x oe I, we have f (x) Ø g(x). Then Now we suppose that for all x oe I, f (x) > g(x). There exists a real number Á x > 0 depending on x such that, f (x) = g(x) + Á x . If we agree that lim xaex0 g(x) = ¸, We have lim xaex0 g(x) + Á x = ¸+ lim xaex0 Á x Ø ¸. Here we use an inequality large because maybe lim xaex0 Á x = 0. This involves lim xaex0 f (x) Ø lim xaex0 g(x).

The following theorem is helpful for dealing with limits of oscillating functions. Theorem 1.1.27 (Sandwich Theorem). Let f , g and h be three functions defined in an interval I, which contains the real number x 0 . We suppose for any x oe I, g(x) AE f (x) AE h(x) and

lim xaex0 g(x) = lim xaex0 h(x) = ¸, (1.1.8)
where ¸is some real number. Then, we have

lim xaex0 f (x) = ¸.
Proof. Let f , g, h, x 0 and ¸be as in the theorem. Since lim xaex0 g(x) = ¸, then for all Á 1 > 0, there exist " 1 > 0, such that for any x oe I, |x ≠ x 0 | < " 1 implies ¸≠ Á 1 < g(x) < ¸+ Á 1 .

(1.1.9)

On the other hand, we know that for all Á 2 > 0 , there exists " 2 > 0, such that, for all x oe I, |x ≠ x 0 | < " 2 , implies ¸≠ Á 2 < h(x) < ¸+ Á 2 .

(1.1.10)

Because we have lim xaex0 h(x) = ¸. Now we set " := min(" 1 ; " 2 ) and Á := max(Á 1 ; Á 2 ). Using (1.1.9) and (1.1.10) we obtain, for all x oe I, such that, |x ≠ x 0 | < ", ¸≠ Á 1 < f(x) < ¸+ Á 2 . This yields

≠Á 1 < f(x) ≠ ¸< Á 2 .
Since ≠Á AE ≠Á 1 and Á 2 AE Á, we deduce, for x oe I, such that |x ≠ x 0 | < ", we have ≠Á < f(x) ≠ ¸< Á. This means that, -f (x) ≠ ¸--AE Á.

Hence lim

xaex0 f (x) = ¸.
Example 1.1.28. We consider the function f (x) = x sin 1

1 x 2
. This function is defined R\{0}. We know that for all x oe R\{0}, ≠1 AE sin 1 1

x 2 AE 1. Multiplying by x in both sides , we obtain

≠x AE x sin 1 1 x 2 AE x.
As we know that lim xae0 ≠x = lim xae0 x = 0. We conclude that lim To end this subsection we define limits of function of the form g ¶ f where f and g are two real functions. Theorem 1.1.30. We consider three real numbers x 0 , y 0 , and ¸. Let f be a real function defined in an interval I which contains x 0 into some interval J and g a real function defined in the interval J, which contains y 0 . We assume Proof. We remind that lim xaex0 g(f (x)) = ¸means :

' Á > 0, ÷ " > 0, ' x oe I, |x ≠ x 0 | < " =∆ - -g ! f (x) " ≠ ¸--< Á.
The assumption lim yaey0 g(y) = ¸implies for all Á > 0, there exists ÷ > 0 depending on Á such that |y ≠ y 0 | < ÷ implies -g(y) ≠ ¸--< Á. On the other hand we know lim xaex0 f (x) = y 0 . Therefore, for any Á 1 > 0, there exists " depending on Á 1 , such that, |x ≠ x 0 | < " implies -f (x) ≠ y 0 --< Á 1 . Since this property holds for any positive real number Á 1 , in particular it is true for Á 1 = ÷. In this case we can find a " depending on ÷ such that |x ≠ x 0 | < " leads to |f (x) ≠ y 0 | < ÷. Since " depends on ÷ and ÷ depends on Á, therefore " depends on Á.

We have proved that for all Á > 0, there exists " > 0, such that |x ≠ x 0 | < " gives -g(f (x)) ≠ ¸--< Á.

Consequently we have lim

xaex0 g ! f (x) " = ¸.
We draw the readers attention on the fact that some functions can have infinite limits. Indeed let f (x) = 1 x for any x " = 0. We can see that

lim xae0 f (x) = ±OE.
In the next section we study infinite limits of functions.

Convergence to Infinity

Let I be an interval which contains the real number x 0 . We consider a real function f defined in I maybe excepted at x 0 . We say that f (x) converge to ±OE (± infinity), when x goes to x 0 if lim Definition 1.2.2. Let f be a real function defined in I, which contains x 0 . We assume that f is not defined at x 0 . We say that the line x = x 0 is a vertical asymptote for f , if

lim xaex0 f (x) = ±OE. Example 1.2.3. Let f (x) = 1 x + 1
• The function f is defined in R\{≠1}. We know that lim xae≠1 + f (x) = +OE and

lim xae≠1 ≠ f (x) = ≠OE.
Then the line which has equation x = ≠1 is a vertical asymptote for the function f. Example 1.2.4. We consider the following function g(x) = 3 x ≠ 2

• We have D g = R\{2} and lim xae2 + f (x) = +OE and lim xae2 ≠ f (x) = ≠OE. Therefore line with equation x = 2 is a vertical asymptote for f. Remark 1.2.5. Vertical asymptotes can only hold at a point on which the function is not defined. Exercise 1.2.6. Define vertical asymtotes for the following functions.

f (x) = x + 1 x 2 ≠ 1 , g(x) = 1 x 2 + 3x + 2 , h(x) = 5 x , i(x) = 4 x + 5
, j(x) = x + 3 x 2 + 2x + 1

•

Up to now we have only defined limits at points which are interior to some interval. In the next section, we define limits at the bounds of an open domain.

Limit of a Function at Infinity

In this section we consider function which are defined in intervals of the form ! ≠ OE , a " or [a , +OE), or

! ≠ OE , +OE "
, where a is a real number. That is, we study limits functions at ±OE. Definition 1.3.1. Let f be a function defined in the interval [a , +OE) and ¸oe R.

We say that the real number ¸is the limit of f at +OE if

lim xae+OE f (x) = ¸.
Example 1.3.2. We consider the function f (x) = 1 x 2 • The domain of the function f is D f = (≠OE , 0 ) fi ( 0 , +OE ). We can see that lim xae+OE f (x) = 0. Definition 1.3.3. Let f be a real function defined in the interval (≠OE , a]. We that say the real number ¸is the limit of f at ≠OE if

lim xae≠OE f (x) = ¸.
Example 1.3.4. We take the function f (x) = 1 x + 3

• The function f is defined in (≠OE , ≠3) fi (≠3 , +OE). We can check that

lim xae≠OE f (x) = 0.
Finding limits at ±OE can be a hard task. But sometimes the expression of the function leads to some simplifications. Let f be a polynomial function, we will prove that the limit of the function f at ±OE is nothing but the limit of the term with the highest degree.

Theorem 1.3.5. Let f (x) = a n x n + • • • + a 1 x
+ a 0 , with n Ø 1 and a n " = 0 be a polynomial function of degree n. Then, we have

lim xae±OE f (x) = lim xae±OE a n x n .
Proof. To prove this theorem we define f (x) = a n x n + • • • + a n x + a 0 , such that a n " = 0. Since x goes to ±OE we can suppose x " = 0. We write the function f in this way

f (x) = a n x n 3 1 + a n≠1 a n x + • • • a 1 a n x n≠1 + a 0 a n x n 4 • Using the fact that lim xae±OE a n≠1 a n x = • • • = lim xae±OE a 0 a n x n = 0, one deduces that, lim xae±OE 1 + a n≠1 a n x + • • • + a 1 a n x n≠1 + a 0 a n x n = 1• We conclude that lim xae±OE f (x) = lim xae±OE a n x n .
Theorem 1.3.6. We consider n and m in N ú . Let a n " = 0 and b m " = 0 be two real numbers. We define the function

f (x) = a n x n + • • • + a 1 x + a 0 b m x m + • • • + b 1 x + b 0 • Then, the following holds lim xae±OE f (x) = lim xae±OE a n x n b m x m •
Proof. Let a n " = 0 and b m " = 0 be two real numbers. Since x tends to ±OE we can suppose it di erent to 0. Now we observe that

f (x) = a n x n b m x m • 1 + a n≠1 a n x + a n≠2 a n x 2 • • • + a 0 a n x n 1 + b m≠1 b m x + b m≠2 b m x 2 • • • + b 0 b m x m • Remarking that lim xae±OE 1 + a n≠1 a n x + • • • + a 0 a n x n = 1, and lim xae±OE 1 + b m≠1 b m x + • • • + b 0 b m x m = 1, we obtain lim xae±OE 1 + a n≠1 a n x + a n≠2 a n x 2 • • • + a 0 a n x n 1 + b m≠1 b m x + b m≠2 b m x 2 • • • + b 0 b m x m = 1• Consequently, we have lim xaeOE f (x) = lim xaeOE a n x n b m x m • Example 1.3.7. We consider the function f (x) = x 3 + 3x + 5 x 2 + 6x + 1
• Then, we have

lim xae+OE f (x) = lim xae+OE x 3 x 2 = lim xae+OE x = +OE. Example 1.3.8. We define the function f (x) = 2x 2 + x + 4 x + 1 • One has lim xae≠OE f (x) = lim xae≠OE 2x 2 x = lim xae≠OE 2x = ≠OE.
Exercise 1.3.9. Define the limit of the following functions at +OE.

f (x) = x + 3 x 2 + 2x + 1 , g(x) = x + 1 x + 2 , h(x) = x 2 + 2x + 3 x 2 + 4x + 1 •
Exercise 1.3.10. Determine the limit of the following functions at ≠OE 

f (x) = x + 1 x 3 + 2x + 3 , g(x) = x 2 + 1 x 2 + 2x + 1 , h(x) = x 2 x 2 + 3 • Definition 1.
lim xae≠OE f (x) = ¸2. Example 1.3.13. Let f (x) = x + 3 x + 1
• Then, we have

lim xae+OE f (x) = 1.
Hence the line y = 1, is a horizontal asymptote for the function f at +OE.

Example 1.3.14. We consider the function g(x) = 1 x + 3

• We can see that

lim xae≠OE g(x) = 0.
Then, the line y = 0, is a horizontal asymptote for the function f at ≠OE.

Exercise 1.3.15. Say whether the following functions have horizontal asymptote

f (x) = x + 6 x + 1 , g(x) = |x| x + 1 , h(x) = |x + 3| x + 9 , i(x) = x 2 + 3x + 7 x 2 + 3 , j(x) = x |x ≠ 1|
• One may think that the limit of a function at ±OE is always finite. Here we will specify that the limit of a function at ±OE can be infinite. In truth, most of the time these limits are infinite. A simplest example can be given by the function f (x) = x. We see

lim xae+OE f (x) = +OE and lim xae≠OE f (x) = ≠OE.
Before going further, it is important to explain what we mean by a function has limit ±OE. By f tends to +OE when x approaches +OE, we mean that the values of f (x) can be as greater as possible in the condition that x be as greater as possible. In other words for any real number A > 0, we can find x in the domain of f such that the value f (x) be greater than A. But this holds when x is greater enough. The expression x greater enough means there exists a big number x 0 such that x oe [x 0 , +OE). This leads to the following definition. Definition 1.3.16. Let f be a real function. The function f has limit +OE when

x goes to +OE if : ' A > 0, ÷ x 0 > 0, ' x oe D f , x Ø x 0 , =∆ f (x) > A.
In this case we write lim

xae+OE f (x) = ≠OE.
Definition 1.3.17. Let f be a real function. The function

f has limit ≠OE at +OE if : ' M oe R, ÷ x 0 > 0, ' x oe D f , x Ø x 0 , =∆ f (x) < M.
The definitions of the following expressions lim 

' A > 0, ÷ x 0 > 0, ' x oe D f , x AE ≠x 0 , =∆ f (x) > A.
In order to show how to deal with these types of limits we introduce the following section.

Infinite Limit of a Function at Infinity

This section is devoted to functions that have infinite limits, when x approaches ±OE. Some function has complicate expression, in these cases determining their limits can be so di cult. To find the limits of these types of functions, we try to bound them below or above by elementary functions that we can determine easily their limits.Thus we deduce their limits from limits of such elementary functions.To clarify what mean, let f and g be two functions defined in some interval [a , +OE). We assume the limit of the function g is known and g(x) AE f (x) for all x oe [a , +OE). Using the limit of the function g we can find the limit of f when x tends to +OE. To do so we use a property called the comparison principle. This property is enunciated in the following theorems. Taking here x 0 = +OE, we obtain

+OE = lim xae+OE g(x) AE lim xae+OE f (x).
Therefore, lim

xae+OE f (x) = +OE.
To rephrase this, we say if a function f is bounded below by a function g which increases to +OE, then f must go to +OE.

Theorem 1.4.2. Let f and g be two real functions defined in [a , +OE), such that for all x oe [a ; +OE), f (x) Ø g(x) and

lim xae+OE f (x) = ≠OE.
Then,

lim xae+OE g(x) = ≠OE.
The principle of the proof is the same. As we know for every x oe [a , +OE), f (x) Ø g(x), then lim

xaex0 f (x) Ø lim xaex0 g(x).
Now we take x 0 = +OE. Hence we obtain

lim xae+OE g(x) AE lim xae+OE f (x) = ≠OE.
We conclude that lim

xae+OE g(x) = ≠OE. Example 1.4.3. Let f (x) = x 2 and g(x) = x 2 + 1. One has f (x) AE g(x) for all
x oe R. On the other hand, we know that

lim xae+OE f (x) = +OE. Hence lim xae+OE g(x) = +OE.
As we mentioned it before in this section we are dealing with functions which have limits ±OE at ±OE. Since we know these functions go to ±OE when x ae +OE, we need to know how fast they converge to ±OE. In other words we study their asymptotic behavior. To this end we compare them to a ne functions. This comparison leads to the key concept of oblique asymptotes 

of f at ≠OE if lim xae≠OE 1 f (x) ≠ ax ≠ b 2 = 0.
The question now is, how to define the equation of the line d. This is equivalent to find a and b.

Since we know that lim xae±OE f (x) = ±OE, to determine the value of a we proceed in this way: We compute lim

xae±OE ! f (x)/x " .
If this limit exists (is finite) we define

a := lim xae±OE f (x) x • (1.4.1)
Now we consider the following limit:

lim xae±OE ! f (x) ≠ ax " .
If this limit is finite we fix

b := lim xae±OE (f (x) ≠ a x) . (1.4.2) Example 1.4.7. Let f (x) = x 2 + 2x + 1 x + 2 • We can see that lim xae+OE f (x) = +OE and lim xae+OE f (x) x = 1.
In this case we can take a = 1. On the other hand we have

lim xae+OE (f (x) ≠ x) = lim xae+OE 1 x + 1 = 0.
Therefore the line d with equation y = x is an oblique asymptote for the function f at +OE.

Example 1.4.8. We consider the function g(x) = 2x 3 +3x 2 +2x+1

x 2 +2x+2

• Wehave

lim xae≠OE g(x) = lim xae≠OE 2x 3 x 2 = ≠OE.
We can observe that

lim xae≠OE g(x) x = lim xae≠OE 2x 3 + 3x 2 + 2x + 1 x 3 + 2x 2 + 2x = lim xae≠OE 2x 3 x 3 = 2.
Therefore, we have a = 2. We know that

lim xae≠OE 1 g(x) ≠ 2x 2 = lim xae≠OE 2x 3 + 3x 2 + 2x + 1 x 2 + 2x + 2 ≠ 2x = lim xae≠OE 2x 3 + 3x 2 + 2x + 1 ≠ 2x 3 ≠ 4x 2 ≠ 4x x 2 + 2x + 2 = lim xae≠OE ≠x 2 ≠ 2x + 1 x 2 + 2x + 2 = lim xae≠OE ≠x 2 x 2 = ≠1.
We conclude that the line y = 2x ≠ 1 is an oblique asymptote for the function g at ≠OE.

Exercise 1.4.9. Define oblique asymptotes for the following functions

f (x) = x 2 + 6x + 1 x + 1 , g(x) = x 2 + 2x + 13, h(x) = x 3 + 6x + 3 x 2 + 9 •
We recall the fact that a function is defined at some point x 0 does not mean that the function has a limit at this point x 0 . As an counter example we consider the function

f (x) = Y ] [ 3x + 2, if x Ø 0 4, if x < 0
This function is defined at 0 but does not have a limit at 0. But a careful study of the two expressions which defined the function allows us to identify the notion of left and right hand side limit. Definition 1.4.10. We say x approaches x 0 to the right hand side, if x approaches x 0 and remains greater than x 0 . In this case we write

lim xaex + 0 = lim xaex0 x>x0 = lim x¿x0 .
The arrow is down because x goes to x 0 by decreasing. Definition 1.4.11. We say x approaches x 0 to the left hand side, if x approaches x 0 and remains less than x 0 . In this case we write

lim xaex ≠ 0 = lim xaex0 x<x0 = lim xøx0 .
The arrow is up, because x approaches x 0 by increasing. Definition 1.4.12. We say ¸r oe R is the right hand side limit of f when x tends to x 0 , if the value of f (x) approaches ¸r when x approaches x 0 and remains grater than x 0 . We write

lim xaex + 0 f (x) = lim xaex0 x>x0 f (x) = lim x¿x0 f (x) = ¸r.
Definition 1.4.13. We say that ¸l oe R is the left hand side limit of f when x tends to x 0 , if the value of f (x) approaches ¸l when x approaches x 0 and remains less than x 0 . We write

lim xaex ≠ 0 f (x) = lim xaex0 x<x 0 f (x) = lim xøx0 f (x) = ¸l.
Example 1.4.14. We consider the function 

f (x) = Y ] [ 3x + 2, if x Ø 0 4, if x < 0 Then, one has lim xae0 ≠ f (x) = 4 and lim xae0 + f (x) = 2.
f (x) = Y ] [ x ≠ 1, if x Ø 1 Ô x 2 + 2, if x < 1, g(x) = Y ] [ ≠x + 2, if x AE 2 ≠5x + 3, if x > 2, h(x) = Y _ _ ] _ _ [ x 2 + 3x + 1 x + 2 , if x Ø ≠2 Ô ≠x + 2, if x < ≠2
lim xaex ≠ 0 f (x) = lim xaex + 0 f (x).
In this case we write

lim xaex0 f (x) = lim xaex ≠ 0 f (x) = lim xaex + 0 f (x).
In some particular case the limit of the function f at x 0 is nothing but f (x 0 ). When this situation holds we say the function f is continuous at x 0 . In the next section we discuss continuity of functions.

Continuity of Functions

In this section deals with continuous functions. We start by defining the continuity of a function at a point. Choosing an arbitrary point we generalize this definition to interval. In the second paragraph , we introduce the IVT theorem, the mean value theorem and their corollaries. We end the section by establishing that every continuous function in a segment [a ; b] reaches its maximum and its minimum. Definition 1.5.1. Let f be a real function with domain D f . We consider an interval I µ D f and a real number x 0 oe I. We say that, the function

f is continuous at x 0 , if lim xaex0 f (x) = f (x 0 ). (1.5.1)
A possible interpretation of the definition above is the following one: When the real number x approaches x 0 the value of the function f (x) approaches f (x 0 ). This can be expressed in terms of Á and ". Definition 1.5.2. Let f be a real function with domain D. We consider an interval I µ D which contains the real number x 0 . We say the function f is continuous at x 0 , if, ' Á > 0, there exists a real number

" Á (x 0 ) > 0 such that, ' x oe D |x ≠ x 0 | < " Á (x 0 ) =∆ - - -f (x) ≠ f (x 0 ) - - -< Á.
(1.5.2)

We have to specify here that, the real number " depends on Á and x 0 . In other words, f is continuous at

x 0 if ' Á > 0, ÷ " Á (x 0 ) > 0, ' x oe D, |x ≠ x 0 | < " Á (x 0 ) =∆ - - -f (x) ≠ f (x 0 ) - - -< Á.
For a function which has a left hand side and right hand limit we can establish the following theorem Theorem 1.5.3. Let f be a real function. We consider x 0 oe D f and suppose f has left and right hand side limits. Then, the function f is continuous at x 0 if and only if lim

xaex + 0 f (x) = lim xaex ≠ 0 f (x) = f (x 0 ).
To simplify notations, we write " instead of " Á (x 0 ).

Example 1.5.4. Let f (x) = x 2 and x 0 = 3. We have f (x 0 ) = 9 and

lim xae3 f (x) = f (x 0 ) = 9.
Therefore the function f is continuous at x 0 = 3.

Exercise 1.5.5. Say whether the following function are continuous at x 0

1. f (x) = 6x + 5 and x 0 = 1 2. g(x) = x 2 + 5x + 3 and x 0 = 3 3. h(x) = x + 3 x ≠ 1 and x 0 = 1 4. i(x) = Ô x + 3 and x 0 = ≠2 5. j(x) = 1 x and x 0 = 0.
Below we establish some properties for continuous functions. We will establish if f is a continuous function at x 0 oe D f and ⁄ a real number the function ⁄ f is continuous at x 0 . Lemma 1.5.6. Let f be a real function which is continuous at x 0 oe D f . We consider a constant real number ⁄. Then the real function ⁄ f is a continuous at x 0 .

Proof. We consider a function f which is continuous at x 0 . If ⁄ = 0, the function ⁄ f © 0. We know the constant function 0 is continuous. Now we take ⁄ oe R ú . Hence for all Á > 0, we can find " > 0, such that for all

x oe R, |x ≠ x 0 | < " =∆ - -f (x) ≠ f (x 0 ) - -< Á |⁄| • Let x oe R, such that |x ≠ x 0 | < ". Then, - -⁄f (x) ≠ ⁄f (x 0 ) - -= - -⁄ - - - -f (x) ≠ f (x 0 ) - -< |⁄| Á |⁄| = Á.
Therefore the function ⁄f is continuous at x 0 .

In this proof we choose

" > 0 such that |x ≠ x 0 | < " implies - -f (x) ≠ f (x 0 ) - -< Á |⁄|
in order to simplify notations. But one can take " such that

|x ≠ x 0 | < " implies - -f (x) ≠ f (x 0 ) - -< Á. (1.5.3)
In this case we obtain some Á Õ = |⁄| Á. Indeed let us consider " as in (1.5.3) then,

- -⁄ f(x) ≠ ⁄ f(x 0 ) - -= - -⁄ - - - -f (x) ≠ f (x 0 ) - -< - -⁄ - -Á = Á Õ .
Let f and g be two functions defined in some interval I. We assume the functions f and g continuous at x 0 oe I, we can prove f + g is continuous at x 0 . Lemma 1.5.7. Let f and g be two real functions defined in an interval I µ D f flD g . We consider a real number x 0 oe I. We assume that f and g are continuous at x 0 . Then, the function f + g is a continuous at x 0 .

Proof. Let Á > 0 and x 0 oe I. Since f and g are continuous at x 0 , we can find " > 0, such that, for every

x oe I, such that, |x ≠ x 0 | < " implies - - -f (x) ≠ f (x 0 ) - - -< Á 2 and - - -g(x) ≠ g(x 0 ) - - -< Á 2 • Take x oe I such that |x ≠ x 0 | < ". Therefore - - -(f + g)(x) ≠ (f + g)(x 0 ) - - -AE - - -f (x) ≠ f (x 0 ) - - -+ - - -g(x) ≠ g(x 0 ) - - -< Á.
Then the function f + g is continuous at x 0 .

We can give a more simplest proof by pointing out that,

lim xaex0 ! f (x) + g(x) " = lim xaex0 f (x) + lim xaex0 g(x).
Proof 2. Let f and g be two continuous functions at x 0 . Thus, we have

lim xaex0 f (x) = f (x 0 ) and lim xaex0 g(x) = g(x 0 ).
Using Theorem 1.1.4, we have

lim xaex0 f (x) + g(x) = lim xaex0 f (x) + lim xaex0 g(x) = f (x 0 ) + g(x 0 ).
Then f + g is a continuous function at x 0 .

Take two real functions f and g, which we suppose continuous at x 0 oe D f fl D g . One may wonder whether the function f • g is continuous at x 0 . The answer to this question is given in the following lemma. Lemma 1.5.8. Let f and g be two real functions defined in an interval I µ D f flD g . We consider a real number x 0 oe I. We assume the function f and g continuous at x 0 . Then, the real function f • g is a continuous at x 0 .

Proof. Let f and g be two continuous functions at x 0 . Thus we have

lim xaex0 f (x) = f (x 0 ) and lim xaex0 g(x) = g(x 0 ).
Then by Theorem 1.1.6,

lim xaex0 f (x) • g(x) = lim xaex0 f (x) • lim xaex0 g(x) = f (x 0 ) • g(x 0 ) = 1 f • g 2 (x 0 ).
The function f • g is continuous function at x 0 .

Using similar arguments we can prove that the division of continuous function at x 0 is also continuous at x 0 . Lemma 1.5.9. Let f and g be two real functions defined in some interval I µ D f flD g . We consider a real number x 0 oe I. We assume that f and g are continuous at x 0 and g(x 0 ) " = 0. Then the function f g is continuous at x 0 .

Proof. Let f and g be two continuous functions at x 0 . By definition of continuity, we have lim

xaex0 f (x) = f (x 0 ) and lim xaex0 g(x) = g(x 0 ).
Since g(x 0 ) " = 0, we deduce from Theorem 1.1.7, that

lim xaex0 f (x) g(x) = lim xaex0 f (x) lim xaex0 g(x) = f (x 0 ) g(x 0 ) . The function f g continuous at x 0 .
Some functions are more regular. They can be continuous at each point of their domains. In this case we say the are continuous in their domains. We state the following definition. One can prove without any di culties that the following functions are continuous in their domains. Lemma 1.5.13. The following statements hold:

• Polynomial functions are continuous • The function f (x) = 1 x is continuous in its domain D f = R\{0} • The function f (x) = Ô x is continuous in its domain.
As in the case of functions which are continuous at some point x 0 we have following the following result. Theorem 1.5.14. Let f and g be two real functions defined in some interval I µ D f fl D g . We suppose f and g are continuous on I. Then, 1. the function f + g is continuous on I 2. the function f • g is continuous on I 3. if g(x) " = 0, for every x oe I, the function f /g is continuous on I.

Example 1.5.15. Let f (x) = x + 1 and g(x) = x 2 + 1. The functions f and g are continuous. Then using the theorem above, we obtain

1. h(x) = f (x) + g(x) = x 2 + x + 2 is continuous on R 2. p(x) = f (x) • g(x) = x 3 + x 2 + x + 1 is continuous on R 3. q(x) = x + 1 x 2 + 1 is continuous on R.
Exercise 1.5.16. Find the domain of continuity of the following functions

f (x) = x + 3 2x + 3 + 3x 2 + 2x, g(x) = x 2 + 4x + 3, h(x) = x + 6 3x + 5 •
We can observe that, all elementary functions are continuous in their domains. Combining this with theorem 1.5.14 and composition of functions, we obtain the following results. Lemma 1.5.17. Let f be a continuous function in its domain I. We define the subset

I + = ) x oe I f (x) Ø 0 * . Then,the function g(x) =  f (x), is continuous on I +
In other words the function g is continuous at any point x, such that, f (x) Ø 0.

Example 1.5.18. We consider f (x) = Ô x 2 + 3x + 2. We know the function f is defined if and only if x 2 + 3x + 2 Ø 0. This correspond to the set

D f = (≠OE , ≠2] fi [≠1 , +OE).
Applying the previous theorem we conclude, the function f is continuous in its domain.

Exercise 1.5.19. Find the domain of continuity of the following functions

f (x) =  2x 2 + 6x + 2, g(x) = Ú x + 1 3x + 5 , h(x) =  (x 2 + 6x + 8)(x 2 + 3x + 7) .
Lemma 1.5.20. Let f be a continuous function with domain I. We define the subset

I ú = ) x oe I f (x) " = 0 * . Then, the function g(x) = 1 f (x) is continuous on I ú .
The function g is continuous at any x, such that f (x) " = 0.

Example 1.5.21. We take the function f (x) = 1 x+2 . This function is defined if and only if x " = ≠2. This implies the function f is continuous on R\{≠2}.

Exercise 1.5.22. Find the domain of continuity of the following functions

f (x) = 1 x 2 + 3x + 2 , g(x) = 3x + 3 5x + 3 , h(x) = x + 3 Ô 2x + 7 , i(x) = Ô x 2 + 4x + 3 2x + 3 •
We remind that for equations including polynomial function of degree three one can sometimes use Cardan' formulas to find solutions to the equation f (x) = 0. But for polynomial function with degree n Ø 4 or a general function we cannot most of the time find a formula which gives the solutions of this equation. In such a situation what we usually do is:

1. to prove that equation (1.5.4) has a solution which belongs in some interval 2. to give an approximation of solution of equation (1.5.4).

Below we will see that using the continuity of a function, we can say if whether equation : find x oe R, such that, f (x) = 0.

(1.5.4) has a solution or not. We draw the readers attention that theorems which will be stated say just there exist solutions, but do not give any information on what such solutions look like. 

f (a) • f (b) < 0.
Then, there exists at least one x 0 oe (a , b), such that, f (x 0 ) = 0.

Some authors prefer to formulate the IVT theorem in this way. But you can see that the formulation below is just a corollary of the IVT theorem. 

(x) = x 3 + x + 1 which is continuous in R. Then, its restriction in [≠1 , 1] is a continuous function.
We have f (≠1) = (≠1) 3 + (≠1) + 1 = ≠2 + 1 = ≠1 < 0. On the other hand we have f (1) = 3. Then, one deduces

f (≠1) • f (1) = ≠3 < 0.
Using corollary 1.5.24, we conclude that, there exists x 0 oe (≠1 , 1), such that, f (x 0 ) = 0 Hence the equation x 3 In the next chapter, we will define increasing and decreasing functions.

Until now, we never pay attention to the form of the interval we used. Now we need to make the di erent between open and closed interval. We have to specify what we mean by a segment. In the last theorem of this chapter, we show that a function which is continuous on a segment reaches its maximum and its minimum. In the previous chapter, we study continuity of functions. At its end we introduce the notion of increasing and decreasing functions. We promised that we will come back to the definitions of these properties. Now we consider a function f : [a , b] ae R and two arbitrary elements of [a , b] x and y such that, a AE x < y AE b. We say that f is an increasing function, if f (x) AE f (y). The function f is said to be decreasing, if f (x) Ø f (y).

f (x 1 ) = max xoe[a b] f (x) and f (x 2 ) = min xoe[a , b] f (x).
In other words, the function f : [a ; b] ae R is increasing, if for all x and y in [a , b], such that a AE x < y AE b the following inequality holds f (y) ≠ f (x) Ø 0. Since y ≠ x > 0, this yields

f (y) ≠ f (x) y ≠ x = f (x) ≠ f (y) x ≠ y Ø 0. The function f : [a ; b] ae R is decreasing, if for all u and v in [a , b], such that a AE u < v AE b, f (u) ≠ f (v) Ø 0. As we know that u ≠ v < 0, then, f (u) ≠ f (v) u ≠ v AE 0•
The quantity

f (x) = f (x) ≠ f (y) x ≠ y (2.0.1)
is called the rate of increase of the function f . As we can observe it, the real number f (x) seems to be the determinant element to characterize variation of functions. 

• the function f is increasing in [a , b], if f (x) Ø 0, • the function f is decreasing in [a , b], if f (x) AE 0.
We precise that a function f is strictly increasing if f (x) > 0. It is strictly decreasing, if f (x) < 0.

The main purpose of this chapter is to define a method which allows us to study easily variations of functions. This chapter is organized as follows: in section 1, we define the derivative of a function. In the second section, we explain what we mean by the study of a function. In the last section we use di erentiation to characterize some property of functions.

Derivative at some Point x 0

In this section, we define, the derivative of a function at some real point. Applying this definition to an arbitrary element of the domain of the domain of a function we establish that the function is di erentiable in its domain. Using the derivatives we will be able tocharacterize increasing and decreasing functions.

We remind that the sets (a , b) an ]a , b[ represent the same open interval. We will use both notations in this chapter Definition 2.1.1. Let f be a real function which is defined in the interval ( a , b ).

We consider a fixed real number x 0 oe (a , b). We say that the function f is derivable or di erentiable at x 0 , if the following limit exists:

lim xaex0 x" =x 0 f (x) ≠ f (x 0 ) x ≠ x 0 • (2.1.1)
We recall that the expression x ae x 0 means that x is as close as possible to x 0 . That is, we can find a real number h > 0 as small as possible such that x = x 0 + h. The best way to represent this in our minds is to let h going to 0. Using this concept, we can reformulate Definition 2.1.1. Definition 2.1.2. We consider the function f : (a , b) ae R and a real number

x 0 oe (a , b). The function f is di erentiable at x 0 if lim hae0 h" =0 f (x 0 + h) ≠ f (x 0 ) h exists.
When the limit (2.1.1) exists, we denote it

lim xaex0 f (x) ≠ f (x 0 ) x ≠ x 0 = lim hae0 f (x 0 + h) ≠ f (x 0 ) h = f Õ (x 0 ) = df dx (x 0 )• (2.1.2)
In this case we call it the derivative or (di erential) of the function f at x 0 .

Example 2.1.3. We take f (x) = 2 x+1 and x 0 = 0. Then we have f (0+h) = 2 h+1 and f (0) = 1. From this we deduce,

f (0 + h) ≠ f (0) h = 2. Hence lim hae0 f (0 + h) ≠ f (0) h = 2.
We conclude that f Õ (0) = 2.

Exercise 2.1.4. Compute f Õ (x 0 ) 1. f(x) = 3x + 2, x 0 = 1, 2. g(x) = x 2 + 6x + 1, x 0 = 2, 3. h(x) = 1 x , x 0 = 4 4. i(x) = Ô x, x 0 = 1, 5. j(x) = 12, x 0 = 1.
Let f be a real function, which is derivable at

x 0 . Therefore, lim hae0 ! f (x 0 + h) ≠ f (x 0 )
" /h is finite. We can find some real number k, such that,

lim hae0 f (x 0 + h) ≠ f (x) h = k.
Now we take a real number h " = 0. We write

f (x 0 + h) ≠ f (x 0 ) = f (x 0 + h) ≠ f (x 0 ) h • h.
Letting h to 0, we obtain

lim hae0 ! f (x 0 + h) ≠ f (x 0 ) " = lim hae0 3 f (x 0 + h) ≠ f (x 0 ) h • h 4 = lim hae0 f (x 0 + h) ≠ f (x 0 ) h • lim hae0 h = k • 0 = 0.
Hence lim hae0 f (x 0 + h) = f (x 0 ). This is equivalent to

lim xaex0 f (x) = f (x 0 )
when we define x = x 0 + h. This establish the function f is continuous at x 0 . This leads to the following theorem.

Theorem 2.1.5. Let f be a real function with domain ( a , b ). We suppose the function f di erentiable at x 0 oe ( a , b ). Then, the function f is continuous at x 0 .

The reverse of this theorem is not true. A function can be continuous at some point x 0 , without being di erentiable at this point. As an example we consider the function f (x) = |x|. This function is continuous at 0. Indeed we have

lim xae0 f (x) = f (0) = 0.
But the function |x| is not di erentiable at 0. Because lim

xae0 ≠ |x| x = lim xae0 ≠ ≠x x = ≠1 and lim xae0 + |x| x = lim xae0 + x x = 1. Since lim xae0 ≠ ! |x|/x " " = lim xae0 + ! |x|/x " , then, lim xae0 ! f (x)/x "
does not exists. The function |x| is not derivable at 0. This theorem proves that derivability or (di erentiability ) is stronger than continuity. In other words, a di erentiable function at x 0 is more regular than a continuous function at x 0 in the following interval ( x 0 ≠ Á , x 0 + Á ). Definition 2.1.6. Let f be a function with domain D. We take an open interval I µ D. We say that the function f is derivable in the interval I if it is derivable at each point x 0 in I.

This means that f is di erentiable in I if for every x 0 oe I,

f Õ (x 0 ) = df dx (x 0 ) exists.
Example 2.1.7. To establish that the function f (x) = x 2 is derivable in R, we consider an arbitrary real number x 0 . Let h " = 0 be a fixed positive real number. One has f (x 0 ) = x 2 0 and f (x

0 + h) = x 2 0 + 2x 0 • h + h 2 .
From this, we deduce that

lim hae0 f (x 0 + h) ≠ f (x 0 ) h = lim hae0 2x 0 h + h 2 h = 2x 0 .
Therefore f is derivable at x 0 . Since x 0 is an arbitrary real number, we conclude that the function f is derivable in R.

Exercise 2.1.8. Prove that the following functions are derivable in the given intervals.

1. f(x) = 3 x + 2, I =] ≠ OE , 0], 2. g(x) = Ô x, I = [3 , +OE[, 3. h(x) = 3x 2 + 9x + 1, I =] ≠ 3 , 5[, 4. i(x) = 1 x + 1 , I =]0 , 2[, 5. j(x) = 2x ≠ 5 x + 1 , I = [0 , 1], 6. k(x) = ! x + 2) 3 + 1, I = [≠1 , 7].
We know that elementary functions are the bricks that allow to build more complicated functions. That is why every new operation on the set of functions should be tested on them, before being generalized. In the following section we define the derivative of the elementary functions.

Derivative of Elementary Functions

In this section we define derivative of elementary functions. We start by polynomial functions. In the second time we define derivative of the inverse and square root function. We end the section by the derivatives of cosine and sine functions.

The first result of this section deals with constant functions which are the simplest polynomial functions. Lemma 2.2.1. Let k oe R. We consider the constant real function f (x) = k, for every x oe R. Then, the constant function is derivable in R and for all x oe R, f Õ (x) = 0.

Proof. We consider the constant function f (x) = k. Let x 0 oe R be an arbitrary real number and h " = 0. We have f (

x 0 ) = f (x 0 + h) = k. Therefore, lim hae0 f (x 0 + h) ≠ f (x 0 ) h = 0 = f Õ (x 0 ).
Since x 0 is an arbitrary real number the function

f (x) = k is di erentiable in R and 'x oe R, f Õ (x) = 0.
Example 2.2.2. For all x oe R, we define the function f (x) = 2.Then, the function

f is di erentiable in R. The derivative of f is f Õ (x) = 0 for all x oe R.
Now we consider an a ne function f (x) = ax + b, with a " = 0. Let x 0 oe R be an arbitrary real number and h " = 0 small enough. We have f (x 0 ) = ax 0 + b and

f (x 0 + h) = ax 0 + ah + b. This involves lim hae0 f (x 0 + h) ≠ f (x 0 ) h = a = lim hae0 ax 0 + ah + b ≠ ax 0 ≠ b h = f Õ (x 0 ).
Then for all x oe R, f Õ (x) = a.

Lemma 2.2.3. Let f (x) = ax + b, with a " = 0 be an a ne function. Then, the function f is derivable in R and for all x oe R, f Õ (x) = a.

Example 2.2.4. We take the function

f (x) = 7x + 5. The domain of f is R. Since f is a ne, it is derivable in R and for all x oe R, f Õ (x) = 7.
Exercise 2.2.5. Find the derivative of the following function

1. f(x) = x + 2, 2. g(x) = 6x, 3. h(x) = 3x + 1, 4. i(x) = 5, 5. j(x) = 4x + 5.
To deal with derivative of polynomial functions of degree n Ø 2, we introduce the following definitions.

We define the natural number n! as follows: Using the definition of n! we introduce the following notations. The natural number

0! = 1 1! = 1 n! = 1 • 2 • 3 • • • (n ≠ 1) • n, ' n Ø 2.
3 n k 4 = C n k is defined by 3 n k 4 = n! (n ≠ k)! k! • As examples we have 3 n 0 4 = 3 n n 4 = 1 and 3 n n ≠ 1 4 = 3 n 1 4 = n.
Lemma 2.2.7. Let n Ø 1 be a natural number. For any natural numbers k, such that, 0 AE k < n the following holds

3 n k + 1 4 = 3 n ≠ 1 k 4 + 3 n ≠ 1 k + 1 4 .
Proof. To prove this lemma we point out that

3 n ≠ 1 k 4 = (n ≠ 1)! (n ≠ k ≠ 1)! k! and 3 n ≠ 1 k + 1 4 = (n ≠ 1)! (n ≠ k ≠ 2)! (k + 1)! • This implies 3 n ≠ 1 k 4 + 3 n ≠ 1 k + 1 4 = (n ≠ 1)! (n ≠ (k + 1))! (k + 1)! Ë k + 1 + n ≠ k ≠ 1 È = (n ≠ 1)!n (n ≠ (k + 1))! (k + 1)! = n! (n ≠ (k + 1))!(k + 1)! = 3 n k + 1 4
This completes the proof.

Using this lemma above one can define Pascal's Triangle

n = 0, 1 n = 1, 1 1 n = 2, 1 2 1 n = 3, 1 3 3 1 n = 4, 1 4 6 4 1 n = 5, 1 5 10 10 5 1 • • • • • • • • • • • • • • • • • •
In High School we often use Pascal's triangle to define the following identities.

(x + y) 2 = x 2 + 2xy + y 2 (x + y) 3 = x 3 + 3x 2 y + 3xy 2 + y 3 (x + y) [START_REF]Dixmier Cours de mathématiques du premier cycle[END_REF] = x 4 + 4x 3 y + 6x 2 y 2 + 4xy 3 + y 4 .

The generalization of the formulas above is given by the so called Newton's binomial Formula:

Lemma 2.2.8. Let n Ø 1 be a natural number, then

(x + y) n = n ÿ k=0 3 n k 4 x n y n≠k . (2.2.1)
We remark that (x + y) 0 = 1 and the coe cient

3 n k 4 is sometimes denoted C n k .
Exercise 2.2.9. Using Newton's binomial Formula give the expression of the following functions

1. f(x) = (x + 3) 6 , 2. g(x) = (x + a) 7 , 3. h(x) = (x ≠ 1) 13 .
We consider the function f (x) = x n , with n Ø 2.Let x 0 oe R be an arbitrary real number and h " = 0 small enough. One has f (x 0 ) = x n 0 and f (x 0 + h) = (x 0 + h) n . Using Newton's binomial formula, we obtain

(x 0 + h) n = n ÿ k=0 3 n k 4 x k 0 • h n≠k = x n 0 + n≠1 ÿ k=0 3 n k 4 x k 0 • h n≠k .
From this we deduce that

f (x 0 + h) ≠ f (x 0 ) = 3 n n ≠ 1 4 x n≠1 0 h + n≠2 ÿ k=0 3 n k 4 x k 0 • h n≠k .
Since n ≠ k Ø 2, and

1 h n≠2 ÿ k=0 3 n k 4 x k 0 • h n≠k = n≠2 ÿ k=0 3 n k 4 x k 0 • h n≠k≠1 , we have lim hae0 q n≠2 k=0 3 n k 4 x k 0 • h n≠k≠1 = 0. This yields lim hae0 f (x 0 + h) ≠ f (x 0 ) h = 3 n n ≠ 1 4 x n≠1 0 .
On the other hand we know that 

3 n n ≠ 1 4 = n. Therefore f Õ (x) = nx n≠1 .
f (x) = x 2 , g(x) = x 6 and h(x) = x 7 .
These functions are di erentiable in R. For all real number x we have

f Õ (x) = 2x, g Õ (x) = 6x 5 and h Õ (x) = 7x 6 .
Exercise 2.2.12. Determine the derive of the following functions

1. f(x) = x 5 + 2x 9 + 5, 2. g(x) = x 3 + 3x 2 + 5x + 2, 3. i(x) = x 8 + x 7 + 2 4. h(x) = x 10 + 2x 8 + 3x 6 + 2x + 3, 5. j(x) = x 5 + 4x 3 + x 2 + 2.
Let x oe R ú and f (x) = 1 x . For x 0 oe R ú and h " = 0 be small enough, we have

f (x 0 ) = 1 x 0 and f (x 0 + h) = 1 x 0 + h • Then, lim hae0 f (x 0 + h) ≠ f (x 0 ) h = lim hae0 1 x 0 + h ≠ 1 x 0 h = lim hae0 x 0 ≠ x 0 ≠ h h(x 0 + h)x 0 = ≠ lim hae0 1 x 0 (x 0 + h) = ≠ 1 x 2 0 • We conclude that for all x oe R ú , f Õ (x) = ≠ 1 x 2 • Lemma 2.2.13. Let f (x) = 1 x
• Then, the function f is di erentiable in R ú and for all x " = 0, we have

f Õ (x) = ≠ 1 x 2 •
Let x be a real number such that x " = 0. We know that 1

x n = x ≠n . From this we deduce that f Õ (x) = ≠nx ≠n≠1 = ≠ n x n+1 . This proves the following lemma Lemma 2.2.14. Let n Ø 2 be an integer. For any x " = 0 we define the function

f (x) = 1
x n • Then, the function f is di erentiable in R\{0} and for every x " = 0, we have

f Õ (x) = ≠n 1 x n+1 • Example 2.2.15. We consider the function f (x) = 1 x 5
• Then, the function f is di erentiable in R ú and for all x " = 0, we have

f Õ (x) = ≠ 5 x 6 .
Exercise 2.2.16. Find the derivative of the following functions

1. f(x) = 1 x 3 , 2. g(x) = 1 x 2 , 3. h(x) = 1 x 11 •
Let x belong to [0 ; +OE). We define the function f (x) = Ô x. We take an arbitrary real number x 0 in ]0 ; +OE). For some real number h " = 0 which is assumed to be small enough. We write f

(x 0 + h) ≠ f (x 0 ) = Ô x 0 + h ≠ Ô x 0 . Multiplying this expression by ( Ô x 0 + h + Ô x 0 )/( Ô x 0 + h + Ô x 0 ). we obtain f (x 0 + h) ≠ f (x 0 ) =  x 0 + h ≠ Ô x 0 = 1 Ô x 0 + h ≠ Ô x 0 21 Ô x 0 + h + Ô x 0 2 Ô x 0 + h + Ô x 0 = h Ô x 0 + h + Ô x 0 • Therefore lim hae0 f (x 0 + h) ≠ f (x 0 ) h = lim hae0 h h( Ô x 0 + h + Ô x 0 ) = lim hae0 1 Ô x 0 + h + Ô x 0 = 1 2 Ô x 0 • Lemma 2.2.17. Let f (x) = Ô
x be a function defined on [0 , +OE). Then the function is di erentiable in x oe (0 ; +OE). For all x > 0,

f Õ (x) = 1 2 Ô x •
Remark 2.2.18. We point out again that f Õ (0) is not defined.

Below we list some properties which allow to define easily the derivative of sine and cosine functions. Lemma 2.2.19. Let x be a positive real number, such that, 0 < x < fi/2. Then,

cos(x) AE x sin(x) AE 1 cos(x) • (2.2.2)
The proof of this lemma is based on the following geometrical observation. We can see in the figure below, the triangle OAM is included is the part of the disc delimited by the lines OB and OM. We denote this part of the disc OBM. This latter is included in the triangle OBN. As indicated below

O N A M x B
Here the circle we consider is the trigonometric circle. That is, the distance OB = OM = 1. We know that the distance OA = cos(x) and AM = sin(x). Using Thales's theorem we find BN = tan(x).

On the other hand we have Proof. Let x " = 0. On one hand we have

Area(OAM ) = sin(x) • cos(x) 2 , Area(OBM ) = x 2fi • fi = x 2 , Area(OBN ) = sin(x) 2 
cos(x) ≠ 1 x = cos(x) ≠ 1 x • cos(x) + 1 cos(x) + 1 = cos 2 (x) ≠ 1 x ! cos(x) + 1 " = ≠ sin 2 (x) x ! cos(x) + 1 " = ≠ sin(x) x • sin(x) cos(x) + 1 •
On the other hand we have Now we consider the function f (x) = sin(x) and x 0 oe R an arbitrary real number. We know for all h oe R ú , sin(x 0 + h) = sin(x 0 ) cos(h) + cos(x 0 ) sin(h).

Dividing by h we get

sin(x 0 + h) ≠ sin(x 0 ) h = sin(x 0 ) cos(h) ≠ 1 h + cos(x 0 ) sin(h) h • Using (2.2.
3) and (2.2.4), we obtain

lim hae0 sin(x 0 + h) ≠ sin(x 0 ) h = cos(x 0 ).
Therefore for all x oe R, f Õ (x) = cos(x).

Lemma 2.2.22. Let f (x) = sin(x). Then, the function is di erentiable in R and for all x oe R, f Õ (x) = cos(x).

We take x oe R and we define the function f (x) = cos(x). Let x 0 be an arbitrary real number and h " = 0 a fixed real number. One knows that cos(x 0 + h) = cos(x 0 ) cos(h) ≠ sin(x 0 ) sin(h). That is,

f (x 0 + h) ≠ f (x 0 ) h = cos(x 0 ) cos(h) ≠ 1 h ≠ sin(x 0 ) sin(h) h . Therefore, lim hae0 f (x 0 + h) ≠ f (x 0 ) h = ≠ sin(x 0 ).
This leads to the following lemma Lemma 2.2.23. Let f (x) = cos(x). Then, the function f is di erentiable in R and for all x oe R, f Õ (x) = ≠ sin(x).

We can summarize all these properties in the following table.

f (x) Domain of f f Õ (x) Domain of f Õ a R 0 R ax + b R a R ax 2 + bx + c R 2ax + b R x n R nx n≠1 R 1 x R\{0} ≠ 1 x 2 R\{0} 1 x n , n Ø 2 R\{0} ≠ n x n+1 R\{0} Ô x [0 ; +OE) 1 2 Ô x (0 ; +OE) cos(x) R ≠ sin(x) R sin(x) R cos(x) R
We recall that general function are constructed from elementary ones by summing, multiplying or dividing etc. In the next section we deal with derivative of sum, multiplication, division, square root of such elementary functions.

Operation on the Di erentiable Functions

This section is organized as follows. Firstly we define derivative of sum of functions. Secondly we study derivative of multiplication and division of functions. We end this section by dealing with square root an general composition of functions.

Let u and v be two di erentiable functions in some open interval I. We consider the function f (x) = u(x) + v(x). Take an arbitrary real number x 0 oe I. We fixed h " = 0 a real number which is small enough. The definition of the function f gives

f (x 0 ) = u(x 0 ) + v(x 0 ) and f (x 0 + h) = u(x 0 + h) + v(x 0 + h).
Dividing by h and considering the limit when h goes to 0 we obtain

lim hae0 u(x 0 + h) + v(x 0 + h) ≠ u(x 0 ) ≠ v(x 0 ) h = lim hae0 u(x 0 + h) ≠ u(x 0 ) h + lim hae0 v(x 0 + h) ≠ v(x 0 ) h = u Õ (x) + v Õ (x)•
This proves the following lemma.

Lemma 2.3.1. Let u and v be two di erentiable functions in some open interval

I. Then, the function f (x) = u(x) + v(x) is di erentiable in I and for all x oe I f Õ (x) = u Õ (x) + v Õ (x). Example 2.3.2. Let f (x) = 2x 2 + 3x + 1 + 1 x • The domain of the function f is R ú .
From the previous section we know the function u

(x) = x 2 + 3x + 1 is di erentiable in R and the function v(x) = 1 x is di erentiable in R ú .
Then, the function f = u+v is di erentiable in R\{0} and we have,

f Õ (x) = 4x + 3 ≠ 1 x 2 • Exercise 2.3.3.
Define the derivatives of the following functions

1. f(x) = 6x + 1 x , 2. g(x) = 3 x 3 + x 2 + x + 1 6 , 3. h(x) = 1 x 5 + 2 x 6 + 1 x 2 •
We consider two functions u and v which are di erentiable in an open interval I. We define the function f (x) = u(x) • v(x) for all x oe I. We take an arbitrary real number x 0 oe I, and fix h " = 0 small enough. We have f

(x 0 ) = u(x 0 ) • v(x 0 ) and f (x 0 + h) = u(x 0 + h) • v(x 0 + h). Thus dividing f (x 0 + h) ≠ f (x 0 ) by h, we obtain f (x 0 + h) ≠ f (x 0 ) h = u(x 0 + h) • v(x 0 + h) ≠ u(x 0 ) • v(x 0 ) h = u(x 0 + h) • v(x 0 + h) ≠ u(x 0 ) • v(x 0 + h) h + u(x 0 ) • v(x 0 + h) ≠ u(x 0 ) • v(x 0 ) h = v(x 0 + h) • u(x 0 + h) ≠ u(x 0 ) h + u(x 0 ) • v(x 0 + h) ≠ v(x 0 ) h •
We know that lim hae0 v(x 0 + h) = v(x 0 ). Using the definition of di erentiablity at the point x 0 , we have

lim hae0 f (x 0 + h) ≠ f (x 0 ) h = u Õ (x 0 ) • v(x 0 ) + u(x 0 ) • v Õ (x 0 ).
That is, for every x oe I, We define f (x) = u(x) • v(x). Then, the function f is derivable in I and for all

f Õ (x) = u Õ (x) • v(x) + u(x) • v Õ (x).
x oe I, f Õ (x) = u Õ (x) • v(x) + u(x) • v Õ (x).
Example 2.3.5. We define the function f (x) = (3x + 1)(x + 1). We set

u(x) = 3x + 1 and v(x) = x + 1. Then u Õ (x) = 3 and v Õ (x) = 1. We deduce f Õ (x) = 3(x + 1) + (3x + 1) = 3x + 3 + 3x + 1 = 6x + 4.
Exercise 2.3.6. Find the derivative of the following functions

1 f (x) = (x 2 + 4x + 6)(x 3 + 5x + 1), 2. g(x) = (x 4 + 3x + 5x + 6) • 1 x 3. h(x) = (6x + 2) • Ô x.
Let x and y be in R, such that x " = 0. We define q = y x and we define the sequence ; u 0 = 1 u n+1 = q u n , 'n Ø 0.

The sequence (u n ) nØ0 is geometric with common ratio q = y x and initial term u 0 = 1. Then, if y x " = 1, the sum of the n first terms of the the sequence (u n ) is

1 + y x + • • • + 1 y x 2 n≠1 = 1 ≠ y n x n 1 ≠ y x •
The expression above is equivalent to,

1 1 ≠ y x 2 3 1 + y x + • • • + 1 y x 2 n≠1 4 = 1 ≠ y n x n •
Multiplying by x n the identity above, we obtain

(x ≠ y) ! x n≠1 + x n≠2 y + • • • + y n≠1 " = (x ≠ y) n≠1 ÿ k=0 x n≠k≠1 y k = x n ≠ y n .
Lemma 2.3.7. Let x and y be two real numbers. Then, we have

x n ≠ y n = (x ≠ y) n≠1 ÿ k=0 x n≠k≠1 y k .
Lemma 2.3.8. Let u be a di erentiable function in an open interval I and n be a natural number greater than 2. We define the function f

(x) = 1 u(x)
2 n . Then f is di erentiable in I and for all x oe I,

f Õ (x) = n u Õ (x) 1 u(x) 2 n≠1 .
Proof. Let u be a di erentiable function in an open interval I. We denote f (x) = (u(x)) n . We consider an arbitrary real number x 0 oe I. For all real number h " = 0 small enough, we have f

(x 0 ) = ! u(x 0 ) " n and f (x 0 + h) = ! u(x 0 + h) " n . From
the lemma above we deduce

f (x 0 + h) ≠ f (x 0 ) h = u n (x 0 + h) ≠ u n (x 0 ) h •
We obtain

u n (x 0 + h) ≠ u n (x 0 ) h = u(x 0 + h) ≠ u(x 0 ) h • A n≠1 ÿ k=0 u n≠k≠1 (x 0 + h)u k (x 0 ) B .
For k, such that, 0

AE k AE n ≠ 1, we have lim hae0 u n≠k≠1 (x 0 + h) = u n≠k≠1 (x 0 ). Hence lim hae0 n≠1 ÿ k=0 u n≠k≠1 (x 0 + h)u k (x 0 ) = n≠1 ÿ k=0 lim hae0 u n≠k≠1 (x 0 + h)u k (x 0 ) = n≠1 ÿ k=0 u n≠1 (x 0 ) = nu n≠1 (x 0 ). This involves lim hae0 f (x 0 + h) ≠ f (x 0 ) h = lim hae0 u n (x 0 + h) ≠ u n (x 0 ) h = lim hae0 u(x 0 + h) ≠ u(x 0 ) h • lim hae0 n≠1 ÿ k=0 u n≠k≠1 (x 0 + h)u k (x 0 ) = nu Õ (x 0 ) u n≠1 (x 0 ).
That is, for all

x oe I f Õ (x) = nu Õ (x) u n≠1 (x).
Example 2.3.9. We define the function

f (x) = (x 3 + 3x 2 + 2x + 7) 4 . It is di er- entiable in R. Setting u(x) = x 3 + 3x 2 + 2x + 7 we obtain u Õ (x) = 3x 2 + 6x + 2. Therefore, f Õ (x) = 4 (3x 2 + 6x + 2) (x 3 + 3x 2 + 2x + 7) 3 .

Exercise 2.3.10. Find the derivative of the following functions

Now we consider a function u which is di erentiable in an open interval I.

Moreover we assume for every x oe I, u(x) " = 0 and we define f (x) = 1 u(x)

. Let

x 0 oe R be an arbitrary real number. We take h " = 0 small enough. We have

f (x 0 ) = 1 u(x 0 ) and f (x 0 + h) = 1 u(x 0 + h)
• Then, we have

lim hae0 f (x 0 + h) ≠ f (x 0 ) h = lim hae0 1 u(x 0 + h) ≠ 1 u(x 0 ) h = lim hae0 u(x 0 ) ≠ u(x 0 + h) h • u(x 0 + h) • u(x 0 ) = lim hae0 1 u(x 0 + h) • u(x 0 ) • lim hae0 ≠(u(x 0 + h) ≠ u(x 0 )) h • Since u is di erentiable in I, it is continuous in I. Then, lim hae0 u(x 0 + h) = u(x 0 ). We obtain lim hae0 1 u(x 0 + h) • u(x 0 ) = 1 u 2 (x 0 ) and lim hae0 ≠(u(x 0 + h) ≠ u(x 0 )) h = ≠u Õ (x 0 ).
Consequently we have

lim hae0 f (x 0 + h) ≠ f (x 0 ) h = ≠ u Õ (x 0 ) u 2 (x 0 ) • That is, for every x oe I, f Õ (x) = ≠ u Õ (x) u 2 (x) •
This leads to the following lemma. Lemma 2.3.11. Let u be a di erentiable function in an open interval I, such that, for all x oe I, u(x) " = 0. We define f (x) = 1 u(x)

• Then, the function f is di erentiable in I and for every x oe I,

f Õ (x) = ≠ u Õ (x) u 2 (x) •
Example 2.3.12. We define the function f (x) = 1 x + 1

. The function f is defined for all x in R\{≠1}. We set u(x) = x + 1. The function f is derivable in R ú and the derivative of the function u is u Õ (x) = 1. Using the previous lemma, we have [START_REF] Debeaumarché | Manuel de Mathématique[END_REF] • Exercise 2.3.13. Find the derivative of the following functions

f Õ (x) = ≠ u Õ (x) u 2 (x) = ≠ 1 (x + 1)
1. f(x) = 1 5x + 8 , 2. g(x) = 1 2x 2 + 5x + 2 , 3. h(x) = 1 x ≠ 1 •
The lemma above is a particular case of the the following one. Lemma 2.3.14. We consider a natural number n Ø 2. Let u be a di erentiable function in an open interval I. We suppose that, for all x oe I, u(x) " = 0 and we define the function f

(x) = 1 u n (x)
• Then, the function f is di erentiable in I and for all x oe I,

f Õ (x) = ≠nu Õ (x) u n+1 (x) •
Proof. We consider u a di erentiable function in the open interval I. We take a natural number n Ø 2. Remarking that f (x) = 1 u n (x) = u ≠n (x) we get

f Õ (x) = ≠n u Õ (x) u ≠n≠1 = ≠n u Õ (x) u n+1 (x) • Example 2.3.15. Let f (x) = 1 (2x+1) 4 • The function f is defined in R\{≠1/2}.
It is also di erentiable in R\{≠1/2}. To find the derivative of the function f we define u(x) = 2x + 1. The function u is di erentiable in R and we have u Õ (x) = 2. Hence

f Õ (x) = ≠4 ◊ 2 (2x + 1) 5 = ≠8 (2x + 1) 5 •
Exercise 2.3.16. Find the derivative of the following functions

1. f(x) = 1 (x 2 + 5x + 1) 3 , 2. g(x) = 1 (3x + 4) 8 , 3. h(x) = 1 (x 3 + 6x 2 + 1) 5 •
Let u and v be two di erentiable functions in the open interval I, such that for all x oe I, v(x) " = 0. We define f (x) = u(x) v(x) . For any x 0 oe I and h " = 0, we have

f (x 0 + h) ≠ f (x 0 ) h = u(x 0 + h) v(x 0 + h) ≠ u(x 0 ) v(x 0 ) h = u(x 0 + h)v(x 0 ) ≠ u(x 0 )v(x 0 + h) h v(x 0 + h)v(x 0 ) = 1 v(x 0 + h)v(x 0 ) • u(x 0 + h) ≠ u(x 0 ) h v(x 0 ) ≠ 1 v(x 0 + h)v(x 0 ) • v(x 0 + h) ≠ v(x 0 ) h u(x 0 ).
Since v is a continuous function, lim hae0 v(x 0 + h) = v(x 0 ). This implies

lim hae0 1 v(x 0 + h)v(x 0 ) = 1 v 2 (x 0 ) , lim hae0 u(x 0 + h) ≠ u(x 0 ) h v(x 0 ) = u Õ (x 0 ).v(x 0 ) and lim hae0 v(x 0 + h) ≠ v(x 0 ) h u(x 0 ) = u(x 0 ).v Õ (x 0 ). Consequently we have lim hae0 f (x 0 + h) ≠ f (x 0 ) h = u Õ (x 0 )v(x 0 ) ≠ u(x 0 )v Õ (x 0 ) v 2 (x 0 ) •
Since x 0 is an arbitrary element of I, we have the following lemma.

Lemma 2.3.17. Let u and v be two di erentiable functions in the open interval I, such that for all x oe I, v(x) " = 0. We define

f (x) = u(x) v(x)
• Then f is di erentiable in I and for all x oe I,

f Õ (x) = u Õ (x)v(x) ≠ u(x)v Õ (x) v 2 (x) • Example 2.3.18. We consider the function f (x) = x + 3 2x + 1 • This function is dif-
ferentiable in its domain R\{≠1/2}. To find f Õ we consider u(x) = x + 3 and v(x) = 2x + 1. Then u Õ (x) = 1 and v Õ (x) = 2. This implies that for every x oe R\{≠1/2},

f Õ (x) = u Õ (x)v(x) ≠ u(x)v Õ (x) v 2 (x) = 2x + 1 ≠ 2(x + 3) (2x + 1) 2 = ≠5 (2x + 1) 2 •
Exercise 2.3.19. Find the derivative of the following function

1. f(x) = 3x + 5 x 2 + x + 1 , 2. g(x) = Ô x + x + 1 x + 2 , 3. h(x) = 5x ≠ 6 ≠4x + 1 •
For the square root we have the following result. 

(x) =  u(x) is di erentiable in I and for every x oe I f Õ (x) = u Õ (x) 2  u(x) •
We can prove this lemma easily by observing that f

(x) = ! u(x) " 1/2 . Then, the derivative of f is f Õ (x) = 1 2 u Õ (x) ! u(x) " ≠1/2 = u Õ (x) 2  u(x) •
But here we will give another proof.

Proof. Let u be as in the lemma. We set f (x) =  u(x). We take x 0 oe I and h " = 0 small enough. We have f (x 0 + h) =  u(x 0 + h) and f (x 0 ) =  u(x 0 ). Therefore we have

f (x 0 + h) ≠ f (x 0 ) h =  u(x 0 + h) ≠  u(x 0 ) h = u(x 0 + h) ≠ u(x 0 ) h (  u(x 0 + h) +  u(x 0 )) = u(x 0 + h) ≠ u(x 0 ) h • 1  u(x 0 + h) +  u(x 0 ) • We have lim hae0 u(x 0 + h) ≠ u(x 0 ) h = u Õ (x). Since Ô u is a continuous function, we obtain lim hae0 1  u(x 0 + h) +  u(x 0 ) = 1 2  u(x 0 ) • Then lim hae0 f (x 0 + h) ≠ f (x 0 ) h = u Õ (x 0 ) 2  u(x 0 ) • Example 2.3.21. Let f (x) = Ô 2x + 2. The function f is defined in [≠1 ; +OE). It is di erentiable in the interval (≠1 , +OE), for every x oe (≠1 ; +OE), the derivative of f is defined by f Õ (x) = 2 Ô 2x + 2 • Exercise 2.3.22.
Find the derivative of the following functions

1. f(x) = Ô 3x + 2, 2. g(x) =  2x 2 + 3x + 5, 3. h(x) = Ô 2x + 3.
We take a function u and an open interval I. We suppose u di erentiable in I. Now we define the function f (x) = cos(u(x)). For x 0 oe I and h " = 0, we calculate (f (x 0 + h) ≠ f (x 0 ))/h. Then, we obtain

f (x 0 + h) ≠ f (x 0 ) h = cos(u(x 0 + h)) ≠ cos(u(x 0 ) h = cos(u(x 0 + h)) ≠ cos(u(x 0 )) h • u(x 0 + h) ≠ u(x) 0 ) u(x 0 + h) ≠ u(x 0 ) = cos(u(x 0 + h)) ≠ cos(u(x 0 )) u(x 0 + h) ≠ u(x 0 ) • u(x 0 + h) ≠ u(x) 0 ) h • Since u is di erentiable in I it is continuous on I. Then, lim hae0 u(x 0 + h) = u(x 0 ).
This means that when h ae 0, u(x 0 + h) ae u(x 0 ). In other words if we set y = u(x 0 + h) and y 0 = u(x 0 ), we obtain

lim hae0 cos(u(x 0 + h)) ≠ cos(u(x 0 )) u(x 0 + h) ≠ u(x 0 ) = lim yaey0 cos(u(y)) ≠ cos(y 0 )) y ≠ y 0 = ≠ sin(y 0 ) = ≠ sin(u(x 0 )). Since lim hae0 u(x 0 + h) ≠ u(x 0 ) h = u Õ (x 0 ), we conclude that lim hae0 f (x 0 + h) ≠ f (x 0 ) h = ≠u Õ (x 0 ) sin(u(x 0 )).
Lemma 2.3.23. Let u bea di erentiable function in the interval I. Then, the function f (x) = cos(u(x)) is di erentiable in I and for all x oe I, we have

f Õ (x) = ≠u Õ (x) • sin(u(x)).
Similarly we can establish the following result Lemma 2.3.24. Let u be di erentiable function in an open interval I. Then, the function f (x) = sin(u(x)) is di erentiable in I and for all x oe I, we have

f Õ (x) = u Õ (x) • cos(u(x)).
Example 2.3.25. We define the following functions f (x) = cos(3x + 1) and g(x) = sin(5x + 2).

Then, we have

f Õ (x) = ≠3 sin(3x + 1) and g Õ (x) = 5 cos(5x + 2).
Exercise 2.3.26. Give a proof of lemma 2.3.24.

Exercise 2.3.27. Find the derivative of the following functions

1. f(x) = cos(4x + 6), 2. g(x) = sin(x 2 + x + 2), 3. h(x) = cos( Ô x + 1), 4. i(x) = sin(7x + 3), 5. j(x) = cos(x ≠ 1).
The last three lemmas we stated are just particular cases of the following general theorem.

Theorem 2.3.28. Let u be a di erentiable function in some open I and f a differentiable function in some open interval J. We suppose u(I) µ J and we define the function

g(x) = f (u(x)).
Then, the function g is di erentiable in I and for every x oe I, we have

g Õ (x) = u Õ (x) • f Õ (u(x)). (2.3.1)
Proof. We consider u and f as in the theorem. Let x 0 be an arbitrary element of I and h " = 0. We have

lim hae0 g(x 0 + h) ≠ g(x 0 ) h = lim hae0 f (u(x 0 + h)) ≠ f (u(x 0 )) h = lim hae0 f (u(x 0 + h)) ≠ f (u(x 0 )) h • u(x 0 + h) ≠ u(x 0 ) u(x 0 + h) ≠ u(x 0 ) = lim hae0 f (u(x 0 + h)) ≠ f (u(x 0 )) u(x 0 + h) ≠ u(x 0 ) • lim hae0 u(x 0 + h) ≠ u(x 0 ) h When h ae 0, y = u(x 0 + h) ae y 0 = u(x 0 ). This implies lim hae0 f (u(x 0 + h)) ≠ f (u(x 0 )) u(x 0 + h) ≠ u(x 0 ) = lim yaey0 f (y)) ≠ f (y 0 )) y ≠ y 0 = f Õ (y 0 ) = f Õ (u(x 0 )).
On the other hand we have

lim hae0 u(x 0 + h) ≠ u(x 0 ) h = u Õ (x 0 ).
Thus we conclude that lim

hae0 g(x 0 + h) ≠ g(x 0 ) h = g Õ (x 0 ) = u Õ (x 0 ) • f Õ (x 0 ).
All the results stated in section can be summarized in the following table. To make the presentation clear we will write u and u Õ instead of u(x) and u Õ (x). We denote by D u the domain of the function u and D u Õ represent the domain of u Õ . We use also the following notations:

D 1 = {x oe R : u(x) " = 0}, D 2 = {x oe R : u(x) Ø 0} and D 3 = {x oe R : u(x) > 0}. f (x) Domain of f f Õ (x) Domain of f Õ u D u u Õ D u Õ u 2 D u 2u Õ .u D u Õ u n D u nu Õ .u n≠1 D u Õ 1 u D 1 ≠ u Õ u 2 D 1 1 u n , n Ø 2 D 1 ≠ nu Õ u n+1 D 1  u(x) D 2 u Õ 2 Ô u D 3 cos(u) D u ≠u Õ . sin(u) D u sin(u) D u u Õ . cos(u) D u
Let f and g be two functions. We aim to calculate this limit

lim xaex0 f (x) ≠ f (x 0 ) g(x) ≠ g(x 0 ) ,
where we assume g(x) " = g(x 0 ). If both functions f and g go to 0 when x ae x 0 , we will have

lim xaex0 f (x) ≠ f (x 0 ) g(x) ≠ g(x 0 ) = 0 0 •
We know, this is undefined. The second case is when

lim xaex0 f (x) ≠ f (x 0 ) g(x) ≠ g(x 0 ) = ±OE ±OE •
To decide these two cases use the following result.

Theorem 2.3.29 (De Hopital's Rule). Let f and g be two di erentiable functions at x 0 . We suppose g(x) " = g(x 0 ) for every x " = x 0 . Then, we have

lim xaex0 f (x) ≠ f (x 0 ) g(x) ≠ g(x 0 ) = f Õ (x 0 ) g Õ (x 0 ) • Proof.
The proof this is quite simple. Let us assume g(x) " = g(x 0 ) for every x " = x 0 .

In this case we can write

f (x) ≠ f (x 0 ) g(x) ≠ g(x 0 ) = f (x) ≠ f (x 0 ) x ≠ x 0 g(x) ≠ g(x 0 )
x ≠ x 0

•

Since we assumed that the functions f and g are di erentiable at x 0 , we have

lim xaex0 f (x) ≠ f (x 0 ) x ≠ x 0 = f Õ (x 0 ) and lim xaex0 g(x) ≠ (x 0 ) x ≠ x 0 = g Õ (x 0 ).
Therefore we have,

lim xaex0 f (x) ≠ f (x 0 ) g(x) ≠ g(x 0 ) = f Õ (x 0 ) g Õ (x 0 ) • Example 2.3.30. We consider the following function f (x) = sin(x) x . We have lim xae0 sin(x) x = lim xae0 sin(x) ≠ sin(0) x ≠ 0 = cos(0) = 1.
Exercise 2.3.31. Find the following limits

1. lim xae0 cos(x) ≠ 1 x , 2. lim xae0 tan(x) x , 3. lim xae≠1 x 3 + 1 x + 1 •
In the previous sections we study derivatives of functions. In the next section we will see some applications of these derivatives.

Applications

In this section we enumerate some applications of the derivatives. In the first part we use derivative to study variations of functions. After this we show how derivatives can allow us to characterize a maximum and a minimum.

Theorem 2.4.1. Let f be a di erentiable function in an open interval I. Then,

• the function f is increasing in I if and only if, for every x oe I, f Õ (x) Ø 0

• the function f is decreasing in I if and only if, for every x oe I, f Õ (x) AE 0.

Remark 2.4.2. We specify the following notations

• the function f is strictly increasing in I if and only if, for every x oe I,

f Õ (x) > 0
• the function f is strictly decreasing in I if and only if, for every x oe I, f Õ (x) < 0.

Example 2.4.3. We consider the function f (x) = x 3 + 1. This function is polynomial then it is defined and derivable in R. For every real number x the derivative of f is given by f

Õ (x) = 3x 2 . Then, f Õ (x) Ø 0. We conclude that the function f is increasing in R. Example 2.4.4. Let g(x) = ≠2x + 1. The function g is di erentiable in R and
for all real number x we have g Õ (x) = ≠2 < 0. Hence the function g is strictly decreasing in R.

Exercise 2.4.5. Study the variations of the following functions

1. f(x) = x 2 + 3x + 6, 2. g(x) = x + 2 x ≠ 1 , 3. h(x) = (x 2 + 2x + 4)(x + 5).
Below we remind the definition of a local maximum of a given function. Proof. Let f , a and b satisfy the conditions in the theorem. The function

f is increasing in [a , x 0 ]. Then f Õ (x) Ø 0 for all x oe [a , x 0 ]. From this we deduce that for all x oe [a , x 0 ], f (x 0 ) ≠ f (x) x 0 ≠ x Ø 0
. Multiplying the inequality above by

x 0 ≠ x > 0, we obtain f (x 0 ) ≠ f (x) Ø 0 This implies f (x 0 ) Ø f (x), for every x oe [a , x 0 ].
On the other hand we know the function

f is decreasing in [x 0 , b]. Hence f Õ (x) AE 0, for all x oe [x 0 ; b]. That is, for every x oe [x 0 ; b], f (x) ≠ f (x 0 ) x ≠ x 0 AE 0. As we know that x ≠ x 0 Ø 0, then, f (x) ≠ f (x 0 ) AE 0. Therefore for all x oe [x 0 , b] we have f (x 0 ) Ø f (x).
We have proved that for every

x oe [a , b], f (x 0 ) Ø f (x).
The function f has a local maximum at x 0 . The value of this maximum is f (x 0 ).

Example 2.4.8. We take the function

f (x) = ≠x 2 + 2x + 1. The function f is derivable in R and we have f Õ (x) = ≠2x + 2. We can observe that f Õ (x) Ø 0 for all x oe (≠OE , 1]. Therefore f is increasing in (≠OE , 1]. The function f Õ (x) AE 0 for all x oe [1 , +OE). Then f is a decreasing in [1 , +OE).
Applying the theorem above we deduce that f has a maximum at x 0 = 1. The value of this maximum is

f (1) = ≠1 2 + 2 • 1 + 1 = 2.
Theorem 2.4.9. Let f be a di erentiable function and I µ D f an interval. We consider x 0 oe I and we assume that f has a local maximum at x 0 . Then f Õ (x 0 ) = 0.

Proof. Let f be a di erentiable function which has a local maximum at x 0 oe I.

Then for all x < x 0 , we have f (x)≠f (x0) x≠x0 Ø 0. From this we deduce that

lim xaex0 f (x) ≠ f (x 0 ) x ≠ x 0 = f Õ (x 0 ) Ø 0. (2.4.1)
On the other hand for any x Ø x 0 , we have

f (x)≠f (x0) x≠x0 AE 0. This implies lim xaex0 f (x) ≠ f (x 0 ) x ≠ x 0 = f Õ (x 0 ) AE 0. (2.4.2)
From (2.4.1) and (2.4.2), we deduce that 0

AE f Õ (x 0 ) AE 0. Therefore f Õ (x 0 ) = 0.
Example 2.4.10. We consider the function f (x) = ≠x 2 + 2x + 1. We have

f Õ (x) = ≠2x + 2.
We proved that the function f has a maximum at x 0 = 1. We can see that f Õ (1) = ≠2.(1) + 2 = 0.

In the definition below, we recall the definition of a local minimum of a function. Proof. Let f , a and b be as in the theorem. Since the function f is decreasing in [a , x 0 ]. Then f Õ (x) AE 0. From this we deduce that for all x oe [a , x 0 ],

f (x 0 ) ≠ f (x) x 0 ≠ x AE 0. Since x 0 ≠ x > 0, we have f (x 0 ) ≠ f (x) AE 0. This implies that f (x 0 ) AE f (x), for every x oe [a , x 0 ]. On the other hand, the function f is increasing in [x 0 , b]. Hence f Õ (x) Ø 0, for all x oe [x 0 , b]. That is, for all x oe [x 0 , b], f (x)≠f (x0) x≠x0 Ø 0. The fact that x ≠ x 0 Ø 0, involves f (x) ≠ f (x 0 ) Ø 0. Therefore, for every x oe [x 0 , b], f (x 0 ) AE f (x). We have proved that for all x oe [a , b] f (x 0 ) AE f (x). The function f has a local minimum at x 0 . The value of this minimum is f (x 0 ). Example 2.4.13. We take the function f (x) = x 2 ≠ x + 1. The derivative of f is f Õ (x) = 2x ≠ 1. We can observe that f Õ (x) AE 0, for all x in (≠OE ; 1/2]. Therefore f is decreasing in (≠OE ; 1/2]. The function f Õ is positive in [1/2 ; +OE[. Then f is a increasing in [1/2 ; +OE[. Applying the theorem above we deduce that f has a minimum at x 0 = 1/2 and we get f Õ (1/2) = 2(1/2) ≠ 1 = 0.
Theorem 2.4.14. Let f be a di erentiable function and I µ D f which is an interval. We consider x 0 oe I and we assume that f has a local minimum at x 0 . Then f Õ (x 0 ) = 0.

Proof. Let f be a di erentiable function which has a local manimum at x 0 , then for all x < x 0 , we have

f (x) ≠ f (x 0 ) x ≠ x 0 AE 0. Then, lim xaex0 f (x) ≠ f (x 0 ) x ≠ x 0 = f Õ (x 0 ) AE 0. (2.4.3)
On the other hand, for any x Ø x 0 , we have

f (x) ≠ f (x 0 ) x ≠ x 0 Ø 0. This implies that lim xaex0 f (x) ≠ f (x 0 ) x ≠ x 0 = f Õ (x 0 ) Ø 0. (2.4.4)
From (2.4.3) and (2.4.4), we deduce that 0

AE f Õ (x 0 ) AE 0. Therefore f Õ (x 0 ) = 0. Example 2.4.15. Let f (x) = x 2 ≠ 2x + 1. The function f is di erentiable in R and f Õ (x) = 2x ≠ 2.
The function f has a minimum at x 0 = 1, and we have

f Õ (1) = 2.(1) ≠ 2 = 0.
Exercise 2.4.16. Say whether the following functions have local maximum or local minimum.

1. f(x) = x 2 + 3x + 2, 2. g(x) = ≠3x 2 + 5x + 1, 3. h(x) = x + 1 x 2 + 3x + 4 •
A general case where f Õ (x 0 ) = 0 holds is in Rolle's theorem.

Theorem 2.4.17 (Rolle's Theoerem). Let f be a real function defined on [a , b].

We suppose

• the function f is continuous on [a , b] • the function f is di erentiable in (a , b) • we have f (a) = f (b).
Then, there exist

x 0 oe (a , b), such that, f Õ (x 0 ) = 0
Proof. In this proof we will distinguish two cases.

Case 1:

We assume for every

x oe [a , b], f (x) = f (a).
In this case the function f is constant. Therefore, for all

x oe]a , b[, f Õ (x) = 0.
Case 2: We assume the function f is not constant.

Since the function f is continuous on [a , b], then the function f reaches its maximum and minimum. There are

x 0 and x 1 in [a , b], such that m := min xoe[a , b] f (x) and M := max xoe[a , b] f (x).
In this case,we have one of the following situation either m < f(a) or M > f(a).

Here we suppose m < f(a) = f (b). Then, there exists x 0 oe]a , b[, such that, f (x 0 ) = m. Since the function f has a local minimum at x 0 , we have f Õ (x 0 ) = 0.

We emphasize Rolle's Theorem is a particular case of the following theorem.

Theorem 2.4.18 (Mean Value Theorem). Let f be a real function defined on [a , b].

We suppose that

• the function f is continuous on [a , b] • the function f is di erentiable in (a , b) Then, there exists c oe (a , b), such that, f (b) ≠ f (a) = (b ≠ a) f Õ (c).
(2.4.5)

If we take f (a) = f (b) in this theorem, we obtain Rolle's theorem. The proof of this theorem is simple.

Proof. Let x oe [a , b]. We define the function g(x) = f (x) ≠ f (a) ≠ (x ≠ a) f (b)≠f (a) b≠a •
The function g satisfies these properties:

• the function g is continuous on [a , b] • the function g is derivable in (a , b) and g Õ (x) = f Õ (x) ≠ f (b)≠f (a) b≠a , • we have g(a) = g(b).
Then, applying Rolle's theorem to g, we find c oe (a , b) such that g Õ (c) = 0. This involves

f Õ (c) = f (b) ≠ f (a) b ≠ a •
We remark that the identity (2.4.5) holds only in R. When the dimension n of the space is greater than 1, (for example n Ø 2), we get an inequality.. 

• the function f is continuous on [a , b] • the function f is di erentiable in (a , b)
• there exists a real number M > 0, such that, for every x oe (a , b),

|f Õ (x)| AE M. Then, - -f (b) ≠ f (a) - -AE M |b ≠ a|. (2.4.6)
Proof. To prove this theorem we consider a function f satisfying the condition of the theorem. Then, there exists

c oe]a , b[, such that |f (b) ≠ f (a)| = |f Õ (c)| |b ≠ a|. Since c oe]a , b[, we have |f Õ (c)| AE M . Hence, we obtain |f (b) ≠ f (a)| AE M |b ≠ a|
To end this section we show how to use the derivative of a function to find a local linear approximation of a function. The most known of this type of approximation is the tangent line of the graph C of the function at the point x 0 . Here we will have the privilege of showing when using second order derivative we can obtain more precise approximations of a function.

Definition 2.4.20. Let f be a di erentiable function. We consider x 0 oe D f and we suppose the function f di erentiable at x 0 . The equation of the tangent line of the curve of f at x 0 is defined by,

(T x0 ) : y = f Õ (x 0 )(x ≠ x 0 ) + f (x 0 ). (2.4.7)
Sometimes we use the notation tangent line of f at x 0 instead of tangent line of the curve of f at x 0 .

Example 2.4.21. Let f (x) = x 2 + 4x + 2. Find the tangent line of f at x 0 = 0.

We have f Õ (x) = 2x + 4. Then f Õ (0) = 4 and f (0) = 2. The equation of the tangent line of f at x 0 = 0 is given by

T 0 : y = 4(x ≠ 0) + 2 = 4x + 2.

Exercise 2.4.22. Define the equation of the tangent line of the following functions

at x 0 . 1. f(x) = x 3 + 2x + 1, x 0 = 1, 2. g(x) = Ô x + 2, x 0 = 2, 3. h(x) = 1 x + 1 , x 0 = 1 4. i(x) = x + 7 x + 2 , x 0 = 3, 5. j(x) = (x + 5)(x 2 + 5x + 9), x 0 = 0.
Convex functions share some nice properties with their tangent line. Below we will establish that the curve of a convex function lives above its tangent lines. To present this clearly, we need some preliminary results.

Lemma 2.4.23. Let f be a convex and di erentiable function in an open interval

I. We consider three real numbers x 1 , x 2 and x 3 in I, such that

x 1 < x 2 < x 3 . Then, f (x 2 ) ≠ f (x 1 ) x 2 ≠ x 1 AE f (x 3 ) ≠ f (x 1 ) x 3 ≠ x 1 AE f (x 3 ) ≠ f (x 2 ) x 3 ≠ x 2 • (2.4.8)
Proof. We take f convex in I, x 1 , x 2 and x 3 in I such that,

x 1 < x 2 < x 3 . Since the segment [x 1 , x 3 ] is convex, there is t oe]0 , 1[, such that, x 2 = t x 1 + (1 ≠ t) x 3 .
Using the definition of convex functions we have,

f (x 2 ) = f (tx 1 + (1 ≠ t) x 3 ) AE tf (x 1 ) + (1 ≠ t) f (x 3 ). This implies f (x 2 ) ≠ f (x 1 ) AE (1 ≠ t) ! f (x 3 ) ≠ f (x 2 ) " . Dividing by x 2 ≠ x 2 > 0, we obtain f (x 2 ) ≠ f (x 1 ) x 2 ≠ x 1 AE (1 ≠ t) f (x 3 ) ≠ f (x 1 ) x 2 ≠ x 1 •
From the definition of x 2 , we observe that

x 3 ≠ x 1 = (x 2 ≠ x 1 )/(1 ≠ t). This involves f (x 2 ) ≠ f (x 1 ) x 2 ≠ x 1 AE (1 ≠ t) f (x 3 ) ≠ f (x 1 ) x 2 ≠ x 1 = (1 ≠ t) f (x 3 ) ≠ f (x 1 ) (1 ≠ t) x 2 ≠ x 1 1 ≠ t = f (x 3 ) ≠ f (x 1 ) x 3 ≠ x 1 •
This establish the first part of (2.4.8).

To prove the second part of (2.4.8) we need remark that

t(f (x 3 ) ≠ f (x 1 ) AE f (x 3 ) ≠ f (x 2 ).
Now we divide in booth sides this inequality by

x 3 ≠ x 2 > 0, then, t (f (x 3 ) ≠ f (x 1 ) x 3 ≠ x 2 AE (f (x 3 ) ≠ f (x 2 ) x 3 ≠ x 2 •
As we know that

x 3 ≠ x 2 = t(x 3 ≠ x 1 ) one has t (f (x 3 ) ≠ f (x 1 ) x 3 ≠ x 2 = t f (x 3 ) ≠ f (x 1 ) t x 3 ≠ x 1 t = f (x 3 ) ≠ f (x 1 ) x 3 ≠ x 1 AE (f (x 3 ) ≠ f (x 2 ) x 3 ≠ x 2 •
This is the second part of inequality (2.4.8). Therefore we have (2.4.8).

This lemma implies the following theorem.

Theorem 2.4.24. Let f be a convex and di erentiable function in an open interval

I. Then, for all x and x 0 in I, we have

f (x) Ø f Õ (x 0 )(x ≠ x 0 ) + f (x 0 ).
Proof. Let f be a convex function. We assume x 0 , x. Then, for every y oe

[x 0 , x], we f (y) ≠ f (x 0 ) y ≠ x 0 AE f (x) ≠ f (x 0 ) x ≠ x 0 •
Taking the limit when y goes to x 0 , we obtain

lim yaex0 f (y) ≠ f (x 0 ) y ≠ x 0 = f Õ (x 0 ) AE f (x) ≠ f (x 0 ) x ≠ x 0 • Remark 2.4.25.
The proof is the same when we assume x 0 > x.

Considering again (2.4.8), we can see that if we let x 2 ae x 1 and x 2 ae x 3 , we obtain the following theorem which mention that the derivative of a convex function is increasing.

Theorem 2.4.26. Let f be convex and di erentiable function in I. Then, the function f Õ is an increasing function.

Proof. Let f be a convex function. From (2.4.8), we know that for any x 1 , y and x 2 in I, such that x 1 < y < x 2 , we have,

f (y) ≠ f (x 1 ) y ≠ x 1 AE f (x 2 ) ≠ f (x 1 ) x 2 ≠ x 1 AE f (x) ≠ f (y) x 2 ≠ y •
First we consider the limit when y ae x 1 . In this case we have

f Õ (x 1 ) AE f (x 2 ) ≠ f (x 1 ) x 2 ≠ x 1 • (2.4.9)
Now we take the limit when y ae x 2 . Thus, we get

f (x 2 ) ≠ f (x 1 ) x 2 ≠ x 1 AE lim yaex2 f (x) ≠ f (y) x ≠ y = f Õ (x 2 ). (2.4.10) We conclude that the function f Õ is increasing. Because f Õ (x 1 ) AE f Õ (x 2 ). Remark 2.4.27. The reciprocal of this theorem is also true. If f is a function such that, f Õ is increasing, then f is convex.
The proof of this is based on the mean value theorem.

Let f be a convex function. The theorem above implies the function f Õ is an increasing function in the interval I. This means that if the function f Õ is di erentiable in the interval I, then , its derivative f ÕÕ is positive for all x oe I.

Reversely if the function f ÕÕ is positive, then f Õ is an increasing function. Consequently the function f is convex.

This establish the following theorem.

Theorem 2.4.28. Let f be a di erentiable function in an interval I. We suppose f Õ di erentiable on I. Then, the function f is convex if and only if, for all x oe I,

f ÕÕ (x) Ø 0. Example 2.4.29. Let f (x) = x 2 + 3x + 2. The function f is di erentiable in R.
For every x oe R,

f Õ (x) = 2x + 3 and f ÕÕ (x) = 2 > 0.
We conclude that the function f is convex in R. Exercise 2.4.30. Say whether the following functions are convex

1. f(x) = ≠3x 2 + 4x + 1, 2. g(x) = 5x 2 ≠ 6, 3. h(x) = x 3 + 3x 2 + 2x + 4.
With this exercise we close the parenthesis on convex function and go back to approximation of functions.

In general we can establish that any function can be approximated by a polynomial function. This holds in a neighborhood of some point x 0 . To present this in a simple way we introduce the following notations Definition 2.4.31. Let f be a real function defined in the interval I.

• We say the function f is C 0 in I if the function f is continuous in I • the function f is C 1 in I if f Õ is continuous in I
We call the second derivative of the function f , the derivative of the function f Õ . We denote it f ÕÕ . The third derivative of f is denoted f ÕÕÕ or f (3) . The fourth derivative of f is denoted f [START_REF]Dixmier Cours de mathématiques du premier cycle[END_REF] . In general, we denote the nth derivative of f , f (n) . Definition 2.4.32. Let f be a real function defined in the interval I.

• We say the function f is C 2 in I, if f is two times di erentiable and f ÕÕ is continuous in I • The function f is a C n function if the function f is n times di erentiable and the function f (n) is continuous in I.
For the sake of clarity we use the following notations. The set of all continuous functions on I is denoted C 0 ! I " . For any n Ø 1 we use C n ! I " to mean the set of all C n functions in I. Definition 2.4.33. We define the function Á : R ≠ae R + , satisfying the following properties:

1. the function Á is continuous in R 2. the function Á satisfies lim xae0 Á(x) = 0 and lim xae0 Á(1) = 0
Definition 2.4.34. Let f be a real function defined in I. We assume the function f admits first and second derivative at x 0 oe I. Let " > 0 be small enough. For any x oe (x 0 ≠ " , x 0 + ") we define the second order Taylor series of f at x 0 as follows

f (x) = f (x 0 )+f Õ (x 0 )• (x ≠ x 0 ) 1! +f ÕÕ (x 0 )• (x ≠ x 0 ) 2 2! +(x≠x 0 ) 2 Á((x≠x 0 )). (2.4.11)
Remark 2.4.35. When we take x 0 = 0 in (2.4.11), we obtain

f (x) = f (0) + f Õ (0) 1! • x + f ÕÕ (0) 2! • x 2 + x 2 Á(x).
(2.4.12)

Another way to reformulate (2.4.11) is to define x = x 0 + h for some small real number h. In this case we have h = x ≠ x 0 . Replacing in (2.4.11) one gets

f (x 0 ) = f (x 0 ) + f Õ (x 0 ) • h 1! + f ÕÕ (x 0 ) • h 2 2! + h 2 Á(h).
In truth we can define a n degree polynomial function which is an approximation of f in a neighborhood of a point. This polynomial function is called the nth order Taylor Series of f . Definition 2.4.36. Let f be a real function defined in I. We suppose f is n times derivable at x 0 oe I. Let " > 0 be a fixed real number. For any x oe (x 0 ≠ " , x 0 + "), we define the nth order Taylor Series of f at x 0 as follows

f (x 0 + h) = f (x 0 ) + n ÿ k=1 f (k) (x 0 ) • h k k! + h n • Á(h), ( 2 

.4.13)

where h = x ≠ x 0 .

Example 2.4.37. We consider the function

f (x) = cos(x). The function f is di erentiable in R. We have f Õ (x) = ≠ sin(x) and f ÕÕ (x) = ≠ cos(x). Taking x 0 = 0 we have f (0) = 1, f Õ (0) = sin(0) = 0 and f ÕÕ (0) = ≠1.
Therefore the second order Taylor Series of f is defined by

cos(x) = f (0) + f Õ (0) • x + f ÕÕ (0) • x 2 2! + x 2 • Á(x) = 1 + 0 • x ≠ x 2 2 + x 2 • Á(x) = 1 ≠ x 2 2 + x 2 • Á(x).
Using this Taylor series we can easily find this limit lim xae0

cos(x)≠1 x • Indeed, for x " = 0, we have cos(x) ≠ 1 x = ≠ x 2 + x • Á(x). Since lim xae0 cos(x) ≠ 1 x = ≠ lim xae0 x 2 + lim xae0 x • Á(x) = 0 Example 2.4.38. Let f (x) = sin(x). The function f is 3 times di erentiable in R. Therefore, the function f is 3 times di erentiable at 0. We have f Õ (x) = cos(x), f ÕÕ (x) = ≠ sin(x) and f ÕÕÕ (x) = ≠ cos(x). I this case we get f (0) = sin(0) = 0, f Õ (0) = cos(0) = 1, f ÕÕ (0) = sin(0) = 0 and f ÕÕÕ (0) = ≠1.
This leads to the following third order Taylor series of f at 0

f (x) = f (0) + f Õ (0) • x + f ÕÕ (0) • x 2 2 + f ÕÕÕ (0) • x 3 3! + x 3 • Á(x) = 0 + x + 0 • x 2 2 ≠ x 3 6 + x 3 • Á(x) = x ≠ x 3 6 + x 3 • Á(x).
From this Taylor series we deduce that , for any x " = 0,

sin(x) ≠ x x = ≠ x 2 6 + x 2 • Á(x).
Hence

lim xae0 sin(x) ≠ x x = ≠ lim xae0 x 2 6 + lim xae0 x 2 • Á(x) = 0.
We know what is a Taylor series, now we want to have criterion which will allows us to say whether a function has a Taylor series. In chapter 1 we defined limits of functions. We specified that the limits at the bounds of the domain of definition lead to the important concept of asymptote. Using limits again we defined continuity. We studied continuous functions and their properties in that chapter. In chapter 2 we defined derivative of one variable real functions. We showed several applications of derivatives.

1. f(x) = 1 1 ≠ x , x 0 = 1, 2. g(x) = Ô 1 + x, x 0 = ≠1, 3. h(x) = 1 1 ≠ x 2 , x 0 = 1.

CHAPTER 3

STUDY OF REAL FUNCTIONS

The main purpose of this chapter is to gather all the properties studied in chapters 1 & 2. Studying together all these properties is called: study of functions. In short, studying a function consists of : This chapter is organized as follows : in section 1, we study elementary functions. The section 2, is devoted to the study of second order polynomial functions. In the last section we deal with general functions.

Study of Elementary Functions

The aim of this section is to study elementary functions. We remind that elementary are bricks from which all complicated functions are constructed. Here we deal with the a ne functions ax + b, the function x 2 , the function Ô x and the function 1 x • As we will see it, using algebraic operations and composition on these functions, we will be able to study more complicated functions. This will be done in section 2.

The most elementary functions are a ne functions. That is why we start the study of functions with them. We recall that an a ne function is a function in the form

f (x) = ax + b,
where a and b are constant real numbers such that a " = 0.

Study of A ne Functions

Let f (x) = ax + b be an a ne function. We know from the previous chapters that the domain of f is R. Now we undertake to study f. We start by finding the limits at the bounds of the domain of f

Limits at the Bounds of the Domain

To compute correctly the limits of the function at the bounds of the domain, we have to distinguish two cases according to the sign of the real number a. We observe that a ne functions do not have horizontal asymptotes. Since a ne functions are defined in R they do not have vertical asymptotes. The next step consists of finding the derivative of f.

Derivative of an A ne Function

We established that a ne function are di erentiable in R and for every real number x we have

f Õ (x) = a.
Here again we will use the sign of the real number a to determine the variations of f. There are two cases:

Case 1: a > 0. In this case the function f is strictly increasing in R. Because for every x oe R, we have f Õ (x) > 0.

Case 2: a < 0. Here f Õ (x) < 0 for every x oe R. This implies the function f is strictly decreasing in R.

Remark 3.1.1. We point out that when a = 0, f is a constant function. Constant functions are a critical case. Because we can consider them either increasing or decreasing functions.

Variational Table of an A ne Function

Below we define the variational table of f. This table was established in concordance with the sign of a.

We obtain the following table:

Case 1: a > 0. When the real number a is positive we obtain the following table

x ≠OE +OE sign of f Õ + variatons of +OE f ¬ ≠OE
This table shows that the function f is increasing from ≠OE to +OE.

Case 2: a < 0. In this case the following variational table holds

x ≠OE ≠OE sign of f Õ ≠ variatons of +OE f √ ≠OE
From this table we deduce the function f is decreasing from +OE to ≠OE. We know the function f is di erentiable in R and for every real number x f Õ (x) = 2.

Therefore the function f is increasing in R. Then, it follows that we have the following variational table

x ≠OE +OE sign of f Õ + variatons of +OE f ¬ ≠OE
The function f is represented by the following graph

- x 6 y C f Example 3.1.3. Let g(x) = ≠x + 1.
The function g is defined in R and we have

lim xae≠OE g(x) = +OE and lim xae+OE g(x) = ≠OE.
The function g is di erentiable in R and for all x oe R, we have f (x) = ≠1 < 0.

Then g is a decreasing function. The following variational table holds

x ≠OE ≠OE sign of g Õ ≠ variatons of +OE g √ ≠OE
Below we sketch the graph of g x 6 y @ @ @ @ @ @ @ @ @ @ @ @ @ C g Exercise 3.1.4. Study the following a ne functions

1. f(x) = ≠3x + 5, 2. g(x) = 5x + 7, 3. h(x) = ≠4x + 9, 4. i(x) = 11x + 33.
in the following subsection we study the square function.

Study of the Square Function

Let f (x) = x 2 . We have established that D f = R. The next step consist of finding its limits

Limits at the Bounds of the Domain

Since for any real number x, we have x 2 Ø 0, we deduce

lim xae≠OE f (x) = +OE and lim xae+OE f (x) = +OE.
Hence the function f (x) = x 2 does not have horizontal asymptotes. The function f is defined in the whole set of real numbers R. Therefore, the function does not admit vertical asymptotes.

On the other hand we have,

lim xae≠OE f (x) x = ≠OE and lim xae+OE f (x) x = +OE.
This show that, we do not have oblique asymptotes at ±OE.

Derivative of the Square Function

From previous chapters, we know that the function f is di erentiable in R and for every x oe R, f Õ (x) = 2x.

To determine the variations of the function we need to study the sign of f Õ . Observing that f Õ is a linear function, we deduce that f Õ (x) AE 0 for every x oe ! ≠ OE , 0 $ , and f Õ (x) Ø 0 for all x oe # 0 , +OE " .

Variations of the Square Function

Using the sign of the function f Õ we conclude the function

• f (x) = x 2 is decreasing in (≠OE , 0] • f is increasing in [0 , +OE).

Variational Table of the Square Function

The variations of the function f will allow to define the following table:

x ≠OE 0 + OE f Õ (x) ≠ 0 + +OE +OE f (x) √ ¬ f (0)
Tangent Line at 0

The tangent line of f (x) = x 2 at 0 is given by the following formula (T 0 ) :

y = f Õ (0)(x ≠ 0) + f (0) = 0.
Since the function f is decreasing in (≠OE , 0] and increasing in [0 , +OE). Then the function f has a minimum at x 0 = 0. This minimum is equal to f (0) = 0.

Below we represent the function 

f (x) = x 2 . ≠1 ≠0.5 0.5 1 1.5 2 
1. f(x) = ≠x 2 , 2. g(x) = x 2 + 3, 3. h(x) = ≠x 2 + 3.

Study of the Inverse Function

Now we consider the function f

(x) = 1 x • This function is defined in R\{0}.

Limits at ±OE

The limits of the function at ±OE are

lim xae+OE f (x) = 0 and lim xae≠OE f (x) = 0.
This involves the line y = 0 is a horizontal asymptote at ±OE.

Limits at 0

As it was shown in the chapter 1 we have

lim xae0 ≠ f (x) = ≠OE and lim xae0 + f (x) = +OE.
This means that the line x = 0 is a vertical asymptote of f at the point x 0 = 0.

Derivative of the Inverse Function

The function f is di erentiable in R\{0}. Let x oe R ú one has

f Õ (x) = ≠ 1 x 2 •
This means that f Õ (x) < 0, for all x oe R\{0}. That is, f is a decreasing function in R\{0}.

Variational Table of f

The variations of the function f lead to the following variational table

x ≠OE 0 + OE f Õ (x) ≠ ≠ 0 +OE f (x) √ √ ≠OE 0
The function f does have not a global maximum neither a global minimum.

Remark 3.1.6. We point out that the graph of a function do never cross its vertical asymptote. Vertical asymptotes hold only at point on which the function is not defined. In other words if the line x = a is a vertical asymptote then the function f is not defined at a.

The graph of the inverse function is given below.

As we proved it above the inverse function has a vertical asymptote at 0. We can observe that, here the graph of the inverse function do not cross the vertical line x = 0 below we sketch the graph of f.

Study of the Square Root Function

The aim of this subsection is to study the function f (x) = Ô x. We denote its domain [0 , +OE). The function f is defined at 0 and f (0) = 0.

Limit at +OE

The limit of the function square root at +OE is +OE. This means that the function goes to +OE when x approaches +OE. This involves

lim xae+OE f (x) = +OE.
From this we deduce that the function does not have a horizontal asymptote at +OE.

On the other hand, we have

lim xae+OE f (x) x = lim xae+OE 1 Ô x = 0•
Therefore f does not have an oblique asymptote at +OE. In the same way we observe that the curve of f does not have a vertical asymptote.

Derivative of the Square Root Function

The function f is di erentiable in (0 , +OE). For all real number x, such that, x > 0 we have

f Õ (x) = 1 2 Ô x •
As we can observe it the function f Õ is not defined at 0. Hence the domain of the function f Õ is (0 , +OE). For every x in the domain of f Õ we have f Õ (x) > 0. This yields the function f is increasing [0 , +OE).

Variational Table of the Square Root Function

The previous step allows us to establish that the following variational table

x 0 + OE f Õ + +OE f ¬ 0 Let x oe [0 ; +OE). Then one has f (x) Ø f (0) = 0. The function f has a global minimum at 0. The value of this minimum is f (0) = 0.
The graph of the square root function is given below.

≠1 1 2 3 0.5 1 1.5 2 
In the next section we study second order polynomial functions. We remind that a second order polynomial functions is a function of the form f (x) = ax 2 + bx + c, where a, b and c are constant real numbers, such that a " = 0.

Second Order Polynomial Functions

This section deals with variations of second order polynomial functions.In a second time, we study maximum and minimum of second order polynomial functions.

Variations of Second Order Polynomial Functions

In this subsection we study variations of polynomial functions of degree 2. Let f (x) = ax 2 + bx + c. Since f is a polynomial function, then it is di erentiable in R. For any real number x, f Õ (x) = 2ax + b. The derivative of f is an a ne function.

On the other hand, the variations of the function f are determined by the sign of the function f Õ . Then, according to the sign of the real number a, we can establish the following theorems. Proof. We consider f (x) = ax 2 +bx+c. Then, we have f Õ (x) = 2ax+b. The function f Õ is negative in (≠OE , -] and positive in [-, +OE). Therefore, the function f is decreasing in (≠OE , -] and increasing in [-, +OE). We obtain the following table:

x ≠OE - +OE f Õ ≠ 0 + +OE +OE f √ ¬ -
As we can see it in the variational table above, the function f is decreasing in (≠OE , -] and increasing in [-, +OE). Hence the function f has a minimum at x 0 = -. The value of this minimum is f (-) = -. Lemma 3.2.2. We consider the function f (x) = ax 2 + bx + c such that a > 0.

Then the function f has a minimum at -. The value of this minimum is

f (-) = -= ≠ 4a • ≠3 ≠2 ≠1 1 2 ≠1 1 2 3 - - Example 3.2.3. We consider the function f (x) = 3x 2 + 2x + 1.
The function f is defined in R. Now we define the real numbers -and -:

-= ≠ b 2a = 2 6 = ≠ 1 3 and -= f (-) = ≠ 4a = ≠ 4 ≠ 12 12 = 2 3 • Thus the canonical form of f is f (x) = 3 3 x + 1 3 
4 2 + 2 3 • Since a = 3 > 0, the function f is decreasing in (≠OE , ≠1/3] and increasing in [≠1/3 , +OE). Then the function f has a minimum at -= ≠ 1 3
. The value of this minimum is equal to

f (-) = 2 3 • x ≠OE ≠1 3 +OE f Õ ≠ 0 + +OE +OE f √ ¬ 2 3
Lemma 3.2.4. Let f (x) = ax 2 + bx + c be a second order polynomial function, such that, a < 0. We define the real number -= ≠ b 2a . Then the function f is increasing in (≠OE , -] and decreasing in [-, +OE).

Proof. Let f (x) = ax 2 + bx + c. The function f is di erentiable in R and for every real number x, f Õ (x) = 2ax + b. Then, the function f Õ is positive in (≠OE , -] and negative in [-, +OE). Thus, the function f is increasing in (≠OE , -] and decreasing in [-, +OE). This yields the following variational table

x ≠OE - +OE f Õ + 0 ≠ - f ¬ √ ≠OE ≠OE
Since the function f is increasing in (≠OE , -] and decreasing in [-, +OE), one deduces that, f has a maximum at -. This maximum is equal to f (-) = -. Lemma 3.2.5. Let f (x) = ax 2 + bx + cbe a second order polynomial function, such that a < 0. Then, f has a maximum at -which is equal to f (-) = -.

≠1 1 2 3 4 ≠2 ≠1 1 2 3 - - Example 3.2.6. Let f (x) = ≠2x 2 + x + 1.
The domain of f is R. The limits at the bounds of the domain of f are :

lim xae≠OE f (x) = ≠OE and lim xae+OE f (x) = ≠OE.
We define the real numbers

-= ≠ b 2a = ≠ 1 ≠4 = 1 4 and -= ≠ 1 ≠ 4.(≠2).1 4.(≠2) = 9 8 •
Applying the previous theorem we deduce that the function

f (x) = ≠2 3 x ≠ 1 4 
4 2 + 9 8 • is increasing in (≠OE , 1/4]and decreasing in [1/4 , +OE). This means that f has a maximum at -= 1 4 which is equal to f (-) = 9 8 • x ≠OE 1 4 +OE f Õ + 0 ≠ 9 8 f ¬ √ ≠OE ≠OE Exercise 3.2.7.
Study the following functions

1. f(x) = 2x 2 + 3x + 1, 2. g(x) = ≠x 2 + 5x + 1, 3. h(x) = x 2 ≠ 3x + 7, 4. i(x) = ≠3x 2 + 4x + 2, 5. j(x) = x 2 + 2x.
Now we are interested in the study of general functions. In the next section we show how to deal with general functions

Study of General Functions

The main objective of this section, is not to study all general functions, but to give a kind of short user manual to deal with functions of the following form:

ax 3 + bx 2 + cx + d, u n (x),  u(x), 1 u(x) , 1 u n (x) , u(x) • v(x) and u(x) v(x) •

Study of Polynomial Function of Degree Three

This subsection is devoted to polynomial function of degree three. We recall a polynomial function of degree three is a function of the form

f (x) = ax 3 + bx 2 + bx + c,
with a " = 0. The domain of the function f is R. Thus, we remark the function f does not have vertical asymptote.

To find the limit of this function at the bounds of its domain, we distinguish two cases according to the sign of a.

Case 1: a > 0. When the real number a is strictly positive, we have

lim xae≠OE f (x) = ≠OE and lim xae+OE f (x) = +OE.
An interpretation of these limits is, the graph of the function f does not have horizontal asymptotes. Calculating the limit of f (x)/x we obtain

lim xae≠OE f (x) x = +OE and lim xae+OE f (x) x = +OE.
Consequently the graph of the function f does not admit oblique asymptotes.

Case 2: a < 0. In this case the following limits at the bounds of the domain hold

lim xae≠OE f (x) = +OE and lim xae+OE f (x) = ≠OE.
This involves the graph of f does not have horizontal asymptotes. We observe that

lim xae±OE f (x) x = ≠OE.
This means that, we do not have oblique asymptotes.

The function f is di erentiable in R, because it a polynomial function. For every real number x the function f Õ is given by

f Õ (x) = 3ax 2 + 2bx + c.
To determine the variations of the function f we need to study the sign of f Õ . Here the function f Õ is a second order polynomial function. To study the sign of a second order polynomial, we compute = 4b 2 ≠ 4 ◊ 3ac. Since here we have b Õ = 2b we can calculate Õ = b 2 ≠ 3ac instead of . Thus according to the sign of and the sign of a one of the following cases holds Case 1: a > 0 and > 0 . As it was established in the previous chapters, when > 0, the function f Õ (x) = 3ax 2 + 2bx + c, has two real roots x 1 and x 2 .

Here we assume x 1 < x 2 . We know also that the sign of f Õ depends on the sign of a. Since a > 0, then the following sign table holds

x ≠OE x 1 x 2 +OE f Õ (x) + 0 ≠ 0 +
Using the sign of f Õ , we conclude that the function f is increasing in

(≠OE , x 1 ] fi [x 2 , +OE) and decreasing in [x 1 , x 2 ]
. This leads to the following variational table.

x ≠OE

x 1 x 2 +OE f Õ + 0 ≠ 0 + f f (x 1 ) + OE ¬ √ ¬ ≠OE f (x 2 )
Example 3.3.1. We consider the following function f (x) = x 3 + 2x 2 + x + 1. The domain of the function is R. We have

lim xae≠OE f (x) = ≠OE, lim xae+OE f (x) = +OE.
The polynomial function f is di erentiable in R and for every real number x we have f Õ (x) = 3x 2 + 4x + 1.

This implies = 16 ≠ 12 = 4. Then, the function f Õ has two real roots

x 1 = ≠4 ≠ 2 6 = ≠1, x 2 = ≠4 + 2 6 = ≠ 1 3 •
Applying the result above we conclude that the function f is increasing in (≠OE , ≠1] fi [≠1/3 , +OE), and decreasing in [≠1 , ≠1/3].

x ≠OE ≠1 ≠ 1 3 +OE f Õ + 0 ≠ 0 + f f (≠1) +OE ¬ √ ¬ ≠OE f 3 ≠ 1 3 4 
Case 2: a > 0 and = 0 . In this case the function f Õ has only one real root x 0 and f Õ is positive. We deduce that, f is increasing function R. This allows to establish the following variational table Since the function f is polynomial, it is di erentiable in R. For every real number x, f Õ (x) = 3x 2 + 6x + 3. In this example, = 36 ≠ 4 ◊ 9 = 36 ≠ 36 = 0. The function f Õ has only one real root x 0 = ≠ 6 6 = ≠1. We conclude the function f is increasing in R.

x ≠OE x 0 +OE f Õ + 0 + +OE f ¬ ≠OE Example 3.3.2. Let f (x) = x 3 + 3x 2 + 3x + 7.
x ≠OE +OE f Õ + 0 + +OE f ¬ ≠OE
Case 3: a > 0 and < 0. In this case the function f Õ does not have real roots, and is strictly positive. Then, f is an increasing function.

x ≠OE +OE f Õ + + +OE f ¬ ≠OE Example 3.3.3.
We define the function f (x) = x 3 + x 2 + 3x + 5. This function is defined in R. The limits at the bounds of the domainare

lim xae≠OE f (x) = ≠OE and lim xae+OE f (x) = +OE.
Since f is a polynomial function it is di erentiable in R and for all x oe R f Õ (x) = 3x 2 + 2x + 3.

We see that = 4 ≠ 4 ◊ 9 = ≠32. Therefore, the function f Õ does not have real roots and for every x oe R, f Õ (x) > 0. Hence, the function f is increasing in R.

x ≠OE +OE f Õ + + +OE f ¬ ≠OE
Case 4: a < 0 and > 0 . In this case the function f Õ has two real roots x 1 and x 2 . We obtain the following sign table for

f x ≠OE x 1 x 2 +OE f Õ ≠ 0 + 0 ≠ This means that, the function f is decreasing in (≠OE , x 1 ] fi [x 2 , +OE) and increasing in [x 1 , x 2 ]. x ≠OE x 1 x 2 +OE f Õ ≠ 0 + 0 ≠ f +OE f (x 2 ) √ ¬ √ f (x 1 ) ≠OE Example 3.3.4. We consider the function f (x) = ≠x 3 + 2x 2 ≠ x + 1. We know that D f = R and lim xae≠OE f (x) = +OE, lim xae+OE f (x) = ≠OE. The function f is di erentiable in R, because it is a polynomial function. Let x oe R. Then, f Õ (x) = ≠3x 2 + 4x ≠ 1.
From this we deduce = 16 ≠ 12 = 4. Hence we have two real roots

x 1 = ≠4 + 2 ≠6 = 1 3 , x 1 = ≠4 ≠ 2 ≠6 = 1• We can see the function f Õ is negative in (≠OE , 1/3] fi [1 , +OE) and f Õ is positive [1/3 , 1]
. The variations of f are given in the following table

x ≠OE 1 3 1 +OE f Õ (x) ≠ 0 + 0 ≠ f +OE f (1) √ ¬ √ f 3 1 3

≠OE

Case 5: a < 0 and = 0, When a < 0 and = 0 , the function f Õ has only one real root x 0 . On the other hand we know the function f Õ and a have the same sign. That is, the function f Õ is negative in R . Hence the function f is decreasing in R.

x ≠OE +OE +OE f (x) √ ≠OE Example 3.3.5. Let f (x) = ≠x 3 + 3x 2 ≠ 3x + 7. Then D f = R and lim xae≠OE f (x) = +OE and lim xae+OE f (x) = ≠OE.
The function f is di erentiable in R, and f Õ (x) = ≠3x 2 + 6x ≠ 3, for any x oe R.

From this, we deduce that = 36 ≠ 4 ◊ 9 = 36 ≠ 36 = 0. The real root of f Õ is then given by

x 0 = ≠ 6 ≠6 = 1 . Since the function f Õ is negative in R, one deduces the function f is decreasing R. x ≠OE +OE f Õ ≠ 0 ≠ +OE f (x) √ ≠OE
Case 6:a < 0 and < 0. When is strictly negative, the function f Õ does not have real roots. Moreover, since a < 0, the function f Õ is strictly negative. This implies the function f is decreasing in R.

x ≠OE +OE f Õ ≠ ≠ +OE f √ ≠OE Example 3.3.6. Let f (x) = ≠x 3 + x 2 ≠ 3x + 5. Then D f = R and we have lim xae≠OE f (x) = +OE and lim xae+OE f (x) = ≠OE.
We emphasize, there is no horizontal, no vertical and no oblique asymptotes. The function

f is di erentiable in R, because it is a polynomial function. The derivative of f is f Õ (x) = ≠3x 2 + 2x ≠ 3.
From this, we deduce = 4 ≠ 4 ◊ 9 = ≠32. The function f Õ does not have real roots and for all x oe R, f Õ (x) < 0. Therefore the function f decreasing in R.

x ≠OE +OE f Õ ≠ ≠ +OE f √ ≠OE Exercise 3.3.7.
Study the following functions

1. f(x) = x 3 + 3x 2 ≠ 2x ≠ 3, 2. g(x) = x 3 + 2x ≠ 4, 3. h(x) = ≠2x 3 + 6x 2 + x + 1, 4. i(x) = ≠3x 3 + 2x 2 + x + 2, 5. j(x) = x 3 + x + 5.

Study of the Function u n

This subsection deals with function of the form 

f (x) = u n (x),
f (x) = +OE.
The a ne function 2x + 3 is di erentiable in R and the function x 2 is also di erentiable in R. Since the function f is the composition of two die erentiable functions, then f is di erentiable. Here we set u(x) = 2x+3 and we observe that f (x) = u 2 (x). Therefore, for every real number x the derivative of f is defined by

f Õ (x) = 2u Õ (x) • u(x) = 4(2x + 3).
We see that the sign of the function f Õ is given by the sign of the a ne function 2x + 3. Since 2x + 3 is negative in the interval (≠OE , ≠3/2] and positive in the interval [≠3/2 , +OE). We conclude that the function f is decreasing in (≠OE , ≠3/2], and increasing in [≠3/2 , +OE).

x ≠OE ≠ 3 2 +OE f Õ (x) ≠ 0 + +OE +OE f (x) √ ¬ f 3 ≠ 3 2 4 
Since the function f is decreasing in (≠OE , ≠3/2], and increasing in [≠3/2 , +OE), it has a minimum at x 0 = ≠3/2. This minimum is given byf (≠3/2) = 0.

Example 3.3.9. We consider the function

f (x) = ! ≠ x 2 + 5x + 1 " 3 . The domain of the function f is R and one has lim xae≠OE f (x) = ≠OE and lim xae+OE f (x) = ≠OE. The function f (x) = u 3 (x), with u(x) = ≠x 2 + 5x + 1, is the composition of two di erentiable functions in R, then, f is di erentiable in R. For every x oe R, f Õ (x) = 3(≠2x + 5)(≠x 2 + 5x + 1) 2 .
Since for all x oe R, 3(≠x 2 + 5x + 1) 2 Ø 0, then the function f Õ and ≠2x + 5 have the same sign. Therefore we have the following table:

x ≠OE 5 2 +OE f Õ (x) + 0 ≠ f ! 5 2 " f (x) ¬ √ ≠OE ≠OE
The function f is increasing in (≠OE , 5/2], and decreasing in [5/2 , +OE). Therefore it has a maximum at x 0 = 5/2.

Exercise 3.3.10. Study the following function

1. f(x) = (x 3 + 3x + 1) 5 , 2. g(x) = (3x + 6) 4 , 3. h(x) = (2x 2 + 4x + 1) 3 , 4. i(x) = (x + 1) 6 , 5. j(x) = (2x + 4) 7 .

Study of the Function 1 u

This section is devoted to functions of the form f (x) = 1/u(x), where u is a real function. As in the previous subsection here we proceed again by examples.

Example 3.3.11. Let f (x) = 1 x + 2 • The function f is defined in R\{≠2}. We obtain lim xae≠OE f (x) = 0 and lim xae+OE f (x) = 0.
Then, the line y = 0 is horizontal asymptote of C f at +OE and at ≠OE. On the other hand we have,

lim xae≠2 ≠ f (x) = ≠OE and lim xae≠2 + f (x) = +OE.
This means, the line x = ≠2 is a vertical asymptote of C f . The function f is in the form f (x) = 1/u(x), where u(x) = x + 2. For any x " = ≠2, the denominator u(x) is di erent to 0. This involves the function f is di erentiable in R\{≠2} and for every x oe R\{≠2},

f Õ (x) = ≠ u Õ (x) u 2 (x) = ≠1 (x + 2) 2 •
As we can see it the function f Õ is negative. Therefore the function f is a decreasing function in R\{≠2}.

x ≠OE ≠2 + OE f Õ ≠ ≠ 0 +OE f √ √ ≠OE 0
Exercise 3.3.12. Study the following functions

1. f(x) = 1 x 2 + 3x + 1 , 2. g(x) = 1 x + 5 , 3. h(x) = 2 x 2 + 6x + 5 , 4. i(x) = 3 x 3 + 5x 2 + x + 1 , 5. j(x) = 1 x + 1 •

Study of the Function 1 u n

In this section, we study functions of the form f (x) = 1/u n (x), where u is a real function and n Ø 2 a natural number. To explain the methodology we consider the following example.

Example 3.3.13. We consider the function f (x) = 1 (x + 1) 2 . The function f is defined for any x " = ≠1. That is, D f = R\{≠1}. The limits at the bounds of the domain are defined by

lim xae≠OE f (x) = 0 and lim xae+OE f (x) = 0.
We conclude the line y = 0 is a horizontal asymptote of C f at +OE and ≠OE.

One knows that

lim xae≠1 ≠ f (x) = +OE and lim xae≠1 + f (x) = +OE.
This means that the line x = ≠1 is a vertical asymptote of C f . The function f which is in the form 1/u 2 (x) is di erentiable at any x such that u(x) " = 0. Then it is di erentiable in R\{≠1} and for any x " = ≠1,

f Õ (x) = ≠u Õ (x) u 2 (x) = ≠2 (x + 1) 3 •
We deduce the following variational table

x ≠OE ≠1 + OE f Õ (x) + ≠ +OE +OE f (x) ¬ √ 0 0
Exercise 3.3.14. Study the following functions

1. f(x) = 1 (3x + 2) 2 , 2. g(x) = 1 (x 2 + 2x + 3) 4 , 3. h(x) = 1 (2x + 6) 3 , 4. i(x) = 1 (x 3 + 2x 2 + 5x + 1) 5 , 5. j(x) = 1 (x + 2) 8 •

Study of the Function Ô u

Let u be a real function. We consider the function Ô u. The aim of this subsection is to study the function Ô u. To study these type of functions we use the following example.

Example 3.3.15. Let u(x) = x + 3 be a real function. We define the function

f (x) = Ô x + 3. The function f is defined if and only x + 3 Ø 0. The domain of f is [≠3 + OE). We have f (≠3) = 0 and lim xae+OE f (x) = +OE.
The function u is di erentiable in R and the function Ô

• is di erentiable in (0, +OE) Since the function f is the composition of two di erentiable functions, then it is di erentiable. For every x Ø 3, we have

f Õ (x) = u Õ (x) 2 Ô x + 3 = 1 2 Ô x + 3 • We can observe that , f is not di erentiable at ≠3. For all x > ≠3, f Õ (x) > 0. The function f is increasing in [≠3 ; +OE). Then the following table holds x ≠3 + OE +OE f (x) ¬ 0 Exercise 3.3.16. Study the following functions 1. f(x) =  x 2 ≠ 2x, 2. g(x) =  x 2 + 2x + 4, 3. h(x) = Ô x + 2, 4. i(x) =  x 2 + 1, 5. j(x) = Ô x + 1.

Study of the Function u(x) • v(x)

As we pointed it out above, we will study functions by using examples. To study the function of the form u • v we consider the following function.

f (x) = (3x + 6)(x ≠ 2).
The domain of f is R. We have

lim xae≠OE f (x) = +OE and lim xae+OE f (x) = +OE.
Since u(x) = 3x + 6 and v(x) = x ≠ 2 are di erentiables in R, the function f is di erentiable in R and for every x oe R,

f Õ (x) = u Õ v + uv Õ = 3(x ≠ 2) + (3x + 6) = 6x.
The function f Õ and x have the same sign. Hence the f Õ is positive in [0 ; +OE) and negative in (≠OE ; 0]. This leads to the following conclusions: the function f is decreasing in (≠OE ; 0] and increasing in [0 ; +OE).

x ≠OE 0 + OE f Õ ≠ 0 + +OE +OE f √ ¬ ≠12
Exercise 3.3.17. Study the following functions

1. f(x) = (x 2 + 3x + 1)(2x + 1), 2. g(x) = (x + 1)(3x + 9), 3. h(x) = (x 2 + x + 1)(2x 2 + 1), 4. i(x) = ( Ô x + 1) Ô x + 5, 5. j(x) = (2x + 1)(3x + 2).

Study of the Function u v

To study these type of functions, we consider the following example.

Example 3.3.18. We define

f (x) = 3x + 6 ≠x + 1 • The domain of the function f is R\{1}. We know lim xae≠OE f (x) = ≠3.
The line y = ≠3 is a horizontal asymptote of C f at ≠OE. We have

lim xae+OE f (x) = ≠3.
This means the line y = ≠3 is a horizontal asymptote of C f at +OE. On the other hand we have

lim xae1 ≠ f (x) = +OE and lim xae1 + f (x) = ≠OE. This involves the line x = 1 is a vertical asymptote of C f .
The functions u(x) = 3x + 6 and v(x) = ≠x + 1 are di erentiable in R. Then for any x " = 1 the function u(x)/v(x) is di erentiable. Then, the function f is di erentiable in R\{1} and for all x oe R\{1}

f Õ (x) = u Õ v ≠ u v Õ v 2 = 3(≠x + 1) + (3x + 6) (≠x + 1) 2 = 9 (≠x + 1) 2 •
The function f Õ is strictly positive. Then, the function f is increasing in R\{≠1}. Therefore we have the following table

x ≠OE ≠1 + OE f Õ + + +OE ≠3 f ¬ ¬ ≠3 ≠OE Exercise 3.3.19. Study the following functions 1. f(x) = x + 1 x 2 + 3x + 1 , 2. g(x) = x 2 + 1 x + 3 , 3. h(x) = ≠x + 5 x + 2 , 4. i(x) = x 2 + 4x + 1 x 2 + 2x + 5 , 5. j(x) = Ô x + 1 x • CHAPTER 4
EXPONENTIAL FUNCTION There exist several ways to introduce the exponential function. The method, which we use here to define this function is, to consider a functional equation. Indeed, we are looking for a continuous function f : R ae R ú + , such that, for any x and y in R Y ]

[

f (x + y) = f (x) • f (y) f (0) = 1. (4.0.1)
The solution of the functional equation (4.0.1) is called the exponential function.

We denote this function

f (x) = exp(x) = e x .
We point out that this function is one of the most important function in Mathematics. The graphic of the function exp is drawn below

≠2 ≠1 1 2 1 2 3 4
We specify that when x = 1, we write e instead of e 1 . We specify exp(0) = 1.

The main objective of this chapter is to study the function exp and its properties. We organize this chapter as follows: In section 1 we define some properties of exp. In section 2 we solve equations using exp. Section 3 is devoted to the variations of exp. The last section deals with the following functions cosh, sinh and tanh.

Some Properties of Exponential

This section is devoted to the study of some properties of the function exp. We will establish that the function exp has some nice properties. Indeed let x oe R, we have From this lemma we deduce that for any real numbers a and b we have Let x oe R. We consider n oe N ú and we define f (x) = (e x ) n . From (4.0.1), we deduce that

exp(a) exp(b) = exp(a) • 1 exp(b) = exp(a ≠ b). ( 4 
f (x) = e x • • • • • e x ¸˚˙n times = e n times ˙˝¸x + • • • + x = e nx .
This proves the following lemma We consider the following function f (x) = (e x ) [START_REF] Zorich | Mathetical Analysis[END_REF] . Then, we have

f (x) = e 6x .
Exercise 4.1.8. Simplify the following expressions

1. f(x) = (e x ) 3 • e ≠3x , 2. g(x) = ! e 3 " ≠2 • (e x ) 5 (e 2x ) 2 , 3. h(x) = 1 e ≠2x 2 +1 2 2 (e ≠x+5 ) 3 , 
4. i(x) = ! e 2 " n 2 e 2 n 2 , 5. j(x) = 1 (e ≠x ) n •
Let a be a fixed real number. We are looking for x oe R, such that, exp(x) = a. In the next section we will study these types of equations.

Solutions of Some Equations

In this section we are interested in equations of the form: find x oe such that exp(x) = a where a is a fixed real number. We can point out that, when a AE 0, the equation does not have solutions. Because for any real number x, exp(x) > 0.

In section (4.3.2) we will prove for every strictly positive real number b there exists a unique y oe R, such that exp(y) = b. This allows us to restrict our selves in the study of equation in the form exp(x) = exp(a).

Let x and a be two real numbers, such that, exp(x) = exp(a). Since for any real number a, exp(a) > 0, one can divide the equation above by exp(a). This holds exp(x) exp(a)

= exp (x ≠ a) = exp(0).

Therefore, x ≠ a = 0. This leads to the identity, x = a. We can summarize all these steps in the following lemma. 

Solution:

1. Applying the lemma above we find that, the solution of the equation

exp(x) = exp(3) is x = 3.
2. The equation exp(x + 1) = exp( 5) is equivalent to x + 1 = 5. This implies the solution is x = 4.

3. The equation exp(3x + 2) = exp(x + 6) is equivalent to the following equation 3x + 2 = x + 6. Then, we have 2x = 4. This means that x = 2. Exercise 4.2.3. Find the solution of the following equations

1. exp(x 2 + 5x + 1) = exp(2x + 1), 2. exp(3x + 5) = exp(x 2 + 4x + 4), 3. 1 exp(x 2 + 5x + 3) = exp(2), 4. exp(x 3 + 5x 2 ≠ 3) exp(x 3 + 2x 2 ) = 1, 5. exp(x + 1) = exp(≠x + 2), •
To simplify notations we will sometimes write e x instead of exp(x). As we did it previously for other functions, here also we study continuity and variations of the function exponential.

Study of the Exponential Function

The aim of this section is to study the function exp. This section is organized as follows. In the first subsection we deal with limits at the bounds of the domain. Since the domain of exp is R, we will compute the limits at +OE and ≠OE. The second subsection is devoted to variations of the function exp. Using variations of the function we will be able to find solutions of inequations.

Limits at the Bounds of the Domain

In this subsection we define the limit of exp at +OE and at ≠OE. In a second time, we compare exp to polynomial functions, when x goes to ±OE. A glance on its graph allows us to set the following definition. We can remark from this definition that the line y = 0 is a horizontal asymptote of C f at ≠OE.

Since we defined lim xae+OE f (x) = +OE, we want to know how fast the function exp goes to infinity. To this end we compare the function exp to polynomial functions at +OE. Let n Ø 1 be a natural number. We fix x oe (0 ; +OE) and we define the functions f (x) = exp(x) and g(x) = x n . We want to know, between x n and exp which one of them increases more fast than the other one. Here we will prove that the function e x increases more fast than any power of x when x > 0. This is the content of the following lemma.

Lemma 4.3.2. Let n Ø 1 be a natural number. We define n! = 1 ◊ 2 ◊ • • • ◊ n.
Then, for every x in (0 , +OE)

x n n! AE e x . (4.3.2)
We agree that 0! = 1.

Proof. We will prove (4.3.2) by induction. Let x oe R + , and n Ø 0 be a natural number.

Step 1: Since for n = 0, x 0 = 1 and 0! = 1, we have

x 0 0! = 1 AE e x .
Then, the property is true for n = 0.

Step 2: We assume that the property is true for some natural number k. This

means that x k k! AE e x .
Step 3: Now we need to prove that the property holds for k + 1. In other words, we have to prove that

x k+1 (k + 1)! AE e x .
To establish this inequality, we define the function g(x) = x k+1 (k+1)! ≠e x . Here we admit the derivative of e x is e x . The function g is di erentiable in R and for all x oe R,

g Õ (x) = (k + 1)x k (k + 1)! ≠ e x = x k k! ≠ e x .
Since we assumed that x k k! AE e x , then g Õ (x) AE 0. Hence g is decreasing in [0 , +OE).

We know that the maximum of g in [0 , +OE) is g(0) = ≠1. Therefore g is negative.

Hence

x k+1 (k+1)! AE e x .
We conclude that for all x Ø 0,

x n n! AE e x .
Considering n = 1 in the lemma we obtain x AE e x , for every x > 0. From this we get lim

xae+OE x AE lim xae+OE e x .
This is a confirmation of definition (4.3.1). Another consequence of the lemma above is the following result. Take x > 0. Let n Ø 1 be a natural number. From the lemma above, we know that x n+1 (n+1)! AE e x • As we have chosen x > 0, then x n " = 0. Hence we can divide by x n in the inequality above. We get

x (n + 1)! AE e x x n • Since lim xae+OE x (n + 1)! = +OE,
we conclude that lim xae+OE e x

x n = +OE. This involves the following theorem. • We set

X := x + 1,
we can see that

lim xae+OE x + 1 = lim xae+OE X = +OE. Then, f (x) = 1 e • e X X •
Therefore, Let x > 0 be a real number. For any natural number n Ø 0 we define

lim xae+OE f (x) = lim Xae+OE 1 e • e X X =
f (x) = x n e x .
We want to determine the limit of f at ≠OE. We emphasize that, if we consider u(x) = e x and v(x) = x n we will have

lim xae≠OE u(x) = lim xae≠OE e x = 0 and lim xae≠OE v(x) = lim xae≠OE x n = ±OE.
Then, lim

xae≠OE f (x) = undefined !.
However we know that the function exp goes to 0 more fast than x n goes to ±OE.Hence, this limit exists and it is given in the following theorem Theorem 4.3.7. Let n Ø 1 be a natural number. Then, for every x oe R lim xae≠OE

x n e x = 0.

Proof. When x = 0, there is nothing to prove, because x n e x = 0. When n = 0 we apply the definition (4.3.1). Now, we consider x oe R ú , and a natural number n Ø 1. We define f (x) = x n e x and we set t := ≠x. Thus, we have lim xae≠OE t = +OE. On the other part, we observe that 

f (x) = x n e x = (

Variation of Exponential Function

In this subsection we study the variations of exp. We point out that, another way to introduce the exponential function is to use the relation between function exp and its derivative. The exponential function satisfies the following equation: Find a C 1 function f : R ae (0 , +OE) that satisfies,

f Õ (x) = f (x) and f (0) = 1, (4.3.4) 
for every real number x. We admit the following theorem. From this definition, we can observe that f Õ (x) = e x > 0. Then the function f is increasing in R.

Using the limits established in the previous subsection, we obtain the following variational table

x ≠OE +OE +OE f ¬ 0
From this table we are able to state the following theorem. Theorem 4.3.11. Let f (x) = exp(x). Then the function f is increasing in R. Now, we consider a real function u. Since the domain of exp is R, we can always define exp(u(x)), for all x oe D u . We define g(x) = e x and f (x) = e u(x) . We can observe that, f (x) = g(u(x)). We assume the function u is di erentiable in its domain. Using the chain rule property, (or the derivative of composition of functions), we obtain We define the function f (x) = e u(x) . Then the function f is di erentiable in I, and for every x oe I, f Õ (x) = u Õ (x)e u(x) .

f Õ (x) = u Õ (x) ◊ g Õ (u(x)) = u Õ (x)e u(x) .
Consider f (x) = e u(x) , we know from the theorem above that f Õ (x) = u Õ (x)e u(x) . Since for all x in the domain of u , e u(x) > 0, therefore, f Õ and u Õ have the same sign. This means that the function u and exp(u) have the same variations.

Example 4.3.13. We consider the function f (x) = e x+1 . This function is defined in R. Now we set u(x) := x + 1. Since u and e x are di erentiable in R, the function f (x) = e x+1 is di enrentiable in R. Let x be a real number. We have u Õ (x) = 1. Applying the theorem above we obtain

f Õ (x) = u Õ (x) • e u(x) = 1 • e x+1 = e x+1 > 0.
We conclude that the function f is increasing in R, because for every x oe R, e x+1 > 0.

On the other hand we have This holds the following variational table

x ≠OE +OE +OE f (x) ¬ 0 Example 4.3.14. Let g(x) = e ≠2x+3
. The function g is defined in R. Now, we define u(x) = ≠2x+3. The functions u and e x are di erentiable in R. Since e ≠2x+3 is the composition of the function exp and u, then e ≠2x+3 is di erentiable in R. The derivative of the function u is u Õ (x) = ≠2 for every x oe R. Therefore

g Õ (x) = ≠2e ≠2x+3 .
As we know e ≠2x+3 > 0, for every real number x, then g Õ (x) = ≠2e ≠2x+3 < 0. The function f is decreasing in R. Consequently we are able to establish this variational table.

Now we introduce the following variable

x ≠OE +OE +OE g √ 0

Example 4.3.15. In this example we take the following function h(x) = e x 2 +x+1 .

This function is defined in R. We define the function u(x) = x 2 + x + 1 for any real number x. The function e u(x) is di erentiable in R, because it is the composition of two di erentiable functions u and e x in R. Let x oe R, the derivative of the function

u is u Õ (x) = 2x + 1. This implies h Õ (x) = (2x + 1)e x 2 +x+1 .
Since exp ! x 2 + x +1 " > 0, then the sign of h Õ depends on the sign of u Õ (x) = 2x +1. Hence we obtain the following variational table

x ≠OE ≠1/2 + OE h Õ ≠ 0 + +OE +OE h √ ¬ h (≠1/2)
The function h is decreasing in (≠OE ; ≠1/2] and increasing in [≠1/2 , +OE). Exercise 4.3.16. Study the variation of the following functions 1. f(x) = e x 3 +2x+1 , 2. g(x) = e 3x+2 , 3. h(x) = e ≠x+6x+1 .

In the section above we proved the function exp is a strictly increasing function in R. This means that for two real numbers a and b, such that a AE b, we have exp(a) AE exp(b). In the following subsection we want establish the reverse implication. Let a and b be two real numbers such that exp(a) AE exp(b). Does it mean that a AE b ? To answer this question we introduce the following subsection.

Solutions of Some Inequations

Let a be a strictly positive real number. The function exp is continuous and strictly increasing from 0 to +OE. Then, the IVT theorem implies there exist a unique

x 0 oe R such that exp ! x 0 " = a.
In this subsection, we deal with inequations. This means that if we take a fixed real number b, we look for all real number x, such that exp(x) AE b.

According to b two situations hold:

Situation 1: b AE 0. When the real number b is negative or equal to 0, the inequation exp(x) AE b does not have solutions. Indeed we know for every real number x, exp(x) > 0. Then, there are no real number satisfying exp(x) AE 0. In this case we say the set of solutions is empty and we denote S = ÿ Situation 2: b > 0. In this case there is x 0 oe R such that exp(x) AE exp(x 0 ).

From this we remark that we can restrict our selves in inequations of the form find x oe R such that exp(x) AE exp(x 0 ) or exp(x) Ø exp(x 0 ).

Since the function exp is continuous and increasing there exist an increasing function denoted f ≠1 : (0 , +OE) ae R, such that

' x oe R f ≠1 (exp(x)) = x and 'y oe (0 , +OE), exp ! f ≠1 (y) " = y. (4.3.5)
In general we can prove the following theorem Theorem 4.3.17. Let I and J be two intervals in R and f : I ae J. We assume that the function f continuous and strictly monotone. Then there exist a function g : J ae I, such that ' x oe I g(f (x)) = x and 'y oe J, f (g(y)) = y.

We point out that the function g is continuous and strictly monotone. Moreover if the function f is increasing, then the function g is an increasing function. If the function f is decreasing, then the function g is also decreasing. The graph of g denoted C g is symmetric to the graph of f denoted C f with respect to the line y = x.

From (4.3.5) and theorem 4.3.17 we deduce there exist a strictly increasing function f ≠1 defined from (0 , +OE) to R, such that if exp(a) AE exp(b), we have

a = f ≠1 (exp(a)) AE b = f ≠1 (exp(b)) .
Using this function we can state the following lemma Lemma 4.3.18. Let a and b be two real numbers. Then, we have

1. exp(a) AE exp(b) is equivalent to a AE b 2. exp(a) Ø exp(b) is equivalent to a Ø b
Let a be a fixed real number. We consider the inequation: find x oe R, such that, exp(x) Ø exp(a).

Applying the lemma above we obtain x Ø a. The real numbers which satisfy the inequation exp(x) Ø exp(a) are the real numbers that belong to [a , +OE). In this case we write S = [a , +OE).

On the other hand if we consider the inequation exp(x) AE exp(a), we obtain Since exp is a continuous and increasing, this inequality is equivalent to

S = (≠OE , a].
3x + 1 > ≠2.
That is, 3x > 3. This implies that x > ≠1. Hence S = (≠1 ; +OE). The solutions are given by this inequality

x + 1 < 2.
This leads to x < 1. Then S = (≠OE ; 1).

Exercise 4.3.24. Find the solutions of the following inequations

1. e 3x+1 > e x 2 +4x+1 , 2. e x 2 +2x+1 AE 1, 3. e ≠3x+1 Ø e 2x+4 ,

4. e x AE e x 2 +5x+6 , 5. e x 2 +6x+7 < e 2x 2 +3x+5 .

Using the function exp as an elementary function, we are able to construct new functions. In the next section we define hyperbolic cosinus and sinus

Hyperbolic Cosinus and Sinus

In this section, we will construct functions from exp which is considered here as an elementary function. We will also study variation of these new functions.To end the section we will give some properties of these functions by making an analogy with trigonometric functions. The definitions of these two functions show clearly that their domain is R.

Study of Hyperbolic cosinus

Let us consider the following function f (x) = (exp(x) + exp(≠x)) /2. The function f is the sum of functions which are defined in R. Then the domain of the function f is R. Now we consider an arbitrary real number x, we have

f (≠x) = e ≠x + e ≠(≠x) 2 = e ≠x + e x 2 = e x + e ≠x 2 = f (x).
We have proved that ch(x) = ch(≠x). In other words ch is an even function.

Lemma 4.4.3. The function ch is an even function.

A possible graphical interpretation of this lemma, is the following one: The graph of f denoted C f is symmetric with respect to the y ≠ axis. Proof. To prove this theorem, we set X := ≠x. This completes the proof.

Theorem 4.4.5. Let f (x) = cosh(x). Then, 1. f is decreasing in (≠OE , 0] and increasing in [0 , +OE).

2.

The function f has a minimum at 0, which is equal to 1.

The equation of tangent line of C f at 0 is given by

(T 0 ) : y = 1.
What says the property 3 of the theorem above is the function f has a horizontal tangent line at x 0 = 0.

Proof. Let f (x) = ch(x).

proof of 1 : To prove 1, we show at first that f is de erentiable in R. Indeed the functions e x and e ≠x are di erentiable in R. This implies that ch(x) is di erentiable in R. For every real number x

f Õ (x) = e x ≠ e ≠x 2 = sh(x)•
To determine the variations of f we need to study the sign of f Õ . We know that, f (x) Ø 0 if and only if e x ≠ e ≠x Ø 0. This is equivalent to e x Ø e ≠x . This leads to the following inequality x Ø ≠x. This means that 2x Ø 0. That is, f Õ is negative in (≠OE , 0], and positive in [0 , +OE). In other words, f is decreasing in (≠OE , 0], and increasing in [0 , +OE).

x ≠OE 0 + OE f Õ (x) ≠ 0 + +OE +OE f √ ¬ 1
proof of 2 : To prove 2, we point out that, f is decreasing in (≠OE , 0] and increasing in [0 , +OE). Then, the function f reaches its minimum at 0. The value of this minimum is

f (0) = e 0 + e ≠0 2 = 1.
proof of 3 : We recall that the tangent line of C f at some point x 0 is defined by

(T x0 ) : y = f Õ (x 0 )(x ≠ x 0 ) + f (x 0 ).
Here we take x 0 = 0. We know f Õ (0) = 0 and f (0) = 1. Therefore,

(T 0 ) : y = f Õ (0)(x ≠ 0) + f (0) = 1.
This proves the theorem. The graph of cosh is given below

≠3 ≠2 ≠1 1 2 3 2 4
In the following subsection we list some properties of the function sh.

Study of the Hyperbolic Sinus Function

Let f (x) = sh(x). The domain of f is D f = R. We consider an arbitrary real number x. we have Proof. The function f is di erentiable in R, because it is the sum of two di erentiable functions in R. Indeed the functions e x /2 and e ≠x /2 are di erentiable functions in R. For every x oe R,

f (≠x) = e ≠x ≠ e ≠(≠x) 2 = e ≠x ≠ e x 2 = ≠ e x ≠ e ≠x 2 = ≠f (x).
f Õ (x) = e x + e ≠x 2 = ch(x).
Since for all x oe R, e x > 0 and e ≠x > 0, we deduce the function

f Õ (x) = ch(x) > 0. Hence, the function f is increasing in R x ≠OE +OE +OE f ¬ ≠OE
The graph of sinh is given below

≠3 ≠2 ≠1 1 2 3 ≠4 ≠2 2 4
Let x be a real number. We have ch(x) + sh(x) = e x and ch(x) ≠ sh(x) = e ≠x .

This involves

ch 2 (x) ≠ sh 2 (x) = ! ch(x) ≠ sh(x) "! ch(x) + sh(x) " = e x • e ≠x = 1.
Thus, we have proved the following lemma.

Lemma 4.4.9. For any real number x we have

ch 2 (x) ≠ sh 2 (x) = 1. (4.4.1)
In the following theorem we give some properties shared by cosh and sinh. Proof. We will just prove 1 and 3. Because the proof of 2 is similar to 1 and the proof of 4 is the same as 3. This completes the proof of the theorem.

Making a parallel with trigonometric function, we define for every x oe R, the function

f (x) = sh(x) ch(x) = e x ≠ e ≠x e x + e ≠x •
We can observe

f (x) = e x ≠ e ≠x e x + e ≠x = e x (1 ≠ e ≠2x ) e x (1 + e ≠2x ) = 1 ≠ e ≠2x 1 + e ≠2x •
The function f defined above is called the hyperbolic tangent function.It is denoted f (x) = tanh(x) = th(x). In the following subsection we study the function tanh.

Study of Hyperbolic Tangent

Let f (x) = th(x). Since for all x oe R, we have ch(x) " = 0. The function f is well defined in R. Now we take an arbitrary real number x and we consider the function f (x) = th(x). One has Proof. We start by defining X = ≠2x. We have

tanh(≠x) = sh(≠x) ch(≠x) = ≠ sh(x) ch ( 
lim xae+OE f (x) = lim Xae≠OE 1 ≠ e X 1 + e X = 1.
On the other hand we have lim Xae+OE 1 e X = 0. Therefore,

lim xae≠OE f (x) = lim Xae+OE 1 ≠ e X 1 + e X = lim Xae+OE 1 e X ≠ 1 1 e X + 1 = ≠1.
The meaning of these limits is

• The line y = ≠1 is a horizontal asymptote of C f at ≠OE.
• The line y = 1 is a horizontal asymptote of C f at +OE. Theorem 4.4.13. Let f (x) = tanh(x). Then, the function f is increasing in R.

Proof. We define f (x) = tanh(x) = sinh(x)/ cosh(x). The functions sinh and cosh are di erentiable in R and for all x oe R, cosh(x) " = 0. Then, the function f is di erentiable in R. For every x oe R,

f Õ (x) = cosh 2 (x) ≠ sinh 2 (x) cosh 2 (x) = 1 cosh 2 (x) > 0.
Hence, f is an increasing function in R. Below we plot the graph of tanh Let x oe R. In the previous chapter we defined the function exp(x) and studied it. We established the function exp is continuous and strictly increasing. Then, there is a unique function f : (0 , +OE) ae R, such that, f (exp(x)) = x, ' x oe R.

≠3 ≠2 ≠1 1 

In this case we know the function f satisfies

Y _ _ _ _ ] _ _ _ _ [ f (e x ) = x, for all x oe R, exp (f (x)) = x, for all x > 0, f (1) = 0. (5.0.1)
This function f is called the Naperian Logarithm or the Natural Logarithm and we denote it by ln(x). Using the notation ln we can simplify (5.0.1), in the following way:

ln (e x ) = x, ' x oe R, exp(ln(x)) = x, ' x > 0, ln(1) = 0.
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The graph of the function ln is drawn below

1 2 3 ≠1 1 
Let a be a strictly positive real number. We consider the equation, find x in R, such that, exp(x) = a. Using the function ln we obtain ln (exp(x)) = ln(a). Since ln (exp(x)) = x, we have x = ln(a). The objective of this chapter is to study the properties of the function ln . We will see that the function ln has interesting properties.

To make the presentation clear, we organize this chapter as follows. In section 1 we give a list of properties satisfied by ln. In section 2, we deal with variations of ln. We will also solve equations using the function ln. The last section is devoted to the logarithm in basis a > 0 denoted Log a .

Some Properties of the Natural Logarithm

Let x > 0 be a real number. We consider the function f (x) = ln(x). We know the function f is continuous and strictly monotone. We established also the function f is di erentiable in (0 , +OE). Here we prove some other properties satisfied by f . Before going further, we point out that we can define the function ln by using a functional equation : find a continuous function f that satisfies

f (x • y) = f (x) + f (y) and f (1) = 0.
In section (5.2) we will see all there is another way to define the function ln by using its derivative. Indeed, we can seek for a di erentiable function f defined in (0 , +OE) that satisfies

f Õ (x) = 1 x •
In this section we establish at first elementary properties of the function ln . Proof. We prove this proposition by induction. We take x oe (0 , +OE). We fix a natural number n Ø 2.

Step 1 : We consider n = 2, we have ln ! x 2 " = ln(x • x) = ln(x) + ln(x) = 2 ln(x). The property is true for n = 2.

Step 2 : We assume the property true for some natural number k. This means that, ln ! x k " = k ln(x).

Step 3 : We need to prove that the property holds for k + 1. In other words, we want to establish that, ln ! x k+1 " = (k + 1) ln(x).

(5.1.4)

To prove (5.1.4), we set X = x k . Then, we have ln

! x k+1 " = ln(X • x) = ln(X) + ln(x).
By step 2, we know that ln(X) = ln

! x k " = k ln(x). Hence, ln ! x k+1 " = k ln(x) + ln(x) = (k + 1) ln(x).
The property is true for k + 1. Conclusion: for every x oe ]0 , +OE[, and n Ø 2, ln !

x n " = n ln(x).

Let x oe (0 , +OE). We consider a natural number n Ø 2. We define X = x n . Using (5.0.1), we have e ln(X) = e ln(x n ) = e n ln(x) = 1 e ln(x)

2 n = (x) n = x n .
This proves the following lemma Lemma 5.1.9. Let x be a real number in (0 , +OE). Then, for any natural number n Ø 2,

x n = exp (n ln(x)) . Now, we consider, x oe (0 , +OE). Let p and q be two natural numbers , such that, q > 0. We define r = p q • The number r is called a rational number. For every

x oe (0 , +OE), we have

x p/q = (x p ) 1/q = 1 e p ln(x)
2 1/q = e (p ln(x))/q = e r ln(x) .

Lemma 5.1.10. Let x oe (0 , +OE) and r be a positive rational number. Then, the following identity holds x r = exp (r ln(x)) . Now we recall the following theorem which is admitted.

Theorem 5.1.11. Let x be a real number. Then, there is a rational sequence

(r n ) nØ0 , such that, x = lim nae+OE r n .
The theorem 5.1.11 means that real numbers are obtained as limits of rational sequences. Now we consider real number y. From theorem 5.1.11 we deduce there is a rational sequence (r n ) nØ0 , such that, y = lim nae+OE r n . Let x > 0 be a real number. We have lim This allows us to establish the following result.

Lemma 5.1.12. Let x belongs to (0 , +OE). Then, for every real number y, we have

x y = e y ln(x) .

Example 5.1.13. For all x oe ]0 , +OE[, we have,

1. x 3 = exp ! 3 ln(x) " , 2.
x 1/5 = exp (ln(x)/5) , 3. Ô x = exp (ln(x)/2) .

Exercise 5.1.14. For any x > 0 define the following powers

(1). x z , z oe R, (2). x 1/n , ' n Ø 1, (3). n n n , ' n Ø 1.
In the next section we continue to study the properties of this function. Here we investigate continuity and variations of the function ln .

Study of the Logarithmic Function

The aim of this section is to study continuity and variations of ln. We will start by giving its limits at the bounds of its domain. In a second time, we define its derivative and specify its variations. At the end of this section, we will study functions of the form ln(u(x)), where u(x) is a real function such that, u(x) > 0, for all x oe D u , and we deal with equations using ln and exp.

A look on the graph of ln allows us to set the following theorem.

Theorem 5.2.1. Let x oe (0 ; +OE). We define the function f (x) = ln(x). Then,

lim xae0 f (x) = ≠OE and lim xae+OE f (x) = +OE. (5.2.1)
To establish the limits of the function at the bounds of the domain, we emphasize that the graph of ln and the graph of exp are symmetric with respect to the line y = x. Indeed, we know that if f is a continuous and strictly monotone then, f admits a reciprocal function f ≠1 ,such that, for every x oe D f , we have f ≠1 ! f (x) " = x and for every y in the range of f , we have f ! f ≠1 (y) " = y. Geometrically speaking, the graph of f , and the graph of the function f ≠1 are symmetric with respect to the line y = x.

From this we deduce, that lim . This means that f (x) = x. We consider the variable X := exp(x). We know that 

Continuity of the Function ln

In this subsection we study the continuity of the function ln. The continuity of ln is a consequence of the continuity of the function exp. The following theorem is admitted Theorem 5.2.2. The function f (x) = ln(x) is continuous in the interval (0 , +OE).

In the following subsection we study the variations of the function ln

Variations of the Function ln

This subsection is devoted the the variations of the function ln. Indeed we want to know if the natural logarithm is whether increasing or decreasing.

Let us consider a real number x. We define the function f (x) = exp(x). We know from the definition of ln, that ln ! exp(x) " = x. From this we deduce the function ln ! exp(x) " is di erentiable in R. To simplify notations, we denote g(x) = ln(x) for any x > 0. Applying the theorem of derivative of composition of functions, we obtain

1 g ! exp(x) " 2 Õ = g Õ ! exp(x) " • exp(x) = 1.
This involves

g Õ ! exp(x) " = 1 exp(x)
•

Setting X := exp(x), we obtain

1 ln ! X) " 2 Õ = 1 X
, for any X oe (0 , +OE).

We have established the following theoerem Theorem 5.2.3. Let x oe (0 ; +OE). We define f (x) = ln(x). Then the function f is di erentiable in (0 ; +OE) and for every x oe (0 ; +OE), we have

f Õ (x) = 1 x •
Since the real number x belongs to (0 , +OE), we have f Õ (x) > 0. This implies the function f is increasing in (0 , +OE). Theorem 5.2.4. Let x oe (0 ; +OE). Then, the function f (x) = ln(x) is increasing (0 , +OE).

Let x belong to (0 , +OE). We define the function f (x) = ln(x). Using theorem 5.2.3 we have f Õ (x) = 1

x > 0. The following variational table holds

x 0 + OE +OE f ¬ ≠OE
As we know ln(1) = 0 and f is an increasing function, we are able to establish the following sign table

x 0 1 + OE ln(x) ≠ 0 +
Now, we consider a function u : D u µ R ae (0 ; +OE). We know that the function ln : (0 ; +OE) ae R. Since u(D u ) is included in the domain of ln, we can define the function f (x) = ln(u(x)).

Hence the function ln(u(x)) has domain D u . Let us assume that the function u is di erentiable in some open interval I µ D u . Then, the function f which is the composition of di erentiable functions is di erentiable in the open interval I.

Denoting g(x) = ln(x) for every x oe (0 , +OE) and using the chain rule derivation, we obtain

f Õ (x) = u Õ (x)g Õ (u(x)) = u Õ (x) u(x) • (5.2.2)
This proves the following theorem. interval. We suppose that the function u is di erentiable in I. Then, the function f (x) = ln(u(x)) is di erentiable in I, and for every x oe I, the derivative of the f is given by (5.2.2)

We emphasize that this theorem means that the function ln(u(x)) is di erentiable in its domain.

Example 5.2.6. As an example, we consider the function f (x) = ln(x 2 + 2). The domain of f is D f = R. The function u(x) = x 2 + 2 is di erentiable in R, and u Õ (x) = 2x. Then, the function f is di erentiable in R and for every real number x, we have

f Õ (x) = 2x x 2 + 2 •
Example 5.2.7. We define the function g(x) = ln(x + 5). This function is defined in the interval I = (≠5 , +OE). The function u(x) = x + 5 is di erentiable in (≠5 , +OE) and for every x oe (≠5 , +OE ) we have u Õ (x) = 1. Therefore, the function is di erentiable in I and for any x oe I, one has

g Õ (x) = 1 x + 5 •
Example 5.2.8. In this example we consider the function f (x) = ln(x 2 + 4x + 3).

We define the function u(x) = x 2 +4x+3. In this case, we have = 16≠12 = 4 > 0.

We have two real roots,

x 1 = ≠4 ≠ 2 2 = ≠3 and x 2 = ≠4 + 2 2 = ≠1•
We can establish the following sign table for u

x ≠OE ≠3 ≠1 +OE x 2 + 4x + 3 + 0 ≠ 0 +
This implies for any x in (≠OE , ≠3) fi (≠1 ; +OE), we hvae u(x) > 0. Hence D f = (≠OE , ≠3) fi (≠1 ; +OE). Let x oe D f , the derivative of u is u Õ (x) = 2x + 4. This leads to the following identity

f Õ (x) = 2x + 4 x 2 + 4x + 3 •
Exercise 5.2.9. Find the derivative of the following functions

1. f(x) = ln(3x + 1), 2. g(x) = ln(x 2 + 5x + 6), 3. h(x) = ln 1  x 2 + 4x + 4 2 , 4. i(x) = ln 3 x + 5 2x + 3 4 , 5. j(x) = ln((x + 1)(x + 4)).
Let us consider again a real function u. We know that the following function f (x) = ln(u(x)) is defined if and only if u(x) > 0. Hence the domain of the function

f is D = {x oe R : u(x) > 0}. Moreover, if we suppose that u is di erentiable in D, we obtain f Õ (x) = u Õ (x) u(x) •
Since u(x) > 0 for every x oe D, we conclude that f Õ and u Õ have the same sign. This leads to the following theorem Theorem 5.2.10. Let u : D ≠ae ( 0 , +OE ) be a di erentiable function. For every

x oe D, we define the function f (x) = ln(u(x)). Then, the functions f and u have the same variations in D. Xae0 + ln(X) = ≠OE. We conclude that the function f does not have horizontal asymptote at +OE and the line x = ≠2 is a vertical asymptote of f .

Variations of f :

To study the variations of f we start by remarking that the function u(x) = 2x+4 is di erentiable in (≠2 ; +OE ). Therefore the function f (x) = ln(2x+ 4) is di erentiable in the interval ] ≠ 2 ; +OE[. Since u Õ (x) = 2 for all x > ≠2, we have

f Õ (x) = 2 2x + 4 > 0•
From this we deduce that the function f is an increasing function in (≠2 ; +OE) because the function u is increasing.

x ≠2 + OE +OE f ¬ ≠OE Example 5.2.12. Let f (x) = ln ! x 2 + 2x "
. We can easily check that the domain of this function is D = (≠OE , ≠2 ) fi (0 , +OE ). Defining X := x 2 + 2x, we establish that lim

xae±OE X = +OE, lim xae≠2 ≠ X = 0 and lim xae0 + X = 0 (5.2.3) From (5.2.3) one deduces lim xae±OE f (x) = lim Xae+OE ln(X) = +OE, lim xae≠2 ≠ f (x) = lim Xae0 + ln(X) = ≠OE and lim xae0 + f (x) = lim Xae0 + ln(X) = ≠OE.
These limits have the following interpretations:

• the limits at ±OE mean that we do not have horizontal asymptotes at ±OE

• the limit at ≠2 has the following meaning. The line x = ≠2 is a vertical asymptote of the curve of f

• the limit at 0 means that the line x = 0 is a vertical asymptote of C f .

Since the function f is the composition of di erentiable functions in D, it is di erentiable in D. Then, for every x oe D, we have

f Õ (x) = 2x + 2 x 2 + 2x •
The sign of the function f Õ allows to establish the following variational table

x ≠OE ≠2 0 + OE +OE +OE f √ ¬ ≠OE ≠OE
Exercise 5.2.13. Study the following functions 1. f(x) = ln(5x + 1), 2. g(x) = ln(x 3 ≠ 1), 3. h(x) = ln

3 3x + 5 x + 3 4 •
Let x be a strictly positive real number. We set f (x) = ln(x). The function f is continuous from (0 , +OE) into R. It is also strictly increasing. Hence we deduce from the IVT theorem and its corollaries , that, for all b oe R, there exists a unique x oe (0 , +OE), such that, ln(x) = b. In the next section we show how to find solution of equations including the function ln. To make the presentation clear we will distinguish two type of equations First Form: Let a > 0. Find x oe (0 , +OE), such that, ln(x) = ln(a). Second Form: Let c be a fixed real number. Find x oe (0 , +OE), such that, ln(x) = c.

Solutions of Some Equations

The objective of this subsection is to give solutions of equation of the first and second form.

Solutions of the First Form

Let a > 0 be a fixed real number. We aim to find a strictly positive real number x solution to the equation ln(x) = ln(a). We remark that, this equation is equivalent to e ln(x) = e ln(a) . That is, x = a. This proves the following lemma Lemma 5.2.14. We consider fixed real number a which is strictly positive. Let x belongs to (0 , +OE), such that, ln(x) = ln(a). Then, x = a. This is a consequence of the fact that the function ln is continuous and strictly increasing, then, it is a bijection. In this case we have ln(x) = ln(a) … x = a. Example 5.2.15. We consider the equation ln(x) = ln (5). Using the lemma above we have, x = 5. Example 5.2.16. We consider the following equation find x oe R such that, ln(x + 1) = ln (3). We know that the function ln(x + 1) is defined if and only if x oe (≠1 , +OE). On the other hand the equation above is equivalent to x + 1 = 3. Hence, x = 2. Since 2 oe (≠1 , +OE), the solution of the equation is x = 2. Exercise 5.2.17. Find the solutions of the following equations:

1. ln(3x + 2) = ln(4), 2. ln(x 2 + 5x + 2) = ln(2x + 3), 3. ln(x + 5) = ln(x + 6), 4. ln(x 2 + 2x + 1) = ln(x + 1), 5. ln(2x + 4) = ln(2).

Solution of the Second Form

Let b be any fixed real number. We consider the following equation find x in R, such that, ln(x) = b. Using the function exp, one obtains exp ! ln(x) " = exp(b). This leads to the identity x = e b . Lemma 5.2.18. We consider a fixed real number b. Let x belongs to (0 ; +OE), such that, ln(x) = b. Then, x = e b . Example 5.2.19. We consider the equation ln(x) = 2. Therefore, x = e 2 .

Example 5.2.20. To find solutions to the equation ln(x + 3) = ≠1 we proceed in this way. First we remind that, ln(x + 3) is defined in (≠3 ; +OE). The equation ln(x+3) = ≠1 is equivalent to x+3 = e ≠1 . Thus, we obtain the identity x = e ≠1 ≠3. We can easily check that e ≠1 ≠3 oe (≠3 ; +OE). Therefore, the solution is x = e ≠1 ≠3. Exercise 5.2.21. Find the solutions to the following equations 1. ln(x + 1) = 3, 2. ln(3x + 1) = 5, 3. ln(x + 6) = 1, 4. ln(7x + 2) = 2, 5. ln(2x + 5) = ≠5.

Using the previous subsection we can deal with more general equations including exponential and logarithmic functions. In the next subsection, we will solve equations of the following form: Find x oe]0 ; +OE[

a ln 2 (x) + b ln(x) + c = 0, (5.2.4)
where a, b and c are constant real numbers such that a " = 0.

General Equations

To deal with (5.2.4), we introduce the following substitution. We define X := ln(x). Thus the equation (5.2.4) becomes

aX 2 + bX + c = 0. (5.2.5) 
Equation (5.2.5) is more familiar to us. To find solutions to (5.2.5) we have to distinguish three cases according to the sign of = b 2 ≠ 4ac. Case 1: > 0. In this case, we have two real solutions

X 1 = ≠b ≠ Ô 2a = ln(x 1 ) and X 2 = ≠b + Ô 2a = ln(x 2 ).
This allows to state that (5.2.4) has two real solutions

x 1 = e X1 and x 2 = e X2 .
Example 5.2.22. We consider the following equation : find a strictly positive real number x, such that, (ú) : ln 2 (x) + 4 ln(x) + 3 = 0.

Setting X := ln(x), one obtains X 2 + 4X + 3 = 0. Thus, we have

= 16 ≠ 12 = 4 > 0.
We have two real solutions

X 1 = ≠4 ≠ 2 2 = ≠3 and X 1 = ≠4 + 2 2 ≠ 1.
This means ln( Setting X := ln(x), we have X 2 + X + 2 = 0. Thus, we get = 1 ≠ 8 = ≠7 < 0. We conclude that (ú ú ú) does not have real solutions. Exercise 5.2.25. Find solutions to the following equations 1) ln 2 (x) + 3 ln(x) + 1 = 0, 2) 2 ln 2 (x) + 5 ln(x) + 2 = 0, 3) ln 2 (x) + 2 ln(x) + 1 = 0, 4) 2 ln 2 (x) + ln(x) + 1 = 0, 5) ln 2 (x) + 2 ln(x) = 0.

In chapter 4 we solve equations of the form exp(x) = exp(a) for some real numbers x and a. We did not investigate equations of the form exp(x) = a for some real number a. The purpose of this paragraph is to use the function ln, to deal with this latter. Let a be a real number we consider the equation find exp(x) = a. We know for any x in R, we have exp(x) > 0, then, when a < 0, the equation exp(x) = a does not have solutions.

Lemma 5.2.26. Let a be a negative real number, then the equation exp(x) = a, does not have real solutions. In this case we write S = ÿ.

In the same way we can establish that the equation exp(x) = 0 does not have solution. This means that when a AE 0 the equation exp(x) = a does not have solutions. We say the set of real solutions is empty. Now we consider a real number b which is strictly positive. We are looking for real numbers x, such that, exp We set X = exp(x). Then equation (5.2.6), becomes (ú) : a X 2 + b X + c = 0.

We know that to find the solution of (ú) we have to compute = b 2 ≠4ac. According to the sign of we have to distinguish three cases.

Case 1:

> 0. We know that, when > 0, the equation (ú) has two real solutions X 1 and X 2 . In this case one of the following situation holds for equation (5.2.6):

1. X 1 < 0 and X 2 < 0: there is no solution.

2. X 1 > 0 and X 2 < 0: we have only one solution x 1 = ln(X 1 ) 3. X 1 < 0 and X 2 > 0: we have only one solution x 2 = ln(X 2 ) 4. X 1 > 0 and X 2 > 0: we have two solutions x 1 = ln(X 1 ) and x 2 = ln(X 2 ). Example 5.2.32. We consider the following equation : find x in R, such that, (1) : e 2x ≠ 3e x + 2 = 0.

To find the solutions of (1) we set X := exp(x). Using the variable X we rewrite (1) in this way X 2 ≠ 3X + 2 = 0.

Thus we have = 9 ≠ 8 = 1 > 0. This means that the equation X 2 ≠ 3X + 2 = 0 has two real solutions

X 1 = 3 ≠ 1 2 = 1 or X 2 = 3 + 1 2 = 2.
Since X 1 > 0 and X 2 > 0 equation (1) has two real solutions which are x 1 = ln(X 1 ) = ln(1) = 0 and x 2 = ln(X 2 ) = ln (2).

In other words we obtain S = Ó 0 ; ln(2)

Ô .

Case 2: = 0. When = 0 the equation aX 2 + bX + c = 0 has only one solution which is X 0 = ≠ b 2a . In this case two situations occur for (5.2.6)

1. X 0 < 0. Then X 0 < 0, equation (5.2.6) does not have solutions.

2. X 0 > 0. Then x 0 > 0, equation (5.2.6) has one solution x 0 = ln(X 0 ).

Example 5.2.33. Find the solution of the following equation

(2) : e 2x ≠ 4e x + 4 = 0.

We use the substitution X = exp(x) to obtain

(ı) X 2 ≠ 4X + 4 = 0.
In this case we have = 16 ≠ 16 = 0. Therefore equation (ı) has only one solution which is defined by

X 0 = 4 2 = 2.
From this we deduce that the unique solution of (2) is x 0 = ln(2).

Case 3:

< 0. In this case (5.2.6) does not have solution.

Exercise 5.2.34. Determine solutions to the following equations 1. ≠ e 2x + 5e x + 4 = 0, 2. 2e 2x ≠ e x + 1 = 0, 3. e 2x + e x ≠ 1 = 0, 4. e 2x + 2e x + 1 = 0, 5. e 2x + 6e x + 8 = 0, 6. ≠ e 2x + e x + 1 = 0, 7. 3e 2x + 5e x + 2 = 0.

Let a and b be two real numbers which we want to compare between them. We consider one of the following inequalities: Using only the continuity and the variations of ln, we will be able to treat the two first one. For the last one we need to use the function exp to define the set of solutions.

Solutions of Some Inequalities

We start this subsection by studying the last inequation. Let a be a fixed real number. We consider the following inequation ln(x) Ø a. Using the function exp we obtain

ln(x) Ø a ≈∆ exp ! ln(x) " Ø exp(a) ≈∆ x Ø exp(a).
Hence the solutions are the real numbers that are gratter than exp(a).

Lemma 5.3.1. Let a be a real number. Then, the solution of the inequation ln(x) Ø a is the set of all positive real numbers that are gratter than exp(a). We denote S = [ e a , +OE ).

Example 5.3.2. Find the solution of the following inequation ln(x) Ø 3.

We know that this is equivalent to x Ø exp(3). This implies S = [exp(3) , +OE).

Example 5.3.3. Find x, such that ln(x + 5) Ø 7.

The function ln(x + 5) is defined if and only if x + 5 > 0. This means that x > ≠5. In other words ln(x + 5) is defined if and only if x oe (≠5 , +OE). On the other hand, we know that ln(x + 5) Ø 7 ≈∆ x + 5 Ø e 7 ≈∆ x Ø e 7 ≠ 5. Using the lemma above we can see that the solutions of this inequation is the set of all real numbers x, such that, x AE exp (5). Hence, we have S = (0 , exp(5) ].

Example 5.3.7. We Consider the following inequality ln(x + 2) AE 1. The function ln(x + 2) is defined in (≠2 ; +OE). On the other hand, we have

ln(x + 2) AE 1 ≈∆ x + 2 AE e 1 ≈∆ x AE e ≠ 2.
This means that, S = (≠2 ; e ≠ 2]. Exercise 5.3.8. Determine the solutions of the following inequalities 1. ln(x 2 + x + 1) Ø 0, 2. ln(x + 5) Ø 3, 3. ln(2x + 3) Ø ≠1, 4. ln(2x + 5) AE 3, 5. ln(x 2 + 3x + 2) AE 0, 6. ln(x + 5) AE 1.

In the next paragraph we focus on the inequalities of the form ln(X) Ø ln(a) or ln(x) AE ln(a), for some positive real numbers X and a. Now we fixed a positive real number a. We are looking for real numbers x such that, ln(x) Ø ln(a). Since the function ln is continuous and strictly increasing the inequality ln(x) Ø ln(a) is equivalent to x Ø a. The solutions of the inequation ln(x) Ø ln(a) are the set of all real numbers x which are gratter than a. Hence S = [ a , +OE [. Lemma 5.3.9. Let a be a fixed positive real number. Then, the solutions are defined by the interval [ a , +OE ).

Example 5.3.10. We consider the inequation: find a real number x such that, ln(x) Ø ln (3).

The solutions of this inequation is gigen by the interval [ 3 , +OE ).

Example 5.3.11. Find the solutions of the inequation ln(x + 1) Ø ln(2).

Since ln is an increasing function, we have x + 1 Ø 2. Therefore x Ø 1. Hence

S =] ≠ 1 , +OE ) fl [ 1 , +OE ) = [ 1 , +OE ) .
Similar results can be established for the inequation ln(x) AE ln(a) for some fixed positive real number a. Let a and b be two fixed real numbers. We wounder if there exist x in R such that exp(x) AE a or exp(x) Ø b.

To make the presentation clear, we separate the two inequations and we start with the inequation, find x in R, such that, exp(x) AE a, where a is a fixed real number. If the real number a AE 0, then there is no solutions. Because for every x oe R we have exp(x) > 0. This is equivalent to x + 2 Ø ln (6). This leads to the following inequality x AE ln(6) ≠ 2. We obtainS = [ln(6) ≠ 2 , +OE). To find the limits of these functions, we need to compare them to polynomial functions. This will be done in the next subsection.

Some Particular Limits

At the beginning of this section we defined the limit of the function ln. We said that it goes to +OE when x goes to +OE. Now we want to know how fast it goes to +OE. To this end we compare it to the function x n . To make the presentation easy to read, we state the following lemmas. Lemma 5.3.24. For any x oe ( 0 , +OE ) we have ln(x) AE x.

Proof. To prove this lemma, we define the function f (x) = ln(x) ≠ x. The function f is di erentiable in ( 0 , +OE ) and we have

f Õ (x) = 1 x ≠ 1 = 1 ≠ x x •
Then, the following variational table holds

x 0 1 + OE f Õ (x) + 0 ≠ ≠1 f ¬ √
Since for all x oe ( 0 , +OE ), f (x) AE ≠1, we have,

ln(x) ≠ x AE 0 ∆ ln(x) AE x.
The previous lemma is a particular case of the following theorem. Proof. To prove this theorem, we define g(x) = ln(x) ≠ x n . The function g is di erentiable in ( 0 , +OE ) and for every x > 0, we have

g Õ (x) = 1 x ≠ nx n≠1 = 1 ≠ nx n x •
We know that g Õ (x) = 0 is equivalent to this identity nx n ≠ 1 = 0. This leads to the following equation : find x > 0, such that

x n ≠ 1 n = 0 Setting y = n Ò 1 n , we obtain x n ≠ 1 n = x n ≠ y n = (x ≠ y) 1 x n≠1 + x n≠2 • y + • • • + x • y n≠2 + y n≠1 2 = 0.
For every x > 0, the factor

1 x n≠1 + x n≠2 • y + • • • + x • y n≠2 + y n≠1 2 > 0. Hence nx n ≠ 1 = 0 is equivalent to x ≠ y = 0. This implies x = n Ú 1 n .
From this we deduce x n ≠ y n and x ≠ y have the same sign. Since

g A n Ú 1 n B = 1 n ln 3 1 n 4 ≠ 1 n = ≠ ln(n) n ≠ 1 n = ≠ ln(n) + 1 n < 0.
The following variational table holds,

x 0 n Ò 1 n +OE g Õ (x) + 0 ≠ ≠ ln(n)+1 n g ¬ √
The variational table implies, for all x oe ] 0 , +OE [, we have

g(x) AE ≠ ln(n) + 1 n • Therefore ln(x) ≠ x n AE 0 =∆ ln(x) AE x n .
This completes the proof.

These two lemmas leads to the following theorem. x n = 0.

Example 5.3.27. Find the limit of the following sequence:

u n = n Ô n = n 1/n , ' n Ø 1.
We know that, u n = exp (ln(n)/n) and Let x oe (0 , +OE). We consider a natural number n Ø 1. Using the properties of the function ln we can write on one hand ln(x) = n n ln(x).

lim nae+OE ln(n) n = 0.
On the other hand, we have ln(x n ) = n ln(x). This implies

n n ln(x) = 1 n ln(x n ).
Since, we know that ln(x) = ≠ ln

3 1 x 4 . We deduce that, ln(x) = ≠ 1 n ln 3 1 x n 4 •
This leads to the following identity

x n ln(x) = 1 n x n ln(x n ) = ≠ 1 n x n ln 3 1 x n 4 •
Now, we define X := 1 x n , then, lim xae0 X = +OE. As we know that,

x n ln(x) = ≠ 1 n ln(X) X • Therefore, lim xae0 x n ln(x) = ≠ 1 n lim Xae+OE ln(X) X = 0•
This allows us to state the following theorem. x n ln(x) = 0.

Setting n = 1 in the theorem above, we are able to establish the following corollary 1. polynomial functions increase more fast than ln, 2. polynomial functions go to 0 more than ln goes to ≠OE.

To illustrate this, we represent below the graph of the functions f (x) = x and g(x) = ln(x).

≠1 1 2 3 ≠1 1 
We remind that, we defined ln, such that, 'x oe R, ln(e x ) = x. This means that, ln(e) = ln(e 1 ) = 1. Now we introduce the following notations log e (x) = ln(x) ln(e) = ln(x).

We say that ln is the logarithm in basis e. Let a > 0 be a real number. The expression ln(a) make a sense. From now on we assume a " = 1. In this case we can define the logarithm in basis a in this way

log a (x) = ln(x) ln(a) • (5.3.3)
In the next section we will study the function log a .

Logarithm in Basis a

We start this section by reminding the definition of the logarithm in basis a. We specify the following notations

• when a = e, we use the notation log e (x) = ln(x)

• when a = 10, we denote log 10 (x) = log(x)

We remark that for all a oe (0 , 1) fi (1 , +OE), we have To prove 3, we observe that, 

log a (x n ) = ln(x n ) ln(a) = n ln(x) ln(a) = n log a (x).
a log a (x) = x
The proof of this proposition is based on the fact that a log a (x) = exp (log a (x) ln(a)) .

Since log a (x) ln(a) = ln(x) ln(a) ln(a) = ln(x). Then, a log a (x) = exp (ln(x)) = x.

Example 5.4.6. For instance we have log(100) = log(10 2 ) = 2 and 10 log(2.5) = 2.5.

Let a > 0 be a real number which we assume di erent to 1. We define the function log a (x) for any x in ( 0 , +OE ). The next step consist of studying such type of functions

Study of Functions log a

Leta oe (0 , 1) fi (1 , +OE). For any real number x which is strictly positive we define the function

f (x) = log a (x) = ln(x) ln(a) •
The function f is di erentiable in its domain. For every real number x in ( 0 , +OE ), the derivative of f is defined by

f Õ (x) = 1 x ln(a)
•

Since the real number x belongs to ( 0 , +OE ), we observe that the sign of f Õ depends on ln(a). Hence we have to distinguish two cases Case 1: a oe ( 0 , 1 ). In this case we see that ln(a) < 0. From this we deduce that f (x) < 0, for every x oe (0 , +OE ). Therefore the function f is decreasing in ( 0 , +OE ) Case 2: a oe (1 , +OE ). In this case, the real number ln(a) is strictly positive.

Then, we deduce that f Õ (x) > 0, for every x oe ( 0 , +OE ). This means the function f is increasing in ( 0 , +OE). Theorem 5.5.1. If a oe (0 , 1 ), the function

f (x) = log a (x) is decreasing in ( 0 , +OE ). Theorem 5.5.2. If a oe (1 , +OE ), the function f (x) = log a (x) is increasing in ( 0 , +OE ).
Before ending this chapter, we specify some definitions. Indeed, in the previous chapter we studied the function exp. We called it exponential. To be rigourous we should called it the Naperian exponential in order to show that it is the reciprocal function to the naperian logarithm.

Using the function log a for some positive real number a di erent to 1, we can define general exponentials.

General Exponentials

Let a > 0 be a real number. If a = 1, we have a x = 1 for any real number x. Now assume that a " = 1, we have log a (a x ) = x for any real number x. On the other hand if we take a strictly positive real number x we will have a log a (x) = x . Now we take x oe (0 , +OE), and we define f (x) = log a (x). The function f is continuous and strictly monotone in (0 , +OE), then it admits a reciprocal function g, such that, Y ]

[

log a (g(y)) = y, ' y oe R g (log a (x)) = x, ' x > 0.

As we know that the reciprocal function of log

a is uniqe, then, the function g should correspond to a x . Hence we define

g(x) = a x , ' x oe R.
This function is called the general exponential . Definition 5.6.1. Let a be a strictly positive real number which is di erent to 1.

For any real number x we call exponential of x the function

f (x) = a x , defined, such that, log a ! a x " = x.
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Thus if x and y are two real and a is as in the definition, we have log a (a x • a y ) = log a (a x ) + log a (a y ) = x + y.

(5.6.1)

On the other part, we kow that if x and y are two real numbers, then,

x + y = log a (a x+y ).

(5.6.2)

From (5.6.1) and (5.6.2), we deduce that To introduce this chapter, we consider a real function f defined in some interval I. We represent this function by its graph. Let [ a , b ] be a subinterval of I. Our main goal now is to calculate the area of the domain D, [ the part of the real plan ] which is between the vertical lines x = a, x = b, the x ≠ axis, and the curve C f of f. In other words we aim to find the colored area of the figure below.

a x • a y =

125

Since from elementary school we know how to find the area of a rectangle, the first idea which comes up to our mind is to subdivide the domain in many small rectangles in this way: Let [ a , b ] be an interval. We divide [ a , b ] to n subinterval [ x i , x i+1 ], where x 0 = a, x n = b and for 0 AE i AE n ≠ 1 we have

x i+1 = x i + b ≠ a n • b • • a • x 1 • x 2 • x n≠1 • • • • • • • • x n≠2 • Since x i = x i≠1 + b ≠ a n
we obtain after i iterations

x i = x 0 + i b ≠ a n • (6.0.1)
The elements of the set { x 0 , x 1 , • • • , x n≠1 , x n } satisfy the following property

a = x 0 < x 1 < • • • < x n≠1 < x n = b. The finite family { x 0 , x 1 , • • • , x n≠1 , x n } is called a subdivision of the interval [ a , b ]. The real number x = x i+1 ≠ x i = b ≠ a n (6.0.2)
is the step of the subdivision. Now we decompose the domain D into n small rectangles with lenght x [where x is a small real number ] and height f (x i ) for some real number x i . The vertices of the small rectangle number i + 1 (0 AE i AE n) are the points (x i , 0), (x i+1 , 0), (x i , f(x i+1 ) ) and (x i+1 , f(x i+1 ) ). Another choce is possible we can take (x i , 0), (x i+1 , 0), (x i , f(x i ) ) and (x i+1 , f(x i ) ). as the vertices of the rectangle number i + 1

Then, the area of the small rectangle number i + 1 is

R i+1 = x • f (x i+1 ).
To find the area of the whole domain, we need just to sum the area of all small rectangles. In this case we obtain Area of all Small Rectangles =

n≠1 ÿ i=0 x • f (x i+1 ) = n≠1 ÿ i=0 R i+1 .
(6.0.3)

As we can observe it , the area of all small rectangle is just an approximation of the area of the domain. This approximation is as good as the the step x is small enough. This suggests us to let x go to 0. But the problem here is, the relation between x and n. The real number x goes to 0 means that n should go to +OE. This leads to an infinite sum, which we do not know how to deal with. When the infinite sum has a mathematical meaning [when q R i converges ], we write We mean by (6.0.5): Area of D is equal to the integral from a to b of f . The symbol s is the letter S. We use it to mean we are summing from a to b.

Area of D = lim nae+OE n ÿ i=1 R i = OE ÿ i=1 R i ( 6 
In this chapter, we will only deal with elementary theory of integrations. To define the value of an integral we introduce the notion of primitive of a function. In a second time, we will study some properties of integrals. To end this chapter, we calculate integral of some elementary functions.

Primitive of Functions

This section is devoted to primitive of functions. After elementary definitions, we study primitives of elementary functions. In the second subsection we deal with primitives of general functions. Definition 6.1.1. Let f : I ae R be a continuous function. We consider a di erentiable function F : I ae R. We say that the function F is a primitive of f in I, if for every real number x in I, Let a be any real number. We define the function F (x) = a. The function F is di erentiable and for every real number x, F Õ (x) = 0. Therefore the function F is a primitive of f (x) = 0.

F Õ (x) = f (x). ( 6 
2. Let a and b be two real numbers. We define the a ne function F (x) = ax + b. It is di erentiable in R and for every real number x we have F Õ (x) = a. Then, the function F is a primitive of the function f (x) = a.

Let x be a real number. We consider the function F (x) =

x n+1 n + 1

• Since the function F is a monomial, it is di erentiable and for every real number x we have

F Õ (x) = x n . This implies the function F is a primitive of f (x) = x n .
From definition 6.1.1 we know what is a primitive. Now we need to define a condition which allows us to have a primitive. A necessary condition is given in the lemma below. Proof. Let F and G be two primitives of f in I. They are di erentiable in I and for every real number x in I, we have F Õ (x) = f (x) and G Õ (x) = f (x). For every

x in I we define the function H(x) = G(x) ≠ F (x), Since the functions F and G are di erentiable in I, the function H is di erentiable in I. In this case we have

H Õ (x) = G Õ (x) ≠ F Õ (x) = f (x) ≠ f (x) = 0.
From this, we deduce that H is a constant function. Consequently there exists a real number C, such that,

H(x) = G(x) ≠ F (x) = C. This means that G(x) = F (x) + C.
This completes the proof of the theorem.

Example 6.1.6. We consider the function f (x) = 2x + 1. Then, the function

F (x) = x 2 +
x is a primitive of f . We can find another primitive of f by adding any real number to F . For example the functions G(x) = x 2 +x+3 and H(x) = x 2 +x+5 are primitives of the functions f . Generally speaking, for any real number C the function

P (x) = x 2 + x + C is a primitive of f .
We learn from the theorem 6.1.5 1. a primitive of a function is defined up to a constant 2. a functions has infinite number of primitives Because of these two remarks, we cannot write the function F is the primitive of the function f . But we must say the function F is a primitive of f At this level we know what is the definition of a primitive. We define also the relation between two primitives of a function. The next step will consist of finding primitives of some elementary functions .

Primitive of Elementary Functions

As we pointed it out in the previous chapters elementary functions are the bricks used to build a large part of functions. That is why we start with them here in order to show how our theory runs. In this section we will define primitives of polynomial functions, square root functions, inverse, ln and exp.

Let C be any constant real number. For every x in R we define the function F (x) = C. We emphasize the function F is di erentiable in R and for every real number x the derivative of the function F is defined by F Õ (x) = 0. Hence we have proved the following lemma. Lemma 6.1.7. Let x be a real number. We define the function f (x) = 0. Then, the function F (x) = C, where C is any constant real number is a primitive of the function f . Example 6.1.8. For every real number x, we consider the constant function F (x) = 13. It is a primitive of the function f (x) = 0, for every x oe R. Now we take two real numbers a and b, such that, a " = 0. For x in R we define the function F (x) = ax + b. Since the function F is a ne, then it is di erentiable in R and for every x oe R, we have F Õ (x) = a. This leads to the following lemma. Lemma 6.1.9. Let a be a constant real numbers which is di erent to 0. For all x oe R, we define the constant function f (x) = a. Then, the function F (x) = ax+C, where C is a constant real number, is a primitive of the function f . Example 6.1.10. We consider the function f (x) = 7. Then, the a ne function F (x) = 7x + 1 is a primitive of f . Another primitive of the function f can be given by G(x) = 7x + C, where C is any constant real number. Exercise 6.1.11. Define primitives to the following functions

1. f(x) = 11, 2. g(x) = 3, 3. h(x) = 5, 4. u(x) = C, 5. v(x) = 2.
Let x be a real number . We consider the function

F (x) = x 2 2
• This function is di erentiable in R and for all x oe R, we have F Õ (x) = x. This establishes the following lemma.

Lemma 6.1.12. Let x belong to R and f (x) = x. Then, the function

F (x) = x 2 2 is a primitive of f .
We consider a natural number n Ø 2. For every real number x we define the

F (x) = x n+1 n + 1
• Then, the function F is di erentiable and for all x oe R,

F Õ (x) = x n .
This leads to the following lemma. 

1. f(x) = x 5 , 2. g(x) = x 7 , 3. h(x) = x 11 , 4. u(x) = 3x 2 , 5. v(x) = x k0 .
Let x " = 0 be a real number. We define the function

F (x) = 1 x • We know that
F is di erentiable in R ú and for every real number x " = 0, we have F Õ (x) = ≠ 1

x 2 • Consequently we can state the following result. Lemma 6.1.16. Let x " = 0 be a real number. For any x oe R ú we define the function

f (x) = 1 x 2 • Then, the function F (x) = ≠ 1 x is a primitive of f.
Let n Ø 2 be a natural number and x belong to R\{0}. We define the function

F (x) = ≠ 1 (n ≠ 1)x n≠1
• This function is di erentiable in its domain and for all real number x " = 0 we have F Õ (x) = 1

x n • Lemma 6.1.17. Let n Ø 2 be a natural number. For every real number x " = 0 

we define the function f (x) = 1 x n • Then, the function F (x) = ≠ 1 (n ≠ 1)x n≠1 is a primitive of f.
1. f(x) = 1 x 5 , 2. g(x) = 1 x 9 , 3. h(x) = ≠ 7 x 8 , 4. u(x) = 1 x 7 •
Let x Ø 0 be a real number. We define the function

F (x) = 2 Ô
x. This function is di erentiable in [ 0 , +OE ). For every x > 0 we have

F Õ (x) = 1 Ô x
• Therefore, we have the following result.

Lemma 6.1.20. Let x > 0 be a real number. We define the function

f (x) = 1 Ô x .
Then, the function

F (x) = 2 Ô
x is a primitive of f.

We consider the two following functions F (x) = ≠ cos(x) and G(x) = sin(x). These two functions are di erentiable in R. For x oe R, we have F Õ (x) = sin(x) and G Õ (x) = cos(x). Lemma 6.1.21. Let f (x) = sin(x). Then, F (x) = ≠ cos(x) is a primitive of f . Lemma 6.1.22. Let g(x) = cos(x). Then, G(x) = sin(x) is a primitive of g.

Let x > 0 be a real number. We consider the function F (x) = ln(x). The function F is di erentiable in ( 0 , +OE ), and for every x > 0, we have F Õ (x) = 1 x • Then, we can state the following lemma Lemma 6.1.23. Let x > 0 be a real number. We define the function f

(x) = 1 x • Then, the function F (x) = ln(x) is a primitive of f.
Let x oe R. We define F (x) = e x . This function is di erentiable and we have F Õ (x) = e x . Lemma 6.1.24. Let f (x) = e x . Then, the function F (x) = e x is a primitive of f .

In the following table we sum up some primitives of elementary functions.

f (x) Domain of f F (x) Domain of F 0 R C R a R ax + C R x R x 2 2 + C R x n R x n+1 n + 1 + C R 1 x 2 R\{0} ≠ 1 x + C R\{0} 1 x n , n Ø 2 R\{0} ≠ 1 n ≠ 1 • 1 x n≠1 + C R\{0} 1 Ô x ( 0 , +OE ) 2 Ô x + C [ 0 , +OE ) cos(x) R sin(x) + C R sin(x) R ≠ cos(x) + C R exp(x) R exp(x) + C R 1 x ( 0 , +OE ) ln(x) + C ( 0 , +OE )
Example 6.1.25. We consider f (x) = x 5 . Using the table above, we set n = 5. A primitive of f is given by F

(x) = x 5+1 5+1 + C = x 6 6 + C, where C is a constant.
Example 6.1.26. For every real number x " = 0 we define the function g

(x) = 1 x 3 • Setting n = 3, we have G(x) = ≠ 1 3 ≠ 1 • 1 x 3≠1 + C = ≠ 1 2 x 2 + C• Exercise 6.1.
27. Define a primitives for each of the following functions

1. f(x) = x 7 , 2. g(x) = 0, 3. h(x) = 3, 4. i(x) = 1 x 3 5. j(x) = sin(x), 6. u(x) = 1 x 11 7. ¸(x) = x 4 .
Theorem 6.1.28. Let f and g be two continuous functions in some interval I with respective primitives F and G. We consider a real number k and the functions

h(x) = k • f (x) and ¸(x) = f (x) + g(x).
Then,

• the function

H(x) = k • F (x) + C, is a primitive of h • the function L(x) = F (x) + G(x) + C is a primitive of ¸,
where C is a constant real number.

Proof. Let f , g, F , G and k be as in the theorem. We define

H(x) = k • F (x) + C.
Then, H is di erentiable and for every x oe I, we have

H Õ (x) = k • F Õ (x) = k • f (x).
This implies the function H is a primitive of k • f. Now we set L(x) = F (x) + G(x) + C. The function L is a di erentiable and for every x oe I, we have L Õ (x) = F Õ (x) + G Õ (x) = f (x) + g(x). This involves the function F + G is a primitive of f + g. Example 6.1.29. Find a primitive of the following function f (x) = 2x 2 + 3x + 1.

We know that a primitive of x 2 is given by

x 3 3 • The function x 2 2
is a primitive of the function x and the function x is a primitive of 1. Therefore,

F (x) = 2x 3 3 + 3x 2 2 + x
is a primitive of f . In this example we have taken C = 0.

Example 6.1.30. We consider the following function for every real number in

( 0 , +OE ), g(x) = cos(x) + 4x 3 + 5x + 2 + 1 x + 1
x 2 + e x , Since the function g is continuous in ( 0 , +OE ), g has primitives. A primitive of g can be defined by

G(x) = sin(x) + x 4 + 5 2 x 2 + 2x + ln(x) ≠ 1 x + e x + C.
Exercise 6.1.31. Find the domain of the following functions and define a primitive for each them in its domain

1. f(x) = x 7 + x 6 + 2x 5 + 3x 4 , 2. f 1 (x) = 4x 3 + 3x 2 + 1 2 x + 7, 3. f 2 (x) = 2 cos(x), 4. g(x) = cosh(x) + 1 x 2 + sin(x), 5. g 1 (x) = 1 x 3 ≠ 5 x + x, 6. g 2 (x) = sin(x) + sinh(x) + 4e x + 2 x 5 + x 2 , 7. h(x) = 4x 3 ≠ 3x + 5 + 2 x 2 + e x .
An easy way to construct general functions is to use composition of elementary functions. In the next section, we will define primitives of general functions from primitives of elementary functions.

Primitive of General Functions

This section deals with primitives of general functions. Indeed here we study primitives of function of the forms u n , Ô u, 1 u , cos(u), sin(u). We specify, here u is a real function. These functions are obtained by using composition of elementary functions and u.

We consider a di erentiable function u : R ≠ae R. For any natural number n Ø 1, we define the function

F (x) = u n+1 (x) n + 1 • We know from previous chapters, the function F is di erentiable in D u . Because it is a composition of di erentiable functions. Let x oe D u , then, we have, F Õ (x) = u Õ (x) u n (x)
• This leads to the following theorem.

Theorem 6.1.32. Let u : R ≠ae R be a di erentiable function . For any natural number n Ø 1 and x oe D u , we define the function f (x) = u Õ (x)u n (x). Then, the function

F (x) = u n+1 (x) n + 1 is a primitive of f.
If we take n = 1 in the theorem above we obtain the following corollary.

Corollary 6.1.33. Let u : R ≠ae R be a di erentiable function. For every x oe D u we define the function f (x) = u Õ (x)u(x). Then, the function

F (x) = u 2 (x) 2
is a primitive of f. Example 6.1.34. For every real number x we define the function f (x) = 3(3x+1) [START_REF] Lang | Introduction toLinear Algebra[END_REF] .

To determine a primitive of f we define the function u(x) = 3x+1. The function u is di erentiable in R. Because, it is an a ne function. For all x oe R, we get u Õ (x) = 3. Setting n := 5, we observe that f is in the form f (x) = u Õ (x)u 5 (x).

Therefore, the function

F (x) = u 6 (x) 6 = (3x + 1) 6 6 is a primitive of f. Example 6.1.35. Let f be the function defined by f (x) = (2x + 2)(x 2 + 2x + 3).
To find a primitive to the function f we define the real function u(x) = x 2 + 2x + 3. This function is di erentiable in R and for all x oe R, we have u

Õ (x) = 2x + 2. This involves f (x) = u Õ (x) u(x). Therefore the function F (x) = u 2 (x) 2 = (x 2 + 2x + 3) 2 2 is a primitive of f.
Example 6.1.36. We consider the function f (x) = (2x+5) 11 . To define a primitive to the function f we set u(x) = 2x + 5. Then the function u is di erentiable in R and u Õ (x) = 2. From this, we deduce that,

f (x) = u 11 = 1 2 • 2 (2x + 5) 11 = 1 2 • u Õ (x)u 11 (x).
Hence a primitive of f is defined by

F (x) = 1 2 • u 12 (x) 12 = (2x + 5) 12 24 • Remark 6.1.37. In general if the function f is in the form f (x) = (ax + b) n , with
a real number a " = 0. A primitive of the function f is

F (x) = 1 a • u n+1 (x) n + 1 + C,
where C is a real number.

Exercise 6.1.38. Define a primitive for each of the following functions.

1. f(x) = 2(2x + 3) 3 , 2. g(x) = (3x 2 + 2x + 1)(x 3 + x 2 + x + 11) 4 , 3. h(x) = (x + 3)(x 2 + 6x + 2) 4. u(x) = (5x + 3) 2 , 5. v(x) = (4x + 9).
Let u : I ≠ae R ú be a di erentiable function. For every x oe I we define the function

F (x) = 1 u(x)
• Then, the function F is di erentiable in I and we have

F Õ (x) = ≠ u Õ (x) u 2 (x)
• Lemma 6.1.39. Let u : I ≠ae R ú be a di erentiable function. For every x oe I,

we consider the function f (x) = u Õ (x) u 2 (x) • Then, the function F (x) = ≠ 1 u(x)
is a primitive of f . Example 6.1.40. We consider the function f (x) = 2x + 3 (x 2 + 3x + 4) 2 • To find a primitive to f , we define the function u

(x) = x 2 + 3x + 4. The function u is di erentiable in R and u Õ (x) = 2x + 3. This means, f (x) = u Õ (x) u 2 (x) • Therefore, the following function F (x) = ≠ 1 x 2 + 3x + 4
is a primitive of f . Exercise 6.1.41. Find a primitive to each of the following function

1. f(x) = 5 (5x + 6) 2 , 2. g(x) = 6x 2 + 2x + 1 (2x 3 + x 2 + x) 2 , 3. h(x) = 1 (4x + 3) 2 •
Now we take a natural n Ø 2 and a function u : I ≠ae R ú which is di erentiable di erentiable in I. We define the function

F (x) = ≠1 (n ≠ 1)u n≠1 (x)
• Since the function F is a composition of di erentiable functions it is di erentiable in I. For every real number x, which belongs to I, we can establish

F Õ (x) = u Õ (x) u n (x) •
Theorem 6.1.42. Let u : I ≠ae R ú be a di erentiable function. For any natural number n Ø 2 and x oe I, we define the function f

(x) = u Õ (x) u n (x)
•Then, the function

F (x) = ≠1 (n ≠ 1)u n≠1 (x)
is a primitive of f. Example 6.1.43. Let f (x) = 6 (6x + 1) [START_REF]Dixmier Cours de mathématiques du premier cycle[END_REF] • We know the domain of f is D = R\{≠1/6}. To determine a primitive to the function f , we set u(x) = 6x + 1. The function u is di erentiable in R, then,it is di erentiable in R\{≠1/6} and u Õ (x) = 6. From this , we deduce that, for all

x " = ≠1 6 , f (x) = u Õ (x) u 4 (x)
• Applying the theorem above, we obtain F (x) = ≠1 3(6x + 1) 3 • Exercise 6.1.44. Find a primitive to each of the following function

1. f(x) = 4 (4x + 3) 3 , 2. g(x) = 3x 2 + 10x + 2 (x 3 + 5x 2 + 2x + 1) 7 , 3. h(x) = 1 (3x + 5) 5 •
Let u : I ≠ae (0 ; +OE) be a di erentiable functions . We consider the function F (x) = ln(u(x)). We know the function F is di erentiable as a composition of di erentiable functions. For all x oe I, the derivative of F is

F Õ (x) = u Õ (x) u(x) •
Theorem 6.1.45. Let u : I ≠ae ( 0 , +OE ) be a di erentiable function. We define

f (x) = u Õ (x) u(x)
• Then, the function F (x) = ln(u(x)) is a primitive of f . Example 6.1.46. Let x oe ( 2 , +OE ) and f (x) = 2 2x ≠ 4

• We define the function

u(x) = 2x ≠ 4.
The function u is di erentiable and for every x oe ( 2 , +OE ) , we

get u Õ (x) = 2. Hence the function f is in the form f (x) = u Õ (x) u(x)
. Therefore the real function F (x) = ln(2x ≠ 4) is a primitive of f. Exercise 6.1.47. Determine a primitive to each of the following functions.

1. f(x) = 2x (x 2 + 1) , 2. g(x) = 2 (2x + 5 , 3. h(x) = 1 6x + 5 , 4. u(x) = x 2 + 1 x 3 + 3x , 5. v(x) = 1 7x , 6. w(x) = 2x 3x 2 + 2 , 7. z(x) = 5 3x ≠ 2 •
Now we consider the function F (x) = exp(u(x)) where u : I ≠ae R is any di erentiable real function. The function F is di erentiable in I and for every real number x in I, F Õ (x) = u Õ (x) exp(u(x)). Theorem 6.1.48. Let u : I ≠ae R be a di erentiable function. We define the function f (x) = u Õ (x) exp(u(x)). Then, the function F (x) = exp(u(x)) a primitive of f . Example 6.1.49. We consider the function f (x) = 2 exp(2x + 5) and we define u(x) = 2x + 5. The function u is di erentiable and for every real number x we have u Õ (x) = 2. Consequently we obtain f (x) = u Õ (x) exp(u(x)). This implies the function F (x) = exp(2x + 5) is a primitive of f . Exercise 6.1.50. Define a primitive to each of the following function

1. f(x) = xe x 2 +1 , 2. g(x) = 4e 4x+6 , 3. h(x) = e 6x+1 , 4. u(x) = x 3 e x 4 +3 , 5. v(x) = (x 2 + 2x + 1)e x 3 +3x 2 +3x+1 .
Let us consider a di erentiable function u : I ≠ae ( 0 , +OE ). For every x in the interval I we introduce the function F (x) = 2  u(x) . Since u is di erentible in I and the square root function is di erentible in ( 0 , +OE ), the function F is di erentiable in I.

Let x belong to I, then, we obtain

F Õ (x) = u Õ (x)  u(x) •
Theorem 6.1.51. Let u : I ≠ae ( 0 , +OE ) be a di erentiable function. For every

x oe I we define f (x) = u Õ (x)  u(x) • Then, the function F (x) = 2  u(x) is a primitive of f . Example 6.1.52. We consider the following function f (x) = 2 Ô 2x + 4 , which is defined in ( ≠2 , +OE ). Setting u(x) = 2x + 4, one has u Õ (x) = 2. The function f is in the following form: f (x) = u Õ (x)  u(x)
. Since the function f is continuous it has primitive and a primitive of f is defined by

F (x) = 2 Ô 2x + 4. Example 6.1.53. Let f (x) = 2x + 1 Ô x 2 + x + 1 • The function f is defined in R. Now we take u(x) = x 2 + x + 1, the derivative of u is u Õ (x) = 2x + 1. Hence the function f (x) = u Õ (x)  u(x)
• As the function f is continuous in I it has primitives. The function

F (x) = 2 Ô x 2 + x + 1 is a primitive of f .
Exercise 6.1.54. Define a primitive to each of the following functions

1. f(x) = 1 Ô 3x + 2 , 2. g(x) = 2x + 3 Ô x 2 + 5x + 1 , 3. h(x) = 5 Ô 7x + 1 •
Let u : I ≠ae R be a di erentiable function. For every real number x in I, we define F (x) = cos(u(x)). Since u is di erentiable in I and cos is di erentiable in R, the function cos(u(x)) is di erentiable in I. For any x oe I, we have F Õ (x) = ≠u Õ (x) sin(u(x)). Then the following theorem holds. Theorem 6.1.55. We consider a di erentiable function u : I ≠ae R. For x oe I, we define the function f (x) = u Õ (x) sin(u(x)). Then, the function

F (x) = ≠ cos(u(x)) is a primitive of f .
Here we define D 1 = {x oe R : u(x) " = 0}, D 2 = {x oe R : u(x) Ø 0} and

D 3 = {x oe R : u(x) > 0}.
One may ask, why we are trying to determine primitives of functions. Why we engage in such complicated work . Do we need to spend so much time in finding such primitives. To answer this question, we consider a function F which is di erentiable in some interval I, such that F Õ (x) = f (x). Let x 0 belong to I. For some real number h > 0 , we define the quantity

F = F (x 0 + h) ≠ F (x 0 ) x 0 + h ≠ x 0 = F (x 0 + h) ≠ F (x 0 ) h •
For h small enough [h tends to 0 but remains di erent to 0], we have

F = F (x 0 + h) ≠ F (x 0 ) h ƒ f (x 0 ).
Multiplying by h we obtain

F (x 0 + h) ≠ F (x 0 ) ƒ h • f (x 0 ).
To simplify the presentation we assume f (x 0 ) > 0. Then the positive real h•f (x 0 ) is the area of the rectangle that has vertices the points (x 0 , 0), (x 0 + h , 0), (x 0 , f(x 0 ) ) and (x 0 + h , f(x 0 ) ). This area is an approximation of the function in the interval [ x 0 , x 0 + h ]. In other words, when h goes to 0, we have

F (x 0 + h) ≠ F (x 0 ) = ⁄ x0+h x0 f (t) dt (6.1.3) 
As we can see it identity (6.1.3) justifies why we went to so much trouble to define primitives. In the next section we show the close link that exists between primitives and integrals.

Intriduction to Integration

This section deals with integration. Indeed , here we define an integral. We also specify that integrals are just some particular primitives. We will define some properties of integrals. To end this section we introce integration by parts and integration by using substitution method.

Defitions and Notations

Let f be a continuous function in [a , b], with a < b. We denote

⁄ b a f (x)dx, (6.2.1) 
to mean the integral from a to b of f . One may wonder how to find the value of (6.2.1). That is why we state the following definition. 

F which is a primitive of f in [a , b]. We define the integral from a to b of f by ⁄ b a f (x)dx = Ë F (x) È b a = F (x) - - - b a = F (b) ≠ F (a). (6.2.2)
Remark 6.2.2. We make the following remarks

• The name of the variable x in which we integrate does not matter. We can integrate in the variable y or u or t. Indeed, we have ⁄ -Step 3: To finish we write

⁄ b a f (x) dx = F (b) ≠ F (a).
We make the precision that it is not necessary to observe these steps or to follow them by dot. They can be done in one step by writing directly the value of the integral.

Example 6.2.3. To define the integral

s 2 0 2x dx we set f (x) = 2x. Since f is an a ne function, it is continuous in the interval [0 , 2]. Then it has primitives in [ 0 , 2 ].
• Step 1: We know from what that a primitive of the function 2 x can be defined by F (x) = x 2 .

• Step 2: Now, we have to find F (2) and F (0), which are:

F (2) = 2 2 = 4, F (0) = 0 2 = 0
• Step 3: In this step, we define the value of the integral:

⁄ 2 0 2x dx = Ë x 2 È 2 0 = x 2 - - - 2 0 = 2 2 ≠ 0 2 = 4.
Example 6.2.4. Compute the value of the following integral s 2 1 x 2 + 2x + 1 dx. We define the function f (x) = x 2 + 2x + 1. The function

F (x) = x 3 3 + x 2 + x is a primitive of f.
On the other hand we have

F (2) = 8 3 + 4 + 2 = 26 3 and F (1) = 1 3 + 1 + 1 = 7 3 . Therefore we obtain ⁄ 2 1 (x 2 + x + 1) dx = F (2) ≠ F (1) = 26 3 ≠ 7 3 = 19 3 • Exercise 6.2.

Define the value of the following integrals

⁄ 3fi 0 cos(x) dx, ⁄ e 2 1 x dx, ⁄ 5 3 1 Ô x + 3 dx, ⁄ 7 0 x e x 2 +3 dx, ⁄ 3 1 (3x + 2) 2 dx.
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Before going further we specify the following notations. 

F (x) = ⁄ x f (t) dt (6.2.3)
Then, the function F is a primitive of f.

In the next subsection, we study properties of integrals

Some Properties of Integrals

In this section, we deal with some properties of integrals. We do not pretend to give the full list of such properties.

Let Proof. Let f be a continuous function in [a , b]. Then, the function f has primitives. We take one among such primitives and we denote it F . Therefore, we have

f
⁄ a b f (x) dx = F (a) ≠ F (b) = ≠ 1 F (b) ≠ F (a) 2 = ≠ ⁄ b a f (x) dx.
Example 6.2.10. We have Then,

⁄ 1 2 1 x dx = ≠ ⁄ 2 1 1 x dx = ≠ ln(2).
⁄ b a k f(x) dx = k ⁄ b a f (x) dx.
Proof. Let f be a continuous function in [a , b]. Therefore f has primitives. We consider the function F as one of such primitives. Then, for any real number k, the function k F is a primitive of k f. Consequently

⁄ b a k f(x) dx = k F (b) ≠ k F (a) = k (F (b) ≠ F (a)) = k ⁄ b a f (x) dx.
Example 6.2.12. Let f (x) = 3 sin(x), we have

I = ⁄ fi 0 3 sin(x) dx = 3 ⁄ fi 0 sin(x) dx = 3 Ë ≠ cos(x) È fi 0 = 3(≠ cos(fi) + cos(0)) = 6.
Exercise 6.2.13. Determine the following integrals 

⁄ 2 0 2x dx, ⁄ 3 
⁄ b a (f (x) + g(x)) dx = ⁄ b a f (x) dx + ⁄ b a g(x) dx.
Proof. We consider two functions F and G that are respective primitives of f and g. The function F + G is a primitive of the function f + g. This implies that,

⁄ b a f (x) + g(x) dx = F (b) + G(b) ≠ F (a) + G(a) = F (b) ≠ F (a) + G(b) ≠ G(a) = ⁄ b a f (x) dx + ⁄ b a g(x) dx.
Example 6.2.15. We consider the following integral

⁄ 1 0 x 2 + 3x + 1 dx.
To compute this integral , we proceed as follows ⁄ 1 0

(x 2 + x + 1) dx = ⁄ 1 0 x 2 dx + ⁄ 1 0 3x dx + ⁄ 1 0 dx = 5 x 3 3 
6 1 0 + 5 3x 2 2 
6 1 0 + Ë x È 1 0 = 1 3 + 3 2 + 1 = 17 6 • Exercise 6.2.

Determine the values of the following integrals

⁄ fi 0 x 2 + sin(x) + e x dx, ⁄ 3 1 1 x + cos(x) + 1 Ô x dx, ⁄ 1 5 1 x 3 + 1 x 2 dx.
Exercise 6.2.17. Compute the values of the following integrals

⁄ fi 0 x 2 + 1 x + x + e x dx, ⁄ 3 1 1 Ô x + x 3 + 3x + 1 dx, ⁄ 1 6 e x + x 2 dx.
Theorem 6.2.18 (Chasles Relation). Let f be a continuous function in [a , b]. We consider some real number c in (a , b). Then, we have

⁄ c a f (x) dx + ⁄ b c f (x) dx = ⁄ b a f (x) dx. Proof. Let F be a primitive of f in [a , b]. Therefore we have ⁄ c a f (x) dx + ⁄ b c f (x) dx = (F (c) ≠ F (a)) + (F (b) ≠ F (c)) = F (b) ≠ F (a) = ⁄ b a f (x) dx.
Example 6.2.19. As an example we take

⁄ fi ≠fi ≠ sin(x) dx = ⁄ 0 ≠fi ≠ sin(x) dx + ⁄ fi 0 ≠ sin(x) dx = Ë cos(x) È 0 ≠fi + Ë cos(x) È fi 0 = (cos(0) ≠ cos(≠fi)) + (cos(fi) ≠ cos(0)) = cos(fi) ≠ cos(≠fi) = 0
Below we give three important theorems without proofs. 

F (x) = ⁄ x a f (x) dx.
Then, the function F is the primitive of f , that satisfies , F (a) = 0. Then, there exists at least a real number c in ]a , b[, such that,

µ = f (c) = 1 b ≠ a ⁄ b a f (x) dx.

Remark 6.2.23. We point out that, here, the real number f (c) is the mean value of the function f in the interval [a , b]. In other words, if it was possible to list all values taken by f in [a , b] and to calculate the average of these values, we will find f (c). But here, we know that it is not possible to get the full list of all values taken by

f in [a , b]. Example 6.2.24. Let f (x) = 2x + 1. The mean value of f in [1 , 3] is µ = 1 3 ≠ 1 ⁄ 3 1 2x + 1 dx = 1 2 Ë x 2 + x È 3 1 = 1 2 (9 + 3 ≠ 1 ≠ 1) = 10 2 = 5.
Exercise 6.2.25. Determine the mean value of the following functions in the given interval I. 

1. f(x) = e x + x, I = [≠1 , 1] 2. g(x) = 1 x + x 2 , I = [2 , 5] 3. h(x) = sin(x), I = Ë ≠ fi 2 , fi È .
f (y) ≠ f (x) = ⁄ y x f Õ (t) dt. (6.2.4)
Here, we define a table which allows us to give integrals of some elementary functions . We consider a continuous function in [a , b]

s b a f (u(x)) dx F (b) ≠ F (a) s b a u Õ (x).u(x) dx u 2 (b) ≠ u 2 (a) 2 s b a u Õ .u n (x) dx u n+1 (b) ≠ u n+1 (a) n + 1 s b a u Õ (x) u 2 (x) dx ≠ 1 u(b) + 1 u(a) s b a u Õ (x) u n (x) dx, n Ø 2 ≠ 1 (n ≠ 1)u n≠1 (b) + 1 (n ≠ 1)u n≠1 (a) s b a u Õ (x) Ô u(x) dx 2  u(b) ≠ 2  u(a) s b a u Õ . sin(u(x)) dx ≠ cos(u(b)) + cos(u(a)) s b a u Õ (x). cos(u(x)) dx sin(u(b)) ≠ sin(u(a)) s b a u Õ (x). exp(u(x)) dx exp(u(b)) ≠ exp(u(a)) s b a u Õ (x) u(x) dx ln(u(b)) ≠ ln(u(a))
Example 6.2.27. To Determine the value of the following integral

⁄ 2 1 3(3x + 1) dx, we define, u(x) = 3x + 1, then, u Õ (x) = 3. Hence, ⁄ 2 1 3 (3x + 1) dx = ⁄ 2 1 u Õ (x) u(x) dx = 5 (3x + 1) 2 2 
6 2 1 = 49 2 ≠ 16 2 = 33 2 • Exercise 6.2.

Determine the values of the following integrals

⁄ 1 0 2(2x + 3) dx, ⁄ 5 
1

(2x + 3)(x 2 + 3x + 1) dx, ⁄ 3 2 
(7x + 5) dx.

Example 6.2.29. To find the value of the following integral

⁄ 1 0 2(2x + 1) 3 dx, we set u(x) = 2x + 1, then, u Õ (x) = 2. Therefore, ⁄ 1 0 2(2x + 1) 3 dx = ⁄ 2 1 u Õ (x) u 3 (x) dx = 5 (2x + 1) 4 4 
6 1 0 = 3 4 4 ≠ 1 4
= 20• Exercise 6.2.30. Determine the exact value of the following integrals

⁄ 1 0 (3x 2 + 2x)(x 3 + x 2 ) 4 dx, ⁄ 2 1 (2x + 3)(x 2 + 3x) 5 dx, ⁄ 3 2 1 2 Ô x ( Ô x + 4) 2 dx.
Example 6.2.31. Now we want to determine the following integral

⁄ 2 1 2x (x 2 + 1) 2 dx.
To this end we define the function u(x) = x 2 + 1. Then, u Õ (x) = 2x. From this one deduces,

⁄ 2 1 2x (x 2 + 1) 2 dx = ⁄ 2 1 u Õ (x) u 2 (x) dx = 5 ≠ 1 x 2 + 1 6 2 1 = ≠ 1 5 + 1 2 = 3 10 • Exercise 6.2.32.
Find the values of the following integrals

⁄ 6 5 7 (7x + 1) 2 dx, ⁄ 1 0 1 (4x + 1) 2 dx, ⁄ 5 3 x 3 + 2x (x 4 + 4x 2 + 7) 2 dx.
Example 6.2.33. We consider the following integral

⁄ 1 0 4 (4x + 1) 5 dx.
To determine the value of the integral above we set u(x) = 4x+1. The derivative of u is u Õ (x) = 4. This implies ,

⁄ 1 0 4 (4x + 1) 5 dx = ⁄ 1 0 u Õ (x) u 5 (x) dx = 5 ≠ 1 (4x + 1) 4 6 1 0 = ≠ 1 4 3 1 5 4 ≠ 1 4 •
Exercise 6.2.34. Determine the following integrals

⁄ 3 2 2x + 1 (x 2 + x + 7) 3 dx, ⁄ 1 0 1 (5x + 2) 6 dx, ⁄ 4 3 1 (3x + 5) 4 dx.
Example 6.2.35. We consider this integral

⁄ 1 0 1 Ô x + 1 dx.
To compute its value we define the function u(x) = x + 1. Then, u Õ (x) = 1. Therefore one has

⁄ 1 0 1 Ô x + 1 dx = ⁄ 1 0 u Õ (x)  u(x) dx = Ë 2 Ô x + 1 È 1 0 = 2 Ô 2 ≠ 2 Ô 1 = 2 Ô 2 ≠ 2.
Exercise 6.2.36. Determine the following integrals

⁄ 2 1 2x + 1 Ô x 2 + x + 3 dx, ⁄ 3 2 1 Ô 5x + 1 dx, ⁄ 7 4 1 Ô 2x + 3 dx.
Example 6.2.37. To determine the value of the integral

⁄ fi 0 4 sin(4x + fi) dx,
we set u(x) = 4x + fi. Then, we have u Õ (x) = 4. From, this we deduce,

⁄ fi 0 4 sin(4x + fi) dx = ⁄ fi 0 u Õ (x) sin(u(x)) dx = [≠ cos(4x + fi)] fi 0 = ≠ cos(5fi) + cos(fi) = ≠ cos(fi) + cos(fi) = 0.
Exercise 6.2.38. Determine the value of the following integrals

⁄ 0 ≠fi 3 sin(3x)) dx, ⁄ fi/2 fi/6 sin(2x) dx, ⁄ fi/2 fi/4 sin 3 1 2 x + fi 4 4 dx.
Example 6.2.39. We consider the following integral

⁄ fi/2 0 2 cos(2x) dx.
To find its value we define u(x) = 2x. We have u Õ (x) = 2. Hence, We define the function u(x) = 5x+1. Therefore we obtain u Õ (x) = 5. Consequently, Exercise 6.2.44. Find the value of the following integrals

⁄ fi/2 0 2 cos(2x) dx = ⁄ fi/2 0 u Õ (x) cos(u(x)) dx = [sin(2x) ]
⁄ 4 2 5 5x + 1 dx = ⁄ 4 2 u Õ (x) u(x) dx = Ë ln(5x + 1)
⁄ 3 2 2 2x + 5 dx, ⁄ 1 0 x x 2 + 1 dx, ⁄ 5 4 11 11x + 1 dx.
In the next subsection, we introduce one of the most famous technique to calculate integrals. In the theory of integration we call this method integration by parts.

Introduction to Integration by Parts

This section is devoted to inetgration by parts. Here we explain how runs this important method in the theory of integration.

Before defining integration by parts, we specify some notations. Definition 6.3.1. Let f be a real function defined in the interval I. We say the function f is of class C 1 , if it satisfies these properties

• f is di erentiable in I and • the derivative of f , f Õ is continuous in I.
When the function f is of class C 1 , we say f is a C 1 function. We denote f oe C 1 (I). Now, we consider two functions f and g which are of class

C 1 in the interval [ a , b ] # f oe C ([a ; b]) and g oe C 1 ([a ; b]) . $ Since f and g are di erentiable, the fnction f • g is di erentiable in [a , b]. Let x oe [a , b], then, we have (f • g) Õ (x) = f Õ (x)g(x) + f (x)g Õ (x).
From the identity above, we deduce the function f • g is a primitive of the function

h(x) = f Õ (x) g(x) + f (x) g Õ (x). Consequently, we obtain ⁄ b a h(x) dx = Ë f (x)g(x) È b a .
Replacing h by its expression, involves

⁄ b a (f Õ (x)g(x) + f (x)g Õ (x)) dx = Ë f (x)g(x) È b a . As we know , ⁄ b a (f Õ (x)g(x) + f (x)g Õ (x)) dx = ⁄ b a f Õ (x)g(x) dx + ⁄ b a f (x)g Õ (x) dx Therefore, ⁄ b a f Õ (x)g(x) dx + ⁄ b a f (x)g Õ (x) dx = Ë f (x)g(x) È b a .
This leads to the following identity 

⁄ b a f Õ (x)g(x) dx = Ë f (x)g(x) È b a ≠ ⁄ b a f (x)g Õ (x) dx. ( 6 
⁄ b a f Õ (x)g(x) dx = Ë f (x)g(x) È b a ≠ ⁄ b a f (x)g Õ (x) dx.
Example 6.3.3. We consider the following integral

I 0 = ⁄ 2 1
x ln(x) dx.

To find the value of this integral, we define f Õ (x) = x and g(x) = ln(x). Therefore, we have

f (x) = x 2 2 and g Õ (x) = 1 x
• Using (6.3.1), we obtain x e x dx.

⁄ 2 1 x ln(x) dx = 5 x 2 2 ln(x) 6 2 1 ≠ ⁄ 2 1 x 2 2 • 1 x dx =
To this end we set f Õ (x) = exp(x) and g(x) = x. Then, f (x) = exp(x) and g Õ (x) = 1 Applying theorem 6.3.2, we obtain x 2 + 3. The variable u depends on x. Therefore the variable u is a function of x.

⁄ 1 0 xe x dx = Ë xe x È 1 0 ≠ ⁄ 1 0 e x • 1 dx = 1 e ≠ 0 2 ≠ ⁄ 1 0 e x dx = e ≠ Ë e x È 1 0 = 1.
From this we deduce u Õ (x) = 2x. This means that x = u Õ 2

• If we substitute in the expression of f , we obtain

f (x) = u Õ 2 Ô u •
Now it is easy to find a primitive to the function f . Indeed we know the function

F (x) = Ô u = Ô
x 2 + 3 is one of such primitives. As this example showed it is sometimes usefull to make a change in variable in which we integrate in order to be able to find easily a primitive. Here we made a substitution of the variable. In the next subsection we will set the theory of the substitution method.

Introduction to the Substitution Method

The objective of this subsection is to settle the theory of the substitution method. This technique is one of the most important in the elementary theory of integration. It can be summed up in the following theorem. We assume the set I is an interval. 

È Õ = F Õ ("(x)) • " Õ (x) = f ("(x)) • " Õ (x).
From this we deduce

⁄ b b # F ("(x) $ Õ dx = ⁄ b a f ("(x)) • " Õ (x) dx = F ("(b)) ≠ F ("(a)).
Now we introduce the following substitution. For every x in [ a , b ], we define u = "(x).

When x = a, the variable u takes the value "(a). When x = b, we have u = "(b).

Formally speaking one has du dx = d" dx Multiplying formally by dx, we obtain

du = " Õ (x) dx.
This leds to the identity

F ("(b)) ≠ F ("(a)) = ⁄ a b f ("(x)) • " Õ (x) dx = ⁄ "(b) "(a) f (u) du
This completes the proof.

When we make a substitution, we should be careful. Because most of the students forget to change the bounds of the integral. Example 6.4.2. We consider the following integral

I 0 = ⁄ 1 0 x + 1 Ô x 2 + 2x + 1 dx.
To calculate the value of this integral, we define u = x 2 + 2x + 1. We see when x = 0, we have u = 1. If we take x = 1, the value of the variable u is 4. In this case du = 2 (x + 1)dx. This involves du 2 = (x + 1)dx.

I 0 = ⁄ 1 0 x + 1 Ô x 2 + 2x + 1 dx = ⁄ 4 1 du 2 Ô u •
Therefore,

I 0 = ⁄ 4 1 du 2 Ô u = Ë Ô u È 4 1 = Ô 4 ≠ Ô 1 = 2 ≠ 1 = 1
Example 6.4.3. We define the following integral

I 1 = ⁄ 2 1 ln(t) t dt.
To compute the value of I 1 , we set u = ln(t). In this case when t = 1 u = ln(1) = 0.

Taken t = 2, we have u = ln (2). The function u is di erentiable and du = 1 t dt. This implies ⁄ 2 0

I 1 =
x 2 e x 3 +6 dx, 2. After staying at home more than two months, because of Covid 19, Gunay, Tanya, Nubar, Allahverdi, Farida, Kanan, Suad, Arzu, Lala, and Khumar were bored. Thus they decided to organize a trip for a week-end, in order to enjoy their selves. They rent a car. After a day of travel, they decided to calculate the distance traveled.

⁄ 1 0 1 Ô 2x + 3 dx, 3. ⁄ 3fi/
-Gunay : Since the distance is a function depending on the time, we can denote the distance by x(t).

-Tanya : Yes I agree with you. But the problem is how to calculate it? -Kanan : I have seen somewhere this formula x(t) = v • t. Here v is the speed of the car and t represent the time.

Automatically, students remember, they learned from their physical course, that • the velocity of the reaction is defined by : dC(t) dt

v(t) = dx(
• The velocity is proportional to the concentration of the reagent

It was asked to students to find a relation between the concentration and the velocity of the reaction. After three or five minutes thinking, Allahverdiyev put up his hand. Yes Allahverdiyev says the teacher.

-Allahverdiyev : Since the velocity is proportional to the concentration, we can find a constant real number k, such that,

k dC(t) dt = C(t). (7.0.2)
Oh my God, exclaimed one of the students, we got this type of equations before. They asked to the professor how do we call these types of equations? -Chimistry Teacher: These type of equations are called Ordinary Di erential Equations. To shorten it, they are called ODEs.

If you want to learn more about these equations, you need to have a discussion with maths teachers.

Once Chimistry teacher finished, students went to o ce 211, in order to meet Professor Ulviya. They want to know more about ordinary di erential equations. Students knocked the door and enter the room.

-Students : Hi Teacher ! -Maths Teacher: How you are students? Can I do something for you? -Students : Dear Professor, we were facing ordinary di erential equations, but we did not know what were their applications and how to solve them.

Ordinary di erential equations have several applications. They can be used in physics, biology, chemistry, geo-sciences. To study ordinary di erential equations we will proceed step by step.

-Suad : What is a di erential equation?

To answer Suad's question the teacher stated the following definition Definition 7.0.1. An ordinary di erential equation in an interval I is a relation between a function and its derivatives.

To simplify notations, we write f Õ instead of df dt (x) to mean the derivative of the function f . 1. the null vector 0 is in E 2. for all x and y in E,the sum x + y is in E 3. for all ⁄ oe R and x oe E, ⁄ • x oe E.

We reexplain this definition by saying a real vector space E is a set which contains the vector 0 and which is stable by addition of vector and multiplication by a real number.

To clarify its definition the teacher introduce the following example Example 7.1.2. Let E = R denote the set of all real numbers. Then, E is a vector space. Indeed we have

• 0 R belongs to R
• if x and y are real numbers then, x + y is a real number.

• if ⁄ and x are real number, ⁄ • x is a real number.

The set of real numbers satisfies the conditions of the definition. Therefore the set R is a real vector space.

Students were surprise to discover how it was easy to find vector spaces. To make the presentation undurstandable, the teacher added another example. To prove this, we check,

• the complex number 0 belongs to C

• if z 1 and z 2 are in C, therefore z 1 + z 2 is in C because z 1 + z 2 is a complex number.

• if we take k oe R and z oe C, then k • z is a complex number.

Hence we conclude the set C is a real vector space.

Definition 7.1.4. Let E be a real vector space. We say F µ E is a real vector subspace of E, if F satisfies these two conditions:

• 0 E oe F

• for any real numbers -and -, and vectors x and y in F , the vector -x + -y belongs to F Let E and F be two vector spaces, we study how to define correspondance between two vector spaces. We start by defining linear applications Definition 7.1.5. Let E and F be two vector spaces. We consider an application L : E ≠ae F. We say L is linear if it satisfies the following conditions:

• for every x and y in E, we have L(x + y) = L(x) + L(y)

• for all k oe R and x oe E, L(k x) = k L(x). Remark 7.1.6. From the definition above, we deduce when x belongs to the vector space E, L(x) = L(x + 0) = L(x) + L(0). Hence L(0) = 0.

Example 7.1.7. The application f : R ≠ae R defined by f (x) = 2x is linear.

Example 7.1.8. Generally speaking if E is a vector space and a a real number, the application g : E ≠ae E, defined by g(x) = a x is linear. Definition 7.1.9. Let I be an interval. A first order ordinary di erential equations is called a first order linear di erential equations if it is in the form

a(x) y Õ (x) + b(x) y(x) = f (x), (7.1.1)
where a, b, f and y are functions defined in I.

Students , did not understand why the teacher claimed equation (7.1.1) is linear. To explain this, the teacher defined the application

L(y) = a(x)y Õ + b(x)y. (7.1.2)
He took y 1 and y 2 two functions satisfying equation (7.1.1). He showed that

L(y 1 + y 2 ) = a(x)(y Õ 1 + y Õ 2 ) + b(x)(y 1 + y 2 ) = # a(x)y Õ 1 + b(x)y 1 $ + # a(x)y Õ 2 + b(x)y 2 $ = L(y 1 ) + L(y 2 ).
On the other hand, if y is a function satisfying (7.1.1) and k a real number, then we have

L(k y) = a(x)(k y Õ ) + b(x)(k y) = ka(x)y Õ + kb(x)y = k # a(x)y Õ + b(x)y $ = kL(y).
Therefore, the application L is linear. From this, we deduce that the equation (7.1.1) can be rewritten as follows:

L(y) = f (x). (7.1.3)
Since the left hand side part is linear, we say that (7.1.1) is linear.

In other words a di erential equation L(y) = f (x) is linear if the left hand side part L(y) is linear.

Let us consider the following di erential equation a(x)y Õ + b(x)y = f (x) defined in the interval I. According to the value of f , we say the linear di erential equation is homogeneous or nonhomogeneous. We make the following definitions: Once the teacher finished to write its examples on the board, Gunay asked to the teacher, what happed when f " © 0. We recall that f " © 0 means f is a nonzero function. When the second member f is a nonzero function we have the following definition: We call equation (ú) a generalized di erential equation. This terminology is justified by definition 7.1.14 which will be stated below. To make the definition easy to understand, we specify the following notations. We define the set I ú as follows: I ú = {x oe I ; a(x) " = 0}. We can observe that for every x oe I ú ,we have a(x) " = 0. Therefore , if we restrict our selves in the set I ú , we can divide by a(x). This means that in I ú the equation (ú) is equivalent to the following equation

y Õ + b(x) a(x) y = c(x) a(x) • (7.1.5)
The first order linear di erential equation (7.1.5) is called a normalized first order linear di erential equation. In this case we set the following definition.

Definition 7.1.14. We say a first order linear di erential equation defined in I is normalized , if it is in the form:

y Õ + a(x) y = f (x), (7.1.6) 
where a, y and f are functions defined in the interval I.

Example 7.1.15. The following di erential equations are normalized di erential equations:

1. y Õ + 2y = 2x + 1, 2. y Õ + (x 2 + x + 1)y = 0, 3. y Õ + 1 x + 1 y = (x 3 + 2).
After the definitions generalized and normalized, Nubar was a little bit confused. She wanted to know the technique which allows to pass from a generilazed to a normalized equation. To answer her question the teacher explain the following general rule: Let b, c and d be functions defined in the interval I. We consider the equation (úú

) : b(x)y Õ + c(x)y = d(x).
This equation is equivalent to y Õ (x) = ≠a(x) y(x). Since the function a is continuous and y is di erentiable, then y Õ is continuous. We know that y " © 0. This means that there exists x 1 oe I, such that y(x 1 ) " = 0. We can find a subinterval I 1 µ I, such that for all x oe I 1 , y(x) " = 0. In I 1 the equation y Õ + a(x) y = 0 is equivalent to

y Õ (x) y(x) = ≠a(x).
The function y Õ y is continuous in I 1 , then it has a primitive. To make the presentation clear and simplest, we assum y(x) > 0 for every x oe I 1 . Hence we have

⁄ x y Õ (t) y(t) dt = ln(y) = ≠ ⁄ x a(t) dt + C.
Using the exponential function we obtain, for all x oe I 1 ,

y(x) = exp 3 ≠ ⁄ x a(t) dt + C 4 = K exp 3 ≠ ⁄ x a(t) dt 4 ,
where K = exp(C). Therefore, there exists y oe C 1 (I 1 ) solution to the homogeneous linear di erential equation y Õ + a(x) y = 0. This theorem is a corollary of one of the most important theorem in analysis: the Cauchy-Lipschitz theorem. We will recall this theorem in the next subsection.

Tanya pointed out that since we stated in the previous theorem that equation (7.1.7) has solutions, they wanted to know what these solutions look like. In other words they wounder if there were an explicite formula for these solutions. To answer this question the teacher enunciate the following theorem. for every x oe I and K oe R.

Proof. We will do the proof in two steps

Step 1: Let a be a continuous function on I. We consider the function A a primitive of a on I. For every x oe I, we define the function y(x) = K exp(≠A(x)). Thus the function y is di erentiable in I and we have

y Õ (x) = ≠A Õ (x)K exp(≠A(x)) = ≠a(x)K exp(≠A(x)).
Since the function a is continuous, then, y Õ is continuous on I. Therefore, y oe C 1 (I) and y Õ (x) + a(x)Ke ≠A(x) = 0. As the function K exp(≠A(x)) is nothing but y, we get the following equation: for all x oe I, y Õ + a(x)y = 0. This means that (7.1.8) is a solution to (7.1.7)

Step 2: Now we consider the equation

(ú) : y Õ + a(x)y = 0,
where a is a continuous function on I. We take the function A as a primitive of a in I. We multiply (ú) by exp(A(x)). The following equation holds in I exp(A(x)) y Õ + a(x) exp(A(x)) y = 0.

Setting z(x) = exp(A(x)) for every x oe I , one has z Õ (x) = a(x) exp(A(x)). Substituting in the equation above, we obtain z y Õ + y z Õ = 0. We know that

y Õ z + z Õ y = (zy) Õ = 0.
This implies (z • y) Õ = 0. In this case one can find a constant real number K, such that, z • y = K. This is equivalent to exp(A(x)) y(x) = K, for every x oe I. Since exp(A(x)) " = 0, for all x oe I, we can divide by exp(A(x)). However, dividing by exp(A(x)) is equivalent to multiply by exp(≠A(x)). Consequently, we have y(x) = K exp(≠A(x)). After a little break Sanan make the following observations. Teacher we could see that each time we change the constant K in the expression (7.1.8) we get a new solution . We wanted to know how to obtain a unique solution. The teacher explained that to find a unique solution we join to the di erential equation an initial condition. Then, if we wanted to have a unique solution we have to study what we call a Cauchy problems.

Homogeneous Linear Cauchy Problem

Formally speaking, a Cauchy problem is a di erential equation to which we join an initial condition. An initial condition is just a starting point. Mathematically speaking we define a Cauchy Problem by : Definition 7.1.32. Let a be a continuous function on I. We consider x 0 oe I and y 0 oe R. A homogeneous first order linear Cauchy problem is a system in the following form Y ]

[

y Õ + a(x) y = 0, x oe I y(x 0 ) = y 0 , x = x 0 .
The di erential equation y Õ + a(x) y = 0 is called the dynamic. Because, it describes the evolution of phenomenon studied. The expression y(x 0 ) = y 0 is called the initial condition. It is the starting point. This means that we start studying the system at the time x 0 or when x = x 0 and we consider this system after x = x 0 . 

Y ]

[

y Õ + (3x + 1) y = 0, x oe R y(0) = 3, x = 0, , Y _ ] _ [ y Õ + 1 x 2 y = 0, x oe R\{0} y(1) = 5, x = 1.
The examples shown, Farida asked how to find a solution to a Cauchy problem. The teacher replayed: before solving Cauchy problem, we would prove the existence and uniqueness of a solution to the Cauchy problem in a first time. In a second time we would give the expression of the solution to a Cauchy problem.

We know from theorem 7.1.22, the homogeneous linear di erential equation (ú) : y Õ + a(x)y = 0 has solutions which belong to C 1 (I). Let A be a primitive of a. Solution of (ú) are given by y(x) = K exp(≠A(x)), for some real number K. Since y(x 0 ) = K exp(≠A(x 0 )) = y 0 , we have K = y 0 • exp(A(x 0 ). From this we deduce a unique value of K which gives the unique solution

y(x) = y 0 exp 1 ≠ # A(x) ≠ A(x 0 ) $ 2 .
This proves the following theorem we prove. (7.1.9)

Then, there exists a unique function y oe C 1 (I) solution to (7.1.9).

To find the solution of a Cauchy problem we have to follow these two steps.

Step 1: Find solutions to the di erential equation y Õ + a(x) y = 0.

We know from previous section, if A is a primitive of a(x) on I. Then, for all x oe I, the function y(x) = K exp(≠A(x)), where K oe R is a solution to the linear di erential equation above.

Step 2: We use the initial condition to determine the value of the constant real number K. Indeed the initial condition allows to establish y(x 0 ) = K exp(≠A(x 0 )) = y 0 . This implies that K = y 0 exp(A(x 0 )). The solution of the Cauchy problem is defined by y(x) = y 0 exp

1 ≠ # A(x) ≠ A(x 0 ) $ 2
. This leads to the following theorem. 

y(x) = y 0 • exp 1 ≠ # A(x) ≠ A(x 0 ) $ 2 . ( 7 

Solution : We follow steps decribe above

Step 1: We define the homogeneous linear di erential equation y Õ + 3xy = 0. Here we take a(x) = 3x. Therefore, A(x) = 3 2

x 2 is a primitive of the function a. Its solution is defined by

y(x) = K exp 1 ≠ 3x 2 /2 2 .
Step 2: Using the initial condition y(0) = 2, one obtains y(0

) = K exp(0) = 2. That is, K = 2.
In this case the unique solution to the Homogeneous Cauchy problem is

y(x) = 2 exp 1 ≠ 3x 2 /2
2 .

Example 7.1.37. Find the solution to the following Cauchy problem Y ]

[

y Õ + 2y = 0, y(1) = 3.

Solution

Step1: We consider the linear homogeneous di erential equation y Õ +2y = 0. To find the solution to this di erential equation we set a(x) = 2. The function A(x) = 2x is a primitive of the function a. Therefore,

y(x) = K exp ! ≠ 2x "
is a solution of the previous di erential equation.

Step 2: Now we use the initial condition y(1) = 3, to determine the value of the constant real number K. We know that y(1) = K exp(≠2) = 3. This implies, the constant real number K = 3 exp(2). Consequently the unique solution of the Homogeneous Cauchy problem is

y(x) = 3 exp 1 ≠ 2x + 2 2 .
Example 7.1.38. Find the function y defined in x oe ( 0 , +OE ), solution to the

following di erential equation Y _ ] _ [ y Õ + 1 x y = 0, y(3) = 4.

Solution

Step 1: Let x belongs to ( 0 , +OE ) . We define the di erential equation y Õ + 1 x y = 0.

We define the function a(x) = 1 x • Therefore, the function A(x) = ln(x) is a primitive of the function a. Therefore,

y(x) = K exp 1 ≠ ln(x) 2 = K x •
Step 2: From the initial condition we deduce y(3) = K 3 = 4. This involves K = 12. The unique solution is of the Cauchy problem is

y(x) = 12 x •
Now we consider y as a variable and we separate function depending on y to functions depending on x. This method is called the "Method of separation of variables".

Method of Separation of Variables

The main objective of this method consist of separating functions depending on x to function depending on the variable y. In this section and only in this section, we consider y as a variable.

Let us take a first order homogeneous linear di erential equation

y Õ + a(x) y = 0
To study the previous linear equation we remark when a is continuous in I the problem admits a nonzero solution. We mean by nonzero function a function f " © 0. Since y " © 0, there exists an interval I 1 µ I, such that, for all x oe I 1 , y(x) " = 0. In this sub interval I 1 , the equation y Õ + a(x) y = 0 is equivalent to

y Õ y = ≠a(x).
We gather functions depending on y between them. We did the same with functions depending x in this way

Step 1 : Integration. We put functions depending on y on the left hand side and functions depending on x on the right hand side:

y Õ y = ≠a(x).
Since the functions y Õ /y and a are continuous on I 1 , we can find their integrals in this way :

⁄ x y Õ y dt = ≠ ⁄ x a(t) dt.
The integral on the left hand side is equal to

⁄ x y Õ y dt = ln 1 |y(x)| 2 + C =∆ ln 1 |y(x)| 2 = ≠ ⁄ x a(t) dt + C Õ , with, C Õ = ≠C.
Step 2: Composition with exp Function. Using exponential function we obtain

|y(x)| = exp 1 C Õ 2 • exp 3 ≠ ⁄ x a(t) dt 4 . Setting K = exp(C Õ ) and A(x) = s x a(t) dt, one has |y(x)| = K • exp ! ≠ A(x) " .
Step 3: Expression of the solution y. According to the signe of the function y we distinguish two cases.

Case 1 : y Ø 0. When, for every x oe I 1 , we have y(x) Ø 0, then, the absolute value of y(x) is equal to y(x). That is |y(x)| = y(x). Hence, the following identity holds

y(x) = exp(C Õ ) • exp 3 ≠ ⁄ x a(t) dt 4 .
Case 2: y < 0. If for every x oe I 1 , the following inequality y(x) < 0 holds, one has |y(x)| = ≠y(x). Therefore, the general solution of homogeneous linear di erential equation is

y(x) = ≠ exp(C Õ ) • exp 3 ≠ ⁄ x a(x) dx 4 .
Remark 7.1.39. We emphasize this method can be used if and only if we can separate functions depending on y to functions depending x. Otherwise it cannot be applied. One more advantage is the fact that it works also for nonlinear di erential equations.

As applications we consider the following examples. . Now we define the sets I 1 and I 2 , such that, R = I 1 fi I 2 We assume that for all x oe I 1 , y(x) < 0 and for all x oe I 2 , y(x) Ø 0. Then, we obtain the following expression of the solution y:

y(x) = Y ] [ ≠Ke ≠x 2 , if, x oe I 1 Ke ≠x 2 , if x oe I 2 ,
where K = exp(C).

Example 7.1.41. Let x belongs to (≠OE , 0 ). Find solutions to the following differential equation:

y Õ + 1 x y = 0.
Solution: Let x oe (≠OE , 0 ). We assume y(x) " = 0. for every x oe (≠OE , 0). The equation above is equivalent to

y Õ y = ≠ 1 x • This yields ln(|y|) = ≠ ln(|x|) + C. From this, we deduce |y(x)| = exp(C) • exp ! ≠ ln(|x|) " = exp(C) |x| • Since x oe (≠OE , 0), we obtain |y(x)| = ≠ exp(C) x •
Now, we define the set J 1 and J 2 as follows:

J 1 = Ó x oe (≠OE , 0) ; y(x) < 0 Ô and J 2 = Ó x oe (≠OE , 0) ; y(x) Ø 0 Ô .
Therefore, the expression of y is

y(x) = Y _ _ ] _ _ [ K x , if, x oe J 1 ≠ K x , if x oe J 2 ,
here, we set K = exp(C).

Remark 7.1.42. We remark again we can use the method for nonlinear equation and the principle is the same.

After these examples the students were woundering, what happens if the second member f is di erent to 0. To remove any ambiguity the teacher introduce the nonhomogeneous linear di erential equations.

Nonhomogeneous Linear Equation

In this section we study the first order di erential equations with second member f " © 0. Here we will explain a general method to solve these type of di erential equations.

Arzu asked if there was possible to recall the definition of nonhomogeneous linear di erential equation. The teacher accessed to Arzu's request. He stated this definition Definition 7.2.1. We call nonhomogeneous first order linear di erential equation a linear di erential equation which is in the following form

y Õ (x) + a(x) y(x) = f (x). (7.2.1)
We take f " © 0, and we consider equation (7.2.1). We aim to establish an existence theorem for nonhomogeneous equation. To this end we assume the functions a and f are two continuous functions on I. Let y be a di erentiable function in I, such that, y Õ + a(x) y = f (x).

We consider a function A which is a primitive of a. The solution of the homogeneous equation y

Õ H + a(x) y H = 0 is y H (x) = K exp ! ≠ A(x) " .
Let k be a di erentiable function on I. We define the function

y(x) = k(x) • exp(≠A(x))
and we assume that y is a solution to the nonhomogeneous di erential equation (7.2.1). The function y is di erentiable in I and we have

y Õ (x) = exp ! ≠ A(x) "# k Õ (x) ≠ k(x) a(x) $ .
Substituting in (7.2.1) we obtain exp(≠A(x))

# k Õ (x) ≠ k(x) a(x) + k(x) a(x) $ = k Õ (x) exp(≠A(x)) = f (x).
This implies k Õ (x) = f (x) exp(A(x)). From this, we deduce that

k(x) = ⁄ x f (t) • e A(t) dt.
This leads to the following formula: for every x oe I y

(x) = e ≠A(x) ⁄ x e A(t) f (t) dt = ⁄ x e ≠(A(x)≠A(t)) • f (t) dt.
This means that if a and f are continuous functions on I, there exist a solution to the nonhomogeneous equation (7.2.1). Theorem 7.2.2. Let a and f be two continuous functions on I. Then, there exists a function y oe C 1 (I) solution to (7.2.1).

In this case we say equation (7.2.1) has at least a particular solution. Students pointed out that refering to the previous section they know how to find y H (x) = K exp(≠A(x)), they woundered if there was e cient methods to determine particular solutions y p .

Methods to Define a Particular solution

This subsection devoted to methods which will allow to find a particular solution. We define a particular solution as Definition 7.2.3. We say that y p is a particular solution of the nonhomgeneous equation if y p satisfies equation (7.2.1).

To determine y p , there are several methods but here we will only study two of them:

1. Method of Variations of constant

Method of undetermined coe cients

Method of Variations of Constant

We consider the nonhomogeneous linear di erential equation y Õ + a(x) y = f (x) We know the homogeneous equation y

Õ H + a(x) y H = 0 has solution y H (x) = K exp(≠A(x)),
where K is a real number and the function A is a primitive of a. To find a particular solution y p , we replace the constant K in the expression of y H by a function ⁄(x) depending on x. Hence, we define

y p (x) = ⁄(x) exp(≠A(x)).
The function y p is di erentiable and

y Õ p (x) = ! ⁄ Õ (x) ≠ a(x)⁄(x) " exp(≠A(x)).
Now we must find the expression of the function ⁄. Since the function y p is a particular solution of the equation y Õ + a(x) y = f (x), then, we have

y Õ p + a(x) y p = 1 ⁄ Õ (x) ≠ a(x)⁄(x) 2 exp(≠A(x)) + a(x)⁄(x) exp(≠A(x)) = f (x).
This implies ⁄ Õ (x) exp(≠A(x)) = f (x). Multiplying by exp(A(x)), one has

⁄ Õ (x) = f (x) exp(A(x)).
This means the function ⁄ is a primitive of the function f (x) exp(A(x)). Consequently

⁄(x) = ⁄ x exp(A(t)) f (t) dt.
Example 7.2.4. Find a particular solution to the equation y Õ + 2y = x 2 exp(≠2x).

A general solution of the homogeneous equation y

Õ H + 2y H = 0 is y H (x) = K exp(≠2x).
To determine a particular solution to the equation, we apply the method of variations of constant. We define the function y p (x) = ⁄(x) exp(≠2x). Then, we have

y Õ p (x) = ! ⁄ Õ (x) ≠ 2 ⁄(x) " exp (≠2x) 
.

The function y

p satisfies ! ⁄ Õ (x) ≠ 2 ⁄(x) " exp(≠2x) + 2⁄(x) exp(≠2x) = x 2 exp(≠2x).
This implies the identity ⁄ Õ (x) = x 2 . From this we deduce ⁄(x) = 

(x) = K exp 1 ≠ x 2
2 .

Now we define the function y

p (x) = ⁄(x) exp ! ≠ x 2 "
as a particular solution to the equation above. It then, follows

y Õ p (x) = 1 ⁄ Õ (x) ≠ 2x • ⁄(x) 2 exp 1 ≠ x 2 2 .
Since y p is a particular solution of y Õ + 2xy = x exp(≠2x), we have

1 ⁄ Õ (x) ≠ 2x • ⁄(x) 2 exp 1 ≠ x 2 2 + 2x • ⁄(x) exp 1 ≠ x 2 2 = x • exp 1 ≠ x 2 2 .
This is equivalent to ⁄ Õ (x) = x. This involves

⁄(x) = x 2 2 
From this we deduce

y p (x) = x 2 2 exp 1 ≠ x 2 2 .
Example 7.2.6. Define a particular solution to the following di erential equation xy Õ ≠ 2y = x 2 . For any real number x " = 0, the equation above is equivalent to

y Õ ≠ 2 x y = x.
A general homogeneous solution of this latter is defined by

y H (x) = Ke ln(x 2 ) = K x 2 ,
where K is a real number. We define the function y p (x) = ⁄(x) • x 2 as a particular solution to the equation above . Hence we have y Õ p (x) = x 2 ⁄ Õ (x) + 2x⁄(x). The function y p is a particular solution to the nonhomogeneous then, we have This equation is equivalent to (2x+1) y Õ ≠2y = 2 x. Let x be a real number such that

⁄ Õ (x)x 2 + 2x⁄(x) ≠ 2x⁄(x) = x.
x " = ≠ 1 2 . Dividing the equation above by 2x + 1, we obtain the following equation

y Õ ≠ 2 2x + 1 y = 2x 2x + 1 •
The associated homogeneous equation is y Õ H ≠ 2 2x+1 y H = 0. For every x " = ≠ 1 2 the solution of this latter is defined by

y H (x) = K exp 1 ln(|2x + 1|) 2 = K |2x + 1|. Hence y H (x) = Y _ _ ] _ _ [ K(2x + 1), if x > ≠ 1 2 ≠K(2x + 1), if x < ≠ 1 2
where K is a real number. Now we consider x > ≠ 1 2 and we define the function y p (x) = ⁄(x) (2x + 1).

We have y Õ p (x) = ⁄(x) Õ (2x + 1) + 2 ⁄(x) Replacing in the nonhomogeneous equation one has (2x + 1) 2 ⁄ Õ (x) + 2 (2x + 1) ⁄(x) ≠ 2 (2x + 1) ⁄(x) = 2x. This implies

⁄ Õ (x) = 2x (2x + 1) 2 = 2x + 1 ≠ 1 (2x + 1) 2 = 1 2x + 1 ≠ 1 (2x + 1) 2 • Therefore, ⁄(x) = 1 2 
1 ln(2x + 1) + 1 2x + 1 2 .
For every x > ≠ 1 2 , we have

y p (x) = 1 2 (2x + 1) ln(2x + 1) + 1 2 •
Here we suppose x < ≠ 1 2 , and we take the function y p (x) = ≠⁄(x)(2x + 1) Then, we obtain y Õ p (x) = ≠⁄ Õ (x)(2x + 1) ≠ 2⁄(x) Substuting in the nonhomogeneous equation one gets

≠⁄ Õ (x)(2x + 1) 2 ≠ 2(2x + 1)⁄(x) + 2(2x + 1)⁄(x) = 2x. That is, ⁄ Õ (x) = ≠ 2x (2x + 1) 2 . This means for every x < ≠ 1 2 ⁄(x) = ≠ 1 2 3 ln(≠2x ≠ 1) + 1 2x + 1 4 
.

In this case we have y p (x) = 1 2 ((2x + 1) ln(≠2x ≠ 1) + 1) , for every x < ≠ 1 2 • Finally we obtain the following particular solution 

y(x) = Y _ _ ] _ _ [ 1 2 (2x + 1) ln(2x + 1) + 1 2 , if x > ≠ 1 2 1 2 (2x + 1) ln(≠2x ≠ 1) + 1 2 , if x < ≠ 1 
(x) = K exp(≠ ln(| sin(x)|)) = K | sin(x)|
, where K is a real number. Hence we have

y H (x) = Y _ _ _ ] _ _ _ [ ≠K sin(x) , if x oe (≠fi , 0 ) K sin(x)
, if x oe ( 0 , fi )

Let x oe ( 0 , fi ), we define the function y p (x) = ⁄(x) sin(x)

• Then we have

⁄ Õ (x) sin(x) = x sin(x) • One deduces ⁄ Õ (x) = x. That is, ⁄(x) = x 2 2 
and for every x oe ( 0 , fi ) the particular solution is defined by y p (x) = x 2 2 sin(x)

•

Now we consider x oe (≠fi , 0 ) and we define the function y p (x) = ≠⁄(x) sin(x)

• This leads to the following identity

≠⁄ Õ (x) sin(x) = x sin(x)
• Then, we have ⁄(x) = ≠x 2 2 and for every x oe (≠fi , 0 ),

y p (x) = ≠ x 2 2sin(x)
• Therefore, we obtain the following solution

y(x) = Y _ _ _ _ ] _ _ _ _ [ ≠ x 2 2 sin(x)
, if x oe (≠fi , 0 )

x 2 2 sin(x)

, if x oe ( 0 , fi ).

When the second member has particular form we can simplify calculations by applying the method of undetermined coe cients. We specify that this method works only for some particular forms of the second mmber f . Indeed it can be applied when the second member f has one of the following forms It is important to remark that when the expression of f is di erent to the form 1, 2, or 3, applying this method is useless. This justify the fact that this method is adopted to some particular situations. That is why, we say it is particular method. The second method is more general, but seems to be more di cult to be applied. As an example to which we cannot apply the Method of undetermined coe cients we take f (x) = ln(x). To illustrate this method we proceed by examples.

Undetermined Coe cients Methods

The objective of this subsection is to define the method of undetermined coe cients Methods. For the sake of clarity and simplicity we proceed by examples to explain how the method runs.

We start with the case f (x) = P (x), where P is a polynomial function.

The Second Member Polynomial Function

When the second member f is a polynomial function, we define the function

y p (x) = n ÿ k=0 a k x k = a n x n + • • • + a 1 x + a 0 .
To determine the function y p we need just to find the coe cients a 0 , • • • , a n . Example 7.2.9. Using the method of undetermined coe cients, find a particular solution for the following nonhogeneous linear di erential equation

y Õ + 2 y = x 2 + 2x + 1.
Solution . Here we observe f (x) = x 2 + 2x + 1 and a = 2. Then, we can define the function y p = bx 2 + cx + d.

To determine the function y p we should find a, c and d. One can directly apply the formulas above and find b, c and d. Indeed we have

b = 1 2 , c = 2 2 ≠ 2 ◊ 1 4 = 1 2 , d = 1 2 ≠ 1 4 = 1 4 • Therefore y p (x) = 1 2 ! x 2 + x + 1 2 " .
To explain in details the previous result, we define y p = bx 2 +cx+d. The function y p is di erentiable in R and y Õ p (x) = 2bx + c Replacing in the previous equation one obtains

2bx + c + 2(bx 2 + cx + d) = x 2 + 2x + 1.
This is equivalent to

2bx 2 + 2(b + c)x + (c + 2d) = x 2 + 2x + 1.
We identify the two polynomial functions to get 2b = 1, 2(b + c) = 2 and c + 2d = 1.

This means that

b = 1 2 , c = 1 2 , and d = 1 4 • That is, y p (x) = 1 2 x 2 + 1 2 x + 1 4 •
Example 7.2.10. Determine a particular solution to the following nonhomogeneous equation

y Õ + 1 2 y = 2.
Since f (x) = 2 we define as a polynomial function. That is we define y p = bx + c, where b and c are real numbers. In this case y Õ p (x) = a. Substituting in the equation we obtain

y Õ p (x) + 1 2 y p (x) = 2 ≈∆ a + 1 2 (ax + b) = 2 ≈∆ 1 2 a x + a + 1 2 b = 2
Identifying the ploynomes one gets 1 2 a = 0 and a + 1 2 b = 2. This involves a = 0 and b = 4. Therefore, y p (x) = 4.

Example 7.2.11. Find a particular solution to the following equation

y Õ + 3y = x 2 .
Here we observe the second member f (x) = x 2 is a polynomial function. Thus we define the particular solution as a polynomial function. That is why we consider In this example we have f (x) = x. That is why we can define

y p (x) = ax 2 + bx + c. It then follows y Õ p (x) = 2ax + b. As y p is a particular solution of y Õ + 3y = x 2 , we have 2ax + b + 3(ax 2 + bx + c) = x 2 . This is equivalent to 3 a x 2 + (2a + 3b)x + b + 3c = x
y p (x) = ax 2 + bx + c.
This involves , y Õ p (x) = 2ax + b. Substituting in the previous equation we obtain

3ax + 2b + c x = x.
This identity implies 3a = 1, 2b = 0 and c = 0. Therefore, a = 1 3 , and b = c = 0. The particular solution is

y p (x) = 1 3 x 2 .
Example 7.2.13. Determine a particular solution of y Õ + y = x.

To find a particular solution y p , we point out that f is a polynomial solution. Hence, we define y p (x) = ax + b. The derivative of y p is y Õ p = a. Since y p is a particular solution, it satisfies a + ax + b = x. This implies a = 1 and a + b = 0. This means that a = 1 and b = ≠1. The particular solution is defined by

y p (x) = x ≠ 1.
Example 7.2.16. Determine a particular solution solutions to y Õ + y = cos(x).

Here the second member f (x) = cos(x). We should define y p as a combination of cos(x) and sin(x). We set y p (x) = A cos(x) + B sin(x).

Then, we have y Õ p (x) = ≠A sin(x) + B cos(x). Substituting in the di erential equation, we obtain

(B ≠ A) sin(x) + (A + B) cos(x) = cos(x).
This is equivalent to B ≠ A = 0 and A + B = 1. From this we deduce A = 1 2 and

B = 1 2 Therefore, y p (x) = 1 2 cos(x) + 1 2 sin(x).
As asserted in the previous theorem the existence of a solution to (7.2.1), Gunay would like to know if the solutions had a known expression. To answer this question we introduce the following subsection

Solution to the Nonhomogeneous Equation

The teacher confirmed there were one such formulas. But he needed to precise some propertie shared by thes solutions before establishing their expressions.

He took two functions y H and y p , which are defined in the real interval I and satisfied these di erential equations y Õ H + a(x) y H = 0 and y Õ p + a(x) y p = f (x). The function y H is a solution to the homogeneous linear equation. We called it a homogeneous solution. The function y p is called a particular solution to the nonhomogeneous linear di erential equation. Now, let x oe I and define the function z(x) = y H (x) + y p (x). The functions y H and y p were assumed to be di erentiable. Then the function z is di erentiable and the following holds z Õ (x) = y Õ H (x) + y Õ p (x). This yields

z Õ (x) + a(x) z = y Õ H + a(x) y Õ p + a(x) (y H + y p ) = (y Õ H + a(x) y H ) + (y Õ p + a(x) y p ).
The functions y H and y p which are in C 1 (I) satisfy equations y Õ H + a(x) y H = 0 and y Õ p + a(x) y p = f (x). Hence z Õ + a(x) z = f (x). We conclude the function z is a solution to (7.2.1).

Let y oe C 1 be a solution to (7.2.1). We assume there are x 0 oe I, and y 0 oe R, such that y(x 0 ) = y 0 . Then, the function y satisfies the nonhomogeous linear di erential equation y Õ + a(x) y = f (x). We supposed a to be a continuous function on I. We define A as the primitive of a on I, which satisfies A(x 0 ) = 0. Multiplying (7.2.1) by exp(A(x)), we get

y Õ exp(A(x)) + a(x) exp(A(x)) y = 1 y exp(A(x)) 2 Õ = exp(A(x)) f (x).
Integrating from x 0 to x oe I, one has ⁄

x x0 1 y exp(A(t)) 2 Õ dt = exp(A(x))y(x) ≠ y 0 = ⁄ x x0 exp(A(t)) f (t) dt.
This leads to the following identity

y(x) = y 0 • exp(≠A(x)) + exp(≠A(x)) ⁄ x x0 exp(A(t)) f (t) dt.
We can observe that y H = y 0 exp(≠A(x)) is a solution to the homogeneous linear di erential equation y Õ H + a(x) y H = 0. Students asked the signification of the second part of the right hand side of the formula. To show that the second part corresponds to a particular solution of (7.2.1), he recalled how to derivate under the sign integral. 

F (x) = ⁄ x g(t) dt.
Then, the function F is di erential in ( a , b ) and for every x oe (a , b),

F Õ (x) = g(x). (7.2.2)
Now, we take a real number x in I and we consider the function

y p (x) = exp(≠A(x)) ⁄ x x0 exp(A(t)) f (t) dt.
The function y p is a multiplication of two di erentiable functions. Then, the funcion y p is di erentiable. Let x oe I, we have

y Õ p (x) = ≠A Õ (x) exp(≠A(x)) ⁄ x x0 exp(A(t)) f (t)dt + exp(≠A(x)) exp(A(x)) f (x).
The Proposition above involves 3⁄

x x0 exp(A(t)) f (t) dt 4 Õ = exp(A(x)) f (x).
As we defined A, such that, A Õ (x) = a(x). One has

y Õ p (x) = ≠a(x) exp(≠A(x)) ⁄ x x0 exp(A(t)) f (t) dt + f (x) = ≠a(x)y p + f (x).
This leads to the identity: y p = ≠a(x) y p + f (x). Therefore y Õ p + a(x) y p = f (x). Consequently the function y p is a particular solution to (7.2.1). This is equivalent to say y = y H + y p . Theorem 7.2.18. Let y be a solution to (7.2.1) in some interval I. Then there exist two functions y H and y p in C 1 (I), such that, for every x oe I y(x) = y H (x) + y p (x).

(7.2.

3)

The function y H satisfies y Õ H + a(x) y H = 0 and the function y p is a particular solution of (7.2.1).

Example 7.2.19. Find a solution to y

Õ + 2 x y = x e ≠x 2
We remind that the solution y is defined by

y(x) = y H (x) + y p (x).
where y H satisfies the homogeneous equation y Õ H + 2 x y H = 0 and y p is a particular solution.

We know from the previous section that a general homogeneous solution is defined by y H (x) = Ke ≠x 2 .

One can easily check that the function

y p (x) = x 2 2 exp ! ≠ x 2 "
is a particular solution. Therefore a general solution to the nonhomogeneous equation is defined by

y(x) = Ke ≠x 2 + x 2 2 e ≠x 2 = 3 x 2 2 + K 4 exp ! ≠x 2 " ,
where K is some constant real number.

Example 7.2.20. Find a solution to sin(x)y Õ + cos(x)y = x.

For every x oe (≠fi , 0 ) fi ( 0 , fi ), the equation sin(x)y Õ H + cos(x)y H = 0 is equivalent to

y Õ H + cos(x) sin(x) y H = 0
Let x oe (≠fi , 0 ) fi ( 0 , fi ). A general homogeneous solution is defined by

y H (x) = K e ≠ ln(| sin(x)|) = K | sin(x)|
where K is a real number. Hence we have

y H (x) = Y _ _ _ ] _ _ _ [ ≠K sin(x) if x oe (≠fi , 0 ) K sin(x) if x oe ( 0 , fi ).
The function

y p (x) = Y _ _ _ _ ] _ _ _ _ [ ≠ x 2 2 sin(x) , if x oe (≠fi , 0 ) + x 2 2 sin(x) , if x oe ( 0 , fi )
is a particular solution. Then, we obtain the following solution

y(x) = Y _ _ _ _ ] _ _ _ _ [ ≠K sin(x) ≠ x 2 2 sin(x) , if x oe (≠fi , 0 ) K sin(x) + x 2 2 sin(x) , if x oe ( 0 , fi ) Example 7.2.23. Find a solution to y Õ + y = x ≠ e x + cos(x)
Here we use the principle of superposition by defing the function y = y 1 +y 1 +y 3 , where the functions y 1 , y 2 and y 3 are solutions of the following equations

y Õ 1 + y 1 = x y Õ 2 + y 2 = ≠e x y Õ 3 + y 3 = cos(x).
We point out that the linear di erential equation y Õ 1 + y 1 = x has solution

y 1 (x) = K 1 e ≠x + x ≠ 1.
A solution of y Õ 2 + y 2 = ≠e x can be given by y 2 (x) = K 2 exp(≠x) ≠ 1 2 exp(x). For the di erential y Õ 3 + y 3 = cos(x), one has y 3 (x) = K 3 e ≠x + 1 2 (cos(x) + sin(x)) . Applying theorem 7.2.22 we obtain

y(x) = K Õ e ≠x ≠ 1 2 e x + x ≠ 1 + 1 2 1 cos(x) + sin(x) 2 ,
where K Õ is a constant real number.

To obtain a unique solution for a nonhomogeneous equation, we add an initial condition. In this case we obtain a nonhomogeneous Cauchy problem

Nonhomogeneous Cauchy Problem

This subsection is devoted to the nonhomogeneous linear Cauchy problem. Indeed, for x 0 oe I and y 0 oe R, we are looking for a unique function y in C 1 (I) solution to the following problem Y ]

[

y Õ + a(x) y = f (x) y(x 0 ) = y 0 (7.2.8)
We know that a solution to the di erential equation y Õ + a(x) y = f (x) is in the form

y(x) = K exp 3 ≠ ⁄ x a(t) dt 4 + y p (x).
To get uniqueness we need to determine a fix value of K. This value is obtained by using the initial condition. We have

y 0 = y(x 0 ) = K exp 3 ≠ ⁄ x0 a(t) dt 4 + y p (x 0 ) This implies K = 1 y 0 ≠ y(x 0 ) 2 • exp 3⁄ x0 a(t) dt 4 .
in this case we obtain a unique solution. We consider the di erential equation y Õ + 1 x y = x. The homogeneous solution is defined by

y H (x) = K exp ! ≠ ln(x) " = K x ,
where K is a constant real number. Since f (x) = x, we define y p (x) = ax 2 + bx + c. Then, y Õ p (x) = 2ax + b. We obtain 3ax + 2b + 

(x) = K x + 1 3 x 2 .
Now we have to use the initial condition to find the constant K. We know that y(1) = 3. Hence , one has K + 1 3 = 3. We obtain K = 3 ≠

1 3 = 8 3
. This yields the unique solution to the Cauchy problem is defined by We remark that the function y p (x) = 1 is a particular solution to the equation y Õ + cos(x) y = cos(x).

y(x) = 8 3x + 1 3 x 2 .
On the other hand we have y H (x) = K exp(≠ sin(x)), where K is a real number Then , y(x) = K exp(≠ sin(x)) + 1.

Since y(0) = 2, we have K + 1 = 2. This means that K = 1. The unique solution of the initial value problem is defined by y(x) = e ≠ sin(x) + 1. The homogeneous equation has solution y H (x) = K exp(≠x), where K is a constant real number. We can easily check that the function

y p (x) = 1 2 exp(x) + x ≠ 1. Hence y(x) = Ke ≠x + e x 2 + x ≠ 1.
Now we use the initial condition y(0) = 0. Then, we obtain

y(0) = K + 1 2 ≠ 1 = 0 This implies K = 1 2
. Therefore, This chapter is devoted to second order linear ordinary di erential equations. We specify here we will only deal with second order linear di erential equation with constant coe cients: find a function y of class C 2 satisfying ay ÕÕ + by Õ + cy = f (x).

y(x) = 1 2 e ≠x + e x 2 + x ≠ 1 = ch(x) + x ≠
(8.0.1)

Here, a, b and c are constant real numbers. Moreover we assume a " = 0. Otherwise we will have b y Õ + c y = f (x), which is a first order linear di erential equation. An example of such equation is given by 2y ÕÕ + y Õ + 3y = x 3 + 3x + 1 or 3y ÕÕ + 5y Õ + 4y = e x 2 +2 .

These equations occured in the formulation of Newton's second law

mẍ = ÿ F ext . (8.0.2)
This equation describes the motion of an object of mass m subjected to the forces F ext . In (8.0.2) we use physicist's notations ẍ. We mean by ẍ the second derivative of the trajectory x. Here ẍ representate the acceleration of the mouvement of an object subjected to the external forces. In other words Newton second Law's claims that the acceleration is proportional to the sum of the external forces. Equation (8.0.2) is one of the most important equation in Physics. Several other physical phenomenons can be described by these equations. As we did it for first order linear di erential equations, we are looking for necessary conditions such that there will be a solution for (8.0.1).

In the first time we will deal with the homogeneous second order linear di erential equation ay ÕÕ + by Õ + cy = 0. In the second section we will be concerned by the Cauchy problems.

Homogeneous Equation

The main purpose of this section is to define a solution to the equation

ay ÕÕ + by Õ + cy = 0,
where a, b and c are constant real numbers such that, a " = 0. As an example of homogeneous equation we consider the equation y ÕÕ + 4y Õ + 9y = 0. In a first time we will establish an exsitence theorem. In the second part of this section we define the expression of the solutions to ay ÕÕ + by Õ + cy = 0, we remind that the coe cients a, b and c are constant real numbers such that a " = 0.

Let a, b and c be three real numbers such that a " = 0. We are looking for a function y which is twice di erentiable in some interval of R and satisfies the following di erential equation As we know there exists a solutions, our next step will consist of studying some properties of these solutions.

Properties of the Homogeneous Solutions

In this subsection we study the properties of the homogeneous solution.

Let y 1 and y 2 be two di erent solutions of (8.1.1). We consider two real numbers -and -and we define the function y = -y 1 + -y 2 . The function y is twice di erentiable, because the functions y 1 and y 2 are twice di erentiable. We have y Õ = -y Õ 1 + -y Õ 2 and y ÕÕ = -y ÕÕ 1 + -y ÕÕ 2 . This involves

a y ÕÕ + b y Õ + c y = a ! -y ÕÕ 1 + -y ÕÕ 2 " + b ! -y Õ 1 + -y Õ 2 " + c ! -y 1 + -y 2 " = - ! a y ÕÕ 1 + b y Õ 1 + c y 1 " + - ! a y ÕÕ 2 + b y Õ 2 + c y 2 "
As y 1 and y 2 are solutions of (8.1.1), therefore a y ÕÕ 1 + b y Õ 1 + c y 1 = 0 and a y ÕÕ 2 + b y Õ 2 + c y 2 = 0. Hence a y ÕÕ + b y Õ + c y = 0. This means the function y which is a combination of solution is also a solution. Since the null function is a solution to the di erential equation, we have the following theorem. Theorem 8.1.2. The set of all solutions of (8.1.1) is a vector space.

We can make the following comments on theorem 8.1.2. We can prove that the set S 0 of all solution of equation (8.1.1) is a vector space of dimension 2. Taking advantage of the fact that S 0 is a vector space of dimension 2, we can define a basis of two function f 1 and f 2 on this set. This allows to establish Theorem 8.1.3. Let S 0 be the st of all solution of equation (8.1.1) and ) f 1 ; f 2 * a basis of S 0 . Then, for any solution y of (8.1.1) there exist two real numbers -and -such that

y = -f 1 + -f 2 .
This theorem means that any solution should be a combination of two elements of a basis of S 0 . That is, determining S 0 consists of finding a basis of this set.

Definition of a Basis to the Set of Solutions

The goal of this subsection is to define a basis of S 0 . A basis of S 0 should be a set of two functions which are linearly independant. Definition 8.1.4. Let f 1 and f 2 be two elements of a set E. We say f 1 and f 2 are linearly independant if for any real numbers -and -, -f 1 + -f 2 = 0 implies -= -= 0. Example 8.1.5. We consider the vectors u 1 = (2 , 5) and u 2 = (3 , 0). We consider two real numbers -and -such that, -u 1 + -u 2 = 0. This is equivalent to the following linear system Y ] The functions f 1 (x) = exp(r 1 x) and f 2 (x) = exp(r 2 x) are indefinitely di erentiable and for every real number x we have (exp(r 1 x)) Õ = r 1 exp(r 1 x) and (exp(r 2 x)) Õ = r 2 exp(r 2 x).

Taking x 0 = 0, we obtain

f 1 (0) • f Õ 2 (0) ≠ f Õ 1 (0) • f 2 (0) = r 2 ≠ r 1 = a " = 0.
We have established this lemme Lemma 8.1.13. The functions exp(r 1 x) and exp(r 2 x) are linearly independant functions which belong to S 0 .

We know from linear algebra if E is a vector space of dimension n any linearly independant familly of n elements is a basis. Since dim ! S 0 " = 2, any linearly independant set of two vectors is a basis. Then we have Lemma 8.1.14. The set of functions ) exp(r 1 x) ; exp(r 2 x) * is a basis of S 0 .

On the other hand we know that a combination of solutions is also a solution. As we have a basis of S 0 , we can establish We define the real numbers r 1 and r 2 as the real solutions of the equation a r 2 + b r + c = 0.

Then, y H is a solution of (8.1.1) if there exist real numbers C 1 and C 2 such that, y H (x) = C 1 exp(r 1 x) + C 2 exp(r 2 x).

(8.1.4)

Proof. The functions exp(r 1 x) and exp(r 2 x) are solutions of (8.1.1). Then, the combination C 1 exp(r 1 x) + C 2 exp(r 2 x), where C 1 and C 2 are in R, is a solution of(8.1.1).

On the other hand the set ) exp(r 1 x) , exp(r 2 x) * is a basis, then, any function in S 0 is a combination of exp(r 1 x) and exp(r 2 ). Therefore one can find real number C 1 and C 2 such that, y H (x) = C 1 exp(r 1 x) + C 2 exp(r 2 x). To construct a basis of S 0 we need to find a second solution y 2 of (8.1.1) which is linearly independant to exp(r 0 x). Now we define the function y 2 (x) = x exp(r 0 x). The function y 2 is indefinitely di erentiable in R and for any real number Proof. Let us define f 1 (x) = exp(r 0 x) and f 2 (x) = x • exp(r 0 x). From this one deduces f Õ 1 (x) = r 0 exp(r 0 x) and f Õ 2 (x) = (r 0 x + 1) exp(r 0 x). Choosing x 0 = 0 one has

f 1 (0) • f Õ 2 (0) ≠ f Õ 1 (0) • f 2 (0) = 1 " = 0.
We conclude f 1 and f 2 are linearly independant.

From this lemma we deduce the set ) exp(r 0 x) , x • exp(r 0 x) * is a basis of the two dimensional vector space S 0 .

Theorem 8.1.20. We consider the second order linear di erential equation (8. 1.1) such that, = b 2 ≠ 4a c = 0. We define the real number r 0 = ≠b/2a. Then, y is a real solution of (8.1.1) if there exist real numbers C 1 and C 2 such that, for every x oe R, y H (x) = (C 1 x + C 2 ) • exp(r 0 x). (8.1.5)

Proof. The functions exp(r 0 x) and x • exp(r 0 x) are solutions of (8.1.1). Then, any combination of these two function is a solution. Hence y H is a solution of (8.1.1). Now we take y H a solution of (8.1.1). The function y H belongs to S 0 . Since ) exp(r 0 x) , x • exp(r 0 x) * is a basis of S 0 , then, there exist two real numbers C 1 and C 2 , such that, y H (x) = ! C 1 x + C 2 "

• exp(r 0 x). We set r 1 := -≠ i Ê and r 2 := -+ i Ê. In this case we have

y 1 (x) = exp ! (-≠ i Ê) x " or y 2 (x) = exp ! (-+ i Ê) x " .
As we can see it these function are complex functions. From this we deduce any complex combination of exp ! (-≠ i Ê) x " and exp ! (-+ i Ê) x " is a complex solution of (8.1.1).

Theorem 8.1.23. We consider the second order linear di erential equation (8. 1.1) such that = b 2 ≠4 a c < 0. Let -and Ê be defined by (8. 1.6). Then, y is a complex solution of (8.1.1), if there exist two comlex numbers C 1 and C 2 such that, for every real number x

y(x) = exp ! -x " 1 C 1 exp ! i Ê x " + C 2 exp ! ≠ i Ê x " 2 . (8.1.7)
We specify that (8.1.7) gives us complex solutions. One may wounder if there are real solutions. To answer this question we consider a real solution y. The function y satisfies y(x) = y(x). In other words the function

C 1 exp ! (-+ i Ê) x " + C 2 exp ! (-≠ i Ê) x "
is a real solution if we have the following identity

C 1 exp ! i Ê x " + C 2 exp ! ≠ i Ê x " = C 1 exp ! ≠ i Ê x " + C 2 exp ! (i Ê) x " .
This is equivalent to the following identity We learn from this theorem that , if -and Ê are defined by (8.1.6), then, the familly ) cos(Ê x) , sin(Ê x) * , is a basis of the vector space S 0 .

1 C 1 ≠ C 2 2 exp ! 2 i Ê x " + 1 C 2 ≠ C 1
Example 8.1.25. Find the solution of the following second order linear di erential equation y ÕÕ + 2 y Õ + 3 y = 0.

To solve this equation we define the associated carateriscal equation r 2 + 2 r + 3 = 0.

We have = 4 ≠ 12 = ≠8 < 0. In this case we obtain

-= ≠ 2 2 = ≠1 and Ê = Ô 8 2 = 2 Ô 2 2 = Ô 2.
The complex solution of the second order linear di erential equation is

y(x) = C 1 exp 11 ≠ 1 + i Ô 2 2 x 2 + C 2 exp 11 ≠ 1 ≠ i Ô 2 2 x 2 ,
where C 1 and C 2 are complex numbers. The real solution of the second order differential equation is

y(x) = exp(≠x) Ë C 3 cos 1 Ô 2 x 2 + C 4 sin 1 Ô 2 x 2È ,
where the constant C As we can see it, in the expressions of solutions we have two constant numbers. To determine the values of these constants we need at least a system of two equations with two unknown. This means that we have to fix two initial value conditions or boundaries conditions. This means that we should define initial values problems or boundary condition values problems.

Homogeneous Cauchy Problem

In the previous section we established the second order linear di erential equation a y ÕÕ +b y Õ +c y = 0 has multiple solutions. Indeed each time we change the constants C 1 and C 2 in the expression of the solution (8.1.4) we obtain a new solution.

The main goal of this section is to define a unique solution of (8.1.1). This can be only done if and only if we determine fixed values of C 1 and C 2 in (8. 1.4). To this end we need to fix two conditions in order to get a linear system of two equations with two unknowns. According to the nature of these conditions, we will say we have an initial values problem or a boundary conditions problem.

We start this section by defining initial values and boundary conditions problems. After these definitions we establish the uniqueness of their solutions. 

Homogeneous Initial Value Problem

Let y 1 and y 2 be two real numbers. We consider an interval I and some point x 0 in I. We define the initial value problem: find y oe C 2 (R) solution to In this linear system the unknowns are C 1 and C 2 . This linear system is equivalent to the following matricial equation 5 exp(r 1 x 0 ) exp(r 2 x 0 ) r 1 exp(r 1 x 0 ) r 2 exp(r 2 x 0 ) We know that (8.2.3) has a unique solution if and only if r 2 exp((r 1 + r 2 ) x 0 ) ≠ r 1 exp((r 1 + r 2 ) x 0 ) " = 0.

Since exp((r 1 + r 2 ) x 0 ) " = 0, this is equivalent to r 2 ≠ r 1 " = 0. As we know that " = 0, then r 1 " = r 2 . Therefore, there exists a unique vector (C 1 , C 2 ) solution to (8.2.3). From we deduce, when " = 0 the initial value problem (8.2.3) has a unique solution.

Now we are interested on the case = 0. We established in section 8.1 when = 0, the expression of solution of (8.1.1) is y(x) = (C 1 x + C 2 ) exp(r x), where r is the unique solution of (8. The linear system (8.2.4) has a unique solution because r x 0 ≠ r x 0 ≠ 1 = ≠1 " = 0. Hence there exists a unique vector (C 1 , C 2 ) solution to (8.2.4). This leads to the conclusion that when = 0, the initial value problem (8.2.1) has a unique solution.

We can summarize this study in this Theorem 8.2.9. We consider the initial values problem (8.2.1). Then, there exists a unique function y oe C 2 (I), solution to (8.2.1).

In other words the initial value problem (8.2.1) admits a unique solution. 

r 1 ≠ r 2 = ≠1 ≠ i Ô 3 2 ≠ ≠1 + i Ô 3 2 = 2i Ô 3 2 = ≠i Ô 3.
Hence we obtain ≠i 

Homogeneous Boundary Conditions Problem

We consider two real numbers y 1 and y 2 . On the interval In section (8.2) we studied equation a y ÕÕ + b y Õ + c y = 0 and we established its solution has expression y(x) = K 1 exp(r 1 x) + K 2 exp(r 2 x) when = b 2 ≠ 4ac " = 0 we have y(x) =

1 K 1 x + k 2 2
exp(r x). We remind that r, r 1 , and r 2 are the solutions of the equation (8.1.3), k 1 and K 2 are constants. It is obvious that equation ay ÕÕ + by Õ + cy = 0 has infinite number of solutions. Because each time we change the values of the constants K 1 and K 1 we get a new solution. To establish uniqueness of solutions we need to find fixed values for K 1 and K 1 . This can be done only by asking the solutions to satisfy some more particular conditions. This means that among the solutions we are looking for such solutions which only satisfy these conditions. Here we impose the conditions y(a) = y 1 and y(b) = y 2 . We are looking for solutions which has these two properties. Using these assumptions, we will be able to select among all solutions of ay ÕÕ + by Õ + cy = 0, the unique one which satisfies the boundary conditions. Now we have to apply the boudary condition when " = 0 to establish there is a unique couple (K 1 , K 2 ). The first condition y(a) = y 1 leads to the equation We rewrite this system by using matrices. Then, As we have a " = b, there exists a unique vector (K 1 , K 2 ) solution to the linear system above. Therefore we have a unique function y oe C 2 ! [a , b] " solution to (8.2.2). We have proved the following theorem. We consider the equation y ÕÕ + 3 y Õ + 2 y = 0. One has = 9 ≠ 8 = 1 > 0.

Therefore, r 1 = ≠3 ≠ 1 2 = ≠2 and r 2 = ≠3 + 1 2 = ≠1. This leads to the following general solution K 1 exp(≠2 x) + K 2 exp(≠x), with constant real numbers K 1 and K 2 .

To determine the values of K 1 and K 2 , we use the boundary conditions. This holds the following linear system Y ]

[

K 1 + K 2 = 1
K 1 e ≠2 + K 2 e ≠1 = 0.

From this one deduces K 1 = ≠K 2 e and K 2 (1 ≠ e) = 1. Thus, we obtain 
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 112311332111 We consider the function f (x) = 1 x This function is defined for all real numbers excepted ≠3.Then, the domain of f is R\{≠3}. Since 1 and 2 are in D f , we have Determine the following limits lim xae0 needs some comments. Indeed, what we mean by (1.1.1

xaex0f

  (x) + g(x) = ¸1 + ¸2. (1.1.4) Proof. Let ¸1 and ¸2 be two real number, such that, lim xaex0 f (x) = ¸1 and lim xaex0 g(x) = ¸2.

xaex0fExample 1 . 1 . 14 .

 1114 (x) + g(x) = ¸1 + ¸2. Let f (x) = 3 x + 2 and g(x) = x 2 + 1. We have lim xae1 f (x) = 5 and lim xae1 g(x) = 3.

 x 2 + 2x + 6 . 1 . 1 . 19 .

 261119 Lemma Let f be a real function defined in some interval I, which contains

  Let x oe I,such that f (x) = g(x). Then, one has lim xaex0 f (x) = lim xaex0 g(x).

Example 1 . 2 . 1 .

 121 Consider the real functionf (x) = 1 x• We can easily check thatlim xae0 f (x) = ±OE.

Definition 1 . 3 . 18 .Definition 1 . 3 . 19 .

 13181319 Let f be a real function. We say the function f has limit ≠OE at ≠OE if : ' A > 0, ÷ x 0 > 0, ' x oe D f , x AE ≠x 0 , =∆ f (x) < ≠A. Let f be a real function. We have lim xae≠OE f (x) = +OE if :

Theorem 1 . 4 . 1 .

 141 Let f and g be two real functions defined in the interval [a , +OE), such that for all x oe [a ; +OE), f (x) Ø g(x) and lim xae+OE g(x) = +OE. Then, one has lim xae+OE f (x) = +OE. Since f (x) Ø g(x) for all x in [a , +OE) we have lim xaex0 f (x) Ø lim xaex0 g(x).

Definition 1 . 4 . 4 .Remark 1 . 4 . 5 .Definition 1 . 4 . 6 .

 144145146 Let f be a real function with domain D f = [a , +OE). We define the line d that has equation y = a x + b, where a " = 0. We say that the line d is an oblique asymptote of f at +OE if lim What this definition says is, when x goes to +OE the behavior of the function f resembles to the behavior of the line d. Let f be real function with domain D f = (≠OE , a]. We define a line d : y = a x + b, where a " = 0. We say the line d is an oblique asymptote

Exercise 1 . 4 . 15 .

 1415 Find the left and the right hand side of the following functions at 1, 2 and ≠2

Definition 1 . 5 . 10 .

 1510 Let f be a real function defined in I. We say that f is continuous on I if it continuous at each point x 0 of I. Example 1.5.11. Let f (x) = x 2 +2x+3 and I = [2 , 3]. This function is continuous at each point of I. Then, the function f is continuous on I. Exercise 1.5.12. Prove that the following functions are continuous in the given interval I 1. f (x) = 3x + 2 and I = [0 , 3] 2. h(x) = 1 x + 2 and I = (≠3 , 6] 3. i(x) = Ô x + 5 and I = (≠6 , 10].

Theorem 1 . 5 . 5 ) 1 . 5 . 24 .

 1551524 23 (Intermediate Value Theorem(IVT) ). Let f : [a , b] ae R be a continuous function on [a , b]. Then, for all k oe f ([a , b]), there exist at least one x 0 oe [a , b], such that, f (x 0 ) = k. (1.5.Corollary Let f : [a , b] ae R be a continuous function. We assume

Theorem 1 . 5 .Example 1 . 5 . 26 .

 151526 25. Let f : [a , b] ae R be a continuous function. Then, the set f ! [a , b] " is an interval of R. To prove that the equation x 3 + x + 1 = 0 has a solution in the interval [≠1 , 1], we proceed in this way: We define the function f

Corollary 1 . 5 . 28 .Corollary 1 . 5 . 29 .

 15281529 + x + 1 = 0 has a solution in [≠1 , 1]. Exercise 1.5.27. Say whether the following equations have solutions in the indicated interval. 1. x 5 + 3x + 1 = 0 and I = [≠1 , 2] 2. x 6 ≠ 3x 4 + 5x = 1 and I = [≠2 , 1] 3. Ô x 2 + 3x + 3 = 3 and I = [1 , 3]. Let f : [a , b] ae R be a continuous and increasing function. We assume f (a) < 0 and f (b) > 0. Then, there exists a unique x 0 oe (a , b), such that, f (x 0 ) = 0. Let f : [a , b] ae R be a continuous and decreasing function. We assume f (a) > 0 and f (b) < 0. Then, there exists a unique x 0 oe (a , b), such that, f (x 0 ) = 0.

Definition 1 . 5 . 30 .

 1530 An interval I is open if it has one of the following form, (≠OE , a) or (a , b) or (b , +OE), a and b are real numbers such that a < b. Definition 1.5.31. An interval I is closed if it has one of the following form, I = (≠OE , a] or [a , b] or I = [b , +OE), a and b are real numbers such that a < b. In some books we can find these notations (≠OE , a) =] ≠ OE , a[, (a , b) =]a , b[, (b , +OE) =]b , +OE[, (≠OE , a] =] ≠ OE , a] and [b , +OE) = [b , +OE[. Definition 1.5.32. An interval I is called a segment if there exist two real numbers a and b, a < b, such that I = [a , b].

Theorem 1 . 5 .

 15 33. Let f : [a , b] ae R be a continuous function on [a , b]. Then there exist x 1 and x 2 in [a , b], such that,

Example 1 . 5 . 34 . 2 . 1 2 . 2 2 . 3

 1534212223 We consider f (x) = ≠x 2 + 2x ≠ 1 and I = [0 , 2]. The function f is continuous in I and reaches it maximum at 1. Then f (1) = max xoe[0 , 2] f (x) = 0. Example 1.5.35. Let f (x) = x 2 and I = [≠1 , 1]. The function f is continuous in I, and has a minimum at 0. A Combination of the theorem above and IVT theorem gives the following lemma Lemma 1.5.36. Let f be a continuous function on I. We consider a segment [a , b] µ I. Then, f 1 [a , b] 2 is a segment. In other words, there exist two real numbers m and M , m < M, such that, Derivative at some Point x0 . . . . . . . . . . . . . . . . 30 Derivative of Elementary Functions . . . . . . . . . . . 32 Operation on the Di erentiable Functions . . . . . . . 40 2.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . 49

Example 2 . 2 . 6 .

 226 From the definition above one deduces

  of the readers we remind the following properties shared by the functions sine and cosine. Let a and b be two real numbers. Then, the following identities hold sin(a + b) = sin(a) cos(b) + cos(a) sin(b), sin(a ≠ b) = sin(a) cos(b) ≠ cos(a) sin(b), cos(a + b) = cos(a) cos(b) ≠ sin(a) sin(b), cos(a ≠ b) = cos(a) cos(b) + sin(a) sin(b).

Lemma 2 . 3 . 4 .

 234 Let u and v be two di erentiable functions in an open interval I.

Lemma 2 . 3 . 20 .

 2320 Let u be a di erentiable function in an open interval I, such that for every x oe I, u(x) > 0. Then the function f

Definition 2 . 4 . 6 .Theorem 2 . 4 . 7 .

 246247 Let f be a continuous function and I µ D f an interval. We say the function f has local maximum at x 0 oe I, if for all x oe I, f (x 0 ) Ø f (x). Let f be a di erentiable function, a and b two real numbers in D f , such that, a < b and [a , b] µ D f . We consider x 0 oe (a , b), such that the function f is increasing in [a , x 0 ] and decreasing in [x 0 , b]. Then, the function f has a local maximum at x 0 . The value of this local maximum is f (x 0 ).

Definition 2 . 4 . 11 .Theorem 2 . 4 . 12 .

 24112412 Let f be a continuous function and I µ D f an interval. The function f has local minimum at x 0 oe I, if for every x oe I, f(x) Ø f (x 0 ). Let f be a di erentiable function a and b two real numbers in D f , such that, a < b and [a , b] µ D f . We consider x 0 oe (a , b), such that f is decreasing in [a , x 0 ] and increasing in [x 0 , b]. Then the function f has a local minimum at x 0 . The value of this local minimum is f (x 0 ).

Theorem 2 . 4 . 19 .

 2419 Let f be a real function defined on[a , b]. We assume that

Theorem 2 . 4 .

 24 39. Let I be an open interval and f a real function. We suppose f oe C n ! I " . Then, the function f admit a nth order Taylor Series at any point x 0 oe I. Theorem 2.4.40. Let f be a polynomial function in I. Then, the function f is its own Taylor series. Exercise 2.4.41. Find the 4th order Taylor series of the following functions at the indicated point
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1. finding its domain 59 2 .

 2 finding the limits at the bound of the domain 3. finding asymptotes 4. studying the continuity of the function 5. calculating derivative of the function 6. studying variations of the function 7. giving the table of variations 8. finding tangent lines 9. sketching the graph of f .

Case 1 :

 1 a > 0 When the real number a is positive, the following limits hold lim xae≠OE f (x) = ≠OE and lim xae+OE f (x) = +OE. Case 2: a < 0 If the real number a is negative, one has the following limits lim xae≠OE f (x) = +OE and lim xae+OE f (x) = ≠OE.

Example 3 . 1 . 2 .

 312 We consider the function f (x) = 2x+4. The function f is defined in R. Since a = 2 > 0, we have lim xae≠OE f (x) = ≠OE and lim xae+OE f (x) = +OE.

Exercise 3 . 1 . 5 .

 315 Study the following functions

Theorem 3 . 2 . 1 .

 321 Let f (x) = ax 2 + bx + c, such that, a > 0. We define the real number -= ≠b 2a• Then, the function f is decreasing in (≠OE , -] and increasing in [-, +OE).

  The function f is defined in the whole set of real number R. The limits at the bounds of the domain are lim xae≠OE f (x) = ≠OE and lim xae+OE f (x) = +OE.
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Lemma 4 . 1 . 1 .

 411 exp(x) • exp(≠x) = exp(x ≠ x) = exp(0) = 1.Using (4.0.1), one deduces that, exp(x ≠ x) = exp(x) • exp(≠x) = 1. As we pointed it out above, exp(x) > 0, for all x oe R. Then, one can divide by exp(x) in the identity aboveFor any real number x, exp(≠x) is defined by (4.1.1).

Lemma 4 . 1 . 5 .Remark 4 . 1 . 6 .

 415416 Let x oe R and n oe N ú . Then, (exp(x)) n = exp(n x). Combining this lemma and (4.1.1) we establish that (exp(x)) ≠n = exp(≠n x) = 1 exp(n x) Example 4.1.7.

Lemma 4 . 2 . 1 .Example 4 . 2 . 2 .

 421422 Let a be a fixed real numbers. Then, the unique solution of the equation exp(x) = exp(a) is x = a. Find the solution of the following equations 1. exp(x) = exp(3), 2. exp(x + 1) = exp(5), 3. exp(3x + 2) = exp(x + 6).

Definition 4 . 3 . 1 .

 431 Let f (x) = exp(x). We have lim xae+OE

Theorem 4 . 3 . 3 .Example 4 . 3 . 4 .Example 4 . 3 . 5 .

 433434435 Let n Ø 1 be a natural.Then, lim xae+OE e x x n = +OE. (4.3.3) As we can see it, this theorem needs some explanations. Because if we split computations by considering lim xae+OE e x = +OE and lim xae+OE x n = +OE. Then, we obtain lim xae+OE f (x) = +OE +OE = undefined ! But what this theorem illustrates is, the fact that, the function e x goes to +OE more fast than the function x n . That is why, we have lim xae+OE e x x n = +OE• Let f (x) = e x x 3 . Then, we have lim xae+OE f (x) = +OE. We consider the following function g(x) = e x x + 1

Theorem 4 . 3 . 10 .

 4310 Let f (x) = e x . The function f is di erentiable in R and for every x oe R, we have f Õ (x) = e x .

Theorem 4 . 3 . 12 .

 4312 Let u be a di erentiable real function in an open interval I µ D u .

lim xae≠OE e x+1 = 0

 0 and lim xae+OE f (x) = +OE. Indeed setting X := x + 1, we see that, lim xae≠OE X = ≠OE. Hence lim xae≠OE e x+1 = lim Xae≠OE e X = 0.

  X := ≠2x + 3. One can see that lim xae≠OE X = +OE and lim xae+OE X = ≠OE. Therefore, the following limits hold lim xae≠OE e ≠2x+3 = lim Xae+OE e X = +OE and lim xae+OE e ≠2x+3 = lim Xae≠OE e X = 0

Lemma 4 . 3 . 19 .Example 4 . 3 . 20 .Example 4 . 3 . 21 .Example 4 . 3 . 22 .

 4319432043214322 Let a be a fixed real number. Then, 1. the solutions of the inequation exp(x) AE exp(a) are given by S = (≠OE , a] 2. the solutions of the inequation exp(x) Ø exp(a) are given by S = [a , +OE). To find the solutions of the inequation e x Ø e 3 we point out that this inequation is equivalent to x Ø 3. Hence S = [3 ; +OE). To define the solutions of the inequation e x AE e 3 , we remark that It is equivalent to the inequality x AE 3. Therefore S = (≠OE ; 3]. Find the solutions of this inequation e 3x+1 > e ≠2 .

Example 4 . 3 .

 43 23. Find the solutions of e x+1 < e 2 .

Definition 4 . 4 . 1 .+ e ≠x 2 • 4 . 4 . 2 .

 4412442 Let x oe R, we define the hyperbolic cosinus of x denoted cosh(x) or ch(x) as follows:cosh(x) = ch(x) = e xDefinition Let x be a real number. We define the hyperbolic sinus of x, denoted sinh(x) or sh(x) by sinh(x) = sh(x) = e x ≠ e ≠x 2 •

Theorem 4 . 4 . 4 .

 444 Let f (x) = cosh(x). Then, lim xae≠OE f (x) = +OE and lim xae+OE f (x) = +OE.

Lemma 4 . 4 . 6 .Theorem 4 . 4 . 7 .Theorem 4 . 4 . 8 .

 446447448 Let f (x) = sh(x). Then, the function f is an odd function. Let f (x) = sh(x). Then, we havelim xae≠OE f (x) = ≠OE and lim xae+OE f (x) = +OE.Proof. Let x oe R. We define X := ≠x. We have lim xae≠OE X = +OE. From this, On the other hand, we have lim xae+OE X = ≠OE. Let f (x) = sh(x). Then, the function f is increasing in R.

Theorem 4 . 4 . 10 .

 4410 Let a and b be two real numbers. Then, 1. ch(a + b) = ch(a)ch(b) + sh(a)sh(b), 2. ch(a ≠ b) = ch(a)ch(b) ≠ sh(a)sh(b), 3. sh(a + b) = sh(a)ch(b) + ch(a)sh(b), 4. sh(a ≠ b) = sh(a)ch(b) ≠ ch(a)sh(b).

proof of 1 : 4 =

 14 We consider two real numbers a and b. We obtain ch(a)ch(b) + sh(a)sh(b) = ! e a + e ≠a "! e b + e ≠b " 4 + ! e a ≠ e ≠a "! e b ≠ e ≠b " 2e a+b + 2e ≠(a+b) 4 = ch(a + b). proof of 3 : We consider two real numbers a and b. Then, we have sh(a)ch(b) + ch(a)sh(b) = ! e a ≠ e ≠a "! e b + e ≠b " 4 + ! e a + e ≠a "! e b ≠ e ≠b " 4 = 2e a+b ≠ 2e ≠(a+b) 4 = sh(a + b).

x) • Lemma 4 . 4 . 11 .Theorem 4 . 4 . 12 .

 44114412 Let f (x) = tanh(x). Then, the function f is odd. Let f (x) = tanh(x). Then, the following limits hold lim xae≠OE f (x) = ≠1 and lim xae+OE f (x) = 1.
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Proposition 5 . 1 . 1 . 1 ) 5 . 1 . 2 .Exercise 5 . 1 . 3 .a b 2 =Proposition 5 . 1 . 4 .Remark 5 . 1 . 5 . 1 b 4 = ln( 1 )Proposition 5 . 1 . 8 .

 51115125132514515141518 Let a and b be in R ú + . We define X := ln(a•b) and Y = ln(a)+ln(b). Using (5.0.1), we have exp (X) = exp (ln(a • b)) = a • b and exp (Y ) = exp (ln(a) + ln(b)). Using the properties of the function exp we obtain exp ! lnX = Y. That is, ln(a • b) = ln(a) + ln(b). Let a and b be two strictly positive real numbers. Then, ln(a • b) = ln(a) + ln(b) (5.1.Example Using the proposition above, we have ln(10) = ln(2 • 5) = ln(2) + ln(5) and ln(21) = ln(3 • 7) = ln(3) + ln(7). Simplify the following expressions: (1). ln(6) + 2 ln(3) ≠ ln(2) = • • • , (2). ln(14) ≠ 3 ln(7) + ln(2) = • • • , (3). ln(21) ≠ 5 ln(3) + ln(9) = • • • • We consider two real numbers a and b, which are strictly positive. We define X :Y = exp (ln(a) ≠ ln(b)) = e ln(a) • e ≠ ln(b) Since, exp (≠ ln(b)) = 1/ exp (ln(b)) = 1/b. This implies that, e Y = a • 1 b = a b • Therefore, e X = e Y . This means that X = Y. That is, ln 1 ln(a) ≠ ln(b). Let a and b be in (0 , +OE). Then, If we fix a = 1 in Proposition 5.1.4, we obtain ln 3 ≠ ln(b).On the other hand, we know by definition ln(1) = 0. Hence ln Let x oe (0 , +OE). We consider a natural number n Ø 2. Then, ln (x n ) = n ln(x).(5.1.3) 

nae+OE r n

  ln(x) = ln(x) lim nae+OE r n = y ln(x). Since the function exp is continuous, we obtain lim nae+OE x rn = lim nae+OE exp(r n ln(x)) = exp ! lim nae+OE r n ln(x) " = exp ! y ln(x) " .

  Let x oe R, we define the function f (x) = ln ! exp(x) "

Theorem 5 . 2 . 5 .

 525 Let u : D u ae (0 , +OE) be a real function and I µ D u an open

x 1 )Example 5 . 2 . 23 . 2 =Example 5 . 2 . 24 .

 1522325224 = ≠3 and ln(x 2 ) = ≠1. Therefore equation (ú) has two solutions x 1 = e ≠3 and x 2 = e ≠1 . Case 2: = 0. In this case, we have only one real solution X 0 = ≠ b 2a • In this case (5.2.4) has only one solution x 0 = e X0 . To find a strictly positive real number x solution to the equation (úú) : ln 2 (x) + 4 ln(x) + 4 = 0, we define X := ln(x). Then we obtain X 2 +4X +4 = 0. This implies, = 16≠16 = 0. Therefore, we have only one solution X 0 = ≠ 4 ≠2. From this we deduce that, equation (úú) has only one solution x 0 = e ≠2 .Case 3: < 0. In this case there is no real solutions. Let x belong to (0 , +OE), such that, (ú ú ú) : ln 2 (x) + ln(x) + 2 = 0.

Lemma 5 . 2 . 27 .Example 5 . 2 . 28 .Example 5 . 2 . 29 . 3 • 5 . 2 . 30 .Exercise 5 . 2 . 31 .

 522752285229352305231 (x) = b. Using the function ln, and the fact that ln ! exp(x) " = x, one obtains ln ! exp(x) " = ln(b). This implies x = ln(b) Let b oe R be a strictly positive. Then, the solution of the equation exp(x) = b is given by x = ln(b). We consider the following equation exp(x) = 5. Therefore , x = ln(5). Find a real number x, such that, exp(3x + 1) = 7. We know the equation is equivalent to, 3x + 1 = ln(7). Hence x = ln(7) ≠ 1 Example Find the solution of the following equation exp(x) = ≠5. We know that for all x oe R, exp(x) > 0. Then, the equation e x = ≠5 does not have solution. Hence we have S = ÿ. Find solutions to the following equations 1. exp(x + 2) = 7, 2. exp(6x + 2) = ≠1, 3. exp(2x + 6) = 3, 4. exp(≠x + 5) = 1, 5. exp(x 2 + 2x + 1) = 2, 6. exp(x 2 + 3x + 2) = 4, 7. exp(≠x + 1) = ≠2. Now let a, b and c be three real numbers. We consider the following equation: find x in R, such that, a e 2x + b e x + c = 0. (5.2.6)

  ln(a) AE ln(b), ln(a) Ø ln(b), ln(a) Ø b.

5 . 3 . 4 .Example 5 . 3 . 5 .Example 5 . 3 . 6 .

 534535536 Then, S = (≠5 , +OE) fl [exp(7) ≠ 5 , +OE) = [exp(7) ≠ 5 , +OE[.In the same way we can establish the following lemma Lemma Let a be a real number. Then, the solution of this inequation ln(x) AE a is the interval ( 0 , e a ]. Let x be a strictly positive real number such that ln(x) AE 2.Using the function exp we obtain x AE exp(2). Therefore we have S = ( 0 , exp(2) ]. Find the solution of the inequation ln(x) AE 5.

Lemma 5 . 3 . 12 .Exercise 5 . 3 . 15 .

 53125315 If a is a fixed positive real number, then , the solutions of inequation ln(x) AE ln(a) are S = ( 0 , a ]. Example 5.3.13. We consider the following inequation ln(x) AE ln(5). Then, the solution of the inequation are defined by S = ( 0 , 5 ]. Example 5.3.14. Find x, such that, ln(x + 1) AE ln(2). The function ln(x + 1) is defined in (≠1 ; +OE). Since ln(x + 1) AE ln(2) ≈∆ x + 1 AE 2 ≈∆ x AE 1, then, S = (≠1 , +OE ) fl (≠OE , 1 ] = (≠1 , 1 ]. Define the set of solutions for the following inequalities 1. ln(3x + 1) AE ln(x + 1), 2. ln(x + 3) Ø ln(≠x + 2), 3. ln(x 2 + 6x + 5) Ø ln(2), 4. ln(x 2 + 4x + 1) AE ln(3).

Lemma 5 . 3 . 16 .Example 5 . 3 . 22 .

 53165322 If a is a real number which is less than or equal to 0, then, the inequation exp(x) AE a does not solutions. Now we suppose a strictly positive. In this case the inequality exp(x) AE a is equivalent to ln(e x ) AE ln(a) ≈∆ x AE ln(a). Consequently S = ( ≠OE , ln(a) ]. This proves the following lemma Lemma 5.3.17. If a is a strictly positive real number, then, the solutions of the inequation exp(x) AE a are given by the interval (≠OE , ln(a) ]. Example 5.3.18. Find x in R such that exp(x + 1) AE ≠6. Since for all x oe R,we have exp(x + 1) > 0. Therefore there is no solution. Hence S = ÿ. Example 5.3.19. Find x oe R, such that, exp(x + 2) < 11. This inequality is equivalent to x +2 < ln(11). Therefore, x < ln(11) ≠ 2. We have S = (≠OE , ln(11) ≠ 2 [. Exercise 5.3.20. Define the set of solution for the following inequalities 1. exp(2x + 9) < 5, 2. exp(x + 4) AE ≠2, 3. exp(x 2 + 2x ≠ 1) AE 3, 4. exp(x + 5) < 7, 5. exp(x + 1) AE ≠3. Now we focus on the inequation exp(x) Ø b, where b is a fixed real number. When the real number b is such that b AE 0, then for every x in R, we have exp(x) > 0 Ø b. This means that any real number satisfies the inequality. Therefore S = R. When the real number b is strictly positive, the following chain of equivalence holds exp(x) Ø b ≈∆ ln ! exp(x) " Ø ln(b) ≈∆ x Ø ln(b). Therefore the set of solutions is equal to the set of all real numbers which are greater than ln(b). In this case we have S = [ ln(b) , +OE ). Example 5.3.21. Find the solution of the following inequation exp(x + 1) Ø ≠2.Since ≠2 < 0, then, S = R. We consider the inequation exp(x + 2) Ø 6.

Exercise 5 . 3 . 23 .

 5323 Find the solution of the following inequalities 1. exp(x) Ø 0, 2. exp(3x + 5) > 8, 3. exp(x + 9) > 4, 4. exp(x 2 + 2x + 1) Ø 7, 5. exp(≠x + 2) Ø ≠1.Let x > 0. We consider the functions f (x) = ln(x) ≠ x and g(x) = ln(x)/x. We aim to find lim xae+OE f (x) and lim xae+OE g(x). If we calculate separately the limit of each term in f , we will get lim xae+OE ln(x) = +OE and lim xae+OE ≠x = ≠OE.In this case we havelim xae+OE f (x) = +OE ≠ OE = undefined.For the function g we point out that lim xae+OE

Theorem 5 . 3 . 25 .

 5325 If x oe (0 , +OE ) and n Ø 1 is a natural number, then, ln(x) AE x n .(5.3.1)

Theorem 5 . 3 . 29 .

 5329 If n Ø 1 is a natural number and x oe ( 0 , +OE ), then, lim xae0

Corollary 5 . 3 . 30 .X(x 2 ≠Remark 5 . 3 . 33 .

 533025333 For any x in ( 0 , +OE ), we have lim xae0 x ln(x) = 0. Example 5.3.31. To determine the limit lim xae≠1 (x + 1) ln(x + 1), we define X := x + 1. Hence, one has lim xae≠1 1) ln(x ≠ 1), 3. lim xae3 (x ≠ 3) ln(x ≠ 3). What this subsection established clearly is the following properties:

Definition 5 . 4 . 1 .

 541 Let a oe (0 , 1) fi (1 , +OE) be a fixed real number. For any x oe (0 , +OE) we define the logarithm in basis a by log a (x) = ln(x) ln(a) •

Example 5 . 4 . 2 .Theorem 5 . 4 . 3 .

 542543 As an illustration we give the following examples1. f(x) = log(x) = ln(x) ln(10) , 2. g(x) = log 3 (x) = ln(x) ln(3) , 3. h(x) = log 100 (x) = ln(x) ln(100) •Below we represent the graph of the function ln in blue and log in If a oe (0 , 1) fi (1 , +OE) and for all x and y in ( 0 , +OE ),then, the function log a satisfies the following properties 1. log a (x • y) = log a (x) + log a (y) a (x n ) = n log a (x). Proof. Let x and y be in (0 ; , +OE). Then, we have log a (x • y) = ln(x • y)

Proposition 5 . 4 . 4 .Proposition 5 . 4 . 5 .

 544545 Let a oe (0 , 1) fi (1 , +OE). Then, for any natural number n Ø 1 we have log a (a n ) = n. The proof of this proposition is simple. We need just to point out that, Let a oe (0 , 1) fi (1 , +OE). Then, for any , x oe ( 0 , +OE )

.0. 4 )

 4 If this limit exists we take it as the exact value of the area of the domain D. We denote it the integral of the function f in the interval [ a , b ]. We write Area of D =

Lemma 6 . 1 . 4 .Theorem 6 . 1 . 5 .

 614615 Let f be a continuous function in I. Then the function f has a primitive defined in the interval I. We deduce from this lemma that, a continuous function has several primitives. Now we want to know what type of relations can exist between these primitives. Let f defined in I be a continuous function. We consider F and G two primitives of the function f in I. Then, there exists a constant real number C, such that, G(x) = F (x) + C, ' x oe I. (6.1.2)

Lemma 6 . 1 .Exercise 6 . 1 . 15 .

 616115 13. Let n Ø 2 be a natural number. For x in R we consider the function f (x) = x n . Then, the function F (x) =x n+1 n + 1 is a primitive of f . Example 6.1.14. We consider the function f (x) = x 3 . A primitive of f can be defined by F (x) = x 3+1 Define a primitive for each of the following function

Example 6 . 1 . 18 . 5 • 6 . 1 . 19 .

 611856119 For every real number x " = 0 we consider the function f(x) = 1 x 6 • A primitive of this function f is defined by F (x) = ≠ 1 5xExercise Determine a primitive to each of the following functions

Definition 6 . 2 . 1 .

 621 Let f be a continuous function in [a , b]. We consider a function

•

  To find the value of the integral of f from a to b, s b a f (x) dx, we should follow at least three steps: -Step 1: to define the function F a primitive of the function f -Step 2: we compute F (a) and F (b).

Theorem 6 . 2 . 6 .

 626 Let f be continuous function in the interval [a , b]. For every real number x in [a , b] we define the function

Lemma 6 . 2 . 7 .x 2 +

 6272 be a continuous function in [a , b]. We consider the function F which is a primitive of f in [a , b]. Using the definition above one deduces ⁄ a a f (x) dx = F (a) ≠ F (a) = 0. Let f be a continuous function in the interval [a , b]. Then, we have ⁄ 2x dx = 0. Lemma 6.2.9. Let f be a continuous function in the interval [a , b].

Lemma 6 . 2 . 11 .

 6211 Let f be a continuous function in [a , b] and k a real number.

Theorem 6 . 2 . 20 .

 6220 Let f be continuous function in [a , b]. For every real number x in [a , b] we define the function

Remark 6 . 2 . 21 .

 6221 From this theorem, we deduce, any continuous function has a primitive. Theorem 6.2.22 (Mean Value Theorem). Let f be a continuous function in [a , b].

Theorem 6 . 2 .

 62 26 (Fundamental Theorem of Analysis). Let f be a di erentiable function in [a , b]. Moreover, we assume the function f Õ is continuous in [a , b]. Then, for all x and y in [a , b],

Example 6 . 2 . 41 . 3 22e 3 22e 2x+3 dx = ⁄ 3 2ue 2x+3 È 3 2 = e 9 ≠ e 7 .

 624133327 To determine the following integral ⁄ 2x+3 dx, we consider the function u(x) = 2x + 3. Then, u Õ (x) = 2. Hence, we have ⁄ Õ (x) e u(x) dx = Ë

.3. 1 ) 6 . 3 . 2 (

 1632 Theorem Integration by Parts). Let f and g be two functions of class C 1 in [a , b]. Then, we have

Example 6 . 3 . 4 .

 634 Now we aim to find the value of the following integral ⁄ 1 0

Exercise 6 . 3 . 5 .

 635 Determine the value of the following integrals

xx 2 + 3 •

 3 sin(x) dx.Now we consider the function f (x) =x Ô Let us define the variable u =

Theorem 6 . 4 . 1 . 1 )

 6411 Let " : [a , b] ≠ae I be a C 1 -function. We consider the function f : I ≠ae R and for every x in [a , b], we define u = "(x). Then, ⁄ Proof. Let " : [a , b] ≠ae I be a function of class C 1 . We consider the function F a primitive of f . We define the function F ¶ " which is di erentiable in [a , b]. For every real number x oe [a , b], Ë F ("(x)

Exercise 6 . 4 . 4 .

 644 Compute the following integrals1.

Example 7 . 1 . 3 .

 713 Let E = C denote the set of all complex numbers . Then, C is a real vector space.

Definition 7 . 1 . 10 .

 7110 We say a first order linear di erential equation is homogeneousif it is in the form a(x)y Õ + b(x)y = 0. (7.1.4)To clarify the definition and illustration its meaning the teacher gave the following examples Example 7.1.11. These di erential equations are homogeneous:1. g Õ + 3g = 0, 2. 2x y Õ + 1 x y = 0, 3. (x 2 + 2x + 1) y Õ + e x y = 0.

Definition 7 . 1 . 12 .Example 7 . 1 . 13 .

 71127113 Let f be a nonzero function. The first order linear di erential equations a(x)y Õ + b(x)y = f (x), is called nonhomogeneous di erential equations. The following di erential equations are nonhomogeneous 1. y Õ + 5xy = (x 3 + 2x + 2), 2. x 2 y Õ + ln(x) y = (x 2 + x + 3) ln(x), 3. (2x + 7)y Õ + e x y = e 2x+1 . Let a, b and f be three functions defined in the interval I. We consider the di erential equation (ú) : a(x)y Õ + b(x)y = c(x).

Theorem 7 . 1 . 22 .

 7122 Let a be a continuous function on I. Then there exists a function y oe C 1 (I) solution to the homogeneous linear di erential equation(7.1.7) 

Theorem 7 . 1 . 23 .

 7123 Let a be a continuous function on I and A be a primitive of the function a on I. Then, a general solution to di erential equation (7.1.7) are defined by the function y(x) = K • exp(≠A(x)), (7.1.8)

Example 7 . 1 .+ 1 •Exercise 7 . 1 . 29 .Exercise 7 . 1 . 30 .

 71171297130 24. We consider the following di erential equation y Õ + 2x y = 0 defined in R Solution: In this example we define the function a(x) = 2x. This function is continuous in R. A primitive of a is defined by the function A(x) = x 2 . Applying theorem 7.1.23, we obtain y(x) = K exp(≠x 2 ), for all x oe R and K oe R. Example 7.1.25. Find solutions of the equation y Õ + 1x y = 0 in the interval ( 0 , +OE ).Solution : Let x oe ( 0 , +OE ). We define the function a(x) = 1 x • Then, the function a is continuous on ( 0 , +OE ). The function A(x) = ln(x) is a primitive of a in ( 0 , +OE ). Applying theorem 7.1.23, we obtainy(x) = K exp(≠ ln(x)) = K exp(ln(x)) = K x ,for all x oe ( 0 , +OE ) and K oe R. Example 7.1.26. Let x oe (≠1 , +OE). Find the solution of the following homogeneous linear di erential equation y Õ ≠ 1 x + 1 y = 0. Solution : Here we define the function a(x) = ≠ 1 x The function A(x) = ≠ ln(x + 1) is a primitive of a. Therefore, the function y(x) = K exp(ln(x + 1)) = K (x + 1), for all x oe ( 0 , +OE ) and K oe R. Exercise 7.1.27. Find solutions to the following di erential equations in the indicated interval I 1. y Õ + 2 y = 0, I = R, 2. y Õ + (x 2 + 2x + 6) y = 0, I = R, 3. y Õ + (x 3 + 3x + 1) y = 0, I = R. Exercise 7.1.28. Find solutions to the following homogeneous di erential equations in the indicated interval I 1. y Õ + 2x x 2 + 1 y = 0, I = R, 2. y Õ + 1 (x 2 + 1) y = 0, I = R 3. y Õ + 2 (2x + 4) y = 0, I = (≠2 , +OE ). Find solutions to the following di erential equations on the indicated interval I 1. y Õ + cos(x) y = 0, I = R, 2. y Õ + 2 sin(2x + 3) y = 0, I = R 3. y Õ + tan(x) y = 0, I = (≠fi/2 , fi/2). Find solutions to the following di erential equations in the indicated interval I 1. y Õ + ln(x + 2) x + 2 y = 0, I = (≠2 + OE ), 2. y Õ + e x y = 0, I = R 3. y Õ + (2x + 1)(x 2 + x + 1) y = 0, I = R, 4. y Õ + 3(3x + 1) 3 y = 0, I = R 5. y Õ + 1 (x + 2) 2 y = 0, I = R\{≠2}. Exercise 7.1.31. Find the normalized form and the solutions of each of the following equations 1. x 3 y Õ + x y = 0, 2. (x 3 + 2x + 5) y Õ + (3x 2 + 2) y = 0, 3. (2x + 3) y Õ + 2 y = 0, 4. e x 3 +2 y Õ ≠ 3x 2 y = 0, 5. sin(x) y Õ + cos(x) y = 0.

Example 7 . 1 .

 71 33. Below,we can see two examples of Cauchy problems.

Theorem 7 . 1 .

 71 34.Let a be a continuous function on some interval I. We consider a real number x 0 oe I. For some real number y 0 oe R, we define the following Cauchy Problem :Y ][y Õ + a(x) y = 0, x oe I y(x 0 ) = y 0 , x = x 0 .

Theorem 7 . 1 . 35 .

 7135 Let a be a continuous function on I. We consider x 0 oe I and y 0 oe R. Then, the expression of the unique solution to the Cauchy problem Y ] [ y Õ + a(x) y = 0, x oe I y(x 0 ) = y 0 , x = x 0 is given by

  .1.10) To illustrate this theorem, we consider the following examples Example 7.1.36. Let us define the following example: for x oe R, find the function y, such that, Y ] [ y Õ + 3x y = 0, y(0) = 2.

Example 7 . 1 .

 71 40. Let x oe R. Find solutions of the following di erential equation: y Õ + 2x y = 0. Solution : Let x oe R, such that, y(x) " = 0. Then we have, y Õ y = ≠2x. Integrating in x, we obtain the following identity ln(|y(x)|) = ≠ ⁄ x 2t dt = ≠x 2 + C This implies that, |y(x)| = exp(C) • exp ! ≠ x 2 "

Example 7 . 2 . 7 .

 727 This equation is equivalent to ⁄Õ (x) = 1 x, for every x " = 0. Consequently, we get⁄(x) = ln(|x|) One deduces y p (x) = x 2 ln(|x|).Define a particular solution to the following nonhomogeneous linear di erential equation (2x + 1) y Õ = 2x + 2 y

Form 1 :

 1 Polynomial Form. when the function f (x) = P (x), where P is a polynomial function.

Form 2 :

 2 Polynomial function multiplied by exponential. if the function f (x) = P (x) e ⁄x , where P is a polynomial function and ⁄ is real number.

Form 3 :

 3 Polynonial function multiplied by cosine or sine. if the funcionf (x) = -cos(kx) or f (x) = -sin(kx), the function P is a polynomial function.

2 . 3 ,Example 7 . 2 . 12 .

 237212 This leads to the following equations 3a = 1, 2a + 3b = 0 and b + 3c = 0. From the previous equations we deduce that a = 1 Determine a particular solution to the following di erential equation y Õ + 1 x y = x.

Proposition 7 . 2 . 17 .

 7217 Let g be a continuous function on the interval [ a , b ]. For every real number x in [ a , b ], we define the function

Theorem 7 . 2 . 24 .Example 7 . 2 . 25 .

 72247225 Let a and f be two continuous functions in an interval I. We consider x 0 oe I and y 0 oe R. Then, the Cauchy problem (7.2.8) has a unique solution. Determine in I = (0 ; +OE) the unique solution to the following

x 2 .

 2 this means 3a = 1, 2b = 0 and c = 0. Therefore, a = 1 3 , and b = c = 0. The particular solution is y p (x) = 1 3 The solution of the general equation is y

Example 7 . 2 . 26 .

 7226 Determine the unique solution to the Cauchy problem Y ] [ y Õ + cos(x) y = cos(x) y(0) = 2.

Example 7 . 2 . 27 .

 7227 Find the unique solution to the following Cauchy problem Y ] [ y Õ + y = x + e x y(0) = 0

2 ). 1 . 1 .

 211 ay ÕÕ + by Õ + cy = 0. (8.1.1) We introduce the following function z(x) := y Õ (x). This involves z Õ (x) = y ÕÕ (x). Substituting in the equation above we obtain a z Õ + b z = ≠cy. Since a " = 0 we can divide by a in both sides in the equation including the function z. Therefore, one has As we assume y di erentiable in R , then, the function y is continuous. Consequently the function f (x) = ≠ c a y is continuous in R. One deduces equation (8.1.2) admits a solution in R. Since (8.1.1) and (8.1.2) are equivalent , we conclude (8.1.1) has a solution in R. This proves this theorem Theorem 8Let a, b and c be three real numbers such that, a " = 0. Then, the second order linear di erential equation ay ÕÕ + by Õ + cy = 0 admits a solution.

[. 1 . 6 .

 16 This implies -= 0 and -= 0. We conclude u 1 and u 1 are linearly independant.Example 8Let v 1 = (1 , 2 , 5) and v 2 = (2 , 3 , 1) be two in R 3 , which satisfy -v 1 + -v 2 =0 for some real numbers -and -. One has the following linear system Y This leads to the identities -= ≠2-and -= ≠-/5. Therefore -= -= 0. The vectors v 1 and v 2 are linearly independant. values of the real nmber r. The function y is at least twice di erentiable and for every x in R, we have y Õ (x) = r exp(rx) and y ÕÕ (x) = r 2 exp(rx). Using our assumption, one obtains a r 2 exp(rx) + b r exp(rx) + c exp(rx) = ! a r 2 + b r + c " exp(rx) = 0. Multiplying the identity above by exp(≠rx), we obtain a r 2 + b r + c = 0. (8.1.3) Equation (8.1.3) is called the caracteristic equation of (8.1.1). To determine r we need to solve equation (8.1.3). There are three possibilities according to the sign of = b 2 ≠ 4ac. Case 1: > 0. When > 0, equation (8.1.3) has two real solution r 1 = ≠b ≠ Ô 2a or r 2 = ≠b + Ô 2a • In this case we have y(x) = exp (r 1 x) or y(x) = exp (r 2 x) .

Theorem 8. 1 . 15 .

 115 Let us consider equation (8.1.1), such that, = b 2 ≠ 4 a c > 0.

Example 8. 1 . 16 .

 116 To find solutions of the equation y ÕÕ + 4y Õ + 3y = 0 we define its caracteristic equation (ú) r 2 + 4 r + 3 = 0.The discriminant = 16 ≠ 12 = 4 > 0. The real solutions of (ú) are general solution of the second order linear di erential equation y ÕÕ + 4y Õ + 3y = 0 is defined byy H (x) = C 1 e ≠3 x + C 2 e ≠x ,where C 1 and C 2 are real numbers.Example 8.1.17. Find solutions to the following second order linear di erential equation y ÕÕ + 3y Õ + 2y = 0.To solve this equation we define the caracteristical equation(ı) r 2 + 3 r + 2 = 0. Since = 9 ≠ 8 = 1 > 0,the second order equation (ı) has solution Hence we can find C 1 and C 2 such that y H (x) = C 1 e ≠2 x + C 2 e ≠x . Case 2: = 0. When = 0, equation (8.1.3) has only one real solution r 0 = ≠ b 2a • In this case we obtain y(x) = exp(r 0 x).

x y Õ 2 r 2 0 x + 2 r 0 "

 20 (x) = (r 0 x + 1) exp(r 0 x) and y ÕÕ 2 (x) = ! exp(r 0 x). Substituting in (8.1.1) the following holds ! a r 2 0 + b r 0 + c " x + (2a r 0 + b) = 0, ' x oe R. Since a r 2 + b r + c = 0 and r 0 = ≠ b 2a we conclude that Lemma 8.1.18. The function y 2 (x) = x • exp(r 0 x) is a solution to (8.1.1). Lemma 8.1.19. The functions exp(r 0 x) and x • exp(r 0 x) are linearly independant.

Example 8. 1 . 21 . 2 = 3 .

 12123 As an example, we consider the second order linear di erential equation y ÕÕ + 2y Õ + y = 0.To find a solution to this equation, we define the equation r 2 +2 r +1 = 0. Here = 0. Therefore r 0 = ≠ b 2a = ≠1 is the unique solution to the equation r 2 + 2 r + 1 = 0. We deduce, for every x in R, the solution of the di erential equation isy(x) = ! C 1 x + C 2 " • exp(≠x),where C 1 and C 2 are real numbers.Example 8.1.22. Find the solution of the following second order linear di erential equation y ÕÕ ≠ 6 y Õ + 9 y = 0.The associated caracteristical equation is r 2 ≠6 r+9 = 0. Then, we have = 36≠4 ◊ 9 = 0. The solution of the caracteristical equation is r 0 = 6 Consequently we can find two real numbers -and -such that, y(x) = (-x + -) • exp(3x).

Case 3 :

 3 < 0. Now we assume < 0. Then, the associated carateriscal equation has two complex solution r 1 and r 2 . If we define -

Fixing x = fi 2 ÊË 2 -

 22 x = 0 in (8.1.8), we get C 1 ≠ C 1 = ≠(C 2 ≠ C 2 ). This implies Im(C 1 ) = ≠Im(C 2 ). (8.1.9) on the other hand, we obtain ≠(C 1 + C 1 ) + (C 2 + C 2 ) = 0. This involves Re(C 1 ) = Re(C 2 ). (8.1.10)Combining (8.1.10) and (8.1.9) we conclude that y is a real solution if and only ifC 2 = C 1 . In this case if we define C 1 = -+ i ", one obtains C 2 = -≠ i ". Therefore y(x) = exp(-x) Ë (-+ i ") exp ! i Ê x " + (-≠ i ") exp ! ≠ i Ê x " È .Using Euler's Formula exp(i Ê x) = cos(Ê x) + i sin(Êx), we havey(x) = exp(-x) Ë (-+ i ") ! cos(Ê x) + i sin(Êx) " + (-≠ i ") ! cos(Êx) ≠ i sin(Ê x) " È = exp(-x) cos(Ê x) ≠ 2" sin(Ê x) ÈTheorem8.1.24. Let -and Ê be defined by (8.1.6). We consider the second order linear di erential equation (8.1.1), such that, = b 2 ≠ 4 a c < 0. Then, y is a real solution of (8.1.1) if there exist two real numbers C 1 and C 2 , such that, y(x) = exp(-x) Ë C 1 cos(Ê x) + C 2 sin(Ê x) È (8.1.11)

3 and C 4 3 / 2 .C 3 and C 4 . 2 •where C 1

 432421 are real numbers.Example 8.1.26. We consider the second order linear di erential equationy ÕÕ + y Õ + y = 0. We can establish that = b 2 ≠ 4a c = 1 ≠ 4 = ≠3.To find a solution solution we define -= ≠1/2 and Ê = Ô Therefore there are two complex numbers C 1 and C 2 , such thaty(x) = C 1 exp 33 This solution is a complex function.The real solution is define byy(x)Example 8.1.27. Find a solution to the following second order linear di erential equation y ÕÕ ≠ y Õ + 3 y = 0.In this case we have = b 2 ≠ 4a c = 1≠ 12 = ≠11. We set -Hence the complex solution of the second order linear di erential equation is y(x) = C 1 exp and C 2 are complex numbers. For real numbers C 3 and C 4 , we define a real solution of the second order linear di erential equation as follows y(x) Find real solution to the following second order linear di erential equations 1. y ÕÕ + 2 y Õ + 3 y = 0, 2. y ÕÕ + 3 y Õ + y = 0, 3. 2y ÕÕ + 5 y Õ ≠ y = 0, 4. y ÕÕ + 5y = 0, 5. y ÕÕ + 4 y Õ + 2 y = 0, 6. 3 y ÕÕ + 5 y Õ + 2 y = 0, 7. y ÕÕ + 3 y = 0, 8. y ÕÕ + 3 y Õ = 0.

Definition 8. 2 . 1 . 2 .Example 8 . 2 . 3 . 2 1 5 . 2 . 8 . 2 . 6 .

 212823252826 Let y 1 and y 2 be two real numbers and I an interval that contains x 0 . We consider a real function y oe C 2 (I) and we define the homogeneous initial values problem satisfied by y in I as follows Y ][a y ÕÕ + b y Õ + c y = 0, in I y(x 0 ) = y 1 , y Õ (x 0 ) = y 2 .As an example we consider the following initial values problemy ÕÕ + 3 y Õ + y = 0 in R, y(0) = 1and y Õ (0) = 0. Another example can be given by the following initial values problem 2 y ÕÕ ≠ y Õ + 7y = 0 in R, y(1) = 2 and y Õ (1) = 4. Taking the values of y at the bounds of an interval one can define the following boundary conditions problem. Definition 8.2.4. Let y 1 and y 2 be two real numbers and [a , b] an interval of R. The boundary condition problem satisfied by y oe C + b y Õ + c y = 0, in [a , b], y(a) = y 1 , y(b) = y 2 . As an illustration we consider the following boundary conditions problem in the interval [0 , 1], y ÕÕ + 3 y Õ + y = 0 in [0 , 1], y(0) = 0 and y(1) = Example We can also consider the following boundary condition problem in the interval [0 , fi/3], 2 y ÕÕ ≠ y Õ + 7y = 0 in [0 , fi/3], y(0) = 0 and y(fi/3) = 1.

Definition 8 . 2 . 7 . 2 . 3 1 ≠ e ≠x + 2e ≠2x 2 + 2 1 e ≠x ≠ e ≠2x 2 = 1 r 1

 8272322211 ÕÕ + b y Õ + c y = 0, in R, y(x 0 ) = y 1 , y Õ (x 0 ) = y 2 . We say a function y oe C 2 (I) is a solution to the initial value problem (ú) if for every x oe I, a y ÕÕ (x) + b y Õ (x) + c y(x) = 0 and the function y satisfies y(x 0 ) = y 1 and y Õ (x 0 ) = y Example 8.2.8. The real function y(x) = exp(≠x) ≠ exp(≠2 x) defined in R is the solution to the initial value problem Y ][y ÕÕ + 3 y Õ + 2 y = 0, in R, y(0) = 0, y Õ (0) = 1.Indeed, we have y Õ (x) = ≠ exp(≠x)+2 exp(≠2 x) and y ÕÕ (x) = exp(≠x)≠4 exp(≠2 x) Then, one deduces y(0) = 0, y Õ (0) = ≠1 + 2 = 1 andy ÕÕ + 3 y Õ + 2 y = e ≠x ≠ 4e ≠2x + 3e ≠x ≠ 3e ≠x ≠ 6e ≠2x + 6e ≠2x = 0.Let us consider the general initial values problem (8.2.1). We know from the previous section, when " = 0 the solution of the second linear di erential equation a y ÕÕ + b y Õ + c y = 0 has solutionsy(x) = C 1 e r1 x + C 2 e r2 x ,where r 1 and r 2 are solutions of (8.1.3) and C 1 and C 2 are constant real numbers.Using initial conditions one has the following linear system: Y ][ exp(r 1 x 0 ) C 1 + exp(r 2 x 0 ) C 2 = y exp(r 1 x 0 ) C 1 + r 2 exp(r 2 x 0 ) C 2 = y 2 .

  1.3), C 1 and C 2 are constant real numbers. This meansy Õ (x) = ! (r x + 1)C 1 + r C 2 " exp(r x). Applying the initial conditions it holds Y ] [ C 1 x 0 + C 2 = y 1 exp(≠r x 0 ) C 1 (r x 0 + 1) + C 2 r = y 2 exp(≠r x 0 ) .

Example 8. 2 . 10 . 1 .Defining r 1 = ≠3 ≠ 1 2 = ≠2 and r 2 = ≠3 + 1 2 = 1 . 1 = ≠1 ≠ i Ô 3 2 and r 2 = ≠1 = i Ô 3 2 • 2 .

 2101122211222 Find the unique solution to the following initial value problem Y ][y ÕÕ + 3 y Õ + 2y = 0 y(0) = 0, y Õ (0) =In the firt step we consider the equation y ÕÕ + 3y Õ + 2y = 0. Here = 9 ≠ 8 = 1 > 0. ≠1, we obtainy(x) = C 1 exp(≠2 x) + C 2 exp(≠x),with constant real numbers C 1 and C 2 . The function y is di erentiable in R and for every real number x,y Õ (x) = ≠2 C 1 exp(≠2x) ≠ C 2 exp(≠x).Now we use the initial conditions to obtain the following linear systemY ][y(0) = C 1 + C 2 = 0 y Õ (0) = ≠2 C 1 ≠ C 2 = This involves C 2 = ≠C 1 . Therefore C 1 = ≠1 and C 2 = 1.The unique solution to the initial value problem isy(x) = exp(≠x) ≠ exp(≠2 x).Example 8.2.11. Determine the unique solution to the following initial value problem Y ][y ÕÕ + 6 y Õ + 9y = 0 y(0) = 1, y Õ (0) = 0 .We define = 36 ≠ 36 = 0. Therefore r = ≠3. This impliesy(x) = (C 1 x + C 2 ) exp(≠3 x),where C 1 and C 2 are real numbers. From this we deducey Õ (x) = (≠3 x + C 1 ≠ 3 C 2 ) exp(≠3x).Since y(0) = 1 and y Õ (0) = 0, we getC 2 = 1 and C 1 ≠ 3 C 2 = 0.Consequently we have C 1 = 3 C 2 = 3. We conclude the unique solution of the initial values problem is y(x) = (3x + 1) exp(≠3 x), ' x oe R. Example 8.2.12. Find the unique complex solution of the following homogeneous initial value problem Y ] [ y ÕÕ + y Õ + y = 0 y(0) = 0, y Õ (0) = 1 . In this case we have = 1 ≠ 4 = ≠3 < 0. Then we can define r This means that y(x) = C 1 exp(r 1 x) + C 2 exp(r 2 x), for two complex numbers C 1 and C The derivative of y is y Õ (x) = r 1 C 1 exp(r 1 x) + r 2 C 2 exp(r 2 x). The initial value conditions implie y(0) = C 1 + C 2 = 0 and y Õ (0) = r 1 C 1 + r 2 C 2 = 1. Therefore C 2 = ≠C 1 and C 1 (r 1 ≠ r 2 ) = 1. Considering the expressions of r 1 and r 2 , we hve

Ô 3 C 1 = 1 .≠4 2 = 2 = 1 . 1 C 1 2 ,y

 311221112 This means that, C 1 = 1 Define the expression of the unique real solution to the following initial values problem Y ][y ÕÕ + 4y Õ + 5y = 0 y(0) = 1, y Õ (0) = 0 .In this example we have = 16 ≠ 20 = ≠4. To find the real solution we define-= ≠2 and Ê = 2The real solution of the equationy ÕÕ + 4 y Õ + 5y = 0 is y(x) = exp(≠2x) cos(x) + C 2 sin(x)with real numbers C 1 and C 2 . The function y is di erentiable and for every real number x,y Õ (x) = Ë ! C 2 ≠ 2C 1 " cos(x) ≠ ! 2 C 1 + C 2 " sin(x) È exp(≠2 x).The initial values conditions involves y(0) = C 1 = 1 and C 2 ≠ 2 C 1 = 0. Therefore we have C 2 = 2C 1 = 2.This leads to the following solutiony(x) = exp(≠2 x) Ë cos(x) + 2 sin(x) È .Exercise 8.2.14. For each of the following initial value problems, ÕÕ + 4y Õ + 6y = 0 y(0) = y Õ (0) = 1.

  [a , b] µ R we define the following problem: Find a function y oe C 2 ! [a , b] " which satisfies Y ] [ a y ÕÕ + b y Õ + c y = 0 y(a) = y 1 , y(b) = y 2 .

[K 1 1 K 1 2 . 5 )[K 1 a 1 K 1 b

 11125111 K 1 exp(r 1 a) + K 2 exp(r 2 a) = y 1 . The second condition y(b) = y 2 gives the equation K 1 exp(r 1 b) + K 2 exp(r 2 b) = y 2 . Gathering these equations one obtains the following linear system Y] exp(r 1 a) + K 2 exp(r 2 b) = y exp(r 1 b) + K 2 exp(r 2 b) = yThis system is equivalent to the following matricial equation5 exp(r 1 a) exp(r 2 a) exp(r 1 b) exp(r 2 b)We remind that K 1 and K 2 are the unknowns here. Since r 1 a + r 2 b " = r 2 a + r 1 b, then, exp(r 1 a + r 2 b) ≠ exp(r 1 b + r 2 a) " = 0. Therefore the system (8.2.5) has a unique solution (K 1 , K 2 ). We deduce there exists a unique y oeC 2 ! [a , b] " solution to (8.2.2).We assume = b 2 ≠ 4a c = 0. Applying boundary conditions, one obtain the following linear system Y ] + K 2 = exp(≠r a) y + K 2 = exp(≠r b) y 2 .

  a) y 1 exp(≠r b) y 2 6

Theorem 8. 2 .

 2 15. We consider the problem (8.2.2). Then, there exists a unique function y oe C 2 ! [ a , b ] " solution to (8.2.2). Example 8.2.16. Determine the expression of the unique solution to the following boundary problem defined in [ 0 , 1 ] Y ] [ y ÕÕ + 3 y Õ + 2 y = 0 y(0) = 1, y(1) = 0.

2 = 1 K 1 x + K 2 2K 1

 21121 ≠x) ≠ exp(≠2x + 1))is the unique solution to the problem above.Example 8.2.17. Find the expression of the unique solution of the problem definedon [ 0 , 1 ] Y ] [ y ÕÕ + 6 y Õ + 9 y = 0 y(0) = 0, y(1) = 2.We take the equation y ÕÕ + 6 y Õ + 9 y = 0. In this case we obtain = 36 ≠ 36 = 0.Then, r = ≠6 ≠3. The general solution of y ÕÕ + 6 y Õ + 9 y = 0 isy(x) = exp(≠3 x),with constant real numbers K 1 and K 2 . Now we have to determine fixed values for K 1 and K 2 . The first condition implies y(0) = K 2 = 0. Using the second one we obtain y(1) = K 1 exp(≠3) = 2. Hence K 2 = 2 exp(3). This involves the following unique solution y(x) = 2 x exp(≠3x + 3).Example 8.2.18. Give the expression of the unique solution of the following probx oe ( 0 , fi/4 )y(0) = 1, y(fi/4) = ≠1.First we study the equation y ÕÕ + 3 y Õ + 25 4 y = 0, without fixing any conditions. Here we have = 9 ≠ 25 = ≠16. We define -= ≠3/2 and Ê = 2. The real solution of y ÕÕ + 3 y Õ cos(2 x) + K 2 sin(2 x) È .

  Since x approaches 6, we have x AE 7. This gives x ≠ 2 AE 5.Multiplying the inequality above by |x ≠ 6| in both sides we obtain

		|x ≠ 6| Ô 5 + 2	AE	Ô	|x ≠ 6| x ≠ 2 + 2	AE Á•
	This yields the following inequality						
	!Ô Á. Then, for every x oe [2 , +OE[ satisfying 5 + 2 " Á. |x ≠ 6| AE Á we have 5 + 2 " " !Ô 5 + 2 We define " := |x ≠ 6| AE !Ô --g(x) ≠ 2 --AE Á.
	Exercise 1.1.10. Using Á and " prove the following statements
	lim xae0	sin(x) = 0, lim xae1	Ô	x + 3 = 2, lim xae3	3x + 5 x + 1	=	7 2	•
	and adding 2 in both sides we have	Ô	x ≠ 2 + 2 AE	Ô	Using the square root 5 + 2. This involves
				Ô	1 5 + 2	AE	Ô	1 x ≠ 2 + 2	•

  Let f be a real function defined on [a , b]. We consider two arbitrary elements x and y in [a , b], such that, a AE x < y AE b. Then,

	Lemma 2.0.1.
	Using f (x) we can easily check whether a function is increasing or
	decreasing in a given interval.
	29

This leads to the following lemma Lemma 2.2.10. Let

  

f (x) = x n , with n Ø 2 be a real function. Then, the function f is derivable in R and for every x oe R, we have f Õ (x) = nx

n≠1 . Example 2.2.11. We consider the following functions

  

  where u is a real function. To show how to study such type of functions we proceed by examples.

	Example 3.3.8. Let f (x) =	!	2x + 3 "

2 . In this case D f = R and the following limits hold lim xae≠OE f (x) = +OE and lim xae+OE

  .1.2)

	Exercise 4.1.4. Simplify the expression of the following functions
	1. f(x) = 4. i(x) =	e 3x e 6x , e 2(x+1) 2 e x 2 +2x+1 , 2. g(x) = e 5 • e 4x • e x 2 5. j(x) = e x 2 +6x+1 , e x+1 • e 5x+3 • 3. h(x) =	e 2x • e 6x e ≠7x ,
	Example 4.1.2. Using (4.1.1) (4.1.2) we can establish the following identities
		1.	1 e 3 = e ≠3 ,	2.	1 e x 2 = e ≠x 2	,	3.	e x e 3 = e x≠3 .
	Example 4.1.3. We consider the function f (x) = e 2x •e ≠2 e x 2 • Using (4.1.1) and (4.1.2) we obtain f (x) = e 2x≠2≠x 2 = e ≠x 2 +2x≠2 .

  ≠1) n t n e ≠t =

					(≠1) n t n e t	=	(≠1) n e t	•
							t n
	Since	lim tae+OE	e t t n = +OE, then,	lim xae≠OE	f (x) = lim tae+OE	(≠1) n e t	= 0•
							t n

Example 4.3.8. We consider the function f (x) = xe x . Then, we have lim xae≠OE f (x) = 0 Exercise 4.3.9. Determine the following limits 1. lim xae≠OE x 10 e x , 2. lim xae≠OE x 2 e x , 3. lim xae≠OE x 5 e ≠x , 4. lim xae+OE x 9 e ≠x 2 .

  One knows, lim xae≠OE X = +OE.

	Thus we obtain,		lim xae≠OE	e ≠x 2	= lim Xae+OE	e X 2	= +OE.
	Since lim xae≠OE	e x 2	= 0, then,	
			lim xae≠OE	f (x) = lim xae≠OE	e x 2	+ lim xae≠OE	e ≠x 2	= +OE.
	For the limit at +OE, we need just to emphasize that, lim xae+OE X = ≠OE. From this, we deduce that lim xae+OE e ≠x 2 = lim Xae≠OE e X 2 = 0.
	As we know, lim xae+OE	e x 2	= +OE, therefore,
			lim xae≠OE	f (x) = lim xae≠OE	e x 2	+ lim xae≠OE	e ≠x 2	= +OE.

6.3 Introduction to Integration by Parts . . . . . . . . . . 146 6.4 Introduction to the Substitution Method . . . . . . . . 148

  a x+y , for any real number x and y. This proves the following proposition Proposition 5.6.2. Let a oe (0 , 1) fi (1 , +OE). Then, for any real numbers x and y, we have a x • a y = a x+y .
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  Chemestry teachers planned to organize a practical work. They gave them a subject in which they can read: we consider the following chemical reaction 2 C 4 H 10 + 13 O 2 ae 8 CO 2 + 10 H 2 0 • we denote by C(t) the concentration of the reagent C 4 H 10

	This equation is equivalent to	
				t •	dx dt	≠ x(t) = 0.
	Thus, students get a relation between a function and its derivative. They, were a
	little bit confused, because they never face this types of equation.
	After enjoying their week-end, students came back to school. A nice surprise
	awaited for them:			
	t) dt -Nubar : If we replace v(t) by •	dx dt	in the formula given by Kanan we will have
		t •	dx dt	= x(t).	(7.0.1)
			151
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Example 6.1.56. Let f (x) = 5 sin(5x + 3. We set u(x) = 5x + 3. The function u is di erentiable in R and u Õ (x) = 5. We obtain f (x) = u Õ (x) sin(u(x)). Since f is a continuous in R, it has primitives. A primitive of f is defined by the function F (x) = ≠ cos(5x + 3). Example 6.1.57. We consider the following function f (x) = sin(3x+2). We define u(x) = 3x + 2. Then, u Õ (x) = 3. From this, we define

Since f is a continuous function, it admits primitives. A primitive of f is given by

Exercise 6.1.58. Find a primitive to each of the following functions 1. f(x) = (2x + 1) sin(x 2 + x + 3), 2. g(x) = sin(6x + 1), 3. h(x) = ≠ sin(3x). Now, we consider a di erentiable function u : I ae R. For any x oe I, we define the function F (x) = sin(u(x)). Since u is di erentiable in I and sin is di erentiable in R, then, sin(u(x)) is di erentiable in I. We have F Õ (x) = u Õ (x) cos(u(x)). This proves the following theorem Theorem 6.1.59. Let u : I ≠ae R be a di erentiable function. We consider the function f (x) = u Õ (x) cos(u(x)). Then, the function F (x) = sin(u(x)) is a primitive of f . Example 6.1.60. We define f (x) = 6 cos(6x + 1).

) is a primitive of f . Exercise 6.1.61. Find a primitive to each of the following function.

4 .

To refresh memory to the readers, we give the following table.

Remark 7.0. In this chapter, we will study first order ordinary di erential equations. To make the presentation clear, we organize it as follows. In the first section, we will define and study homogeneous first order linear di erential equations. In the second section, we study nonhomogeneous first order linear di erential equations. In the section 3 we study lsecond order linear di erential equations.

We specify again in this course we will only deal with linear ordinary di erential equations.

First Order linear Di erential Equations

In this section, we define first order linear di erential equations. We study some properties of the solutions. We show how to solve first order linear di erential equations.

Before going further we need to specify the following definitions and notations.

Definition 7.1.1. Let E be a set. We say the set E is a real vector space if it satisfies these conditions:

We define I 1 µ I, such that, for all x oe I 1 , b(x) " = 0. Therefore, in the interval I 1 , (úú) is equivalent to

, we obtain the following equation

This is the rule to obtain normalized equations from general equations.

Example 7.1.16. Take the general di erential equation 2y Õ +3y = x +1. To obtain a normalized form, we divide both sides by 2. Then, we have

Example 7.1.17. We consider the general di erential equation (x+1)y Õ +2xy = e x .

Let x " = ≠1, then x + 1 " = 0. In this case we can divide by x + 1 and we obtain, for all x oe R\{≠1},

18. Now we consider the equation x y Õ + ln(x)y = 0 defined in (0 , +OE). For all x > 0, we divide by x and obtain the following normalized equation

Suad did not understand why we were defining normalized di erential equations. To convince him to the usefulness of this form the teacher made the following parallel parallel with exponential function.

Let f (x) = e x . The function f is di erentiable in R and f Õ (x) = e x . That is , f (x) = e x is the solution to the following di erential equation y Õ ≠ y = 0, which satisfies y(0) = 1. Generaly speaking if we define the function

where the function A is a primitive of the function a, we can easily check that

Then, the function g is a solution to the di erential equation y Õ ≠ a(x) y = 0. We see from these examples that the normalized form, can help to simplify calculations.

In the next subsection, we study homogeneous linear di erential equations.

Homogeneous Linear Di erential Equations

In this subsection we deal with homogeneous di erential equation. Here we start by defining some properties shared by solution of homogeneous linear equations. Now, we consider the following homogeneous equation: find a function y in C 1 (I), which satisfies, for all x oe I, y Õ + a(x)y = 0.

(7.1.7)

Having a look on this equation, Gunay pointed out that the function y(x) = 0, for all x oe I is a solution to (7.1.7). This leads to the following lemma. The function defined by y(x) = 0, for every x oe I is called the evident solution of a linear homogeneous di erential equation.

Remark 7.1.20. We remark that the evident solution is not so interesting. That is why, solving a homogeous di erential equation means to find a nonzero function. That is, here we are looking for a function y " © 0, which satisfies (7.1.7).

Let us consider the set of all solutions of (7.1.7) defined in the interval I. We denote it E (I). We take two functions y 1 and y 2 solutions to (7.1.7) which are elements of E (I). Since y 1 and y 2 are solutions of (7.1.7), we have

Therefore, we have

Defining the function z = y 1 + y 2 , we obtain the equation z Õ + a(x)z = 0. This means that , the function y 1 + y 2 is a solution of (7.1.7). In other words the function y 1 + y 2 belongs to E (I).

Let k be a real number and y a solution of (7.1.7). The function y oe E (I). On the other hand, we know (k y) Õ = k y Õ . This implies

Hence, the function z 1 = k y satisfies the di erential equation z Õ 1 + a(x) z 1 = 0. The function k y is a solution of (7.1.7). That is, k y oe E (I). Since the function y © 0 oe E (I), this involves the following lemma Lemma 7.1.21. Let E (I) be the set of all solutions of the di erential equation y Õ + a(x) y = 0 defined in I. Then, E (I) is a vector space. Now we aim to establish the set E (I) is not reduce to the null solution. The chalenge is now to find conditions under which equation (7.1.7) has a solution y " © 0 in I. To this end we consider a function a which is continuous on I. We look at the di erential equation: find a di erentiable function, y on I solution to y Õ (x) + a(x) y(x) = 0.

Polynomial Function Multplied by Exponential

When the second member f

, where P is a polynomial function and ⁄ a real number di erent to zero, we define the particular solution y p as a polynomial function multiplied by an exponential. Indeed, if here we assume the function f is in the form polynomial function multiplied by exponential:

In this case we define the particular solution

There exist e cient methods to choose e ciently the order of the polynome P , but here we will only show how the method works by using examples. Example 7.2.14. Determine a particular solution to the equation

The second member f is in the form f (x) = xe x . We should determine y p in the form polynomial multiplied by exponential. That is, we define y p = (bx + c) e x . We have y Õ p (x) = be x + (bx + c)e x . Then, we obtain 

Second Member in the Form -cos(ax) or -sin(ax)

If the function f is equal to -cos(ax) or -sin(ax), where a, -and -are real numbers, we define y p as a combination of cos(ax) and sin(ax). In other words, we set y p (x) = A cos(ax) + B sin(ax),

where A and B are real numbers. To determine y p , we just need to find the values of A and B. We show how to find A and B by using examples.

Example 7.2.21. Determine a solutions to y Õ + 2y = x 2 + 2x + 1.

A general Homogeneous solution is in the form y H (x) = K exp(≠2x). A particular solution is given by

Therefore we have this general solution

Let a, f 1 and f 2 be three continuous functions in I. We consider the following linear di erential equations: Find y 1 and y 2 in C 1 (I) solution to the linear di erential equations

For any real numbers ⁄ and µ , we define the function

The function y satisfies y Õ (x) = ⁄ y Õ 1 (x) + µ y Õ 2 (x). This involves

This means the function y is solution to the equation

This is called the "principle of superposition". Let the functions f i be continuous in I for 1 AE i AE n. We define the functions y i as solutions to the equations y Õ i +a(x) y i = f i and consider the function

Then y is a solution of the equation y Õ + a(x) y = f (x). Theorem 7.2.22 (Principle of Superposition). Let a, and f i for 1 AE i AE n be n + 1 continuous functions in I. We consider n function y i oe C 1 (I) for 1 AE i AE n solution to the equation

Then, the function y(x) = -1 y 1 (x) + • • • +n y n (x) is solution to the linear di erential equation

Example 8.1.7. We consider the vectors w 1 = (2 , 3) and w 2 = (12 , 18) in R 2 .

We observe w 2 = 6 w 1 . Then, the vectors w 1 and w 2 are linearly dependant.

To simplify we say f 1 and f 2 are linearly independant if they are not collinear. If elements are not linearly independant, we say they are linearly dependant. Two linear dependant elements are collinear.

Since we will deal with functions it is important to get a criterion which will allows us to check whether two functions are linearly independant. Theorem 8.1.8. Let f 1 and f 2 be two C 1 functions defined in some interval I.

Then, f 1 and f 2 are lineraly independant if and only if for all real number x oe I,

In truth we can estabblish a more simplest result which is equivalent to the previous theorem. This theorem is more easy to use in applications.

Theorem 8.1.9. Let f 1 and f 2 be two C 1 functions defined in some interval I.

Then, f 1 and f 2 are lineraly independant if and only if there exist x 0 oe I,

Example 8.1.10. We consider the function f 1 (x) = x + 2 and f 2 (x) = 2x 2 + 2.

Since f 1 and f 2 are di erentiable, one has f

The functions f 1 and f 2 are linearly independant. The functions u 1 and u 2 are linearly independant.

Here, we choose 0 in order to simplify notations, but one can choose another real number.

Exercise 8.1.12. Check whether the following functions are linearly independant 1. f 1 (x) = cos(x) and f 2 (x) = sin(x), 2. f 1 (x) = exp(ax) and f 2 (x) = exp(≠ax), 3. f 1 (x) = x 4 and f 2 (x) = x 7 .

There are several methods to define a basis of a set of function. But here we favor the less abstract method. In comparasion with first di erential equation, here also we are looking for solution in the form exp(A(x)).

Let r be a real or a complex number. For every real number x we define the function y(x) = exp(rx). We assume the fuction y is a solution to the linear homogeneous equation ay ÕÕ + by Õ + cy = 0. Now our objective is to determine the The initial value conditions imply K 1 = 1 and K 2 exp