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, is to get rid of the symmetry restriction in the construction of GCM spheres in [6] and thus remove an essential obstruction in extending the result to a full stability proof of the Kerr family.

1 Introduction

Stability of Kerr conjecture

This the first in a series of papers whose ultimate goal is to establish the full nonlinear stability of the Kerr family for |a| m.

Conjecture (Stability of Kerr conjecture1 ). Vacuum initial data sets, sufficiently close to Kerr initial data, have a maximal development with complete future null infinity 2 and with domain of outer communication which approaches (globally) a nearby Kerr solution.

The paper builds on the strategy laid out in [START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF] in the context of the nonlinear stability of Schwarzschild for axially symmetric polarized perturbations. The central new idea of [START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF] was the introduction and construction of general covariant modulated (GCM) spheres on which specific geometric quantities take Schwarzschildian values. This was made possible by taking into account the full general covariance of the Einstein vacuum equations. The construction, however, also made essential use of the polarization assumption.

The goal of this, and its companion paper [START_REF] Klainerman | Effective results on uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF], is to get rid of the symmetry restriction in the construction of GCM spheres and thus remove an essential obstruction in extending the result in [START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF] to a full stability proof of the Kerr family. While this paper lays the analytic foundations for the construction of GCM spheres in full generality, the companion paper [START_REF] Klainerman | Effective results on uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF] makes use of the main result derived here, as well as a suitable notion of stable uniformization, to construct intrinsic GCM spheres 3 . Though the results derived in these two papers are mainly meant as a crucial stepping stone for a full proof of the stability of Kerr, we strongly believe that they are of independent interest and that our construction, or a suitable variation of it, will bare fruit in other applications.

1.2 Stability of Schwarzschild in the polarized case 1.2.1 GCM admissible spacetimes in [START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF] In [START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF] we were able to prove the nonlinear stability of the Schwarzschild space under axially symmetric polarized perturbations. These are spacetimes possessing 4 a spacelike, axial, hypersurface orthogonal Killing vectorfield Z.

The final spacetime in [START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF] was constructed as the limit of a continuous family of finite GCM admissible spacetimes as represented in Figure 1 below, whose future boundaries consist of the union A∪C * ∪C * ∪Σ * where A and Σ * are spacelike, C * is incoming null, and C * outgoing null. The boundary A is chosen so that, in the limit when M converges to the final state, it is included in the perturbed black hole. The spacetime M also contains a timelike hypersurface T which divides M into an exterior region we call (ext) M and an interior one (int) M. Both (ext) M and (int) M are foliated by 2 surfaces as follows. (i) The far region (ext) M is foliated by a geodesic foliation S(u, s) induced by an outgoing optical function u initialized on Σ * with s the affine parameter along the null geodesic generators of (ext) M. We denote by r = r(u, s) the area radius of S(u, s).

H + C ⇤ C ⇤ A C 1 C 1 ⌃ ⇤ I + (ext) M (int) M T H + C ⇤ C ⇤ A C 1 C 1 ⌃ ⇤ I + ( e x t ) M ( i n t ) M T 1 H + C ⇤ C ⇤ A C 1 C 1 ⌃ ⇤ I + ( e x t ) M ( i n t ) M T H + C ⇤ C ⇤ A C 1 C 1 ⌃ ⇤ I + (ext) M (int) M T H + C ⇤ C ⇤ A C 1 C 1 ⌃ ⇤ I + (ext) M (int) M T 1 H + C ⇤ C ⇤ A C 1 C 1 ⌃ ⇤ I + ( e x t ) M ( i n t ) M T H + C ⇤ C ⇤ A C 1 C 1 ⌃ ⇤ I + ( e x t ) M ( i n t ) M T 1 H + C⇤ C ⇤ A C1 C 1 ⌃ ⇤ I+ ( e x t ) M ( i n t ) M T H + C ⇤ C ⇤ A C 1 C 1 ⌃ ⇤ I + ( e x t ) M ( i n t ) M T H + C ⇤ C ⇤ A C 1 C 1 ⌃ ⇤ I + ( e x t ) M ( i n t ) M T
On the boundary Σ * of (ext) M we also assume that r is sufficiently large.

(ii) The near region (int) M is foliated by a geodesic foliation induced by an incoming optical function u initialized at T such that its level sets on T coincide with those of u.

To prove convergence to the final state we had to establish precise decay estimates for all Ricci and curvature coefficients decomposed relative to the null geodesic frames associated to the foliations in (ext) M and (int) M. We note that the estimates for (int) M are relatively simple once the estimates in (ext) M have been derived; most difficulties had to do with this latter region. In fact the decay properties of both Ricci and curvature coefficients in (ext) M depend heavily on the choice of the boundary Σ * as well as on the choice of the cuts of the optical function u on it. As such, the central idea of [START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF] was the introduction and construction of generally covariant modulated (GCM) hypersurfaces on which specific geometric quantities take Schwarzschildian values. This was made possible by taking into account the full general covariance of the Einstein vacuum equations. More precisely, the GCM spacelike boundary Σ * are foliated by spheres S on which three key geometric quantities are set to have the same values as in the case of canonical spheres in Schwarzschild. To make sense of this, we recall that the Schwarzschild metric in outgoing Eddington-Finkelstein coordinates has the form 5g m = -2duds -Υdu 2 + r 2 dσ,

Υ = 1 - 2m r , (1.1) 
where r = r(u, s) denotes the area radius of the spheres S(u, s) of constant u and s, and dσ denotes the standard metric on S 2 . For a given canonical sphere S(u, s), the expansions6 κ = trχ and κ = trχ, and the mass aspect function µ are given by

κ = 2 r , κ = - 2Υ r , µ = 2m r 3 . (1.2)
Thus a sphere S on the above mentioned foliation of Σ * is said to be a GCM sphere if, relative to the canonical frame of (ext) M, the conditions 7 (1.2) are verified. Note that the three exact conditions in (1.2) are matched by the number of degree of freedoms of gauge transformations which preserve the polarization condition. Another way to express this is by noticing that a sphere S in a given spacetime can be specified by two scalar functions while a future null pair8 (e 3 , e 4 ) adapted to S is uniquely determined by one scalar function9 .

The role played by GCM admissible spacetimes

As mentioned above the final spacetime was constructed as the limit of a continuous family of finite GCM admissible spacetimes. At every stage one assumes that all Ricci and curvature coefficients of a fixed GCM admissible spacetime M verify precise bootstrap assumptions. One makes use of the GCM admissibility properties of Σ * and the smallness of the initial conditions to show that all the bounds of the Ricci and curvature coefficients of M depend only on the size of the initial data and thus, in particular, improve the bootstrap assumptions. This allows us to extend the spacetime to a larger one M in which the bootstrap assumptions are still valid. Note that the exact conditions (1.2) cannot be maintained in the extended spacetime M but we can control the size of the quantities

κ - 2 r , κ + 2Υ r , µ - 2m r 3 , (1.3) 
defined relative to the geodesic foliation of M , extended from that of M. To make sure that the extended spacetime is admissible, one has to construct a new GCM hypersurface Σ * in M \ M and use it to define a new extended GCM admissible spacetime M. It is at this stage that we have to prove the existence of GCM spheres in M \ M. More precisely, using the bounds on the Ricci and curvature coefficients on M , we have to construct GCM spheres S in M \ M as building blocks for Σ * . This was done in [START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF] by a deformation argument in which the polarization assumption seemed to play an important role, as it will be explained below.

Construction of GCM spheres in perturbations of Kerr

The goal of this, and its companion paper [START_REF] Klainerman | Effective results on uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF], is to get rid of the polarization restriction in the construction of GCM spheres and thus remove an essential obstruction in extending the result of [START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF] to a full stability proof of the Kerr family. The construction of GCM spheres and GCM hypersurfaces in perturbations of Kerr are meant to play a role similar to that discussed above, i.e. their construction is needed in spacetime regions 10 R where r is sufficiently large and where we already have complete control of the Ricci and curvature components, denoted Γ and R, relative to a prescribed outgoing geodesic foliation S(u, s) and adapted null frames (e 1 , e 2 , e 3 , e 4 ) with e 1 , e 2 tangent to the spheres S. The size of the quantities in (1.3) is assumed to be controlled by a small constant 11

• δ > 0 while the size of all other linearized Ricci and curvature coefficients is controlled by a second small constant 12 • > 0 with • δ ≤

• . We also control the coefficients of the spacetime metric in adapted coordinate charts 13 (u, s, y 1 , y 2 ).

Given a sphere The goal is then to show that there exist spheres S, described by the functions (U, S), and adapted null pairs (e S 3 , e S 4 ) such that 14,15

κ S = 2 r S , κ S = - 2Υ S r S , µ S = 2m S (r S ) 3 , (1.5) 
where r S is the area radius of S, m S is the Hawing mass of S and Υ S = 1-2m S r S . Note that, given such a deformation, at any point on S we have two different null frames: the null frame (e 3 , e 4 , e 1 , e 2 ) of the background foliation of R and the null frame (e S 3 , e S 4 , e S 1 , e S 2 ). In general, two null frames (e 3 , e 4 , e 1 , e 2 ) and (e 3 , e 4 , e 1 , e 2 ) are related by a frame transformation of the form, see Lemma 3.1,

e 4 = λ e 4 + f b e b + 1 4 |f | 2 e 3 , e a = δ ab + 1 2 f a f b e b + 1 2 f a e 4 + 1 2 f a + 1 8 |f | 2 f a e 3 , e 3 = λ -1 1 + 1 2 f • f + 1 16 |f | 2 |f | 2 e 3 + f b + 1 4 |f | 2 f b e b + 1 4 |f | 2 e 4 , (1.6) 
where the scalar λ and the 1-forms f and f are called the transition coefficients of the transformation 16 . One can then relate all Ricci and curvature coefficients of the primed frame in terms of the Ricci and curvature coefficients of the un-primed one, see Proposition 3.3. In particular, the GCM conditions (1.5) can be expressed in terms of differential conditions for the transition coefficients (f, f , λ). The condition that the horizontal part of the frame (e 1 , e 2 ) is tangent to S also leads to a relation between the gradients of U, S, defined in (1.4), and (f, f ). Roughly we thus expect to derive a coupled system of the form

∂ y a S = S(f, f , Γ) # a , a = 1, 2, ∂ y a U = U(f, f , Γ) # a , a = 1, 2, D S (f, f , • λ ) = G(Γ) + H(f, f , • λ , Γ), (1.7) 
where the terms S, U, H, G, D S have the following meaning.

1. The expressions S(f, f , Γ), U(f, f , Γ) are 1-forms depending on f, f and Γ, with Γ denoting the Ricci coefficients of the background foliation of R and with # denoting the pull back by the map Ψ defined in (1.4).

2. The expression H refers to a system of scalar functions on S depending on (f, f ,

• λ )

and Γ, where

• λ = λ -1.
3. The expressions (U, S) and H satisfy, schematically, the following.

S, U (f, f ) + (f, f ) 2 , H r -1 + • (f, f , • λ ) + (f, f , • λ ) 2 .
4. The expression D S denotes a linear differential operator on S.

5. The term G(Γ) denotes a system of scalars involving the GCM quantities for the R-foliation appearing in (1.3).

The construction of a GCM sphere can thus be reduced to the problem of finding solutions (U, S, f, f ,

• λ ) to the system (1.7) of size • δ. There are however various difficulties in solving (1.7) which we emphasize below.

Integrability

Note that the transition coefficients have in fact five degrees of freedom while (1.5) provides us with only three scalar constraints. The additional degrees of freedom of the triplet (f, f , λ) have to be constrained by integrability conditions, that is integrability in the sense of Frobenius. Indeed, since the vectorfields (e 1 , e 2 ) have to be tangent to the sphere S, the distribution generated by them has to be integrable 17 , see a more detailed discussion in section 2.1.1. Given an arbitrary frame (e 1 , e 2 , e 3 , e 4 ), related to the background frame (e 1 , e 2 , e 3 , e 4 ) by the formula (1.6), the lack of of integrability of the distribution generated by (e 1 , e 2 ) translates into lack of symmetry for the null second fundamental forms, χ ab = g(∇ e a e 4 , e b ), χ ab = g(∇ e a e 3 , e b ), which can be measured by the scalar functions18 , (a) trχ =∈ ab χ ab , (a) trχ =∈ ab χ ab .

We note that in the axial polarized situation of [START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF], we can always choose the primed frame (e 3 , e 4 , e 1 , e 2 ) such that e 2 is collinear to the axially symmetric Killing vectorfield Z and all other elements of the frame commute with Z. This automatically ensures the integrability of the frame without any additional conditions.

To deal with the issue of integrability, in the general case, we are led to add two more conditions to (1.5)

(a) trχ S = (a) trχ S = 0, (1.8) translating into two additional differential relations for f, f which can be incorporated in the definition of D S above. This provides us with the correct number of equations in the last row of (1.7), but, as we discuss below, it does not ensure that the kernel of D S is trivial which would be a necessary condition for solvability.

Non-triviality of ker D S

Upon inspection, the linear operator D S , though elliptic, has a non-trivial kernel. To circumvent this difficulty we need to modify the conditions (1.5) by requiring instead that only the ≥ 2 modes19 of trχ S + 2Υ S r S and µ S -2m S (r S ) 3 are set to vanish. As a consequence, we have the freedom to fix the = 1 modes of f, f . These modifications allow us to assume that D S is both elliptic and coercive.

Solvability

Note that the first two equations in (1.7) require a compatibility condition i.e.

∂ y b S(f, f , Γ) # a = ∂ y a S(f, f , Γ) # b .
In the axial polarized case, this can be avoided by a simple symmetry reduction argument, but in the general case, this becomes an issue. We deal with it by modifying the first two equations in (1.7), i.e. we consider instead the system20 

∆ • S S = div • S S(f, f , Γ) # , ∆ • S U = div • S U(f, f , Γ) # , D S (f, f , • λ ) = G(Γ) + H(f, f , • λ , Γ).
(1.9)

We also fix the values of U, S to be zero at a given point of • S to ensure uniqueness.

1.3.4 Nonlinear implicit nature of (1.9)

To disentangle the highly nonlinear and implicit nature of (1.9), we proceed by an iterative procedure which starts with the trivial quintet Q (0) := (U (0) , S (0) ,

• λ (0) , f (0) , f (0) ) = 0, 0, 0, 0, 0 , corresponding to the un-deformed sphere

• S, and, making us of the n-th iterate Q (n) , produces

Q (n+1) = U (n+1) , S (n+1) , • λ (n+1) , f (n+1) , f (n+1)
as follows.

• The pair (U (n) , S (n) ) defines the deformation sphere S(n) and the corresponding pull back map # n given by the map Ψ (n) :

• S → S(n), ( • u, • s, y 1 , y 2 ) -→ ( • u + U (n) (y 1 , y 2 ),
• s + S (n) (y 1 , y 2 ), y 1 , y 2 ).

• We define the triplet (f (n+1) , f (n+1) ,

• λ (n+1) ) as the solution of the following linear system

D S(n) (f (n+1) , f (n+1) , • λ (n+1) ) = G(Γ) + H(f (n) , f (n) , • λ (n) , Γ).
Note that D S(n) is defined with respect to the geometric structure of S(n).

• We use the new pair (f (n+1) , f (n+1) ) to solve the equations on

• S, ∆ • S U (n+1) = div • S U(f (n+1) , f (n+1) , Γ) #n , ∆ • S S (n+1) = div • S S(f (n+1) , f (n+1) , Γ) #n , (1.10) 
with U (n+1) , S (n+1) vanishing at the same given point of

•

S and where the pull back # n is defined with respect to the map Ψ (n) :

• S → S(n). The new pair (U (n+1) , S (n+1) ) defines the new sphere S(n + 1) and we can proceed with the next step of the iteration.

Have we produced a GCM sphere?

If

• is sufficiently small one can show that the iterative procedure mentioned above leads to a solution

U (∞) , S (∞) , • λ (∞) , f (∞) , f (∞) verifying the system • ∆U (∞) = • div U(f (∞) , f (∞) , Γ) #∞ , • ∆S (∞) = • div S(f (∞) , f (∞) , Γ) #∞ , D ∞ (f (∞) , f (∞) , • λ (∞) ) = G(Γ) + H(f (∞) , f (∞) , • λ (∞) , Γ), (1.11)
where the elliptic operator D ∞ is defined on the sphere S(∞), i.e. the deformation of ∞) ). Is S(∞) the desired solution to the problem, i.e. is it a GCM sphere in the sense discussed above? This is a priori not clear as the equations for (U (∞) , S (∞) ) in (1.11) do not imply those in (1.7). As a result, we have potentially two different frames associated to S = S(∞).

• S induced by (U (∞) , S ( 
• The frame e

(∞)
1 , e

(∞)
2 , e

(∞)
3 , e (∞) 4

induced by the transition functions (

• λ (∞) , f (∞) , f (∞) ), with the quintet U (∞) , S (∞) , • λ (∞) , f (∞)
, f (∞) verifying the limiting system (1.11).

• The geometric frame 21 (e S 1 , e S 2 , e S 3 , e S 4 ), adapted to S.

The main remaining hurdle is to show that these two null frames coincide, see section 6.5, so that S is indeed the desired GCM deformation.

First version of the main theorem

We give below a bare bones version of our main theorem, see Theorem 6.1 for the precise version.

Theorem 1.1 (Existence of GCM spheres, version 1). Let R be fixed spacetime region, endowed with an outgoing geodesic foliation S(u, s), verifying specific asymptotic assumptions expressed in terms of two parameters 0 <

• δ ≤

• . In particular we assume that the

GCM quantities 22 κ - 2 r , κ + 2Υ r ≥2 , µ - 2m r 3 ≥2 , (1.12) 
are small with respect to the parameter

• δ. Let • S = S( • u,
• s) be a fixed sphere of the foliation with there exists a unique GCM sphere S = S(Λ, Λ), which is a deformation of

• S, such that κ S - 2 r S = 0, κ S + 2Υ S r S ≥2 = 0, µ S - 2m S (r S ) 3 ≥2 = 0, (1.14)
21 With a proper normalization for the null pair e S 3 , e S 4 , in fact the one corresponding to λ = λ (∞) . 22 This requires a careful definition of modes, i.e. analogues of the spherical harmonics. and23 

(div S f ) =1 = Λ, (div S f ) =1 = Λ, (1.15) 
where (f, f , λ) denote the transition coefficients of the transformation (1.6) from the background frame of R to the frame adapted to S.

Remark 1.2. We emphasize again that, unlike the GCM construction in [START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF], Theorem 1.1 does not rely on any symmetry assumption and can thus be used in a general setting. Note however that there is an obvious ambiguity in the statements (1.14) (1.15) of Theorem 1.1 due to the arbitrariness in the choice of the = 1 modes on S. We remove this ambiguity in [START_REF] Klainerman | Effective results on uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF] where we show that the results of Theorem 1.1 hold true for a canonical basis of = 1 modes on S based on an effective version of the classical uniformization theorem, stable under small perturbations.

Remark 1.3. Note that the outgoing geodesic foliation for the background space-time region R in Theorem 1.1 is not strictly necessary. In fact, any other foliation satisfying comparable asymptotic assumptions would also work.

Applications to the construction of intrinsic GCM spheres

In [START_REF] Klainerman | Effective results on uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF], we derive a far reaching corollary of Theorem 1.1 where we replace the = 1 conditions (1.15) on div S (f ) and div S (f ) by the vanishing of the canonical = 1 modes of div S β S and } trχ S . As mentioned above in Remark 1.2, the definition of canonical = 1 modes depends on an effective version of the uniformization theorem which we also develop in [START_REF] Klainerman | Effective results on uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF]. The horizontal 1-form β S is a curvature component of the Riemann curvature tensor with respect to the null frame adapted to S, constructed in Theorem 1.1. Here is a short version of that result. Theorem 1.4 (Intrinsic GCM spheres with canonical = 1 modes [START_REF] Klainerman | Effective results on uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF]). Under slightly stronger assumptions on the background foliation of R, there exists a unique24 GCM deformation of

• S verifying, in addition to (1.14), (div S β S ) =1 = 0, } trχ S =1 = 0, (1.16)
relative to the canonical = 1 modes of S.

Remark 1.5. In [START_REF] Klainerman | Effective results on uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF], we also make use of Theorem 1.4 to define a quasi-local notion of angular momentum which we believe will play a fundamental role in the tracking the final state of angular momentum in general perturbations of Kerr.

Remark 1.6. We note that a related notion of preferred spheres, of constant mean curvature, in an asymptotically euclidean Riemannian 3-manifold has been introduced in [START_REF] Huisken | Definition of center of mass for isolated physical systems and unique foliations by stable spheres with constant mean curvature[END_REF].

In contrast with our work here, the spheres in [START_REF] Huisken | Definition of center of mass for isolated physical systems and unique foliations by stable spheres with constant mean curvature[END_REF] have codimension 1, while ours have codimension 2 in a 4 dimensional Lorentzian manifold.

Remark 1.7. The assumptions on the spacetime region R in Theorem 1.4 are in particular satisfied in Kerr for r sufficiency large. We can thus apply Theorem 1.4 in that context, and obtain the existence of intrinsic GCM spheres S Kerr in Kerr for r sufficiency large, see Corollary 7.9 in [START_REF] Klainerman | Effective results on uniformization and intrinsic GCM spheres in perturbations of Kerr[END_REF]. The intrinsic GCM spheres S of Theorem 1.4 thus correspond to the analog of S Kerr in perturbations of Kerr for r sufficiency large.

Structure of the paper

The structure of the paper is as follows

• In section 2, we introduce the geometric set-up and provide our main assumptions for the background foliation of the spacetime region R.

• In section 3, we introduce general frame transformations, including the frame transformations for the main GCM quantities.

• In section 4, we provide the definition of GCM spheres. In particular, we derive the elliptic system for the transition coefficients (f, f , λ), and we analyze the corresponding linearized system.

• In section 5, we study deformations of the background spheres of R, and derive in particular the equations for the scalar functions (U, S) defining the deformation.

• In section 6, we prove Theorem 1.1 on the existence of GCM spheres by relying on an iterative scheme. We also obtain the existence of GCM spheres in Kerr as a by-product.

• In section 7, we derive a priori estimates for GCM spheres.
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2 Geometric set up

General formalism

We review the part relevant for this paper of the general formalism we have introduced in [START_REF] Giorgi | A general formalism for the stability of Kerr[END_REF].

Null pairs and horizontal structures

Let (M, g) a Lorentzian space-time. Consider a fixed null pair e 3 , e 4 , i.e.

g(e 3 , e 3 ) = g(e 4 , e 4 ) = 0, g(e 3 , e 4 ) = -2, and denote by O(M) the vector space of horizontal vectorfields X on M, i.e. g(e 3 , X) = g(e 4 , X) = 0. Given a fixed orientation on M, with corresponding volume form ∈, we define the induced volume form on O(M) by,

∈ (X, Y ) := 1 2 ∈ (X, Y, e 3 , e 4 ).
A null frame on M consists of a choice of horizontal vectorfields e 1 , e 2 , such that

g(e a , e b ) = δ ab a, b = 1, 2.
The commutator [X, Y ] of two horizontal vectorfields may fail however to be horizontal. We say that the pair (e 3 , e 4 ) is integrable if O(M) forms an integrable distribution, i.e.

X, Y ∈ O(M) implies that [X, Y ] ∈ O(M).
As it is well-known, the principal null pair in Kerr fails to be integrable, see also Remark 2.2. Given an arbitrary vectorfield X we denote by (h) X its horizontal projection, (h) X = X + 1 2 g(X, e 3 )e 4 + 1 2 g(X, e 4 )e 3 .

A k-covariant tensor-field U is said to be horizontal,

U ∈ O k (M), if for any X 1 , . . . X k we have U (X 1 , . . . X k ) = U ( (h) X 1 , . . . (h) X k ).
Definition 2.1. We denote by S 0 = S 0 (M) the set of scalar functions on M, S 1 = S 1 (M) the set of horizontal 1-forms on M, and by S 2 = S 2 (M) the set of symmetric traceless horizontal 2-forms on M.

For any X, Y ∈ O(M) we define the induced metric g(X, Y ) = g(X, Y ) and the null second fundamental forms

χ(X, Y ) = g(D X e 4 , Y ), χ(X, Y ) = g(D X e 3 , Y ). (2.1)
Observe that χ and χ are symmetric if and only if the horizontal structure is integrable. Indeed this follows easily from the formulas,

χ(X, Y ) -χ(Y, X) = g(D X e 4 , Y ) -g(D Y e 4 , X) = -g(e 4 , [X, Y ]), χ(X, Y ) -χ(Y, X) = g(D X e 3 , Y ) -g(D Y e 3 , X) = -g(e 3 , [X, Y ]).
Note that we can view χ and χ as horizontal 2-covariant tensor-fields by extending their definition to arbitrary vectorfields X, Y by setting

χ(X, Y ) = χ( (h) X, (h) Y ), χ(X, Y ) = χ( (h) X, (h) Y ).
We define their trace trχ, trχ, and anti-trace (a) trχ, (a) trχ as follows trχ := δ ab χ ab , trχ := δ ab χ ab , (a) trχ :=∈ ab χ ab , (a) trχ :=∈ ab χ ab .

Accordingly we decompose χ, χ as follows,

χ ab = χ ab + 1 2 δ ab trχ + 1 2 ∈ ab (a) trχ, χ ab = χ ab + 1 2 δ ab trχ + 1 2 ∈ ab (a) trχ.
Remark 2.2. The non integrability of (e 3 , e 4 ) corresponds to non trivial (a) trχ and (a) trχ.

A celebrated example of a non integrable null frame is the principal null frame of Kerr for which (a) trχ and (a) trχ are indeed non trivial.

We define the horizontal covariant operator ∇ as follows:

∇ X Y := (h) (D X Y ) = D X Y - 1 2 χ(X, Y )e 4 - 1 2 χ(X, Y )e 3 , X, Y ∈ O(M). (2.2) Note that, ∇ X Y -∇ Y X = [X, Y ] - 1 2 ( (a) trχ e 4 + (a) trχ e 3 ) ∈ (X, Y ). In particular, [X, Y ] ⊥ = 1 2 ( (a) trχ e 4 + (a) trχ e 3 ) ∈ (X, Y ). (2.3) Also, for all X, Y, Z ∈ O(M), Zg(X, Y ) = g(∇ Z X, Y ) + g(X, ∇ Z Y ).
Remark 2.3. In the integrable case, ∇ coincides with the Levi-Civita connection of the metric induced on the integral surfaces of O(M). Given X horizontal, D 4 X and D 3 X are in general not horizontal. We define ∇ 4 X and ∇ 3 X to be the horizontal projections of the former. More precisely,

∇ 4 X := (h) (D 4 X) = D 4 X - 1 2 g(X, D 4 e 3 )e 4 - 1 2 g(X, D 4 e 4 )e 3 , ∇ 3 X := (h) (D 3 X) = D 3 X - 1 2 g(X, D 3 e 3 )e 3 - 1 2 g(X, D 3 e 4 )e 3 .
The definition can be easily extended to arbitrary

O k (M) tensor-fields U ∇ 4 U (X 1 , . . . , X k ) = e 4 U (X 1 , . . . , X k )) - i U (X 1 , . . . , ∇ 4 X i , . . . X k ), ∇ 3 U (X 1 , . . . , X k ) = e 3 (U (X 1 , . . . , X k )) - i U (X 1 , . . . , ∇ 3 X i , . . . X k ).

Ricci and curvature coefficients

Given a null frame e 1 , e 2 , e 3 , e 4 we define the connection coefficients as follows For a given horizontal 1 -form ξ, we define the frame independent operators25 ,

χ ab = g(D a e 3 ,
div ξ = δ ab ∇ b ξ a , curl ξ =∈ ab ∇ a ξ b , (∇ ⊗ξ) ba = ∇ b ξ a + ∇ a ξ b -δ ab (div ξ).
We also define the usual curvature components, see [START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF],

α ab = R a4b4 , β a = 1 2 R a434 , β a = 1 2 R a334 , α ab = R a3b3 , ρ = 1 4 R 3434 , ρ = 1 4 R 3434 .

Outgoing geodesic foliations 2.2.1 Definition of an outgoing geodesic foliation

Assume given an outgoing optical function u, i.e. a solution of the equation,

g αβ ∂ α u∂ β u = 0
and let L = -g αβ ∂ β u∂ α its null geodesic generator. We choose e 4 such that,

e 4 = ςL, L(ς) = 0. (2.6)
We then choose s such that e 4 (s) = 1.

(2.7)

The scalar functions (u, s) generate what is called an outgoing geodesic foliation. Let S(u, s) be the 2-surfaces of intersection between the level surfaces of u and s. We choose e 3 the unique null vectorfield orthogonal to S(u, s) and such that g(e 3 , e 4 ) = -2. We then let (e 1 , e 2 ) an orthogonal basis of the tangent space of S(u, s). We also introduce Ω := e 3 (s).

(2.8) Lemma 2.4. We have

(a) trχ = (a) trχ = 0, ω = ξ = 0, η = -ζ, ς = 2 e 3 (u)
.

Proof. Since (e 1 , e 2 ) is a basis of the tangent space of S(u, s), it is integrable, and hence We define the area radius r(u, s) of S(u, s) by the formula

|S| = 4πr 2 (2.9)
where |S| is the volume of the surface S. Also, the Hawking mass m = m(u, s) of S(u, s) is defined by the formula,

2m r = 1 + 1 16π S trχtrχ.
(2.10)

The Gauss curvature of S is denoted by K and satisfies from the Gauss equation,

K = -ρ - 1 4 trχtrχ + 1 2 χ • χ. (2.11)
Finally, we define the mass aspect function µ as follows

µ : = -div ζ -ρ + 1 2 χ • χ.
(2.12)

Coordinates adapted to an outgoing geodesic foliation

Definition 2.5. A coordinate system (u, s, y 1 , y 2 ) is said to be adapted to an outgoing geodesic foliation on M as above if e 4 (y 1 ) = e 4 (y 2 ) = 0.

(2.13) Lemma 2.6. Given a coordinates system (u, s, y 1 , y 2 ) adapted to a geodesic foliation as above the following hold true.

1. The spacetime metric takes the form

g = -2ςduds + ς 2 Ωdu 2 + g ab dy a -ςB a du dy b -ςB b du , (2.14) 
where

Ω = e 3 (s), B a = 1 2 e 3 (y a ), g ab = g(∂ y a , ∂ y b ). (2.15)
2. The null pair (e 3 , e 4 ) take the form

e 4 = ∂ s , ∂ u = ς 1 2 e 3 - 1 2 Ωe 4 -B a ∂ y a . (2.16) Moreover ∂ y a = c=1,2 Y c (a) e c , a = 1, 2, (2.17) 
with coefficients Y b (a) verifying

g ab = c=1,2 Y c (a) Y c (b) . (2.18)
We also write,

∂ s = e 4 , ∂ u = ς 1 2 e 3 - 1 2 Ωe 4 - c=1,2 Z c e c , ∂ y a = c=1,2 Y c (a) e c , a = 1, 2, (2.19) 
where

Z c := B a Y c (a) .
(2.20)

3.

We have

e 4 (B a ) = -(η + ζ) • ∇(y a ), ∂ s g ab = 2χ ∂ y a , ∂ y b . (2.21)
Proof. Since u is an optical function, we deduce

0 = g uu ∂ u u∂ u u + g ui ∂ u u∂ y i u + g ij ∂ y i u∂ y j u = g uu . Thus L = -g us ∂ s -g ua ∂ y a , e 4 = -ςg us ∂ s -ςg ua ∂ y a .
Since e 4 (y 1 ) = e 4 (y 2 ) = 0 we deduce

g u1 = g u2 = 0.
Thus e 4 = -ςg us ∂ s and since e 4 (s) = 1 we deduce,

g us = - 1 ς , e 4 = ∂ s .
Since, 0 = g uu g us + g us g ss + g u1 g 1s + g u2 g 2s = g us g ss , 0 = g uu g ua + g us g sa + g u1 g 1a + g u2 g 2a = g us g sa , 1 = g uu g uu + g us g su + g u1 g 1u + g u2 g 2u = g us g su , we deduce

g ss = 0, g s1 = g s2 = 0, g us = -ς.
Thus the metric g can be expressed in the form, g = -2ςduds + g uu du 2 + 2g ua dudy a + g ab dy a dy b .

We introduce B a by the condition

g ua = -g ab ςB b . Therefore g = -2ςduds + g uu du 2 -2g ab ςB b dudy a + g ab dy a dy b = -2ςduds + g uu du 2 + g ab dy a -B a ςdu dy b -B b ςdu -g ab B a B b ς 2 du 2 .
Thus the metric takes the form g = -2ςduds + g uug ab B a B b ς 2 du 2 + g ab dy a -B a ςdu dy b -B b ςdu where g ab = g ab = g(∂ y a , ∂ y b ).

Also, note that we have, since e 4 (u) = 0, e 4 (s) = 1, e 3 (u) = 2/ς, and e 3 (s) = Ω,

∂ u = ς 2 e 3 -Ωe 4 -e 3 (y 1 )∂ y 1 -e 3 (y 2 )∂ y 2 .
Since ∂ y 1 , ∂ y 2 span the tangent space to S(u, s) and are thus perpendicular to e 3 , e 4 , we deduce

g au = g(∂ u , ∂ y a ) = - ς 2 e 3 (y b )g ab
and hence

B a = 1 2 e 3 (y a ).
In the same vein

g uu = g(∂ u , ∂ u ) = ς 2 Ω + g ab B a B b ς 2 ,
and hence

g uu -g ab B a B b ς 2 = ς 2 Ω.
We deduce, as stated,

g = -2ςduds + ς 2 Ωdu 2 + g ab dy a -B a ςdu dy b -B b ςdu .
Also, as we have seen e 4 = ∂ s and

∂ u = ς 2 e 3 -Ωe 4 -e 3 (y 1 )∂ y 1 -e 3 (y 2 )∂ y 2 = ς 1 2 e 3 - 1 2 Ωe 4 -B a ∂ y a .
On the other hand, since ∂ y 1 , ∂ y 2 span the same space as e 1 , e 2 , we can write

∂ y a = c=1,2 Y c (a) e c , a = 1, 2.
Since g(e a , e b ) = δ ab we deduce,

g ab = g(∂ y a , ∂ y b ) = g c=1,2 Y c (a) e c , c=1,2 Y d (b) e d = c=1,2 Y c (a) Y c (b)
as stated.

Finally, since we have B a = e 3 (y a )/2 and e 4 (y a ) = 0, we infer

e 4 (B a ) = 1 2 [e 4 , e 3 ]y a = 1 2 -2ωe 4 + 2(-η b + η b )e b (y a ) = -(η + ζ) • ∇(y a ).
Moreover, since e 4 = ∂ s , we have

∂ s g(∂ y a , ∂ y b ) = g(D ∂s ∂ y a , ∂ y b ) + g(∂ y a , D ∂s ∂ y b ) = g(D ∂ y a ∂ s , ∂ y b ) + g(∂ y a , D ∂ y b ∂ s ) = 2χ(∂ a , ∂ b ).
This concludes the proof of the lemma.

Linearized connection coefficients for geodesic foliations

We recall that for an outgoing geodesic foliation we have,

(a) trχ = (a) trχ = 0, ξ = ω = 0, η = -ζ.
We define the following renormalized quantities

| trχ := trχ - 2 r , | trχ := trχ + 2Υ r , q ω := ω - m r 2 , q K := K - 1 r 2 , q ρ := ρ + 2m r 3 , q µ := µ - 2m r 3 , q Ω := Ω + Υ, q ς := ς -1,
where

Υ := 1 - 2m r .
We define the sets

Γ g := | trχ, χ, ζ, |
trχ, rq µ, rq ρ, r ρ, rβ, rα, r q K, r -1 e 4 (r) -1 , r -1 e 4 (m) ,

Γ b := η, χ, ω, ξ, rβ, α, r -1 q Ω, r -1 q ς, r -1 (e 3 (r) + Υ , r -1 e 3 (m) .
(2.22)

Norms on 2-spheres and Hodge operators

Given a 2-sphere S(u, s) and f ∈ S p (S), p = 0, 1, 2, we consider the following norms,

f ∞ : = f L ∞ (S) , f 2 := f L 2 (S) , f ∞,k = k i=0 d i f ∞ , f 2,k = k i=0 d i f 2 , (2.23) 
where d i stands for any combination of length i of operators of the form e 3 , re 4 , r∇.

We consider the following Hodge operators acting on 2 surface S:

1. The operator d / 1 takes any 1-form f into the pairs of functions (div f , curl f ).

2. The operator d / 2 takes any 2-covariant S tangent symmetric, traceless tensor v into the S tangent 1-form div v.

3. The operator d / 1 takes the pair of scalar functions (λ, λ) into the S-tangent 1-form -∇λ + ∇ λ. 

d / 1 • d / 1 = -∆ 1 + K, d / 1 • d / 1 = -∆, d / 2 • d / 2 = - 1 2 ∆ 2 + K, d / 2 • d / 2 = - 1 2 (∆ 1 + K).
(2.24)

The far spacetime region R

In this paper we consider a spacetime region R foliated by two functions (u, s) such that 1. On R, (u, s) is a geodesic foliation of lapse ς as in section 2.2.

2. We denote by (e 4 , e 3 , e 1 , e 2 ) the null frame adapted to the outgoing geodesic foliation (u, s) on R.

Let (

• u,

• s) two real numbers. Let (a) The North coordinate chart R N is given by the coordinates (u, s, y 

( • u,
• s,

• r) three real numbers with

• r sufficiently large so that

• m 0 , • r m 0 . (2.26)
We define R to be the region

R := |u - • u| ≤ • , |s - • s| ≤ • , (2.27) 
such that assumptions A1-A3 below with constant • on the background foliation of R, are verified.

Assumptions for the far region R

Given an integer s max ≥ 3, we assume the following.

A1. For k ≤ s max Γ g k,∞ ≤ • r -2 , Γ b k,∞ ≤ • r -1 .
(2.28)

A2. The Hawking mass m = m(u, s) of S(u, s) verifies sup R m m 0 -1 ≤ • . (2.29) A3.
In the region of their respective validity26 we have

B a N , B a S ∈ r -1 Γ b , Z a N , Z a S ∈ Γ b , (2.30) 
and

r -2 q g N ab , r -2 q g S ab ∈ rΓ g , (2.31) 
where

q g N ab = g N ab - 4r 2 1 + (y 1 N ) 2 + (y 2 N ) 2 ) δ ab , q g S ab = g S ab - 4r 2 (1 + (y 1 S ) 2 + (y 2 S ) 2 ) δ ab .
Remark 2.8. In view of (2.28), we will often replace Γ g by r -1 Γ b .

2.3.2 Basis of = 1 modes for the R-foliation A4. We assume the existence of a smooth family of scalar functions J (p) : R → R, for p = 0, +, -, verifying the following properties 1. On the sphere • S of the background foliation, there holds

( • r) 2 • ∆ + 2 J (p) = O( • ), p = 0, +, -, 1 
| • S| • S J (p) J (q) = 1 3 δ pq + O( • ), p, q = 0, +, -, 1 
| • S| • S J (p) = O( • ), p = 0, +, -.
(2.32)

2. We extend

J (p) from • S to R by ∂ s J (p) = ∂ u J (p) = 0, i.e. J (p) (u, s, y 1 , y 2 ) = J (p) ( • u, • s, y 1 , y 2 ).
(2.33)

Remark 2.9. The property (2.32) of the scalar functions J (p) above is motivated by the fact that the = 1 spherical harmonics on the standard sphere S 2 , which are given by

J (0) = cos θ, J (+) = sin θ cos ϕ, J (-) = sin θ sin ϕ, satisfy 27 (2.32) with • = 0.
27 Note in particular that the following holds true on the standard unit sphere S 2

S 2 (cos θ) 2 = S 2 (sin θ cos ϕ) 2 = S 2 (sin θ sin ϕ) 2 = 4π 3 , |S 2 | = 4π.

Coordinate vectorfields in R

Recall that we have,

∂ s = e 4 , ∂ u = ς 1 2 e 3 - 1 2 Ωe 4 -B a ∂ y a , ∂ y a = c=1,2 Y c (a) e c , a = 1, 2,
with coefficients Y c (a) verifying

g ab = c=1,2 Y c (a) Y c (b) .
To simplify we can choose e 1 in the direction of ∂ y 1 so that Y 2 (1) = 0. In that case

Y 1 (1) = √ g 11 , Y 1 (2) = g 12 √ g 11 , Y 2 (2) = g 22 - g 2 12 g 11 .
We deduce,

Y 1 (1) = 2r (1 + |y| 2 ) 1 2 + r 2 Γ g , Y 1 (2) = r 2 Γ g , Y 2 (2) = 2r (1 + |y| 2 ) 1 2 + r 2 Γ g .
(2.34)

Far spacetime region in Kerr

We denote by (t 0 , r 0 , θ 0 , ϕ 0 ) the standard Boyer-Lindquist coordinates of a Kerr metric g a 0 ,m 0 with |a 0 | ≤ m 0 . It is easy to check from the explicit form of the Kerr metric that for large r, the following asymptotic expansion holds

g a 0 ,m 0 = g m 0 + O a 0 m 0 (r 0 ) 2 (dt 0 ) 2 + (dr 0 ) 2 + r 2 0 (dθ 0 ) 2 + sin 2 θ 0 (dϕ 0 ) 2 , (2.35)
where g m 0 denotes the Schwarzschild metric of mass m 0 .

The following lemma shows that the assumptions on R are true in Kerr for sufficiently large r 0 .

Lemma 2.10. Let g a 0 ,m 0 , with |a 0 | ≤ m 0 , denote a member of the Kerr family of metrics. Let u a canonical optical function for g a 0 ,m 0 normalized on the standard foliation of I + by round spheres. Let S(u, s) be the spheres of the induced geodesic foliation, with s the affine parameter, and r the area radius, normalized such that s r = 1 on I + . Define also the corresponding angular coordinates θ, ϕ, properly normalized at infinity, and the corresponding J (p) defined by them. Then, for r ≥ r 0 with r 0 = r 0 (m 0 ) sufficiently large, the region R = {r ≥ r 0 } satisfies the assumptions A1-A4 with the smallness constants

• = a 0 m 0 r 0 , • δ = a 0 m 0 r 0 .
Proof. Let u = u a 0 ,m 0 be the desired optical function for the metric g a 0 ,m 0 . Also, let u m 0 := t 0r 0 -2m 0 log(r 0 -2m 0 ) the corresponding canonical Schwarzschild optical function. Then, in view of the asymptotic expansion (2.35) of g a 0 ,m 0 , we deduce,

u = u m 0 + O a 0 m 0 r 0 .
The corresponding null geodesic gradient of u is given by

e 4 = -g αβ a 0 ,m 0 ∂ α u∂ β = 1 1 -2m 0 r 0 ∂ t 0 + ∂ r 0 + O a 0 m 0 (r 0 ) 2 ∂ t 0 , ∂ r 0 , 1 r 0 ∂ θ 0 , 1 r 0 ∂ ϕ 0
from which we easily calculate the affine parameter s, e 4 (s) = 1, the area radius r of the spheres S(u, s) and the coordinates θ, ϕ for which e 4 (θ) = e 4 (ϕ) = 0,

s = r 0 + O a 0 m 0 r 0 , r = r 0 + O a 0 m 0 r 0 , θ = θ 0 + O a 0 m 0 (r 0 ) 2 , ϕ = ϕ 0 + O a 0 m 0 (r 0 ) 2 .
The frame adapted to the spheres S(u, s) is given by

e 4 = 1 1 -2m 0 r 0 ∂ t 0 + ∂ r 0 + O a 0 m 0 (r 0 ) 2 ∂ t 0 , ∂ r 0 , 1 r 0 ∂ θ 0 , 1 r 0 ∂ ϕ 0 , e 3 = ∂ t 0 -1 - 2m 0 r 0 ∂ r 0 + O a 0 m 0 (r 0 ) 2 ∂ t 0 , ∂ r 0 , 1 r 0 ∂ θ 0 , 1 r 0 ∂ ϕ 0 , e 1 = 1 r 0 ∂ θ 0 + O a 0 m 0 (r 0 ) 2 ∂ t 0 , ∂ r 0 , 1 r 0 ∂ θ 0 , 1 r 0 ∂ ϕ 0 , e 2 = 1 r 0 sin(θ 0 ) ∂ ϕ 0 + O a 0 m 0 (r 0 ) 2 ∂ t 0 , ∂ r 0 , 1 r 0 ∂ θ 0 , 1 r 0 ∂ ϕ 0 .
This immediately yields for the Ricci coefficients associated to the frame (e 4 , e 3 , e 1 , e 2 )

Γ = Γ m 0 + O a 0 m 0 (r 0 ) 3 ,
where Γ m 0 denotes the corresponding value of the Ricci coefficients for the Schwarzschild metric g m 0 . We have a similar statement for the curvature components, so that the assumptions A1 and A2 are indeed verified in the region R = {r ≥ r 0 } with the smallness constants

• = a 0 m 0 r 0 , • δ = a 0 m 0 r 0 .
The statement for A4 follows from the definition of J (p) , and the above asymptotics for θ and ϕ. Finally, one can easily define two coordinate systems (y 1 N , y 2 N ) and (y 1 S , y 2 S ), initialized by stereographic coordinates on I + and transported in the interior by e 4 , so that A3 holds as well.

O(

• )-spheres Definition 2.11. Given a compact 2-surface S ⊂ R, not necessarily a leaf S(u, s) of the background geodesic foliation of R, we denote

• by χ S , χ S , ζ S ,..., the corresponding Ricci coefficients,

• by α S , β S , ρ S , ..., the corresponding curvature coefficients,

• by r S , m S , K S and µ S respectively the corresponding area radius, Hawking mass, Gauss curvature and mass aspect function,

• by d / S 1 , d / S 2 , d / S, 1 , d / S, 2 
the corresponding Hodge operators and by ∇ S the corresponding covariant derivative.

Remark 2.12. Note that the quantities r S , χ S , χ S , ζ S , α S , β S , ρ S , ρ S , β S , α S , µ S , m S are well defined on S and, in addition, m S , K S , ρ S and µ S are invariant with respect to change of scale transformations λ → (λe S 4 , λ -1 e S 3 ), where (e S 4 , e S 3 , e S 1 , e S 2 ) is a null frame adapted to S. See also Remark 4.1. Definition 2.13. Given a scalar h on S, we denote by h S and q h S the average and average free part28 of h, i.e.

h S = 1 |S| S h, q h S = h -h S .
Definition 2.14. We will work with the following weighted Sobolev norms on S

f hs(S) := s i=0 ( d / S ) i f L 2 (S) , d / S = r S ∇ S .
(2.36)

The goal of this paper is to construct new spheres S ⊂ R which verify special properties we call GCM conditions. In particular these spheres are close to being a round sphere in the sense of the definition below.

Definition 2.15 (O(

• )-sphere). A compact surface S ⊂ R of area radius r S is called a

O(

• )-sphere provided that the Gauss curvature K S of S verifies

K S = 1 + O( • ) (r S ) 2 (2.37)
as well as We give below a general definition of = 1 modes on any O( • )-sphere S ⊂ R.

K S - 1 (r S ) 2 h smax-1 (S) (r S ) -1 • , ( 2 
Definition 2.17. Let S ⊂ R be a O( • ) sphere as defined above. We say that a triplet J (S,p) , p ∈ -, 0, +}, of smooth functions on S is a basis of = 1 modes on S if the following are verified

(r S ) 2 ∆ S + 2 J (S,p) = O( • ), p = 0, +, -, 1 |S| S J (S,p) J (S,q) = 1 3 δ pq + O( • ), p, q = 0, +, -, 1 |S| S J (S,p) = O( • ), p = 0, +, -.
(2.40) Definition 2.18. We define the = 1 modes of scalars and 1-forms on an O( • )-sphere S as follows.

1. If λ is a scalar function on S, we define the triplet

λ =1 = S J (S,p) λ, p ∈ -, 0, + (2.41) 
and set

|(λ) =1 | = p=0,+,- S J (S,p) λ .
2. If f is a 1-form on S, we define the sextet 29 (f ) =1 : = S J (S,p) d / S 1 f, p ∈ -, 0, + and set

|(f ) =1 | = p=0,+,- S J (S,p) d / S 1 f .
Lemma 2.19. Assume S ⊂ R is a sphere endowed with a basis of = 1 modes as in Definition 2.17 above. Then, provided that • > 0 is chosen small enough, the following Poincaré inequality holds for any 1-form f on

S S | d / S 1 f | 2 S | d / S, 2 f | 2 + r -2 |(f ) =1 | 2 .
(2.42)

Note also the obvious inequality

|(f ) =1 | r d / S 1 f L 2 (S) .
(2.43)

29 Recall that d / 1 f = (div f, curl f ).
Proof. There exists a pair of scalar functions (h, h) on S such that

f = d / S 1 (h, h), S h = S h = 0, (f ) =1 = ((∆ S h) =1 , (∆ S h) =1 ).
In particular, we have

d / S 1 f = (-∆ S h, ∆ S h).
We infer

S | d / S 2 f | 2 = S f d / S 2 d / S 2 f = S f ( d / S 1 d / S 1 -2K)f = S | d / S 1 f | 2 - 2 + O( • ) (r S ) 2 S |f | 2 = S |∆ S h| 2 - 2 + O( • ) (r S ) 2 S |∇ S h| 2 + S |∆ S h| 2 - 2 + O( • ) (r S ) 2 S |∇ S h| 2 .
Now, comparing (r S ) 2 ∆ S with the Laplace-Beltrami 30 ∆ S 2 on the standard sphere S 2 , we infer by a we have by a standard perturbation argument that

S |∆ S h| 2 - 2 + O( • ) (r S ) 2 S |∇ S h| 2 ≥ S |∆ S h| 2 -r -2 (∆ S h) =1 2 , S |∆ S h| 2 - 2 + O( • ) (r S ) 2 S |∇ S h| 2 ≥ S |∆ S h| 2 -r -2 (∆ S h) =1 2 .
We infer

S | d / S 2 f | 2 = S |∆ S h| 2 - 2 + O( • ) (r S ) 2 S |∇ S h| 2 + S |∆ S h| 2 - 2 + O( • ) (r S ) 2 S |∇ S h| 2 ≥ S |∆ S h| 2 + |∆ S h| 2 -r -2 (∆ S h) =1 2 -r -2 (∆ S h) =1 2 and hence S | d / S 2 f | 2 ≥ S | d / S 1 f | 2 -r -2 ((f ) =1 ) 2
as desired.

30 Recall that the two first non zero eigenvalues of -∆ S 2 are given respectively by 2 and 6.

Elliptic lemma for Hodge systems

Lemma 2.20. Let S ⊂ R be a O( • )-sphere endowed with a basis of = 1 modes as in Definition 2.17. Then, for all k ≤ s max ,

1. If f ∈ S 1 (S)
f h k+1 (S) r d / S 1 f h k (S) .
(2.44)

2. If v ∈ S 2 (S) v h k+1 (S) r d / S 2 v h k (S) .
(2.45)

3. If λ, µ ∈ S 0 (S) ( q λ S , q µ S ) h k+1 (S) r d / S, 1 (λ, µ) h k (S) . (2.46) 4. If f ∈ S 1 (S) f h k+1 (S) r d / S, 2 f h k (S) + (f ) =1 . (2.47) 
Remark 2.21. Note that, in view of our A1, A3 assumptions the results of Lemma 2.20 hold true for the spheres S of the background foliation.

Proof. The case k = 0 for the first three estimates can be found in [START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF], and concerning the last estimate, it follows from Lemma 2.19. The, case 1 ≤ k ≤ s max follows by standard elliptic regularity and the control of K S for an O( • )-sphere S.

Solvability of ∆

S + 2/(r S ) 2
In this section, we establish results on the solvability of ∆ S + 2/(r S ) 2 that will be used to control solutions to the linearized system exhibited in section 4.3.

Lemma 2.22. Let S ⊂ R be a O( • )-sphere endowed with a triplet J (S,p) of = 1 modes as in Definition 2.17. The following hold true.

1. The operator ∆ S + 2/(r S ) 2 admits three eigenvalues ν p with corresponding eigenfunction on S j (p) , p = 0, +, -, verifying

ν p = O • r 2 , j (p) = J (S,p) + O • , p = 0, +, -.
2. Any other eigenvalue ν of ∆ S + 2/(r S ) 2 satisfies |ν| ≥ r -2 .

Consider the equation

∆ S + 2 (r S ) 2 λ = h + p c p J (p,S) ,
where λ and h are scalar functions and c p are constants. Then, given three constants λ p , p = 0, +, -, there exists unique constants c p , and a unique scalar function (λ) ⊥ such that the solution λ is given by

λ = (λ) ⊥ + p λ p j (p) , S (λ) ⊥ j (p) = 0, with c p and (λ) ⊥ verifying p |c p | + r -3 (λ) ⊥ S h 2 (S) r -1 q h S L 2 (S) + • r 2 p |λ p |, |(λ) ⊥ S | r 2 |h S | + • p |λ p |,
and for 0 ≤ s ≤ s max -1,

r -3 (λ) ⊥ S h s+2 (S) r -1 q h S hs(S) + • r 2 p |λ p |, where (λ) 
⊥ S = (λ) ⊥ -(λ) ⊥ S , q h S = h -h S .
Remark 2.23. Since we have (∆ S + 2/(r S ) 2ν p )j (p) = 0, we infer, after integrating on S, and since 2/(r S ) 2ν p = 0, S j (p) = 0, p = 0, +, -.

(2.48)

Proof. The first two statements follow from comparing (r S ) 2 ∆ S + 2 with the operator ∆ S 2 + 2 and using a standard perturbation argument.

Next, we focus on the third statement. We plug the decomposition

λ = (λ) ⊥ + p λ p j (p) , S (λ) ⊥ j (p) = 0
in the equation for λ and find

∆ S + 2 (r S ) 2 (λ) ⊥ = h - p λ p ∆ S + 2 (r S ) 2 j (p) + p c p J (p,S) = h - p λ p ν p j (p) + p c p J (p,S) .
We then choose c p such that

S h - p λ p ν p j (p) + p c p J (p,S) j (q) = 0, q = 0, +, -, i.e. p c p S J (p,S) j (q) = - S q h S - p λ p ν p j (p) j (q) , q = 0, +, -,
where we used in particular (2.48). In view of the properties of j (q) , and the assumptions for J (p,S) , we have

1 |S| S J (p,S) j (q) = 1 3 δ pq + O( • ), p, q = 0, +, -, (2.49) 
so that the above formula uniquely defines the constants c p , p = 0, +, -, and yields

p |c p | r -1 q h S L 2 (S) + p |λ p ||ν p | r -1 q h S L 2 (S) + • r 2 p |λ p |.
The above choice of the constants c p yields the existence of a unique (λ) ⊥ . To estimate (λ) ⊥ , we take the average and the average free part of its equation and find, using in particular (2.48),

2 (r S ) 2 (λ) ⊥ S = h S + p c p J (p,S) S , ∆ S + 2 (r S ) 2 (λ) ⊥ S = q h S - p λ p ν p j (p) + p c p J (p,S) -J (p,S) S .
In view of the above choice of the constants c p , and using the fact that the eigenvalues ν of ∆ S + 2/(r S ) 2 with ν = ν p satisfy |ν| ≥ 1, we infer

|(λ) ⊥ S | r 2 |h S | + r 2 p |c p | r 2 |h S | + • p |λ p | and (λ) ⊥ S h 2 (S) r 2 q h S L 2 (S) + r 3 p |λ p ||ν p | + r 3 p |c p | r 2 q h S L 2 (S) + • r p |λ p |.
Finally, higher order estimates for (λ) ⊥ S follow from standard elliptic regularity. This concludes the proof of Lemma 2.22. Remark 2.24. In the generic case where (ν 0 , ν + , ν -) = (0, 0, 0), (λ) ⊥ actually depends on λ p through the term

- p λ p ν p j (p)
appearing on the right-hand side of the equation for (λ) ⊥ in the proof above.

We will also need the following variant of Lemma 2.22. Lemma 2.25. Let S ⊂ R be a O(

• )-sphere endowed with a triplet J (S,p) of = 1 modes as in Definition 2.17. Consider the equation

∆ S + 2 (r S ) 2 λ = ∆ S (h) + h + p c p ∆ S (J (p,S) ),
where λ, h and h are scalar functions and c p are constants, with h average free on S, i.e. h S = 0. Then, given three constants λ p , p = 0, +, -, there exists unique constants c p , and a unique scalar function (λ) ⊥ such that the solution λ is given by

λ = (λ) ⊥ + p λ p j (p) , S (λ) ⊥ j (p) = 0, with c p and (λ) ⊥ verifying p |c p | r -1 q h S L 2 (S) + r h L 2 (S) + • p |λ p |, λ S = 0, (λ) ⊥ S = 0,
and for 0 ≤ s ≤ s max -1, r -1 (λ) ⊥ h s+2 (S) r -1 q h S h s+2 (S) + r h hs(S) + • p |λ p |,
where

q h S = h -h S .
Proof. We plug the decomposition

λ = (λ) ⊥ + p λ p j (p) , S (λ) ⊥ j (p) = 0
in the equation for λ and find

∆ S + 2 (r S ) 2 (λ) ⊥ = ∆ S (h) + h - p λ p ∆ S + 2 (r S ) 2 j (p) + p c p ∆ S (J (p,S) ) = ∆ S (h) + h - p λ p ν p j (p) + p c p ∆ S (J (p,S) ).
We then choose c p such that

S ∆ S (h) + h - p λ p ν p j (p) + p c p ∆ S (J (p,S) ) j (q) = 0, q = 0, +, -,
i.e., after integration by parts, using the definition of ν p ,

p c p - 2 (r S ) 2 + ν p S J (p,S) j (q) = - S - 2 (r S ) 2 + ν p q h S + h - p λ p ν p j (p) j (q) , q = 0, +, -.
In view of (2.49) and the control of ν p provided by Lemma 2.22, we infer that the above formula uniquely defines the constants c p , p = 0, +, -, and yields

p |c p | r -1 q h S L 2 (S) + r h L 2 (S) + p r 2 |λ p ||ν p | r -1 q h S L 2 (S) + r h L 2 (S) + • p |λ p |.
The above choice of the constants c p yields the existence of a unique (λ) ⊥ . Also, taking the average on S of the equation for λ, using that h is average free on S, and relying also on (2.48), we infer

λ S = 0, (λ) ⊥ S = 0.
Finally, the control of (λ) ⊥ is analog to the corresponding estimate in the proof of Lemma 2.22. This concludes the proof of Lemma 2.25.

3 Frame transformations 

e 4 = λ e 4 + f b e b + 1 4 |f | 2 e 3 , e a = δ ab + 1 2 f a f b e b + 1 2 f a e 4 + 1 2 f a + 1 8 |f | 2 f a e 3 , a = 1, 2, e 3 = λ -1 1 + 1 2 f • f + 1 16 |f | 2 |f | 2 e 3 + f b + 1 4 |f | 2 f b e b + 1 4 |f | 2 e 4 , (3.1) 
where λ is a scalar, f and f are horizontal 1-forms. The dot product and magnitude | • | are taken with respect to the standard euclidian norm of R 2 . We call (f, f , λ) the transition coefficients of the change of frame.

Remark 3.2. Note that we have in particular the following identities

e a = e a + 1 2 f a λ -1 e 4 + 1 2 f a e 3 , e 3 = λ -1 e 3 + f a e a - 1 4 |f | 2 λ -1 e 4 .
Proof. Clearly e 4 is null. Also, we have

λ -1 g(e 4 , e a ) = g e 4 + f b e b + 1 4 |f | 2 e 3 , δ c a + 1 2 f a f c e c + 1 2 f a e 4 + 1 2 f a + 1 8 |f | 2 f a e 3 = f b δ c a + 1 2 f a f c δ bc -2 1 2 f a + 1 8 |f | 2 f a - 1 4 |f | 2 f a = f a + 1 2 |f | 2 f a -f a - 1 4 |f | 2 f a - 1 4 |f | 2 f a = 0.
Similarly,

g(e a , e b ) = δ c a + 1 2 f a f c δ d b + 1 2 f b f d δ cd -f a 1 2 f b + 1 8 |f | 2 f b - 1 2 f a + 1 8 |f | 2 f a f b = δ ab and g(e 3 , e 4 ) = f b + 1 4 |f | 2 f b f b -2 1 + 1 2 f • f + 1 16 |f | 2 |f | 2 - 1 8 |f | 2 |f | 2 = -2.
Also, we have

λg(e 3 , e a ) = f b + 1 4 |f | 2 f b δ c a + 1 2 f a f c δ bc -1 + 1 2 f • f + 1 16 |f | 2 |f | 2 f a - 1 2 |f | 2 1 2 f a + 1 8 |f | 2 f a = f a + 1 4 |f | 2 f a + f • f + 1 4 |f | 2 |f | 2 1 2 f a -1 + 1 2 f • f + 1 16 |f | 2 |f | 2 f a - 1 2 |f | 2 1 2 f a + 1 8 |f | 2 f a = 0.
Finally

λ 2 g(e 3 , e 3 ) = f + 1 4 |f | 2 f 2 -|f | 2 1 + 1 2 f • f + 1 16 |f | 2 |f | 2 = |f | 2 + 1 2 |f | 2 f • f + 1 16 |f | 4 |f | 2 -|f | 2 1 + 1 2 f • f + 1 16 |f | 2 |f | 2 = 0.
This concludes the proof of the lemma.

Transformation formulas for Ricci and Curvature coefficients

While we only need the transformation formulas for χ, χ, ζ and ρ for this paper, we nevertheless derive below the transformation formulas for all connection coefficients and curvature components for completeness.

Proposition 3.3. Under a general transformation of type (3.1), the Ricci coefficients transform as follows:

• The transformation formula for ξ is given by

λ -2 ξ = ξ + 1 2 λ -1 ∇ 4 f + 1 4 (trχf -(a) trχ f ) + ωf + Err(ξ, ξ ), Err(ξ, ξ ) = 1 2 f • χ + 1 4 |f | 2 η + 1 2 (f • ζ) f - 1 4 |f | 2 η + λ -2 1 2 (f • ξ ) f + 1 2 (f • f ) ξ + l.o.t. (3.2) 
• The transformation formula for ξ is given by

λ 2 ξ = ξ + 1 2 λ∇ 3 f + ω f + 1 4 trχ f - 1 4 (a) trχ f + Err(ξ, ξ ), Err(ξ, ξ ) = 1 2 f • χ - 1 2 (f • ζ)f + 1 4 |f | 2 η - 1 4 |f | 2 η + l.o.t. (3.3) 
• The transformation formulas for χ are given by

λ -1 trχ = trχ + div f + f • η + f • ζ + Err(trχ, trχ ) Err(trχ, trχ ) = f • ξ + 1 4 f • f trχ -f (a) trχ + ω(f • f ) -ω|f | 2 - 1 4 |f | 2 trχ - 1 4 (f • f )λ -1 trχ + 1 4 (f ∧ f )λ -1 (a) trχ + l.o.t., (3.4) 
λ -1 (a) trχ = (a) trχ + curl f + f ∧ η + f ∧ ζ + Err( (a) trχ, (a) trχ ), Err( (a) trχ, (a) trχ ) = f ∧ ξ + 1 4 f ∧ f trχ + (f • f ) (a) trχ + ωf ∧ f - 1 4 |f | 2 (a) trχ - 1 4 (f • f )λ -1 (a) trχ + 1 4 λ -1 (f ∧ f )trχ + l.o.t., (3.5) 
λ -1 χ = χ + ∇ ⊗f + f ⊗η + f ⊗ζ + Err( χ, χ ), Err( χ, χ ) = f ⊗ξ + 1 4 f ⊗ f trχ -f (a) trχ + ωf ⊗f -ωf ⊗f - 1 4 |f | 2 (a) trχ + 1 4 (f ⊗f )λ -1 trχ + 1 4 ( f ⊗f )λ -1 (a) trχ + 1 2 f ⊗(f • λ -1 χ ) + l.o.t. (3.6) 
• The transformation formulas for χ are given by

λtrχ = trχ + div f + f • η -f • ζ + Err(trχ, trχ ), Err(trχ, trχ ) = 1 2 (f • f )trχ + f • ξ -|f | 2 ω + (f • f )ω - 1 4 |f | 2 λ -1 trχ + l.o.t., (3.7 
)

λ (a) trχ = (a) trχ + curl f + f ∧ η -ζ ∧ f + Err( (a) trχ, (a) trχ ), Err( (a) trχ, (a) trχ ) = 1 2 (f • f ) (a) trχ + f ∧ ξ + (f ∧ f )ω - 1 4 |f | 2 λ -1 (a) trχ + l.o.t., (3.8) 
λ χ = χ + ∇ ⊗f + f ⊗η -f ⊗ζ + Err( χ, χ ), Err( χ, χ ) = 1 2 (f ⊗f )trχ + f ⊗ξ -(f ⊗f )ω + (f ⊗f )ω - 1 4 |f | 2 λ -1 χ + l.o.t.
(3.9)

• The transformation formula for ζ is given by

ζ = ζ -∇ (log λ) - 1 4 trχf + 1 4 (a) trχ f + ωf -ωf + 1 4 f trχ + 1 4 f (a) trχ + Err(ζ, ζ ), Err(ζ, ζ ) = - 1 2 χ • f + 1 2 (f • ζ)f - 1 2 (f • η)f + 1 4 f (f • η) + 1 4 f (f • ζ) + 1 4 f (f ∧ η) + 1 4 f (f ∧ ζ) + 1 4 f div f + 1 4 f curl f + 1 2 λ -1 f • χ - 1 16 (f • f )f λ -1 trχ + 1 16 (f ∧ f )f λ -1 (a) trχ - 1 16 f (f • f )λ -1 (a) trχ + 1 16 f λ -1 (f ∧ f )trχ + l.o.t.
(3.10)

• The transformation formula for η is given by

η = η + 1 2 λ∇ 3 f + 1 4 f trχ - 1 4 f (a) trχ -ω f + Err(η, η ), Err(η, η ) = 1 2 (f • f )η + 1 2 f • χ + 1 2 f (f • ζ) -(f • f )η + 1 2 f (f • η ) + l.o.t.
(3.11)

• The transformation formula for η is given by

η = η + 1 2 λ -1 ∇ 4 f + 1 4 trχf - 1 4 (a) trχ f -ωf + Err(η, η ), Err(η, η ) = 1 2 f • χ + 1 2 (f • η)f - 1 4 (f • ζ)f - 1 4 |f | 2 λ -2 ξ + l.o.t.
(3.12)

• The transformation formula for ω is given by

λ -1 ω = ω - 1 2 λ -1 e 4 (log λ) + 1 2 f • (ζ -η) + Err(ω, ω ), Err(ω, ω ) = - 1 4 |f | 2 ω - 1 8 trχ|f | 2 + 1 2 λ -2 f • ξ + l.o.t.
(3.13)

• The transformation formula for ω is given by

λω = ω + 1 2 λe 3 (log λ) - 1 2 f • ζ - 1 2 f • η + Err(ω, ω ), Err(ω, ω ) = f • f ω - 1 4 |f | 2 ω + 1 2 f • ξ + 1 8 (f • f )trχ + 1 8 (f ∧ f ) (a) trχ - 1 8 |f | 2 trχ - 1 4 λf • ∇ 3 f + 1 2 (f • f )(f • η ) - 1 4 |f | 2 (f • η ) + l.o.t. (3.14)
where, for the transformation formulas of the Ricci coefficients above, l.o.t. denote expressions of the type

l.o.t. = O((f, f ) 3 )Γ + O((f, f ) 2 ) Γ containing no derivatives of f , f , Γ and Γ.
Also, the curvature components transform as follows

• The transformation formula for α, α are given by

λ -2 α = α + Err(α, α ), Err(α, α ) = f ⊗β -f ⊗ β) + f ⊗f - 1 2 f ⊗ f ρ + 3 2 f ⊗ f ρ + l.o.t., (3.15) 
λ 2 α = α + Err(α, α ), Err(α, α ) = -f ⊗β -f ⊗ β) + f ⊗f - 1 2 f ⊗ f ρ + 3 2 f ⊗ f ρ + l.o.t. (3.16) 
• The transformation formula for β, β are given by

λ -1 β = β + 3 2 f ρ + f ρ + Err(β, β ), Err(β, β ) = 1 2 α • f + l.o.t., (3.17 
)

λβ = β - 3 2 f ρ + f ρ + Err(β, β ), Err(β, β ) = - 1 2 α • f + l.o.t.
(3.18)

• The transformation formula for ρ and ρ are given by

ρ = ρ + Err(ρ, ρ ), Err(ρ, ρ ) = f • β -f • β + 3 2 ρ(f • f ) - 3 2 ρ(f ∧ f ) + l.o.t. (3.19) ρ = ρ + Err( ρ, ρ ), Err( ρ, ρ ) = -f • β -f • β + 3 2 ρ(f • f ) + 3 2 ρ(f ∧ f ) + l.o.t. (3.20)
where, for the transformation formulas of the curvature components above, l.o.t. denote expressions of the type

l.o.t. = O((f, f ) 3 )(ρ, ρ) + O((f, f ) 2 )(α, β, α, β)
containing no derivatives of f , f , α, β, (ρ, ρ), β, and α.

Proof. See Appendix A.

Null frame transformations on R

Transformation formulas in a particular case

In what follows we revisit some of the transformation formulas of Proposition 3.3 in the particular case where the frame (e 3 , e 4 , e 1 , e 2 ) is attached to the geodesic foliation of R, while (e 3 , e 4 , e 1 , e 2 ) is an arbitrary frame. Recall that since the unprimed frame is attached to the geodesic foliation we have

(a) trχ = (a) trχ = 0, ξ = ω = 0, η + ζ = 0.
Notation. In the proposition below we write the error terms Err schematically according to the following convention.

• We introduce the notation

F := {f, f , • λ }, • λ := λ -1. (3.21)
F k denotes an arbitrary homogeneous polynomial of degree k in the variables F .

• F k • Γ denotes an arbitrary linear combination of elements of Γ with coefficients in F k .

• Since the components of F are supposed to be small in all our applications here we ignore • The transformation formulas for χ are given by

F k+1 • Γ if F k • Γ
trχ = λtrχ + div f + Err(trχ, trχ ), Err(trχ, trχ ) = F • Γ b + r -1 F 2 + F • ∇ F, (3.23) 
(a) trχ = λcurl f + Err( (a) trχ, (a) trχ ), Err( (a) trχ, (a) trχ ) = F • Γ b + r -1 F 2 + F • ∇ F, (3.24) 
χ = χ + ∇ ⊗f + Err( χ, χ ), Err( χ, χ ) = F • Γ b + r -1 F 2 + F • ∇ F.
(3.25)

• The transformation formulas for χ are given by trχ = λ -1 trχ + div f + Err(trχ, trχ ),

Err(trχ, trχ ) = F • Γ b + r -1 F 2 + F • ∇ F, (3.26) 
(a) trχ = λ -1 curl f + Err( (a) trχ, (a) trχ ), Err( (a) trχ, (a) trχ ) = F • Γ b + r -1 F 2 + F • ∇ F, (3.27) 
χ = χ + ∇ ⊗f + Err( χ, χ ), Err( χ, χ ) = F • Γ b + r -1 F 2 + F • ∇ F. (3.28)
• The transformation formula for ζ is given by

ζ = ζ -∇ λ - 1 4 trχf -ωf + 1 4 f trχ + Err(ζ, ζ ), Err(ζ, ζ ) = F • Γ b + r -1 F 2 + F • ∇ F.
(3.29)

• The transformation formula for ρ is given by

ρ = ρ + Err(ρ, ρ ), Err(ρ, ρ ) = r -1 F • Γ b + r -3 F 2 .
(3.30)

Proof. Since (e 3 , e 4 , e 1 , e 2 ) denotes the frame attached to the geodesic foliation of R, we have

(a) trχ = (a) trχ = ξ = ω = 0, η + ζ = 0.
The proposition then immediately follows from plugging these relations in Proposition 3. 

Schematic presentation for higher order error terms

We introduce the following schematic presentation of the error terms which appear in various calculations below.

Definition 3.6. We denote by Err k , k = 1, 2, error terms31 which can be written schematically in the form,

rErr 1 = F • (rΓ b ) + F 2 + F • (r∇ )F = F • (rΓ b ) + F • (r∇ ) ≤1 F, r 2 Err 2 = (r∇ ) ≤1 (rErr 1 ) + F • rdΓ b .
(3.32)

Transformation formula for the mass aspect function

We start with the following Lemma 3.7. The mass aspect function µ = -div ζρ + 1 2 χ • χ verifies the transformation formula.

µ = µ -div -∇ λ -ω + 1 4 κ f + ω + 1 4 κ f + Err 2 (µ, µ ), (3.33) 
with Err 2 (µ, µ ) an Err 2 type term as in Definition 3.6.

Proof. Using the above transformation formulas for ζ, ρ, χ, χ we easily derive

div ζ = div ζ -∇ λ - 1 4 trχf + 1 4 trχf + ωf -ωf + Err(ζ, ζ ) = div ζ + div -∇ λ - 1 4 trχf + 1 4 trχf + ωf -ωf + div -div ζ + div Err(ζ, ζ ), ρ = ρ + Err(ρ, ρ ), χ • χ = χ • χ + ∇ F • ∇ F + (∇ F + r -1 F + F 2 ) • Γ b .
Note also that, using the equations for

∇ 3 ζ, ∇ 4 ζ, div -div ζ = f • ∇ 3 ζ + f ∇ 4 ζ + l.o.t. = r -1 F • dΓ b .
We deduce,

µ = µ -div -∇ λ - 1 4 trχf + 1 4 trχf + ωf -ωf + Err(µ, µ ) with Err(µ, µ ) = -div Err(ζ, ζ ) -Err(ρ, ρ ) + ∇ F • ∇ F + (∇ F + r -1 F + F 2 ) • Γ b + r -1 F • dΓ b .
Thus, taking into account the structure of the terms in Err(ζ, ζ ) and Err(ρ, ρ ) we can write schematically,

Err(µ, µ ) = ∇ Err 1 + r -1 Err 1 + r -2 (r∇ F ) • (r∇ F ) + r -2 F • (rdΓ b ).
Hence32 ,

r 2 Err(µ, µ ) = r 2 ∇ Err 1 + rErr 1 + F Γ b • rdΓ b + (r∇ F ) • (r∇ F ) = r∇ (rErr 1 ) + ∇ (r)(rErr 1 ) + rErr 1 + F • rdΓ b + (r∇ F ) • (r∇ F ) = r∇ (rErr 1 ) + rErr 1 + F • rdΓ b + (r∇ F ) • (r∇ F ).
We simplify the expression by including the terms (r∇ F ) • (r∇ F ) in the expression (r∇ ) ≤1 (rErr 1 ). Hence,

r 2 Err(µ, µ ) = (r∇ ) ≤1 (rErr 1 ) + F • rdΓ b
as stated.

Transformation formulas for the main GCM quantities

We consider below the equations on f, f , λ induced by the transformation formulas for κ, κ, (a) κ, (a) κ, µ. Those will play a fundamental role in the definition of GCM spheres.

Lemma 3.8. The following relations hold true for any frame (e 1 , e 2 , e 3 , e 4 ) connected to the reference frame (e 1 , e 2 , e 3 , e 4 ) by the transition coefficients (f, f , λ).

curl f = (a) κ -Err 1 ( (a) κ, (a) κ ), curl f = (a) κ -Err 1 ( (a) κ, (a) κ ), div f + κ • λ = κ -κ -Err 1 (κ, κ ), div f -κ • λ = κ -κ -Err 1 (κ, κ ), (3.34) 
and

-div -∇ • λ -ω + 1 4 κ f + ω + 1 4 κ)f = µ -µ -Err 2 (µ, µ ), (3.35)
with error Err 1 , Err 2 error terms as in Definition 3.6, and where we recall

• λ = λ -1.
Proof. The proof follows immediately from Proposition 3.4, Lemma 3.7 and Definition 3.6.

GCM spheres 4.1 Particular case of adapted spheres

We apply the results of Lemma 3.8 to the case when the prime frame is adapted to an O( • )-sphere S ⊂ R as defined in section 2.4, i.e. the primed frame coincides with (e S 1 , e S 2 , e S 3 , e S 4 ) where e S 1 , e S 2 are tangent to S. Moreover we assume that S is endowed with a basis J (S,p) of = 1 modes. We denote by r S the area radius of S and by and by ∇ S , div S , curl S , ∆ S the standard differential operators on S. We also denote by Γ S , R S the corresponding Ricci coefficients and curvature components, by µ S the corresponding mass aspect function, and by m S the corresponding Hawking mass.

Remark 4.1. Note that while the Ricci coefficients κ S , κ S , χ S , χ S , ζ S as well as all curvature components α S , β S , ρ S , ρ S , β S , α S and mass aspect function µ S are well defined on S, this in not the case of η S , η S , ξ S , ξ S , ω S , ω S which require the derivatives of the frame in the e S

3 and e S 4 directions. Taking this observation into account, the GCM construction will only involve the quantities well defined on S.

We rewrite the equations (3.34) (3.35) in the following form,

curl S f = (a) κ S -Err 1 ( (a) κ, (a) κ S ), curl S f = (a) κ S -Err 1 ( (a) κ, (a) κ S ), div S f + κ • λ = κ S -κ -Err 1 (κ, κ S ), div S f -κ • λ = κ S -κ -Err 1 (κ, κ S ), (4.1) 
and

-div S -∇ S • λ -ω + 1 4 κ f + ω + 1 4 κ f = µ S -µ -Err 2 (µ, µ S ), (4.2)
with error Err 1 , Err 2 error terms as in Definition 3.6 and which we repeat below.

Definition 4.2. We denote by Err k , k = 1, 2, error terms33 which can be written schematically in the form,

rErr 1 = F • (rΓ b ) + F • (r∇ S ) ≤1 F + r -1 F, r 2 Err 2 = (r∇ S ) ≤1 (rErr 1 ) + F • rdΓ b . (4.3)
Using these conventions we rewrite equation (4.1) (4.2) in the following form.

Lemma 4.3. The following relations hold true for any adapted frame (e S 1 , e S 2 , e S 3 , e S 4 ) to a given sphere S connected to the reference frame (e 1 , e 2 , e 3 , e 4 ) by the transition coefficients

(f, f , λ), with • λ = λ -1, curl S f = (a) κ S -Err 1 [curl S f ], curl S f = (a) κ S -Err 1 [curl S f ], div S f + κ • λ = κ S -κ -Err 1 [div S f ], div S f -κ • λ = κ S -κ -Err 1 [div S f ], ∆ S • λ + V • λ = µ S -µ -ω + 1 4 κ κ S -κ + ω + 1 4 κ κ S -κ + Err 2 [∆ S • λ ], (4.4) 
where the error terms Err

1 [curl S f ], Err 1 [div S f ], Err 1 [curl S 1 f ], Err 1 [div S f ] and Err 2 [∆ S
• λ ] are consistent with Definition 4.2 but their exact expressions differ, of course, for each equation, and where V is given by

V := - 1 2 κκ + κω + κω . (4.5) 
Proof. We rewrite equation (4.2) in the form

∆ S • λ = -ω + 1 4 κ div S f + ω + 1 4 κ div S f + µ S -µ + Err 2 -∇ S ω + 1 4 κ • f + ∇ S ω + 1 4 κ • f
In view of the transformation formulas (3.1), for every scalar Ricci coefficient Γ,

e S a (Γ) = δ ab + 1 2 f a f b e b (Γ) + 1 2 f a ∇ 4 Γ + 1 2 f a + 1 8 |f | 2 f a ∇ 3 Γ.
Thus, we can easily check that -∇ S (ω

+ 1 4 κ) • f + ∇ S (ω + 1 4 κ) • f is an Err 2 term. Making use of the div S equations in (4.1) we deduce, ∆ S • λ = -ω + 1 4 κ -κ • λ + κ S -κ + Err 1 + ω + 1 4 κ) κ • λ + κ S -κ + Err 1 + µ S -µ + Err 2 = -V • λ + µ S -µ -ω + 1 4 κ κ S -κ + ω + 1 4 κ κ S -κ + Err 2
where,

V = - 1 2 κκ + κω + κω i.e., ∆ S • λ + V • λ = µ S -µ -ω + 1 4 κ κ S -κ + ω + 1 4 κ κ S -κ + Err 2
as stated.

In (4.4), the terms κ S -κ and κ S -κ on the right-hand side of the equations for div S f and div S f contain in fact implicitly a linear term, proportional to the scalar rr S , which will be denoted by the auxiliary function

•
b below. This term should be put on the left-hand side which is the purpose of the following reformulation of (4.4). Lemma 4.4. Under the assumptions of Lemma 4.3, the following relations hold true

curl S f = (a) κ S -Err 1 [curl S f ], curl S f = (a) κ S -Err 1 [curl S f ], div S f + κ • λ - 2 (r S ) 2 • b = κ S - 2 r S -κ - 2 r -Err 1 [div S f ] - 2(r -r S ) 2 r(r S ) 2 , div S f -κ • λ + 2 (r S ) 2 • b = κ S + 2 r S -κ + 2 r -Err 1 [div S f ] + 2(r -r S ) 2 r(r S ) 2 , ∆ S • λ + V • λ = µ S -µ -ω + 1 4 κ κ S -κ + ω + 1 4 κ κ S -κ + Err 2 [∆ S • λ ], ∆ S • b = div S e 4 (r) 2 f + e 3 (r) 2 f + 1 4 |f | 2 f , • b S = r S -r S . (4.6) 
Remark 4.5. Though

• b = rr S , in the treatment of the system (4.6) we will consider it simply as a solution its corresponding elliptic equation.

Proof. Recall (4.4)

curl S f = -Err 1 [curl S f ], curl S f = -Err 1 [curl S f ], div S f + κ • λ = κ S -κ -Err 1 [div S f ], div S f -κ • λ = κ S -κ -Err 1 [div S f ], ∆ S • λ + V • λ = µ S -µ -ω + 1 4 κ κ S -κ + ω + 1 4 κ κ S -κ + Err 2 [∆ S • λ ].
We rewrite this system as

curl S f = -Err 1 [curl S f ], curl S f = -Err 1 [curl S f ], div S f + κ • λ - 2 r S - 2 r = κ S - 2 r S -κ - 2 r -Err 1 [div S f ], div S f -κ • λ + 2 r S - 2 r = κ S + 2 r S -κ + 2 r -Err 1 [div S f ], ∆ S • λ + V • λ = µ S -µ -ω + 1 4 κ κ S -κ + ω + 1 4 κ κ S -κ + Err 2 [∆ S • λ ]. Now, we have 2 r S - 2 r = 2(r -r S ) rr S = 2(r -r S ) (r S ) 2 - 2(r -r S ) 2 r(r S ) 2 = 2 • b (r S ) 2 - 2(r -r S ) 2 r(r S ) 2
where

• b = r -r S ,
which allows us to rewrite the system in the desired form (4.6)

curl S f = -Err 1 [curl S f ], curl S f = -Err 1 [curl S f ], div S f + κ • λ - 2 (r S ) 2 • b = κ S - 2 r S -κ - 2 r -Err 1 [div S f ] - 2(r -r S ) 2 r(r S ) 2 , div S f -κ • λ + 2 (r S ) 2 • b = κ S + 2 r S -κ + 2 r -Err 1 [div S f ] + 2(r -r S ) 2 r(r S ) 2 , ∆ S • λ + V • λ = µ S -µ -ω + 1 4 κ κ S -κ + ω + 1 4 κ κ S -κ + Err 2 [∆ S • λ ].
Next, we derive an equation for

• b . Recall that • b = r -r S .
In particular, the scalar

• b is uniquely defined by ∆ S • b = ∆ S r -r S , • b S = r S -r S .
Note also that we have, using the null frame transformation from the background frame to the frame of S,

∇ S a (r) = δ ab + 1 2 f a f b e b + 1 2 f a e 4 + 1 2 f a + 1 8 |f | 2 f a e 3 r = 1 2 f a e 4 + 1 2 f a + 1 8 |f | 2 f a e 3 r
and hence

∇ S r -r S = ∇ S (r) = e 4 (r) 2 f + e 3 (r) 2 f + 1 4 |f | 2 f .
Thus, the scalar

• b is uniquely defined by ∆ S • b = div S ∇ S r -r S = div S e 4 (r) 2 f + e 3 (r) 2 f + 1 4 |f | 2 f , • b S = r S -r S ,
as desired.

Finally, we rewrite (4.6) as follows.

Corollary 4.6. Under the assumptions of Lemma 4.3, the following relations hold true

curl S f = (a) κ S -Err 1 [curl S f ], curl S f = (a) κ S -Err 1 [curl S f ], div S f + κ • λ - 2 (r S ) 2 • b = κ S - 2 r S -κ - 2 r -Err 1 [div S f ] - 2(r -r S ) 2 r(r S ) 2 , div S f -κ • λ + 2 (r S ) 2 • b = κ S + 2 r S -κ + 2 r -Err 1 [div S f ] + 2(r -r S ) 2 r(r S ) 2 , ∆ S • λ + V • λ = µ S -µ -ω + 1 4 κ κ S -κ + ω + 1 4 κ κ S -κ + Err 2 [∆ S • λ ], ∆ S • b = 1 2 div S f -Υf + Err 1 [∆ S • b ] , • b S = r S -r S , (4.7) 
where the error term Err

1 [∆ S • b ] is consistent with Definition 4.2.
Proof. In view of (4.6), we only need to focus on the equation for

• b . We have e 4 (r) 2 f + e 3 (r) 2 f + 1 4 |f | 2 f = 1 2 f -Υf + (e 4 (r) -1)f + (e 3 (r) + Υ)f + e 3 (r) 4 |f | 2 f = 1 2 f -Υf + Err 1 [∆ S • b ]
where

Err 1 [∆ S • b ] := (e 4 (r) -1)f + (e 3 (r) + Υ)f + e 3 (r) 4 |f | 2 f = rΓ b F + F • F so that Err 1 [∆ S • b ] is indeed consistent with Definition 4.2.

Definition of GCM spheres

Definition 4.7. We say that S ⊂ R, endowed with an adapted frame34 (e S 1 , e S 2 , e S 3 , e S 4 ), is a general covariant modulated (GCM) sphere if the following hold true:

κ S = 2 r S , κ S = - 2 r S Υ S + C S 0 + p C (S,p) J (S,p) , µ S = 2m S (r S ) 3 + M S 0 + p M (S,p) J (S,p) , (4.8) 
for some constants C S 0 , C (S,p) , M S 0 , M (S,p) , p ∈ {-, 0, +}. In addition, since the Sframe is automatically integrable, we also have (4.9)

We will construct our GCM spheres in Theorem 6.1 under the following assumptions,

κ = 2 r + κ, κ = - 2Υ r + C 0 + p C (p) J (p) + κ, µ = 2m S r 3 + M 0 + p M (p) J (p) + μ, (4.10) 
where the scalar functions

C 0 = C 0 (u, s), C (p) = C (p) (u, s), M 0 = M 0 (u, s) and M (p) = M (p) (u, s)
, defined on the spacetime region R, depend only on the coordinates (u, s), and where κ, κ and μ satisfy the following estimates

35 sup R d ≤smax ( κ, κ)| r -1 • δ, sup R d ≤smax μ| r -2 • δ. (4.11)
In view of the GCM conditions we deduce,

κ S -κ = 2 r S - 2 r -κ, κ S -κ = - 2 r S Υ S + 2 r Υ + C S 0 -C 0 + p C (S,p) -C (p) J (S,p) + C (p) J (S,p) -J (p) ) -κ, µ S -µ = 2m S (r S ) 3 - 2m r 3 + M S 0 -M 0 ) + p M (S,p) -M (p) J (S,p) + M (p) J (S,p) -J (p) -μ,
or, introducing the notations,

Ċ0 : = C S 0 -C 0 S , C0 := -(C 0 -C 0 S ), Ċ(p) : = C (S,p) -C (p) S , C(p) := -(C (p) -C (p) S ), Ṁ0 : = M S 0 -M 0 S , M0 := -(M 0 -M 0 S ), Ṁ (p) : = M (S,p) -M (p) S , M (p) := -(M (p) -M (p) S ), (4.12 
)

35 Note also that (4.11) and the assumption A1 on the background foliation implies sup

R d ≤smax (C 0 , C (p) ) r -2 • , sup R d ≤smax (M 0 , M (p) ) r -3 • .
we write,

κ S -κ = 2 r S - 2 r -κ, κ S -κ = Ċ0 + p Ċ(p) J (S,p) - 2 r S Υ S + 2 r Υ + p C (p) J (S,p) -J (p) ) + C0 + p C(p) J (S,p) -κ, µ S -µ = Ṁ0 + p Ṁ (p) J (S,p) + 2m S (r S ) 3 - 2m r 3 + M (p) J (S,p) -J (p) ) + M0 + p M (p) J (S,p) -μ.
(4.13) Remark 4.8. In view of (4.12), note that Ċ0 , Ċ(p) , Ṁ0 and Ṁ (p) are constants while C0 , C(p) , M0 and M (p) are scalar functions on R depending only on the coordinates (u, s).

Linearized GCM equations

Definition 4.9. Let S ⊂ R a smooth O(

• )-sphere. We say that F = (f, f ,

• λ ) verifies the linearized GCM system on S if the following holds true,

curl S f = h 1 -h 1 S , curl S f = h 1 -h 1 S , div S f + 2 r S • λ - 2 (r S ) 2 • b = h 2 , div S f + 2 r S • λ + 2 (r S ) 2 • b = Ċ0 + p Ċ(p) J (S,p) + h 2 , ∆ S + 2 (r S ) 2 • λ = Ṁ0 + p Ṁ (p) J (S,p) + 1 2r S Ċ0 + p Ċ(p) J (S,p) + h 3 , ∆ S • b - 1 2 div S f -f = h 4 -h 4 S , • b S = b 0 , (4.14) 
for some choice of constants Ċ0 , Ṁ0 , Ċ(p) , Ṁ (p) , b 0 , and scalar functions

h 1 , h 2 , h 3 , h 4 , h 1 , h 2 .
Remark 4.10. The system (4.14) is naturally connected to the system (4.7) and the notation introduced in (4.10) and (4.12) with the following choices of terms h 1 , h 1 , h 2 , h 2 , h 3 , h 4 , and b 0

h 1 = -Err 1 [curl S f ], h 1 = -Err 1 [curl S f ], h 2 = -κ - 2 r S • λ + κ S - 2 r S -κ -Err 1 [div S f ] - 2(r -r S ) 2 r(r S ) 2 , h 2 = κ + 2 r S • λ + κ S + 2Υ S r S -C S 0 - p C (S,p) J (S,p) -κ + 4m S (r S ) 2 - 4m r 2 + p C (p) J (S,p) -J (p) ) + C0 + p C(p) J (S,p) -Err 1 [div S f ] + 2(r -r S ) 2 r(r S ) 2 , h 3 = -V - 2 (r S ) 2 • λ + µ S - 2m S (r S ) 3 -M S 0 - p M (S,p) J (S,p) -μ + 2m S (r S ) 3 - 2m r 3 + p M (p) J (S,p) -J (p) ) + M0 + p M (p) J (S,p) -ω + 1 4 κ κ S -κ + ω + 1 4 κ κ S -κ - 1 2r S Ċ0 + p Ċ(p) J (S,p) + Err 2 [∆ S • λ ], h 4 = 1 2 div S 2m r f + Err 1 [∆ S • b ] , b 0 = r S -r S .
In fact, with these choices, the system (4.14) corresponds precisely to (4.7) provided that we also have

Err 1 [curl S f ] S = Err 1 [curl S f ] S = 0. (4.15)
Remark 4.11. The following remarks motivate the introduction of the system (4.14).

1. The cancellation (4.15) holds true if the frame generated by (f, f , λ) is adapted to S.

In particular, if the frame generated by (f, f , λ) is adapted to S, and if (f, f , λ,

• b ) solves (4.14) with the above particular choice for

h 1 , h 2 , h 3 , h 4 , h 1 , h 2 , b 0 , then S ⊂ R is a GCM sphere.

The above particular choice for h

1 , h 2 , h 3 , h 4 , h 1 , h 2 ,
corresponds to the terms in (4.7) which

• either depend on κ, κ, and μ,

• or contain an additional power of r -1 compared to the other terms,

• or are nonlinear36 .

3. The reason for subtracting the averages h 1 S and h 1 S in the two first equations of (4.14) is to ensure solvability of the system.

The following proposition provides existence, uniqueness and control of solutions to the linearized GCM system (4.14).

Proposition 4.12. Assume S is a given O( • )-sphere in R. Then, for every triplets Λ, Λ ∈ R 3 and contant b 0 , there exist unique constants Ċ0 , Ṁ0 , Ċ(p) , Ṁ (p) such that the system (4.14) has a unique solution (

• λ , f, f ) with prescribed = 1 modes for div S f, div S f , (div S f ) =1 = Λ, (div S f ) =1 = Λ. (4.16) Moreover, (f, f , q • λ S ) h smax+1 (S) + p r 2 | Ċ(p) | + r 3 | Ṁ (p) | (4.17) r ( q h 1 S , q h 1 S , q h 2 S , q h 2 S ) hs max (S) + r 2 q h 3 S h smax-1 (S) + r q h 4 S h smax-2 (S) + |Λ| + |Λ|, and 
r 2 | Ċ0 | + r 3 | Ṁ0 | + r • λ S r ( q h 1 S , q h 1 S , h 2 , h 2 ) L 2 (S) + r 2 h 3 L 2 (S) + r q h 4 S L 2 (S) +|Λ| + |Λ| + |b 0 |, (4.18) 
where we have used the notation q h S = hh S for a scalar function h on S.

The proof of Proposition 4.12 is postponed to section 4.4.

The following proposition provides a priori estimates for the linearized GCM system (4.14).

Proposition 4.13. Assume S is a given O( • )-sphere in R. Assume given a solution

(f, f , • λ , Ċ0 , Ṁ0 , Ċ(p) , Ṁ (p) ,
• b ) of the system (4.14), (4.16) on S. Then, the following a priori estimates are verified, for 3

≤ s ≤ s max + 1, (f, f , q • λ S ) hs(S) + p r 2 | Ċ(p) | + r 3 | Ṁ (p) | r ( q h 1 S , q h 1 S , q h 2 S , q h 2 S ) h s-1 (S) + r 2 q h 3 S h s-2 (S) + r q h 4 S h s-3 (S) + |Λ| + |Λ|, (4.19) and r 2 | Ċ0 | + r 3 | Ṁ0 | + r • λ S r ( q h 1 S , q h 1 S , h 2 , h 2 ) L 2 (S) + r 2 h 3 L 2 (S) + r q h 4 S L 2 (S) +|Λ| + |Λ| + |b 0 |. (4.20)
The proof of Proposition 4.13 is postponed to section 4.5.

Remark 4.14. Note that the constants Ċ0 , Ṁ0 , Ċ(p) , Ṁ (p) are given in Proposition 4.13, while there are chosen in Proposition 4.12. Both propositions will be applied in the context of an iterative scheme. Proposition 4.12 will be used for the existence of the iterates and their boundedness, see Proposition 6.5, while Proposition 4.13 will be used to prove contraction of the iterative scheme, see Proposition 6.7.

Proof of Proposition 4.12

Step 1. We start with the solvability for • λ . Recall that we have

∆ S + 2 (r S ) 2 • λ = Ṁ0 + p Ṁ (p) J (S,p) + 1 2r S Ċ0 + p Ċ(p) J (S,p) + h 3 .
Let λ p , p = 0, +, -, three constants which will be chosen later. We apply Lemma 2.22 with

λ = • λ , c p = Ṁ (p) , h = Ṁ0 + 1 2r S Ċ0 + p Ċ(p) J (S,p) + h 3 ,
which yields the existence and uniqueness of the constants Ṁ (p) and of a scalar function

( • λ ) ⊥ such that the solution • λ is given by • λ = ( • λ ) ⊥ + p λ p j (p) , S ( • λ ) ⊥ j (q) = 0, q = 0, +, -, (4.21) 
with Ṁ (p) and (

• λ ) ⊥ verifying p | Ṁ (p) | r -1 q h 3 S L 2 (S) + 1 r p | Ċ(p) | + • r 2 p |λ p |, (4.22) 
( • λ ) ⊥ S r 2 | Ṁ0 | + r | Ċ0 | + • p | Ċ(p) | + r 2 |h 3 S | + • p |λ p |, (4.23) 
and

r -3 ( • λ ) ⊥ S h smax+1 (S) r -1 q h 3 S h smax-1 (S) + 1 r p | Ċ(p) | + • r 2 p |λ p |. (4.24)
Step 2. Taking the average of the equation for

• λ , we have 2 (r S ) 2 • λ S = Ṁ0 + p Ṁ (p) J (S,p) S + 1 2r S Ċ0 + p Ċ(p) J (S,p) S + h 3 S .
In view of the average of

• b , we infer 1 |S| S - 2 r S • λ + 2 (r S ) 2 • b + h 2 = - 2 r S • λ S + 2 (r S ) 2 b 0 + h 2 S = -r S Ṁ0 -r S p Ṁ (p) 1 |S| S J (S,p) - 1 2 Ċ0 + p Ċ(p) 1 |S| S J (S,p) -r S h 3 S + 2 (r S ) 2 b 0 + h 2 S and 1 |S| S - 2 r S • λ - 2 (r S ) 2 • b + Ċ0 + p Ċ(p) J (S,p) + h 2 = - 2 r S • λ S - 2 (r S ) 2 b 0 + Ċ0 + p Ċ(p) 1 |S| S J (S,p) + h 2 S = -r S Ṁ0 -r S p Ṁ (p) 1 |S| S J (S,p) -r S h 3 S - 2 (r S ) 2 b 0 + 1 2 Ċ0 + p Ċ(p) 1 |S| S J (S,p) + h 2 S .
From now on, we choose Ṁ0 and Ċ0 as follows

r S Ṁ0 + 1 2 Ċ0 = -r S p Ṁ (p) 1 |S| S J (S,p) - 1 2 p Ċ(p) 1 |S| S J (S,p) -r S h 3 S + 2 (r S ) 2 b 0 + h 2 S , r S Ṁ0 - 1 2 Ċ0 = -r S p Ṁ (p) 1 |S| S J (S,p) -r S h 3 S - 2 (r S ) 2 b 0 + 1 2 p Ċ(p) 1 |S| S J (S,p) + h 2 S .
With this choice, we have

S - 2 r S • λ + 2 (r S ) 2 • b + h 2 = 0, S - 2 r S • λ - 2 (r S ) 2 • b + Ċ0 + p Ċ(p) J (S,p) + h 2 = 0. (4.25)
Furthermore, Ṁ0 and Ċ0 satisfy

r 2 | Ċ0 | + r 3 | Ṁ0 | r 2 • p | Ċ(p) | + r 3 • p | Ṁ (p) | + |b 0 | +r 2 |h 2 S | + r 2 |h 2 S | + r 3 |h 3 S |. (4.26) Step 3. f + f satisfies d / S 1 (f + f ) = - 4 r S • λ + h 2 + h 2 + Ċ0 + p Ċ(p) J (S,p) , h 1 -h 1 S + h 1 -h 1 S .
The choice of Ṁ0 and Ċ0 in Step 2 is such that the right-hand side of the equation is average free. Thus, we may solve for f + f , and we have

d / S 1 (f + f ) = - 4 r S q • λ S + q h 2 S + q h 2 S + p Ċ(p) J (S,p) - p Ċ(p) 1 |S| S J (S,p) , q h 1 S + q h 1 S .
We infer the estimates

f + f h smax+1 (S) r ( q h 1 S , q h 1 S , q h 2 S , q h 2 S ) hs max (S) + q • λ hs max (S) + r 2 p | Ċ(p) |. (4.27) Step 4. f -f satisfies curl S (f -f ) = q h 1 S -q h 1 S , div S (f -f ) - 4 (r S ) 2 • b = h 2 -Ċ0 - p Ċ(p) J (S,p) -h 2 .
The choice of Ṁ0 and Ċ0 in Step 2 is such that the right-hand side of the second equation is average free. Hence, we may rewrite it as

div S (f -f ) - 4 (r S ) 2 • b S = q h 2 S - p Ċ(p) J (S,p) + p Ċ(p) 1 |S| S J (S,p) -q h 2 S .
Since all terms have average 0, this is equivalent to solving

∆ S div S (f -f ) - 4 (r S ) 2 ∆ S • b S = ∆ S q h 2 S - p Ċ(p) J (S,p) -q h 2 S .
In view of the definition of • b , this is equivalent to

∆ S + 2 (r S ) 2 div S (f -f ) = ∆ S q h 2 S - p Ċ(p) J (S,p) -q h 2 S + 4 (r S ) 2 q h 4 S
. (4.28)

Step 5. In view of Step 4, we consider the solution to

∆ S + 2 (r S ) 2 = ∆ S q h 2 S - p Ċ(p) J (S,p) -q h 2 S + 4 (r S ) 2 q h 4 S .
Let p , p = 0, +, -, three constants which will be chosen later. We apply Lemma 2.25 with the following choices

λ = , c p = - Ċ(p) , h = q h 2 S -q h 2 S , h = 4 (r S ) 2 q h 4 S ,
which yields the existence and uniqueness of the constants Ċ(p) and of a scalar function ⊥ such that the solution is given by

= ⊥ + p p j (p) , S ⊥ j (q) = 0, q = 0, +, -, (4.29) 
with Ċ(p) and ⊥ verifying

p | Ċ(p) | r -1 q h 2 S L 2 (S) + r -1 q h 2 S L 2 (S) + r -1 q h 4 S L 2 (S) + • p | p |, (4.30) r -1 | ⊥ S hs max (S) r -1 q h 2 S hs max (S) + r -1 q h 2 S hs max (S) +r -1 q h 4 S h smax-2 (S) + • p | p |, (4.31) 
and

S = 0, ⊥ S = 0. (4.32)
Step 6. In view of Step 4 and the definition of in Step 5, we have div (ff ) = .

Since S = 0 in view of Step 5, this is equivalent to div (ff ) = q S and hence

d / S 1 (f -f ) = q S , q h 1 S -q h 1 S .
Since the right-hand side has average 0, this system is solvable, and we obtain a unique ff satisfying

f -f h smax+1 (S) r q h 1 S hs max (S) + r q h 1 S hs max (S) +r | ⊥ S hs max (S) + r 2 p | p |. (4.33)
Step 7. It remains to ensure the conditions (div S f ) =1 = Λ and (div S f ) =1 = Λ. Recall that we have

div S (f + f ) = - 4 r S q • λ S + q h 2 S + q h 2 S + p Ċ(p) J (S,p) - p Ċ(p) 1 |S| S J (S,p)
which we rewrite p) .

div S (f + f ) = - 4 r S | • λ ⊥ S - 4 r S p λ p j (p) + q h 2 S + q h 2 S + p Ċ(p) J (S,p) - p Ċ(p) 1 |S| S J (S,
It is at this stage that we choose the constants λ p such that 37 p) , q = 0, +, -.

4 r S p λ p S j (p) J (S,q) = -Λ (q) -Λ (q) + S J (S,q) - 4 r S | • λ ⊥ S + q h 2 S + q h 2 S + p Ċ(p) J (S,p) - p Ċ(p) 1 |S| S J (S,
This immediately yields

(div S (f + f )) =1 = Λ + Λ
as well as the estimate

p |λ p | 1 r (|Λ| + |Λ|) + r -1 | • λ ⊥ S L 2 (S) + q h 2 S L 2 (S) + q h 2 S L 2 (S) + r p | Ċp |, (4.34) 
where we used the fact that by the properties of • λ ⊥ and of j (q) , we have

S J (S,q) | • λ ⊥ S = S (J (S,q) -j (q) ) | • λ ⊥ S = O( • )r | • λ ⊥ S L 2 (S) .
Also, recall that we have

div S (f -f ) = q S which we rewrite div S (f -f ) = | ⊥ S + p p j (p) .
It is at this stage that we choose the constants p such that 38 p p S j (p) J (S,q) = Λ (q) -Λ (q) -S | ⊥ S J (S,q) , q = 0, +, -.

This immediately yields

(div S (f -f )) =1 = Λ -Λ
as well as the estimate

p | p | 1 r 2 (|Λ| + |Λ|) + r -1 | ⊥ S L 2 (S) , (4.35) 
where we used the fact that by the properties of ⊥ and of j (q) , we have

S J (S,q) | ⊥ S = S (J (S,q) -j (q) ) | ⊥ S = O( • )r | ⊥ S L 2 (S) .
Step 

(f, f , q • λ S ) h smax+1 (S) + p r 2 | Ċ(p) | + r 3 | Ṁ (p) | r ( q h 1 S , q h 1 S , q h 2 S , q h 2 S ) hs max (S) + r 2 q h 3 S h smax-1 (S) + r q h 4 S h smax-2 (S) + |Λ| + |Λ|, 38 
To infer the existence and uniqueness of the constants p , we rely again on the invertibility of the matrix S j (p) J (S,q) which holds in view of (2.49). and

r 2 | Ċ0 | + r 3 | Ṁ0 | + r| • λ S | r ( q h 1 S , q h 1 S , h 2 , h 2 ) L 2 (S)
+r 2 h 3 L 2 (S) + r q h 4 S L 2 (S) + |Λ| + |Λ| + |b 0 |
as desired. This concludes the proof of Proposition 4.12.

Proof of Proposition 4.13

The proof is similar to the one of Proposition 4.12, and simpler since one does not need to prove existence and uniqueness of the system, but only a priori estimates.

Step 1. Recall that div S (ff ) satisfies equation (4.28)

∆ S + 2 (r S ) 2 div S (f -f ) = ∆ S q h 2 S - p Ċ(p) J (S,p) -q h 2 S + 4 (r S ) 2 q h 4 S
which we rewrite as

∆ S + 2 (r S ) 2 div S (f -f ) = 2 (r S ) 2 p Ċ(p) J (S,p) - p Ċ(p) ∆ S + 2 (r S ) 2 J (S,p) +∆ S q h 2 S -q h 2 S + 4 (r S ) 2 q h 4 S .
Multiplying by J (S,q) and integrating on S, and using (2.40) and integration by parts, we infer,

2 (r S ) 2 p Ċ(p) S J (S,p) J (S,q) = S div S (f -f ) ∆ S + 2 (r S ) 2 J (S,q) + O( • ) p | Ċ(p) | +O r -1 ( q h 2 S , q h 2 S ) L 2 (S) + r -1 q h 4 S L 2 (S) = O(r -2 • ) (f, f ) h 1 (S) + O( • ) p | Ċ(p) | + O r -1 ( q h 2 S , q h 2 S ) L 2 (S) + r -1 q h 4 S L 2 (S) .
Using again (2.40), we deduce for

• > 0 small enough r 2 p | Ċ(p) | • (f, f ) h 1 (S) + r ( q h 2 S , q h 2 S ) L 2 (S) + r q h 4 S L 2 (S) .
Step 2. Recall the equation for

• λ ∆ S + 2 (r S ) 2 • λ = Ṁ0 + p Ṁ (p) J (S,p) + 1 2r S Ċ0 + p Ċ(p) J (S,p) + h 3 .
Subtracting the average, we infer

∆ S + 2 (r S ) 2 q • λ S = p Ṁ (p) + 1 2r S Ċ(p) J (S,p) -J (S,p) S + q h 3 S . (4.36)
Multiplying by J (S,q) and integrating on S, and using (2.40) and integration by parts, we infer,

p Ṁ (p) + 1 2r S Ċ(p) S J (S,p) J (S,q) = S q • λ S ∆ S + 2 (r S ) 2 J (S,q) + O(r 2 • ) Ṁ (p) + 1 2r S Ċ(p) + r q h 3 S L 2 (S) = O(r -1 • ) q • λ S L 2 (S) + O(r 2 • ) Ṁ (p) + 1 2r S Ċ(p) + r q h 3 S L 2 (S) .
Using again (2.40), we deduce for • > 0 small enough

r 3 p | Ṁ (p) | r 2 p | Ċ(p) | + • q • λ S L 2 (S) + r 2 q h 3 S L 2 (S) .
Step 3. div S (f + f ) satisfies

div S (f + f ) = - 4 r S q • λ S + q h 2 S + q h 2 S + p Ċ(p) J (S,p) - p Ċ(p) 1 |S| S J (S,p) .
Multiplying by J (S,q) , integrating on S, and using (2.40), we infer,

4 r S S q • λ S J (S,q) = - S div S (f + f )J (S,q) + O(r 2 ) p | Ċ(p) | + O r ( q h 2 S , q h 2 S ) L 2 (S) .
Using (4.16), we deduce

1 r p S q • λ S J (S,p) |Λ| + |Λ| + r 2 p | Ċ(p) | + r ( q h 2 S , q h 2 S ) L 2 (S) .
In view of the properties of j (p) introduced in Lemma 2.22, we obtain

1 r p S q • λ S j (p) |Λ| + |Λ| + r 2 p | Ċ(p) | + r ( q h 2 S , q h 2 S ) L 2 (S) + • q • λ S L 2 (S) .
Step 4. Recall (4.36)

∆ S + 2 (r S ) 2 q • λ S = p Ṁ (p) + 1 2r S Ċ(p) J (S,p) -J (S,p) S + q h 3 S .
In view of the definition and properties of j (p) introduced in Lemma 2.22, we deduce

q • λ S h 2 (S) r 2 p r| Ṁ (p) | + | Ċ(p) | + r 2 q h 3 S L 2 (S) + 1 r p S q • λ S j (p) .
Coming back to (4.36), we infer from standard elliptic regularity

q • λ S hs(S) r 2 p r| Ṁ (p) | + | Ċ(p) | + r 2 q h 3 S h s-2 (S) + 1 r p S q • λ S j (p) .
Step 5. f + f satisfies

d / S 1 (f + f ) = - 4 r S • λ + h 2 + h 2 + Ċ0 + p Ċ(p) J (S,p) , h 1 -h 1 S + h 1 -h 1 S .
Subtracting the average, we infer

d / S 1 (f + f ) = - 4 r S q • λ S + q h 2 S + q h 2 S + p Ċ(p) J (S,p) - p Ċ(p) 1 |S| S J (S,p) , q h 1 S + q h 1 S .
We deduce

f + f hs(S) q • λ S h s-1 (S) + r ( q h 1 S , q h 1 S , q h 2 S , q h 2 S ) h s-1 (S) + r 2 p | Ċ(p) |.
Step 6. Recall (4.28)

∆ S + 2 (r S ) 2 div S (f -f ) = ∆ S q h 2 S - p Ċ(p) J (S,p) -q h 2 S + 4 (r S ) 2 q h 4 S .
In view of the definition and properties of j (p) introduced in Lemma 2.22, we infer

div S (f -f ) h s-1 (S) ( q h 2 S , q h 2 S ) h s-1 (S) + q h 4 S h s-3 (S) + r p | Ċ(p) | + 1 r p S div S (f -f )j (p) .
Using again the properties of j (p) , together with (4.16), we have

1 r p S div S (f -f )j (p) 1 r p S div S (f -f )J (S,p) + • div S (f -f ) L 2 (S) 1 r (|Λ| + |Λ|) + • div S (f -f ) L 2 (S) .
Using the smallness of

• , we infer div S (f -f ) h s-1 (S) ( q h 2 S , q h 2 S ) h s-1 (S) + q h 4 S h s-3 (S) + r p | Ċ(p) | + 1 r (|Λ| + |Λ|).
Step 7. Since

d / S 1 (f -f ) = div S (f -f ), q h 1 S -q h 1 S , we infer f -f hs(S) r div S (f -f ) h s-1 (S) + r ( q h 1 S , q h 1 S ) h s-1 (S) .
Together with Step 1 to Step 6, we deduce

(f, f , q • λ S ) hs(S) + r 2 p | Ċ(p) | + r 3 p | Ṁ (p) | r ( q h 1 S , q h 1 S , q h 2 S , q h 2 S ) h s-1 (S) + r 2 q h 3 S h s-2 (S) + r q h 4 S h s-3 (S) + |Λ| + |Λ|.
Step 8. It remains to control Ċ0 , Ṁ0 and

• λ S . Taking the average of div S (f -f ) - 4 (r S ) 2 • b = h 2 -Ċ0 - p Ċ(p) J (S,p) -h 2 ,
we infer, using also

• b S = b 0 , r 2 | Ċ0 | |b 0 | + r (h 2 , h 2 ) L 2 (S) + r 2 p | Ċ(p) |.
Also, taking the average of

div S (f + f ) = - 4 r S • λ + h 2 + h 2 + Ċ0 + p Ċ(p) J (S,p) .
we infer

r| • λ S | r 2 | Ċ0 | + r (h 2 , h 2 ) L 2 (S) + r 2 p | Ċ(p) |.
Finally, taking the average of

∆ S + 2 (r S ) 2 • λ = Ṁ0 + p Ṁ (p) J (S,p) + 1 2r S Ċ0 + p Ċ(p) J (S,p) + h 3 , we infer r 3 |M 0 | r 2 | Ċ0 | + r| • λ S | + r 2 h 3 L 2 (S) + r 2 p | Ċ(p) | + r 3 p | Ṁ (p) |.
Gathering the three above estimates, we obtain

r 2 | Ċ0 | + r 3 |M 0 | + r| • λ S | r (h 2 , h 2 ) L 2 (S) + r 2 h 3 L 2 (S) +r 2 p | Ċ(p) | + r 3 p | Ṁ (p) | + |b 0 |.
Together with Step 7, we deduce

r 2 | Ċ0 | + r 3 |M 0 | + r| • λ S | r ( q h 1 S , q h 1 S , h 2 , h 2 ) L 2 (S) + r 2 h 3 L 2 (S) + r q h 4 S L 2 (S) +|b 0 | + |Λ| + |Λ|.
This concludes the proof of Proposition 4.13.

5 Deformations of surfaces

Deformations

We recall that the region R = R N ∪ R S is covered by the coordinate systems denoted (u, s, y 1 N , y 2 N ) and (u, s, y 1 S , y 2 S ). The passage from the South coordinate system S to the North one in the equatorial region R Eq = R N ∩ R S is given by the transition functions ϕ SN and ϕ N S . Recall also that 

Ψ( • u, • s, y 1 , y 2 ) = • u + U (y 1 , y 2 ), • s + S(y 1 , y 2 ), y 1 , y 2 .
(5.1)

Pull-back map

Consider a fixed deformation. We recall that given a scalar function f on S one defines its pull-back on • S to be the function,

f # := Ψ # f = f • Ψ.
On the other hand, given a vectorfield X on • S one defines its push-forward Ψ # X to be the vectorfield on S defined by,

Ψ # X(f ) = X(Ψ # f ) = X(f • Ψ).
Given a covariant tensor U on S, one defines its pull back to • S to be the tensor

Ψ # U (X 1 , . . . , X k ) = U (Ψ # X 1 , . . . , Ψ # X k ).
In what follows we restrict ourselves to a fixed chart (y 1 , y 2 ), either North or South, on with coefficients

Y 4 (a) = ∂ y a S - 1 2 (ςΩ) # ∂ y a U, Y 3 (a) = 1 2 ς # ∂ y a U, Y c (a) = (Y c (a) ) # -(ςZ c ) # ∂ y a U.
(5.3)

2. The pull back metric g S,# := Ψ # (g S ) on

• S is given, in the coordinates y 1 , y 2 , by

g S,# ab p = -2Y 4 (a) Y 3 (b) -2Y 4 (b) Y 3 (a) + c=1,2 Y c (a) Y c (b) Ψ(p)
.

(5.4)

3. The L 2 norm of f # = ψ # f with respect to the metric g S,# is the same as as the L 2 norm of f with respect to the metric g S , i.e., 

Y (a) = Ψ # (∂ y a )| Ψ(p) = (∂ y a U )∂ u | Ψ(p) + (∂ y a S)∂ s | Ψ(p) + ∂ y a | Ψ(p) . (5.5) 
In view of Lemma 2.6 we have at every point in R

∂ s = e 4 ∂ u = ς 1 2 e 3 - 1 2 Ωe 4 - c=1,2 Z c e c ∂ y a = c=1,2 Y c (a) e c , a = 1, 2, Z c = B a Y c (a) .
Denoting, at every point p ∈

• S, ς # (p) = ς(Ψ(p)), Ω # (p) = Ω(Ψ(p)), (Z c ) # (p) = Z c (Ψ(p)), (Y c (a) ) # (p) = Y c (a) (Ψ(p)),
we deduce,

Y (a) = ς # (∂ y a U ) 1 2 e 3 - 1 2 Ω # e 4 - c=1,2 (Z c ) # e c + (∂ y a S)e 4 + c=1,2 (Y c (a) ) # e c = ∂ y a S - 1 2 (ςΩ) # ∂ y a U e 4 + 1 2 ς # ∂ y a U e 3 + c=1,2 (Y c (a) ) # -(ςZ c ) # ∂ y a U e c .
We write in the form

Y (a) = Y 4 (a) e 4 + Y 3 (a) e 3 + Y c (a) e c with, Y 4 (a) = ∂ y a S - 1 2 ς # Ω # ∂ y a U, Y 3 (a) = 1 2 ς # ∂ y a U, Y c (a) = (Y c (a) ) # -(ςZ c ) # ∂ y a U.
We denote by g S,# = Ψ # (g S ) the pull back to

• S of the metric g S on S, i.e. at any point

p ∈ • S, g S,# (∂ y a , ∂ y b ) = g S (Y (a) , Y (b) ) = g(Y (a) , Y (b) ) = g Y 4 (a) e 4 + Y 3 (a) e 3 + c=1,2 Y c (a) e c , Y 4 (b) e 4 + Y 3 (b) e 3 + d=1,2 Y d (b) e d = -2Y 4 (a) Y 3 (b) -2Y 4 (b) Y 3 (a) + c=1,2 Y c (a) Y c (b) . Hence g S,# ab = -2Y 4 (a) Y 3 (b) -2Y 4 (b) Y 3 (a) + c=1,2 Y c (a) Y c (b)
as desired.

Definition 5.3. Given a deformation Ψ : (5.7)

• We denote by ∇ S the covariant derivative operator on S induced by the metric g S and by ∇ S,# the covariant derivative operator on

• S induced by the pull back metric metric g S,# . Remark 5.4. Any geometric calculation with respect to the g S metric can be reduced to a geometric calculation on • S with respect to the metric g S,# . More precisely, if U is a k covariant tensor on S and X 0 , X 1 , . . . , X k vectorfields on

• S, ∇ S,# U # (X 0 , X 1 , . . . , X k ) = ∇ S U Ψ # X 0 , Ψ # X 1 , . . . , Ψ # X k # .
In particular, with respect to the coordinate vectorfields

∂ y 1 , ∂ y 2 on • S, ∇ S,# a 0 U # a 1 ...a k = ∇ S U Y (a 0 ) , Y (a 1 ) , . . . , Y (an) # .
As a consequence of the remark we immediately deduce the following, Lemma 5.5. Let Ψ :

• S → S be a deformation as in Definition 5.1. If U ∈ S k (S), for k = 0, 1, 2 we have, for the corresponding Hodge operators

d / S,# k U # = d / S k U # , d / S,# k U # = d / S, k U # . (5.8)
Also, if h is a scalar on S we have,

∆ S h # = ∆ S,# h # .
Corollary 5.6. If f ∈ h k (S) and f # is its pull-back by Ψ then,

f # h k ( • S, g S,# ) = f h k (S) .

Comparison results

We start with the following lemma.

Lemma 5.7. Let Ψ :

• S → S be a deformation in R as in Definition 5.1, F a scalar function on R and F # its pull back to

• S by Ψ. We have

F # -F L ∞ ( • S) U L ∞ ( • S) sup R e 3 F + (U, S) L ∞ ( • S) sup R r -1 dF .
(5.9)

Proof. We have, for y = (y 1 , y 2 ),

F • u + U (y), • s + S(y), y -F • u, • s, y = 1 0 d dλ F • u + λU (y), • s + λS(y), y F • u + U (y), • s + S(y), y -F • u, • s, y 1 0 d dλ F • u + λU (y), • s + λS(y), y U (y) 1 0 ∂ u F • u + λU (y), • s + λS(y), y + S(y) 1 0 ∂ s F • u + λU (y),
• s + λS(y), y .

Recalling

∂ s = e 4 , ∂ u = ς 1 2 e 3 - 1 2 Ωe 4 - c=1,2
Z c e c , using our assumptions on Ω, ς, Z and the definition of d we easily derive

F • u + U (y), • s + S(y), y -F • u, • s, y U L ∞ ( • S) sup R e 3 F + (U, S) L ∞ ( • S) sup R r -1 dF
as desired.

Lemma 5.8. Let

• S ⊂ R. Let Ψ :

• S → S be a deformation generated by the functions (U, S) as in Definition 5.1. Assume the bound

(U, S) L ∞ ( • S) + r • ∇(U, S) L ∞ ( • S) • δ.
(5.10) Then 1. We have (5.11)

2. For every f ∈ S k (S) we have,

f # L 2 ( • S,g S,# ) = f # L 2 ( • S, • g) 1 + O(r -1 • δ) .
(5.12)

3. As a corollary of (5.12) (choosing f = 1) we deduce,

r S • r = 1 + O(r -1 • δ) (5.13)
where r S is the area radius of S and

• r that of • S.
Proof. Recall, see Lemma 5.2, that the coefficients of the pull-back metric g S,# ab in the coordinates y 1 , y 2 is given by

g S,# ab p = g S,# (∂ y a , ∂ y b ) = -2Y 4 (a) Y 3 (b) -2Y 4 (b) Y 3 (a) + c=1,2 Y c (a) Y c (b) Ψ(p)
where,

Y 4 (a) = ∂ y a S - 1 2 (ςΩ) # ∂ y a U, Y 3 (a) = 1 2 ς # ∂ y a U, Y c (a) = (Y c (a) ) # -(ςZ c ) # ∂ y a U.
On the other hand, the metric • g, induced by the spacetime metric on • S, is given by

• g ab = • γ ∂ y a , ∂ y b = • g c Y c (a) e c , d Y d (a) e d = c=1,2 Y c (a) Y c (b) .
Hence, at every point p, g S,# ab -

• g ab = -2Y 4 (a) Y 3 (b) -2Y 4 (b) Y 3 (a) (Ψ(p)) + c=1,2 Y c (a) Y c (b) (Ψ(p)) -Y c (a) Y c (b) (p) . Note that sup • S Y 4 (a) Y 3 (b) -2Y 4 (b) Y 3 (a) (Ψ(p)) r 2 • ∇(U, S)) 2 L ∞ ( • S) ( • δ) 2 .
For the remaining term

Y c (a) Y c (b) (Ψ(p)) -Y c (a) Y c (b) (p)
we make use of Lemma 5.7 and estimate (2.34) to derive

Y c (a) Y c (b) (Ψ(p)) -Y c (a) Y c (b) (p) r • δ. (5.14) Indeed Y c (a) Y c (b) (Ψ(p)) -Y c (a) Y c (b) (p) = Y c (a) (Ψ(p)) -Y c (a) (p) Y c (b) (Ψ(p)) + Y c (a) (p) Y c (b) (Ψ(p)) -Y c (b) (p) .
We deduce,

Y c (a) Y c (b) (Ψ(p)) -Y c (a) Y c (b) (p) r a,c=1,2 Y c (a) (Ψ(p)) -Y c (a) (p) .
On the other hand, since we have from Lemma 5.7

Y c (a) (Ψ(p)) -Y c (a) (p) (U, S) L ∞ sup R e 3 (Y | + r -1 dY • δ, we infer Y c (a) (Ψ(p)) -Y c (a) (p) Y c (a) (Ψ(p)) -Y c (a) (p) + • δ • δ.
We deduce that estimate (5.14) holds true and therefore To prove the second part of the Lemma we write,

• S |f # | 2 da g S,# = • S |f # | 2 det g S,# det • g da• g = • S |f # | 2 da• g + • S |f # | 2   det g S,# det • g -1   da• g which yields, in view of the first part, • S |f # | 2 da g S,# = • S |f # | 2 da• g 1 + O( • r -1 • δ)
as stated.

Corollary 5.9. Under the assumptions of Lemma 5.8, the following estimate holds true for an arbitrary scalar function f on R,

S f -• S f • δ • r sup R |f | + • r sup R |∂ u f | + |∂ s f | . Proof. We have, S f -• S f = • S f # det g S,# det • g -• S f = • S f #   det g S,# det • g -1   + • S (f # -f ).
Hence, using in particular the first property of Lemma 5.8, we infer

S f -• S f • δ • r sup S |f | + • S f # -f .
Using the proof of Lemma 5.7 to estimate the second term on the right-hand side, we infer

S f -• S f • r • δ sup S |f | + | • S| U L ∞ ( • S) sup R ∂ u f + S L ∞ ( • S) sup R ∂ s f • δ • r sup R |f | + • r sup R |∂ u f | + |∂ s f | as stated.
Proposition 5.10. We assume

(U, S) h smax+1 ( • S) r • δ.
(5.15) Then 1. If V ∈ h s (S) and V # is its pull-back by Ψ, we have for all 0 ≤ s ≤ s max ,

V hs(S) = V # hs( • S, g S,# ) = V # hs( • S, • g) 1 + O(r -1 • δ) , (5.16) 
where, recall, g S,# denotes the pull-back by Ψ of the metric g S on S.

For any tensor h

on R h hs(S) r sup R d / ≤s h + • δ d ≤s h , 0 ≤ s ≤ s max .
(5.17)

3. We have a,b,c=1,2

(Γ S,# ) c ab -( • Γ) c ab h smax-1 ( • S) r • δ (5.18)
where Γ S,# ,

• Γ denote the Christoffel symbols of the metrics g S,# ,

• g relative to the coordinates y 1 , y 2 on • S.

Proof. We argue by iteration. We consider the following iteration assumptions. First, note that (5.19) holds for s = 0 in view of the second property of Lemma 5.8. Also, (5.20) holds trivially for s = 0. Finally, (5.21) holds for s = 0 from differentiating once the formula derived in Lemma 5.8 for g S,# ab -

V # hs( • S, g S,# ) = V # hs( • S, • g) 1 + O(r -1 • δ) , (5.19) 
h hs(S) r sup R d / ≤s h + • δ d ≤s h , (5.20) 
• g ab and using the control of (U, S) and of the background foliation. Thus, from now on, we assume that (5.19), (5.20) and (5.21) hold for some s with 0 ≤ s ≤ s max -2, and our goal is to prove that it also holds for s replaced by s + 1.

Writing (∇ S ) s+1 V = (∇ S ) s (∇ S V ), we have, using the iteration assumption (5.19),

(∇ S ) s+1 V L 2 (S) = r -s ∇ # V # hs( • S) 1 + O(r -1 • δ) .
Then, we compare the first covariant derivatives of V # with respect to the two connections

∇ # a V # b = ∂ a V # b -(Γ # ) c ab V # c , • ∇ a V # b = ∂ a V # b -( • Γ) c ab V # c .
Hence,

∇ # a V # b - • ∇ a V # b = -(Γ # ) c ab -( • Γ) c ab V # c and thus 39 (∇ S ) s+1 V L 2 (S) = r -s • ∇V # hs( • S) 1 + O(r -1 • δ) +O(1)r -s-2 a,b,c=1,2 (Γ # ) c ab -( • Γ) c ab V # c hs( • S)
.

Together with the iteration assumption (5.21), we infer

(∇ S ) s+1 V L 2 (S) = r -s • ∇V # hs( • S) 1 + O(r -1 • δ) + O(r -1 • δ)r -s-1 V # hs( • S)
which, together with the iteration assumption (5.19), implies (5.19) with s replaced by s + 1.

Also, using the expression (5.3) for Y (a) , we have

r S ∇ S h hs(S) a=1,2 ∇ S Y (a) h hs( • S, g S,# ) a=1,2 ∂ y a S - 1 2 (ςΩ) # ∂ y a U (∇ 4 h) # hs( • S, g S,# ) + a=1,2 ς # ∂ y a U (∇ 3 h) # hs( • S, g S,# ) + a=1,2 (Y c (a) ) # -(ςZ c ) # ∂ y a U (∇ c h) # hs( • S, g S,# )
Together with (5.15) and the iteration assumption (5.19), we infer r S ∇ S h hs(S)

• δ ∇ 4 h hs(S) + ςΩ∇ 4 h hs(S) + ς∇ 3 h hs(S) + ςZ c ∇ c h hs(S)

+ a=1,2 Y c (a) ∇ c h hs(S) .
Using the iteration assumption (5.20), we deduce

r S ∇ S h hs(S) r • δ sup R d ≤s ∇ 4 h, ςΩ∇ 4 h, ς∇ 3 h, ςZ c ∇ c h, Y c (a) ∇ c h +r sup R d / ≤s Y c (a) ∇ c h .
Together with the assumptions on the background foliation, we infer

r S ∇ S h hs(S) r • δ sup R |d ≤s dh| + r sup R | d / d / ≤s dh| r • δ sup R |d ≤s+1 h| + r sup R | d / ≤s+1 h|
which, together with the iteration assumption (5.20), implies (5.20) with s replaced by s + 1.

Next, recall that we have from Lemma 5.8

g S,# ab - • g ab = -2Y 4 (a) Y 3 (b) -2Y 4 (b) Y 3 (a) (Ψ(p)) + c=1,2 Y c (a) Y c (b) (Ψ(p)) -Y c (a) Y c (b) (p) .
where

Y 4 (a) = ∂ y a S - 1 2 (ςΩ) # ∂ y a U, Y 3 (a) = 1 2 ς # ∂ y a U, Y c (a) = (Y c (a) ) # -(ςZ c ) # ∂ y a U.
Differentiating once, taking the h s+1 (

• S) norm, using (5.19) and (5.20) for s replaced by s + 1, as proved above, using also Lemma 5. By iteration, we deduce that (5.19), (5.20) and (5.21) hold for all 0 ≤ s ≤ s max -1, i.e. 

V # hs( • S, g S,# ) = V # hs( • S, • g) 1 + O(r -1 • δ) for 0 ≤ s ≤ s max -1, h hs(S) r sup R d / ≤s h + • δ d ≤s h for 0 ≤ s ≤ s max -1,
(Γ S,# ) c ab -( • Γ) c ab hs( • S) r • δ for 0 ≤ s ≤ s max -1.
Finally, notice that the restriction s ≤ s max -2 for the iteration (5.19) (5.20) (5.21) was only necessary to replace s with s + 1 in (5.21). Indeed, a direct inspection of the proof reveals that to replace s with s + 1 in (5.19) and (5.20), we only need the restriction s ≤ s max -1. Thus, running the iteration again, now with s = s max -1, we deduce

V # hs( • S, g S,# ) = V # hs( • S, • g) 1 + O(r -1 • δ) for 0 ≤ s ≤ s max , and 
h hs(S) r sup R d / ≤s h + • δ d ≤s h for 0 ≤ s ≤ s max .
This concludes the proof of the lemma.

We have the following corollaries of Lemma 5.8 and Proposition 5.10.

Corollary 5.11. Let

• S ⊂ R. Let Ψ :

• S → S be a deformation generated by the functions (U, S) as in Definition 5.1. Assume that (U, S) satisfy the bound

(U, S) h smax+1 ( • S) r • δ.
Then, for all j, k ≥ 0 with 0 ≤ j + k ≤ s max , we have

d ≤j Γ g h k (S) • r -1 , d ≤j Γ b h k (S) • , (5.22) 
and

r d ≤j B h k (S) + d ≤j Z h k (S) + r -1 d ≤j q Y h k (S)
• .

(5.23)

Proof. In view of the second property of Proposition 5.10 and assumptions A1-A3 we have, for j, k ≥ 0 with 0 ≤ j + k ≤ s max ,

d ≤j Γ g h k (S) r sup R d ≤k d ≤j Γ g r sup R d ≤smax Γ g r -1 • .
The other estimates are proved in the same manner.

Corollary 5.12. Let

• S ⊂ R. Let Ψ :

• S → S be a deformation generated by the functions (U, S) as in Definition 5.1. Assume the bound

(U, S) L ∞ ( • S) + r • ∇(U, S) L ∞ ( • S) • δ.
Then, we have

sup S |r - • r| + sup S |r -r S | • δ, sup S |m - • m| + sup S |m -m S | • • δ.
Proof. We start with the estimate for rr S on S. Consider a point (y,

• u,

• s) on

• S, and the corresponding point (y, 

∂ y a U = U(f, f , Γ) b Y b (a) # , ∂ y a S = S(f, f , Γ) b Y b (a) # , (5.24)
where we have introduced the 1-forms U(f, f , Γ) and S(f, f , Γ) on S given by40 

a 11 := ς + ςZ • f - 1 4 |f | 2 ςΩ, a 12 := 1 2 |f | 2 , a 21 := -1 + 1 2 f • f + 1 16 |f | 2 |f | 2 ςΩ + ςZ • f + 1 4 |f | 2 f + 1 4 |f | 2 ς, a 22 := 2 + f • f + 1 8 |f | 2 |f | 2 .
(5.26)

Remark 5.15. Note that (5.26) implies in particular in view of A1-A3

a 11 = 1 + O • + |f | 2 , a 12 = O |f | 2 , a 21 = Υ + O • |f | + |f | 2 + |f ||f | , a 22 = 2 + O |f ||f | , a 11 a 22 -a 12 a 21 = 2 + O • + |f ||f | + |f | 2 , (5.27)
which together with (5.25) yields

U(f, f , Γ) = f + O • |f | + |f | 2 + |f ||f | , S(f, f , Γ) = 1 2 -Υf + f + O • |f | + |f | 2 + |f | 2 .
(5.28)

Proof. The frame (e 4 , e 3 , e 1 , e 2 ) is adapted to S if the horizontal vectorfields e 1 , e 2 are tangent to S, i.e. if and only if g(Y (a) , λ -1 e 4 ) = 0, g(Y (a) , λe 3 ) = 0.

Since

λ -1 e 4 = e 4 + f b e b + 1 4 |f | 2 e 3 , λe 3 = 1 + 1 2 f • f + 1 16 |f | 2 |f | 2 e 3 + f b + 1 4 |f | 2 f b e b + 1 4 |f | 2 e 4 ,
this is equivalent to

Y 3 (a) - 1 2 f b Y b (a) + 1 4 |f | 2 Y 4 (a) = 0, 1 + 1 2 f • f + 1 16 |f | 2 |f | 2 Y 4 (a) - 1 2 f b + 1 4 |f | 2 f b Y b (a) + 1 4 |f | 2 Y 3 (a) = 0. Now, recall (5.3), Y 4 (a) = ∂ y a S - 1 2 (ςΩ) # ∂ y a U, Y 3 (a) = 1 2 ς # ∂ y a U, Y c (a) = (Y c (a) ) # -(ςZ c ) # ∂ y a U.
We infer

1 2 ς # ∂ y a U - 1 2 (f b ) # (Y b (a) ) # -(ςZ b ) # ∂ y a U + 1 4 (|f | 2 ) # ∂ y a S - 1 2 (ςΩ) # ∂ y a U = 0, 1 + 1 2 f • f + 1 16 |f | 2 |f | 2 # ∂ y a S - 1 2 (ςΩ) # ∂ y a U - 1 2 f b + 1 4 |f | 2 f b # (Y b (a) ) # -(ςZ b ) # ∂ y a U + 1 4 (|f | 2 ) # 1 2 ς # ∂ y a U = 0.
We rewrite this system as

ς + ςf • Z - 1 4 |f | 2 ςΩ # ∂ y a U + 1 2 (|f | 2 ) # ∂ y a S = (f • Y (a) ) # ,
and

-1 + 1 2 f • f + 1 16 |f | 2 |f | 2 ςΩ + ςZ • f + 1 4 |f | 2 f + 1 4 |f | 2 ς # ∂ y a U + 2 + f • f + 1 8 |f | 2 |f | 2 # ∂ y a S = f + 1 4 |f | 2 f • Y (a) # .
We infer

∂ y a U = U(f, f , Γ) b Y b (a) # , ∂ y a S = S(f, f , Γ) b Y b (a) # ,
where we have introduced the notation

U(f, f , Γ) = a 22 a 11 a 22 -a 12 a 21 f - a 12 a 11 a 22 -a 12 a 21 f + 1 4 |f | 2 f , S(f, f , Γ) = - a 21 a 11 a 22 -a 12 a 21 f + a 11 a 11 a 22 -a 12 a 21 f + 1 4 |f | 2 f ,
with the scalars a 11 , a 12 , a 21 , a 22 on S defined by

a 11 = ς + ςZ • f - 1 4 |f | 2 ςΩ, a 12 = 1 2 |f | 2 , a 21 = -1 + 1 2 f • f + 1 16 |f | 2 |f | 2 ςΩ + ςZ • f + 1 4 |f | 2 f + 1 4 |f | 2 ς, a 22 = 2 + f • f + 1 8 |f | 2 |f | 2 .
This concludes the proof of the proposition. Proof. We denote by (f, f , λ) the frame coefficients between the background frame of R and the frame (e S

1 , e S 2 , e S 4 , e S 3 ) adapted to S. We first estimate (f, f , λ). In view of (5.24) and the assumptions on (U, S), we have

U(f, f , Γ) • Y # hs max ( • S) + S(f, f , Γ) • Y # hs max ( • S) r • δ.
Together with the first item of Proposition 5.10 with s = s max , we infer

U(f, f , Γ) • Y hs max (S) + S(f, f , Γ) • Y hs max (S) r • δ.
In view of the control of Y provided by (2.34), and using Corollary 5.11, we deduce

U(f, f , Γ) hs max (S) + S(f, f , Γ) hs max (S) • δ.
In view of (5.25) and (5.26), see also Remark 5.15, and using the control of the background foliation provided by Corollary 5.11, we obtain (f, f ) hs max (S)

• δ + • (f, f ) hs max (S) + (f, f ) 2 hs max (S)
where we have also used the fact that h smax (S) is an algebra since s max ≥ 2. Hence, for

• small enough, (f, f ) hs max (S)
• δ as desired.

Corollary 5.17. Let

• S ⊂ R Let Ψ :

• S → S be a deformation generated by the functions (U, S) as in Definition 5.1. Assume the bound

(U, S) L ∞ ( • S) + r • ∇(U, S) L ∞ ( • S) + r 2 • ∇ 2 (U, S) L ∞ ( • S) • δ.
Then, we have

sup S |m -m S | • δ.
Proof. In view of the proof of Corollary 5.12, we have

sup S |m - • m| • • δ.
Thus, from now on, we focus on proving

|m S - • m| • δ.
We have

m S - • m = r S 2 + r S 32π S κ S κ S - • r 2 - • r 32π • S κκ = r S 32π S κ S κ S + 4 (r S ) 2 - • r 32π • S κκ + 4 ( • r) 2 .
In view of Lemma 5.8, we infer

|m S - • m| • δ + r S κ S κ S + 4 (r S ) 2 -• S κκ + 4 ( • r) 2 • δ + r S κ S κ S + 4 (r S ) 2 -κκ + 4 ( • r) 2 • Ψ -1 • δ + r S κ S κ S + 4 (r S ) 2 -κκ + 4 ( • r) 2 and hence |m S - • m| • δ + r S κ S κ S -κκ .
We denote by (f, f , λ) the frame coefficients between the background frame of R and the frame (e S 1 , e S 2 , e S 4 , e S 3 ) adapted to S. Using the following frame transformation formulas of Proposition 3.4 λ -1 trχ S = trχ + div S f + Err(trχ, trχ S ), λtrχ S = trχ + div S f + Err(trχ, trχ S ), we infer

κ S κ S = κκ + κdiv S f + κdiv S f + (κ + div S f + Err(trχ, trχ S ))Err(κ, κ S ) +(κ + div S f )Err(κ, κ S )
and hence

|κ S κ S -κκ| r -2 |f | + | d / S f | + |f | + | d / S f | .
This implies

|m S - • m| • δ + f h 1 (S) + f h 1 (S) .
Now, since (f, f , λ) are the frame coefficients between the background frame of R and the frame (e S 1 , e S 2 , e S 4 , e S 3 ) adapted to S, we have in view of (5.28),

f h 1 (S) + f h 1 (S) r U(f, f , Γ) L ∞ (S) + r S(f, f , Γ) L ∞ (S) +r 2 ∇ S U(f, f , Γ) L ∞ (S) + r 2 ∇ S S(f, f , Γ) L ∞ (S)
which together with (5.24) and the control for Y (a) provided by (2.34) yields

f h 1 (S) + f h 1 (S) r • ∇(U, S) L ∞ ( • S) + r 2 • ∇ 2 (U, S) L ∞ ( • S) • δ and hence |m S - • m| • δ.
This concludes the proof of the corollary. 

h smax+1 ( • S) r • δ with s max ≥ 3. Then K S = 1 + O( • ) (r S ) 2 , K S - 1 (r S ) 2 h smax-1 (S) (r S ) -1 • . Proof. Using K S = -ρ S - 1 4 κ S κ S + 1 2 χ S • χ S , K = -ρ - 1 4 κκ + 1 2 χ • χ,
the change of frame formulas for ρ S , κ S , κ S , ϑ S and ϑ S , the control of42 (f, f ) provided by Corollary 5.16, and the control of the background foliation provided by Corollary 5.11, we infer sup

S K S -K • δ (r S ) 2 , K S -K h smax-1 (S) • δ r S ,
where we have also used Sobolev and the assumption s max ≥ 3 to obtain the sup norm estimate above. Together with the control A1-A3 for the background foliation, as well as Corollary 5.11, we deduce sup

S K S - 1 r 2 • δ (r S ) 2 + • r 2 , K S - 1 r 2 h smax-1 (S) • δ r S + • r .
In view of the control for rr S provided by Corollary 5.12, we infer sup

S K S - 1 (r S ) 2 • (r S ) 2 , K S - 1 (r S ) 2 h smax-1 (S) 1 (r S ) 2 ∇ S (r) h smax-2 (S) + • r S .
Now, in view of the relation between the background frame and the frame associated to S, we have

e S a (r) = δ ab + 1 2 f a f b e b (r) + 1 2 f a e 4 (r) + 1 2 f a + 1 8 |f | 2 f a e 3 (r), a = 1, 2,
and hence, since e a (r) = 0,

∇ S (r) = 1 2 f e 4 (r) + 1 2 f + 1 8 |f | 2 f e 3 (r).
(5.29)

Together with the control of (f, f ) provided by Corollary 5.16, and the control of the background foliation provided by Corollary 5.11, we infer

∇ S (r) h smax-2 (S)
• and hence Proof. We have, using a Poincaré inequality,

sup S K S - 1 (r S ) 2 • (r S ) 2 , K S - 1 (r S ) 2
D -D S hs max (S)
r S ∇ S (D) h smax-1 (S) .

Thus, we need to compute ∇ S (D). As in (5.29), since D = D(u, s) and e θ (u) = e θ (s) = 0, we have

∇ S (D) = 1 2 f e 4 (D) + 1 2 f + 1 8 |f | 2 f e 3 (D).
We infer, using the fact that s max ≥ 2 and Sobolev,

D -D S hs max (S) r S 1 2 f e 4 (D) + f 1 + 1 4 f f e 3 (D) h smax-1 (S)
f hs max (S) e 4 (D) h smax-1 (S)

+ f hs max (S) 1 + r -2 f hs max (S) f hs(S) e 3 (D) h smax-1 (S)
and hence

D -D S hs max (S) r f hs max (S) + r -1 f hs max (S) sup R |d ≤smax D|,
where we have used in the last inequality the control on (f, f ), as well as property 2 of Proposition 5.10 with h = e 4 (D) and h = e 3 (D).

Basis of = 1 modes on a deformed sphere

Consider a deformation Ψ :

• S → S and recall the existence of the family of scalar functions J (p) , p ∈ 0, +, -, on R introduced in assumption A4, see (2.32), which form a basis of the = 1 modes on the sphere • S.

Proposition 5.21. Assume the deformation verifies the bounds (5.15). Then, J (p) is a basis of = 1 modes on S in the sense of Definition 2.17, i.e.

(r S ) 2 ∆ S + 2 J (p) = O( • ), 1 |S| S J (p) J (q) = 1 3 δ pq + O( • ), 1 |S| S J (p) = O( • ).
(5.30) Remark 5.22. In view of Proposition 5.21, we choose in the rest of the paper J (S,p) = J (p) .

Proof. Recall the definition of Ψ on

• S and the extension (2.33) of J (p) from

• S to R Ψ( • u, • s, y 1 , y 2 ) = ( • u + U (y 1 , y 2 ), • s + S(y 1 , y 2 ), y 1 , y 2 ), J (p) (u, s, y 1 , y 2 ) = J (p) ( • u, • s, y 1 , y 2 ).
We deduce the identity

J (p) = J (S,p) on S, J (S,p) := J (p) • Ψ -1 .
It thus suffises to prove (5.30) with J (p) replaced by J (S,p) .

According to Lemma 5.5 and the above definition of J (S,p) , we have

∆ S J (S,p) # = ∆ S,# J (p) = • ∆J (p) + ∆ S,# - • ∆ J (p) = - 2 ( • r ) 2 J (p) + O( • • r -2 ) + ∆ S,# - • ∆ J (p) . Now, ∆ S,# - • ∆ J (p) = (g S,# ) ab -( • g) ab ∂ y a ∂ y b J (p) + (Γ S,# ) c ab ∂ y c J (p) +( • g) ab (Γ S,# ) c ab -( • Γ) c ab ∂ y c J (p) .
In view of the estimates of Lemma 5.8 and Proposition 5.10, we deduce

∆ S,# - • ∆ J (p) r -2 • δ a=1,2 ∂ y a J (p) + a,b=1,2 ∂ y a ∂ y b J (p) r -2 • δ. Therefore ∆ S J (S,p) # = - 2 ( • r ) 2 (J (S,p) ) # + O( • • r -2
) from which we deduce,

∆ S J (S,p) = - 2 (r S ) 2 J (S,p) + O( • • r -2
). Also, S J (S,p) J (S,q) da g S = • S J (p) J (q) da g S,# = • S J (p) J (q) det g S,# = • S J (p) J (q) det g S,# det

• g da• g = • S J (p) J (q) da• g + • S J (p) J (q)   det g S,# det • g -1   da• g = | • S| 1 3 δ pq + • + O(r -1 • δ)| • S|.
We infer that 1 |S| S J (S,p) J (S,q) = 1 3

δ pq + O( • ).
We similarly derive

S J (S,p) = • S J (p) da g S,# = • S J (p) da• g + O(r 2 • ) = O(r 2 • ) = |S|O( • )
so that (5.30) holds with J (p) replaced by J (S,p) . Since J (p) = J (S,p) on S, this concludes the proof of the proposition.

A corollary to Proposition 4.13

The following corollary to Proposition 4.13 will be used to prove contraction in an iterative scheme, see Proposition 6.7.

Corollary 5.23. Let

• S ⊂ R. Let Ψ :

• S → S be a deformation generated by the functions (U, S) as in Definition 5.1. Assume the bound (U, S)

h smax+1 ( • S) r • δ with s max ≥ 3. Let Λ, Λ in R 3 and let b 0 a constant. Also, let h 1 , h 2 , h 3 , h 4 , h 1 and h 2 scalar functions on • S. Assume given a solution (f, f , • λ , Ċ0 , Ṁ0 , Ċ(p) , Ṁ (p) , • b ) of the following system on • S curl S,# f = h 1 -h 1 S,# , curl S,# f = h 1 -h 1 S,# , div S,# f + 2 r S • λ - 2 (r S ) 2 • b = h 2 , div S,# f + 2 r S • λ + 2 (r S ) 2 • b = Ċ0 + p Ċ(p) J (p) + h 2 , ∆ S,# + 2 (r S ) 2 • λ = Ṁ0 + p Ṁ (p) J (p) + 1 2r S Ċ0 + p Ċ(p) J (p) + h 3 , ∆ S,# • b - 1 2 div S,# f -f = h 4 -h 4 S,# , • b S,# = b 0 , (5.31) 
and

(div S,# f ) =1 = Λ, (div S,# f ) =1 = Λ, (5.32)
where g S,# denotes the pull-back by Ψ of the metric g S on S, where div S,# , curl S,# and ∆ S,# are operator on

• S induced by the pull back metric, and where the = 1 modes on • S in (5.32) are defined with respect to J (p) .

Then, the following a priori estimates are verified, for s ≤ s max ,

(f, f , q • λ S,# ) hs( • S) + p r 2 | Ċ(p) | + r 3 | Ṁ (p) | (5.33) r ( q h 1 S,# , q h 1 S,# , q h 2 S,# , q h 2 S,# ) h s-1 ( • S) + r 2 q h 3 S,# h s-2 ( • S) + r q h 4 S,# h s-3 ( • S) + |Λ| + |Λ|, and 
r 2 | Ċ0 | + r 3 | Ṁ0 | + r • λ S,# r ( q h 1 S,# , q h 1 S,# , h 2 , h 2 ) L 2 ( • S) + r 2 h 3 L 2 ( • S) +r q h 4 S,# L 2 ( • S) + |Λ| + |Λ| + |b 0 |. (5.34) 
Proof. The proof follows by pulling back on

• S by the map Ψ the statement of Proposition 4.13 holding on S, and by using Proposition 5.10 to compare the norms h j ( • S, g S,# ) and

h j ( • S, • g) = h j ( • S) for j = 0, j = s -3, j = s -2, j = s -1, and j = s.
6 Existence of GCM spheres

Statement of the main theorem

In what follows we consider deformations Ψ :

• S → S endowed with adapted frames (e S 1 , e S 2 , e S 3 , e S 4 ) on S. As in section 4 we denote by ∇ S the induced covariant derivative on S and by Γ S , R S the corresponding Ricci and curvature coefficients associated to the frame.

The following theorem is the main result of this paper.

Theorem 6.1 (Existence of GCM spheres). Let m 0 > 0 a constant. Let 0 < • δ ≤ • two
sufficiently small constants, and let (

• r) three real numbers with

• r sufficiently large so that

• m 0 , • r m 0 .
Let a fixed spacetime region R, as in Definition 2.7, together with a (u, s) outgoing geodesic foliation verifying the assumptions A1-A4, see section 2.3. Let

• S = S( • u,
• s) be a fixed sphere from this foliation, and let • r and • m denoting respectively its area radius and its Hawking mass. Assume that there exists scalar functions C 0 = C 0 (u, s), C (p) = C (p) (u, s), M 0 = M 0 (u, s) and M (p) = M (p) (u, s) such that the GCM quantities κ, κ, µ of the back-ground foliation verify the following

κ = 2 r + κ, κ = - 2Υ r + C 0 + p C (p) J (p) + κ, µ = 2m r 3 + M 0 + p M (p) J (p) + μ, (6.1) 
where

43 sup R d / ≤smax ( κ, κ)| r -2 • δ, sup R d / ≤smax μ| r -3 • δ. (6.2) 
Then for any fixed pair of triplets

Λ, Λ ∈ R 3 verifying |Λ|, |Λ| • δ, (6.3) 
there exists a unique GCM sphere S = S(Λ, Λ), which is a deformation of • S, such that the GCM conditions of Definition 4.7 are verified, i.e. there exist constants C S 0 , C (S,p) , M S 0 , M (S,p) , p ∈ {-, 0, +}, for which44 

κ S = 2 r S , κ S = - 2 r S Υ S + C S 0 + p C (S,p) J (p) , µ S = 2m S (r S ) 3 + M S 0 + p M (S,p) J (p) . (6.4) 
Moreover,

(div S f ) =1 = Λ, (div S f ) =1 = Λ. ( 6.5) 
The resulting deformation has the following additional properties 43 Note also that (6.2) and the assumption A1 on the background foliation implies sup

R d ≤smax (C 0 , C (p) ) r -2 • , sup R d ≤smax (M 0 , M (p) ) r -3 • . 1. The triplet (f, f , • λ ) verifies (f, f , • λ ) h smax+1 (S) • δ. (6.6) 
2. The GCM constants C S 0 , C (S,p) , M S 0 , M (S,p) , p ∈ {-, 0, +} verify

C S 0 -C 0 S + C (S,p) -C (p) S r -2 • δ, M S 0 -M 0 S + M (S,p) -M (p) S r -3 • δ. (6.7) 
3. The volume radius r S verifies

r S • r -1 r -1 • δ. (6.8) 
4. The parameter functions U, S of the deformation verify • . (6.11) Remark 6.2. The conclusions of Theorem 6.1 still hold if we replace (6.2) with the weaker condition46 

(U, S) h smax+1 ( • S) r • δ. (6.9) 5 
( κ, κ) hs max (S) r -1 • δ, μ hs max (S) r -2 • δ, (6.12) 
for any deformed sphere S with (U, S) satisfying (6.9), where (6.12) is uniform w.r.t such spheres. Indeed, the proof of Theorem 6.1 relies on the estimates of Proposition 4.12 and Proposition 4.13, where the regularity is measured in terms of h s (S) norms.

6.2 Structure of the proof of Theorem 6.1

In view of Corollary 4.6 and Proposition 5.14, S is a GCM sphere which is a deformation of • S if and only if the corresponding (U, S, f, f ,

• λ ) solve the following coupled system

curl S f = -Err 1 [curl S f ], curl S f = -Err 1 [curl S f ], (6.13) 
div S f + κ • λ - 2 (r S ) 2 • b = κ S - 2 r S -κ - 2 r -Err 1 [div S f ] - 2(r -r S ) 2 r(r S ) 2 , div S f -κ • λ + 2 (r S ) 2 • b = κ S + 2 r S -κ + 2 r -Err 1 [div S f ] + 2(r -r S ) 2 r(r S ) 2 , ∆ S • λ + V • λ = µ S -µ -ω + 1 4 κ κ S -κ + ω + 1 4 κ κ S -κ + Err 2 [∆ S • λ ], ∆ S • b = 1 2 div S f -Υf + Err 1 [∆ S • b ] , • b S = r S -r S , (6.14) 
∂ y a U = U(f, f , Γ) b Y b (a) # , ∂ y a S = S(f, f , Γ) b Y b (a) # , (6.15) 
together with the GCM conditions (6.4) and the prescribed = 1 conditions (6.5), where V is defined in (4.5).

Note however that (6.13) and (6.15) are a priori not solvable. This forces us to solve instead the modified system

curl S f = -Err 1 [curl S f ] + Err 1 [curl S f ] S , curl S f = -Err 1 [curl S f ] + Err 1 [curl S f ] S , (6.16 
)

div S f + κ • λ - 2 (r S ) 2 • b = κ S - 2 r S -κ - 2 r -Err 1 [div S f ] - 2(r -r S ) 2 r(r S ) 2 , div S f -κ • λ + 2 (r S ) 2 • b = κ S + 2 r S -κ + 2 r -Err 1 [div S f ] + 2(r -r S ) 2 r(r S ) 2 , ∆ S • λ + V • λ = µ S -µ -ω + 1 4 κ κ S -κ + ω + 1 4 κ κ S -κ + Err 2 [∆ S • λ ], ∆ S • b = 1 2 div S f -Υf + Err 1 [∆ S • b ] , • b S = r S -r S , (6.17) 
• ∆U = • div U(f, f , Γ) # , • ∆S = • div S(f, f , Γ) # , (6.18) 
together with the GCM conditions (6.4) and the prescribed = 1 conditions (6.5), and with the values of U, S fixed at the South Pole of The proof of Theorem 6.1 then proceeds as follows.

1. We introduce an iterative scheme for the resolution of the nonlinear system (6.16)-(6.18), and we prove its convergence in section 6.3.

We analyse the limit (U

(∞) , S (∞) , f (∞) , f (∞) ,
• λ (∞) ) of the iterative scheme, solution to the nonlinear system (6.16)-(6.18), in section 6.4. In particular, we exhibit two frames on the limiting sphere S (∞) , one associated to the frame transformation

coefficients (f (∞) , f (∞) , • λ (∞)
), and one adapted to S (∞) .

3. We then show in section 6.5 that the two frame on S (∞) in fact coincide. This implies

that (U (∞) , S (∞) , f (∞) , f (∞) , • λ (∞)
) not only solves (6.16)-(6.18), but also solves the original system of equations (6.13)-(6.15) hence concluding the proof of Theorem 6.1.

Definition and convergence of the iterative scheme

Starting with the ninetets

Q (0) := (U (0) , S (0) , • λ (0) , f (0) , f (0) , C (0) 0 , M (0) 0 , C (0),p , M (0),p ) = (0, 0, 0, 0, 0, C 0 ( • u, • s), M 0 ( • u, • s), C (p) ( • u, • s), M (p) ( • u, • s)), Q (1) 
:= (U (1) , S (1) ,

• λ (1) , f (1) , f (1) , C

(1)

0 , M (1) 
0 , C (1),p , M (1),p ) = (0, 0, 0, 0, 0, C 0 (

• u, • s), M 0 ( • u, • s), C (p) ( • u, • s), M (p) ( • u, • s)),
corresponding to the undeformed sphere • S, we define iteratively the ninetet

Q (n+1) = U (n+1) , S (n+1) , • λ (n+1) , f (n+1) , f (n+1) , C (n+1) 0 , M (n+1) 0 , C (n+1),p , M (n+1),p , from Q (n) = U (n) , S (n) , • λ (n) , f (n) , f (n) , C (n) 0 , M (n) 0 , C (n),p , M (n),p , Q (n-1) = U (n-1) , S (n-1) , • λ (n-1) , f (n-1) , f (n-1) , C (n-1) 0 , M (n-1) 0
, C (n-1),p , M (n-1),p , as follows.

Step 1. The pair (U (n) , S (n) ) defines the deformation sphere S(n) and the corresponding pull back map # n given by the map Ψ (n) :

• S → S(n), ( • u, • s, y 1 , y 2 ) -→ ( • u + U (n) (y 1 , y 2 ), • s + S (n) (y 1 , y 2 ), y 1 , y 2 ). (6.20) 
By induction we may assume that the following estimates hold true

U (n-1) , S (n-1) h smax+1 ( • S) + U (n) , S (n) h smax+1 ( • S) • δr, (6.21) 
(f (n) , f (n) , } • λ (n) S(n-1) ) h smax+1 (S(n-1)) + r 2 p | Ċ(n),p | • δ, (6.22) 
and

r 2 | Ċ(n) 0 | + r • λ (n) S(n-1) • -1 4 • δ. (6.23) 
Remark 6.3. In view of Corollary 5.19, (6.21) implies in particular that S(n) is an O( • )-sphere.

Remark 6.4. The basis of = 1 modes on the surface S(n) is given by the triplet J (p) , p ∈ {-, 0, +}, in view of Remark 5.22.

The area radius of S(n) is denoted by r (n) := r S(n) . The Hawking mass of S(n) is denoted by m (n) := m S(n) .

Step 2. We define the triplet (f (n+1) , f (n+1) ,

• λ (n+1) ) as the solution of the following linear system of equations

curl S(n) f (n+1) = h (n) 1 -h (n) 1 S(n) , curl S(n) f (n+1) = h (n) 1 -h (n) 1 S(n) , (6.24) div S(n) f (n+1) + 2 r S(n) • λ (n+1) - 2 (r S(n) ) 2 • b (n+1) = h (n) 2 , div S(n) f (n+1) + 2 r S(n) • λ (n+1) + 2 (r S(n) ) 2 • b (n+1) = Ċ(n+1) 0 + p Ċ(n+1),p J (p) + h (n) 2 , (6.25) 
∆ S(n) + 2 (r S(n) ) 2 • λ (n+1) = Ṁ (n+1) 0 + p Ṁ (n+1),p J (p) + h (n) 3 + 1 2r S(n) Ċ(n+1) 0 + p Ċ(n+1),p J (p) , ∆ S(n) • b (n+1) - 1 2 div S(n) f (n+1) -f (n+1) = h (n) 4 -h (n) 4 S(n) , • b (n+1) S(n) = r S(n) -r S(n) , (6.26) 
we have

r ( } h (n) 1 S(n) , } h (n) 1 S(n) , } h (n) 2 S(n) , } h (n) 2 S(n) 
) hs max (S(n))

+r 2 } h (n) 3 S(n) h smax-1 (S(n)) + r } h (n) 4 S(n) h smax-2 (S(n)) 1 • r + • • δ + sup S(n) |r -r S(n) | + sup S(n) |m -m S(n) | + r κ, κ hs max (S(n))
+r 2 μ hs max (S(n))

and

r ( } h (n) 1 S(n) , } h (n) 1 S(n) , h (n) 2 , h (n) 
2

) L 2 (S(n)) + r 2 h (n) 3 L 2 (S(n)) + } h (n) 4 S(n) L 2 (S(n)) 1 • r + • • δ + sup S(n) |r -r S(n) | + sup S(n) |m -m S(n) | + r κ, κ hs max (S(n))
+r 2 μ hs max (S(n)) .

We infer from the above

(f (n+1) , f (n+1) , • λ (n+1) S(n) ) h smax+1 (S(n)) + p r 2 | Ċ(n+1),p | + r 3 | Ṁ (n+1),p | 1 • r + • • δ + sup S(n) |r -r S(n) | + sup S(n) |m -m S(n) | +r κ, κ hs max (S(n)) + r 2 μ hs max (S(n)) + |Λ| + |Λ|, and 
r 2 | Ċ(n+1) 0 | + r 3 | Ṁ (n+1) 0 | + r • λ (n+1) S(n) 1 • r + • • δ + sup S(n) |r -r S(n) | + sup S(n) |m -m S(n) | + r κ, κ hs max (S(n)) + r 2 μ hs max (S(n)) +|Λ| + |Λ|.
Now, in view of (6.21) and Remark 6.3, we may apply Corollaries 5.12 and 5.17 which yield sup

S(n) |r -r S(n) | • δ, sup S(n) |m -m S(n) | • • δ, sup S(n) |m -m S(n) | • δ.
We deduce, together with the second property of Proposition 5.10 applied to h = κ, h = κ and h = μ, and the control of the background foliation,

(f (n+1) , f (n+1) , • λ (n+1) S(n) ) h smax+1 (S(n)) + p r 2 | Ċ(n+1),p | + r 3 | Ṁ (n+1),p | 1 • r + • • δ + r 2 sup R | d / ≤smax ( κ, κ)| + r 3 sup R | d / ≤smax μ| + |Λ| + |Λ|, and 
r 2 | Ċ(n+1) 0 | + r 3 | Ṁ (n+1) 0 | + r • λ (n+1) S(n) • δ + r 2 sup R | d / ≤smax ( κ, κ)| + r 3 sup R | d / ≤smax μ| +|Λ| + |Λ| as desired.
Step 3. We use the new pair (f (n+1) , f (n+1) ) to solve the equations on

• S, • ∆U (n+1) = • div U(f (n+1) , f (n+1) , Γ) #n , • ∆S (n+1) = • div S(f (n+1) , f (n+1) , Γ) #n , U (n+1) (South) = S (n+1) (South) = 0, (6.34) 
where the pull back # n is defined with respect to the map Ψ (n) :

• S → S(n). The new pair (U (n+1) , S (n+1) ) defines the new sphere S(n + 1) and we can proceed with the next step of the iteration. The boundedness of (U (n+1) , S (n+1) ) is assured by the following proposition. Proposition 6.6. The equation (6.34) admits a unique solution (U (1+n) , S (1+n) ), verifying the estimates

r -1 U (n+1) , S (n+1) h smax+1 ( • S) 1 • r + • • δ + r 2 sup R | d / ≤smax ( κ, κ)| + r 3 sup R | d / ≤smax μ| +|Λ| + |Λ| (6.35)
uniformly for all n ∈ N.

Proof. The proof, based on the previously established bounds for (f n+1 , f n+1 ) in Proposition 6.5, standard elliptic estimates for

• ∆ and the comparison of norms estimates of Proposition 5.10, is straightforward and thus left to the reader.

Step 4. In view of Proposition 6.5 and Proposition 6.6, and in view of the assumptions (6.2) on κ, κ, μ, and (6.3) on Λ, Λ, we obtain the boundedness of all quintets Q (n) . More precisely we have, uniformly for all n ∈ N,

Q (n) smax+1 • δ, (6.36) 
where

Q (n) k : = r -1 U (n) , S (n) h k ( • S) + f (n) , f (n) , • λ (n) h k (S) + r 2 Ċ(n) 0 + p Ċ(n),p + r Ṁ (n) 0 + r p Ṁ (n),p . (6.37) 
To insure convergence we also need to establish a contraction estimate. We cannot compare directly the ninetets Q (n) , so we compare instead the modified ninetets, well defined on • S,

P (n) := U (n) , S (n) , • λ n,# , f n,# , f n,# , C (n) 0 , M (n) 0 , C (n),p , M (n),p (6.38) 
where

• λ n,# , f n,# , f n,# are the pull-backs by # n-1 of the triplet • λ (n) , f (n) , f (n) 
defined on the sphere S(n -1). We also introduce the modified norms

P (n) k, • S : = r -1 U (n) , S (n) h k ( • S) + f n,# , f n,# , • λ n,# h k ( • S) + r 2 Ċ(n) 0 + p Ċ(n),p + r Ṁ (n) 0 + r p Ṁ (n),p . (6.39) 
In view of the Sobolev norm comparison of Proposition 5.10, we deduce from (6.37)

P (n) smax, • S • δ. (6.40) 
Contraction in this modified norms is established in the following.

Proposition 6.7. The following estimate holds true.

P (n+1) -P (n) 3, • S (r -1 + • ) P (n) -P (n-1)
3,

• S + P (n-1) -P (n-2) 3,

• S + P (n-2) -P (n-3) 3, • S . (6.41) 
Proof. See Appendix B.

6.4 Limit of the iterative scheme

Limiting ninetet

We infer the existence of a ninetet P (∞) on

• S such that

P (∞) smax • δ (6.42)
and, using interpolation between 3 and s max ,

lim n→+∞ P (n) -P (∞) smax-1 = 0, (6.43) 
where

P (∞) = U (∞) , S (∞) , • λ ∞,# , f ∞,# , f ∞,# , C (∞) 0 , M (∞) 0 , C (∞), p , M (∞), p .
The functions (U (∞) , S (∞) ) defines a sphere S (∞) parametrized by the map

Ψ (∞) ( • u, • s, y 1 , y 2 ) = • u + U (∞) (y 1 , y 2 ), • s + S (∞) (y 1 , y 2 ), y 1 , y 2 .
We then define

• λ (∞) = • λ ∞,# • (Ψ (∞) ) -1 , f (∞) = f ∞,# • (Ψ (∞) ) -1 , f (∞) = f ∞,# • (Ψ (∞) ) -1 so that • λ (∞) , f (∞) , f (∞) are defined on S (∞) and • λ ∞,# = ( • λ (∞) ) #∞ , f ∞,# = (f (∞) ) #∞ , f ∞,# = (f (∞) ) #∞ .
We also define

Q (∞) = U (∞) , S (∞) , • λ (∞) , f (∞) , f (∞) , C (∞) 0 , M (∞) 0 , C (∞), p , M (∞), p .
From these definitions, in view of (6.42) and the norm comparison estimates of Proposition 5.10, we deduce 1. Uniform bounds

Q (∞) smax+1 • δ, i.e. r -1 (U (∞) , S (∞) ) h smax+1 ( • S) + (f (∞) , f (∞) , • λ (∞) ) h smax+1 (S (∞) ) (6.44) +r 2 Ċ(∞) 0 + r 2 p Ċ∞,p + r 3 Ṁ (∞) 0 + r 3 p Ṁ ∞,p • δ.
2. The following sequences converge

• The sequences of pairs (U (n) , S (n) ) converges to (U (∞) , S (∞) ) in h smax-1 ( • S). • The sequence (f (n) , f (n) , • λ (n) ) converges to (f (∞) , f (∞) , • λ (∞) ) in h smax-1 (S (∞) ).
• The sequence of GCM constants (C

(n) 0 , M (n) 0 , C (n),p , M (n),p ) converges to the constants (C (∞) 0 , M (∞) 0 , C (∞),p , M (∞),p ).
Remark 6.8. In fact, (6.42) and Proposition 5.10 yield only

r -1 (U (∞) , S (∞) ) hs max ( • S) + (f (∞) , f (∞) , • λ (∞) ) hs max (S (∞) ) +r 2 Ċ(∞) 0 + r 2 p Ċ(∞),p + r 3 Ṁ (∞) 0 + r 3 p Ṁ (∞),p • δ.
To recover (6.44), i.e. to go from s max to s max + 1, we need in addition to

• pass to the limit in the bound (6.36), which yields the desired bound in h smax+1 ( • S) for (U (∞) , S (∞) ) in view of (6.37),

• use the above a priori bound in h smax (S (∞) ), in conjunction with the system of equations (6.46)-(6.50), which yields the desired bound in h smax+1 (S (∞) ) for (f (∞) , f (∞) ,

• λ (∞) ) by elliptic regularity.

Limiting equations

Taking n → ∞ in the equations (6.34), (6.24)-(6.26), (6.27) and (6.28), we derive Proposition 6.9. The triplet Q (∞) verifies the following equations

• ∆U (∞) = • div U(f (∞) , f (∞) , Γ) #∞ , • ∆S (∞) = • div S(f (∞) , f (∞) , Γ) #∞ , U (∞) (South) = S (∞) (South) = 0, (6.45) curl S (∞) f (∞) = -Err 1 [curl f (∞) ] + Err 1 [curl f (∞) ] S(∞) , curl S (∞) f (∞) = -Err 1 [curl f (∞) ] + Err 1 [curl f (∞) ] S(∞) , (6.46) div S (∞) f (∞) + κ • λ (∞) - 2 (r S (∞) ) 2 • b (∞) -r -r S (∞) = κ (∞) -κ -Err 1 [div S (∞) f (∞) ], div S (∞) f (∞) -κ • λ (∞) + 2 (r S (∞) ) 2 • b (∞) -r -r S (∞) = κ (∞) -κ -Err 1 [div S (∞) f (∞) ], (6.47) ∆ S(∞) • λ (∞) + V • λ (∞) = µ (∞) -µ -ω + 1 4 κ κ (∞) -κ + ω + 1 4 κ κ (∞) -κ + Err 2 [∆ S(∞) • λ (∞) ], (6.48) 
with

∆ S(∞) • b (∞) = 1 2 div S(∞) f (∞) -Υ (∞) f (∞) + Err 1 [∆ S(∞) • b (∞) ] , • b (∞) S(∞) = r S(∞) -r S(∞) , (6.49) 
κ (∞) = 2 r S(∞) , κ (∞) = - 2 r S(∞) Υ (∞) + C (∞) 0 + p C (∞),p J (p) , µ (∞) = 2m S(∞) (r S(∞) ) 3 + M (∞) 0 + p M (∞),p J (p) , (6.50) 
and = 1 conditions,

(div S (∞) f (∞) ) =1 = Λ, (div S (∞) f (∞) ) =1 = Λ, (6.51) 
with respect to the = 1 modes 48 J (p) on S (∞) .

The limiting frame

Using (

• λ (∞) , f (∞) , f (∞)
) and transformation formula (3.1) we define the corresponding null frame (e

(∞) 1 , e (∞) 2 , e (∞)
3 , e (∞) 4 ) and the associated Ricci coefficients Γ (∞) , R (∞) . Note that the frame is a priori not adapted to S (∞) . In fact (a) κ (∞) , (a) κ (∞) do not necessarily vanish and thus the distribution generated by e may not even be integrable. 48 According to Remark 5.22.

The main remaining hurdle in the proof of Theorem 6.1 is to show that the two frames coincide.

Step 1. Since the frame (e S 1 , e S 2 , e S 3 , e S 4 ) is adapted to the sphere S, we have on

• S ∂ y a U = U(f, f , Γ) b Y b (a) # , ∂ y a S = S(f, f , Γ) b Y b (a) # , U (South) = S(South) = 0, (6.53) 
where # denotes the pull-back with respect to the deformation map Ψ. We deduce

• ∆U = • div U(f, f , Γ) # , • ∆S = • div S(f, f , Γ) # .
On the other hand we have, see (6.45),

• ∆U = • div U(f (∞) , f (∞) , Γ) # , • ∆S = • div S(f (∞) , f (∞) , Γ) # .
Subtracting the two equations we deduce

• div U(f, f , Γ) -U(f (∞) , f (∞) , Γ) # = 0, • div S(f, f , Γ) -S(f (∞) , f (∞) , Γ) # = 0, or, introducing, δU = U(f, f , Γ) -U(f (∞) , f (∞) , Γ), δS = S(f, f , Γ) -S(f (∞) , f (∞) , Γ), • div δU # = 0, • div δS # = 0. (6.54)
Let g S,# be the pull back of the metric of S to

• S by the map Ψ :

• S → S. Denoting by div # the divergence with respect g S,# along • S we have, according to the connection comparison estimates of Lemma 5.8,

• div δU # -div S,# δU # L 2 ( • S) • δr -1 δU h 1 (S) , • div δS # -div S,# δS # L 2 ( • S) • δr -1 δS h 1 (S) .
Thus, in view of (6.54), div S,# δU

# L 2 ( • S) • δr -1 δU h 1 (S) , div S,# δS # L 2 ( • S) • δr -1 δS h 1 (S) .
In view of the norm comparison Proposition 5.10, we deduce div S δU L 2 (S)

• δr -1 δU h 1 (S) , div S δS L 2 (S)
• δr -1 δS h 1 (S) .

(6.55)

Step 2. Recall from (5.28) that we have

U(f, f , Γ) = f + O • |f | + |f | 2 + |f ||f | , S(f, f , Γ) = 1 2 -Υf + f + O • |f | + |f | 2 + |f | 2 .
Hence

δU(f, f , Γ) = f -f (∞) + O (r -1 + • )(|f -f (∞) | + |f -f (∞) |) , δS(f, f , Γ) = 1 2 -(f -f (∞) ) + f -f (∞) + O (r -1 + • )(|f -f (∞) | + |f -f (∞) |) .
This yields

δU(f, f , Γ) -(f -f (∞) ) h 1 (S) (r -1 + • )( f -f (∞) h 1 (S) + f -f (∞) h 1 (S) ), δS(f, f , Γ) + 1 2 (f -f (∞) ) - 1 2 (f -f (∞) ) h 1 (S) (r -1 + • )( f -f (∞) h 1 (S) + f -f (∞) h 1 (S) ).
Therefore, in view of Step 1, we infer

div S (f -f (∞) ) L 2 (S) (r -1 + • )r -1 f -f (∞) h 1 (S) + f -f (∞) h 1 (S) , div S (f -f (∞) ) L 2 (S) (r -1 + • )r -1 f -f (∞) h 1 (S) + f -f (∞) h 1 (S) .
(6.56)

Step 3. According to (6.46) we have,

curl S f (∞) = Err 1 [curl S f (∞) ] -Err 1 [curl S f (∞) ] S , curl S f (∞) = Err 1 [curl S f (∞) ] -Err 1 [curl S f (∞) ] S .
On the other hand, since the frame (e S 1 , e S 2 , e S 3 , e S 4 ) is adapted to the sphere S, we have (a) trχ S = 0 and (a) trχ S = 0, i.e. the transition functions f, f must verify

curl S (f ) = -Err 1 [curl S f ], curl S (f ) = -Err 1 [curl S f ],
with the same algebraic expressions for the errors Err

1 [curl S f ], Err 1 [curl S f ] as those for Err 1 [curl S f (∞) ], Err 1 [curl S f (∞) ]. Moreover Err 1 [curl S f ] S = Err 1 [curl S f ] S = 0.
Subtracting the two equations we derive

curl S (f -f (∞) ) L 2 (S) • δr -1 f -f (∞) h 1 (S) + f -f (∞) h 1 (S) , curl S (f -f (∞) ) L 2 (S) • δr -1 f -f (∞) h 1 (S) + f -f (∞) h 1 (S) .
(6.57)

Combining (6.56) with (6.57) we deduce,

d / S 1 (f -f (∞) ) L 2 (S) (r -1 + • )r -1 f -f (∞) h 1 (S) + f -f (∞) h 1 (S) , d / S 1 (f -f (∞) ) L 2 (S) (r -1 + • )r -1 f -f (∞) h 1 (S) + f -f (∞) h 1 (S) . (6.58) 
Therefore, by elliptic estimates,

f -f (∞) h 1 (S) + f -f (∞) h 1 (S) (r -1 + • ) f -f (∞) h 1 (S) + f -f (∞) h 1 (S)
and thus, for

• small enough and r large enough,

f = f ∞ , f = f ∞ . (6.59)
Step 4.

We have thus established that the limiting frame e

(∞)
1 , e

(∞)
2 , e

(∞)
3 , e

(∞) 4 
is in fact adapted to S = S (∞) . We now show that S endowed with this frame, and the basis of = 1 modes J (p) , is actually a GCM sphere. From now on, we denote e S 1 = e

(∞)
1 , ∞) . First, we prove that • b = rr S . Indeed, we have, using the equality of the two frames,

e S 2 = e (∞) 2 , e S 3 = e (∞) 3 , e S 4 = e (∞) 4 , • λ = • λ (∞) , f = f (∞) , f = f (∞) , • b = • b ( 
e 4 (r) 2 f a + e 3 (r) 2 f a + 1 4 |f | 2 f a = δ ab + 1 2 f a f b e b + 1 2 f a e 4 + 1 2 f a + 1 8 |f | 2 f a e 3 r = e S a (r) = e S a r -r S .

Now, recall that

• b , taking into account the definition of Err 1 [∆ S

• b ], is uniquely defined by

∆ S • b = div S e 4 (r) 2 f + e 3 (r) 2 f + 1 4 |f | 2 f , • b S = r S -r S .
We infer

∆ S • b = div S ∇ S r -r S = ∆ S r -r S , • b S = r -r S S .
The unique solution of the above system of equation is provided by

• b = r -r S (6.60)
as claimed.

Since (f, f ,

• λ ) verifies equations (6.46)-(6.51), and since

• b = r -r S , we infer div S f + κ • λ = κ (∞) -κ -Err 1 [div S f ], div S f -κ • λ = κ (∞) -κ -Err 1 [div S f ], ∆ S • λ + V • λ = µ (∞) -µ -ω + 1 4 κ κ (∞) -κ + ω + 1 4 κ κ (∞) -κ + Err 2 [∆ S • λ ], (6.61) 
with

κ (∞) = 2 r S , κ (∞) = - 2Υ S r S + C (∞) 0 + p C (∞),p J (p) , µ (∞) = 2m S (r S ) 3 + M (∞) 0 + p M (∞),p J (p) , (6.62) 
and

(div S f ) =1 = Λ, (div S f ) =1 = Λ. (6.63)
On the other hand, according to Lemma 4.3,

• λ , f, f verify the equations

div S f + κ • λ = κ S -κ -Err 1 [div S f ], div S f -κ • λ = κ S -κ -Err 1 [div S f ], ∆ S • λ + V • λ = µ S -µ -ω + 1 4 κ κ S -κ + ω + 1 4 κ κ S -κ + Err 2 [∆ S • λ ].
(6.64) Subtracting (6.61) to (6.64), we deduce

κ S = κ (∞) = 2 r S , κ S = κ (∞) = - 2Υ S r S + C (∞) 0 + p C (∞),p J (p) , µ S = µ (∞) = 2m S (r S ) 3 + M (∞) 0 + p M (∞),p J (p) .
Thus the GCM conditions (6.4) are verified with the constants

C S 0 := C (∞) 0 , C (S,p) := C (∞),p , M S 0 := M (∞) 0
, M (S,p) = M (∞),p .

Finally equation (6.5) is verified in view of (6.63).

Step 5. The remaining results of Theorem 6.1 are now easy to derive. (6.6), (6.7) and (6.9) follow from (6.44). (6.8) follows from Lemma 5.8, and (6.10) follows from Corollary 5.17. Finally, the estimates (6.11) follow from the transformation formulas of Proposition 3.4, (6.6) and A1. We note that the transformation formulas for the well defined quantities κ S , κ S , χ S , χ S , ζ S , α S , β S , ρ S , ρ S , β S , α S , µ S (see Remark 4.1) involve only S-tangential derivatives of (f, f ,

• λ ) and can thus indeed be estimated using (6.6). This concludes the proof of Theorem 6.1.

Differentiability with respect to the parameters (Λ, Λ)

The following proposition investigates the differentiability with respect to (Λ, Λ) of the various quantities appearing in Theorem 6.1. 

∂f ∂Λ = O r -1 , ∂f ∂Λ = O • δr -1 , ∂f ∂Λ = O • δr -1 , ∂f ∂Λ = O r -1 , ∂ • λ ∂Λ = O • δr -1 , ∂ • λ ∂Λ = O • δr -1 .
(6.66)

2. The parameter functions U, S of the deformation are continuous and differentiable with respect to Λ, Λ and verify

∂U ∂Λ = O(1), ∂U ∂Λ = O(1), ∂S ∂Λ = O(1), ∂S ∂Λ = O( • δ). (6.67) 
3. Relative to the coordinate system induced by Ψ, the metric g S of S = S(Λ, Λ) is continuous with respect to the parameters Λ, Λ and verifies

∂ Λ g S , ∂ Λ g S L ∞ (S)
O(r 2 ).

Proof. The proof follows by differentiating the equations satisfied by (f, f , λ) and (U, S) with respect to (Λ, Λ) and relying on the estimates derived for (f, f , λ) and (U, S) in Theorem 6.1. The details are cumbersome but straightforward, and left to the reader.

Dependance on J (p)

In the following corollary to Theorem 6.1, we investigate the dependance of the GCM spheres on the particular choice of J (p) . Corollary 6.11. Under the same assumptions than Theorem 6.1, assume in addition to J (p) , the existence of a second family of scalar function J (p) satisfying A4, and such that p

J (p) -J (p) hs( • S) r • (6.68)
for some 2 ≤ s ≤ s max -1. We consider

• S = S(Λ, Λ) the GCM sphere obtained by applying Theorem 6.1 using J (p) , (U, S) the corresponding deformation parameters, (f, f , λ) the corresponding change of frame coefficients, and (C 0 , C (p) , M 0 , M (p) ) the corresponding GCM constants,

• S = S (Λ,Λ) the GCM sphere obtained by applying Theorem 6.1 using J (p) , ( U , S), the corresponding deformation parameters, ( f , f , λ) the corresponding change of frame coefficients, and

( C 0 , C (p) 
, M 0 , M (p) ) the corresponding GCM constants.

Then, the following comparison estimate holds true

r -1 ( U , S) -(U, S) h s+1 ( • S) + ( f , f , λ) # Ψ -(f, f , λ) # Ψ h s+1 ( • S) + r 2 | C 0 -C 0 | +r 3 | M 0 -M 0 | + p r 2 | C (p) -C (p) | + r 3 | M (p) -M (p) | • p r -1 J (p) -J (p) hs( • S)
.

(6.69)

The proof of Corollary 6.11 is postponed to Appendix C.

Existence of GCM spheres in Kerr

The following corollary of Theorem 6.1 shows the existence of GCM spheres in Kerr.

Corollary 6.12 (Existence of GCM spheres in Kerr). Let g a 0 ,m 0 , with |a 0 | ≤ m 0 , denote a member of the Kerr family of metrics. Let 0 < δ 0 = 0 two sufficiently small constants, and let ( • u,

• s,

• r) three real numbers with

• r sufficiently large so that

• = a 0 m 0 • r , • δ = a 0 m 0 • r , • r m 0 .
Let a fixed spacetime region R of Kerr together with a (u, s) outgoing geodesic foliation, as discussed in Lemma 2.10. Let 

(div S f ) =1 = Λ, (div S f ) =1 = Λ.
Furthermore, the deformation satisfies the properties (6.6)-(6.11).

Proof. Recall from Lemma 2.10 that the assumptions A1-A4 are satisfied by the spacetime region R = {r ≥ r 0 } of Kerr provided that r 0 = r 0 (m 0 ) is sufficiently large, with smallness constants

• and

• δ given by

• = a 0 m 0 • r , • δ = a 0 m 0 • r .
Thus, Theorem 6.1 applies, which concludes the proof of the corollary.

A priori estimates for GCM spheres

We derive in this section a priori estimates for the triplet (f, f ,

• λ ) corresponding to a given sphere S ⊂ R satisfying the GCM conditions (6.4). The goal of this section is to prove the following corollary of Proposition 4.13. Corollary 7.1. Let a fixed spacetime region R verifying assumptions A1 -A4 and (6.1) (6.2). Assume that S is a deformed sphere in R which verifies the approximate GCM conditions

κ S = 2 r S , κ S = - 2 r S Υ S + C S 0 + p C (S,p) J (p) + Err[κ S ], µ S = 2m S (r S ) 3 + M S 0 + p M (S,p) J (p) + Err[µ S ], (7.1) 
where Err[κ S ] and Err[µ S ] are two scalar functions on S, and such that for a small enough constant δ 1 > 0, the transition functions (f, f , λ) from the background frame of R to that of S verifies, for some 4 ≤ s ≤ s max , the bound

f hs(S) + (r S ) -1 (f , • λ ) hs(S) ≤ δ 1 . (7.2)
Then (f, f , λ) verify the estimates

(f, f , q • λ S ) h s+1 (S) + p r 2 | Ċ(p) | + r 3 | Ṁ (p) | • δ + ( • ) 2 + rδ 1 1 • r + • + δ 1 + |Λ| + |Λ| +r Err[κ S ] hs(S) + r 2 Err[µ S ] h s-1 (S)
and

r 2 | Ċ0 | + r 3 | Ṁ0 | + r • λ S • δ + ( • ) 2 + rδ 1 1 • r + • + δ 1 + |Λ| + |Λ| + sup S |r -r S | +r Err[κ S ] L 2 (S) + r 2 Err[µ S ] L 2 (S) ,
where the pair of triplets Λ, Λ ∈ R 3 is defined by

Λ := (div S f ) =1 , Λ := (div S f ) =1 .
Remark 7.2. The anomalous behavior for (f , λ) in the assumption (7.2) is motivated by the proof of the nonlinear stability of Schwarzschild in [START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF], where this behavior is due a substantial shift of the center of mass frame of the final black hole compared to initial one, known in the physics literature as a gravitational wave recoil, see Remark 4.5 in [START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF] for a more detailed heuristic explanation for this behavior of (f , λ). We refer to Corollary 9.38 in [START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF] for an analogous statement to Corollary 7.1. We expect that Corollary 7.1 would play a similar role in a future proof of stability of Kerr.

Comparison results under weaker assumptions on (f, f , λ)

The proof of Corollary 7.1 requires the following extension of the results of sections 5.3 and 5.4 to the case where (f, f , λ) satisfy the assumptions (7.2).

Lemma 7.3. There exists a small enough constant δ 1 such that for given f, f on R satisfying f hs max (S) + (r S ) -1 f hs max (S) ≤ δ 1 , the following holds 1. We have

( • r ) -1 U h smax+1 ( • S) + ( • r ) -2 S h smax+1 ( • S) δ 1 .
In particular, we have

sup S |u - • u| δ 1 , sup S |s - • s| • rδ 1 .
2. We have, 3. We have

r S • r -1 + sup S r S r -1 δ 1 .
4. The following estimate holds true for an arbitrary scalar function h on R,

h # -h δ 1 sup R |dh|.
5. The following estimate holds true for an arbitrary scalar function h on R,

S h -• S h δ 1 ( • r) 2 sup R |f | + |∂ u f | + • r sup R |∂ s f | .
6. If V ∈ h s (S) and V # is its pull-back by Ψ, we have for all 0 ≤ s ≤ s max , 

V hs(S) = V # hs( • S, g S,# ) = V # hs( • S, • g) 1 + O(δ 1 ) . (7.3 
(Γ S,# ) c ab -( • Γ) c ab h smax-1 ( • S) r 2 δ 1 . (7.5) 
Proof. Recall (5.24)

∂ y a U = U(f, f , Γ) b Y b (a) # , ∂ y a S = S(f, f , Γ) b Y b (a) # ,
as well as (5.28)

U(f, f , Γ) = f + O • |f | + |f | 2 + |f ||f | , S(f, f , Γ) = 1 2 -Υf + f + O • |f | + |f | 2 + |f | 2 .
In view of the assumptions on (f, f ), we immediately obtain the first claim of the lemma concerning the control of (U, S). Note that the estimate for u - The first claim then yields the second claim by a straightforward adaptation of the proof of Lemma 5.8, and the third claim by a straightforward adaptation of the proof of Lemma 5.8 and Corollary 5.12. The fourth claim follows from the first claim and Lemma 5.7. Also, the fifth claim follows from the second and the fourth claim, by a simple adaptation of the proof of Corollary 5.9. Finally, the sixth, seventh and eight claim follow from the other claims by a simple adaptation of Proposition 5.10.

Lemma 7.3 yields the following corollaries.

Corollary 7.4. Assume that there exists a small enough constant δ 1 such that we have

f hs max (S) + (r S ) -1 f hs max (S) ≤ δ 1 .
Then, for all j, k ≥ 0 with 0 ≤ j + k ≤ s max , we have

d ≤j Γ g h k (S) • r -1 , d ≤j Γ b h k (S) • , (7.6) 
and

r d ≤j B h k (S) + d ≤j Z h k (S) + r -1 d ≤j q Y h k (S)
• . (7.7)

Proof. The proof is similar to the one of Corollary 5.11 and relies on property 7 of Lemma 7.3 and the control A1-A3 of the background foliation.

Corollary 7.5. Let 3 ≤ s ≤ s max . There exists a small enough constant δ 1 such that given f, f on R satisfying

f hs(S) + (r S ) -1 f hs(S) ≤ δ 1 , then sup S K S - 1 (r S ) 2 δ 1 + • (r S ) 2 , K S - 1 (r S ) 2 h s-1 (S) δ 1 + • r S .
Proof. This is a simple adaptation of the proof of Corollary 5.18. As in that corollary, using the Gauss equation, the change of frame formulas, the assumptions on (f, f ), and the control of the background foliation provided by A1-A3 and Corollary 7.5, we obtain sup

S K S - 1 r 2 δ 1 (r S ) 2 + • r 2 , K S - 1 r 2 h s-1 (S) δ 1 r S + • r .
Together with the control of rr S provided by property 3 of Lemma 7.3, we infer sup

S K S - 1 (r S ) 2 δ 1 + • (r S ) 2 , K S - 1 (r S ) 2 h s-1 (S) 1 (r S ) 2 ∇ S (r) h s-2 (S) + δ 1 + • r S .
Next, recall the identity (5.29)

∇ S (r) = 1 2 f e 4 (r) + 1 2 f + 1 8 |f | 2 f e 3 (r).
Together with the assumptions on (f, f ) and the control of the background foliation provided by Corollary 7.5, we infer Together with the transformation formula for ρ S , which only involves (f, f ) but not λ, we infer from the assumptions A1-A3 for the background foliation of R, and the assumptions on (f, f ) that

∇ S (r) h s-2 (S) r S δ 1 and hence sup S K S - 1 (r S ) 2 δ 1 + • (r S ) 2 , K S - 1 (r S ) 2 h s-1 (S)
m S - • m δ 1 + ( • ) 2
as desired.

Corollary 7.8. Assume that (f, f ) given on R satisfy for a small enough constant δ 1

f hs(S) + (r S ) -1 f hs(S) ≤ δ 1
where s ≥ 3. Then, we have

r -1 r -r S h s+1 (S) rδ 1 , r -1 m -m S h s+1 (S) δ 1 + ( • ) 2 .
Proof. We have

r -1 r -r S h s+1 (S) sup S |r -r S | + ∇ S (r) hs(S) rδ 1 + ∇ S (r) hs(S) , r -1 m -m S h s+1 (S) sup S |m -m S | + ∇ S (m) hs(S) δ 1 + ( • ) 2 + ∇ S (m) hs(S) ,
where we used the supremum bounds for rr S and mm S provided respectively by Lemma 7.3 and Corollary 7.7.

To conclude, it thus suffices to prove ∇ S (r) hs(S) rδ 1 , ∇ S (m) hs(S) δ 1 .

To this end, the identity (5.29) for ∇ S (r) together with the control of the background foliation provided by Corollary 7.4, and the assumptions on (f, f ), yields

∇ S (r) hs(S) 1 2 f e 4 (r) + 1 2 f + 1 8 |f | 2 f e 3 (r) hs(S) (f, f ) hs(S) rδ 1 .
Similarly, as e a (m) = 0, a = 1, 2, we have for m

∇ S (m) hs(S) 1 2 f e 4 (m) + 1 2 f + 1 8 |f | 2 f e 3 (m) hs(S) • r -1 f hs(S) + f hs(S) • δ 1 .
which concludes the proof of the corollary.

Proof of Corollary 7.1

We are now ready to prove Corollary 7.1. The proof proceeds in the following steps.

Step 1. In view of Remark 4.10 and the fact that (f, f , λ) satisfies the GCM conditions (7.1), (f, f , λ) satisfies the linearized GCM system (4.14) with the following choices of terms h 1 , h 1 , h 2 , h 2 , h 3 , h 4 , and b 0

h 1 = -Err 1 [curl S f ], h 1 = -Err 1 [curl S f ], h 2 = -κ - 2 r S • λ -κ -Err 1 [div S f ] - 2(r -r S ) 2 r(r S ) 2 , h 2 = κ + 2 r S • λ -κ + 4m S (r S ) 2 - 4m r 2 + C0 + p C(p) J (p) -Err 1 [div S f ] + 2(r -r S ) 2 r(r S ) 2 +Err[κ S ], h 3 = -V - 2 (r S ) 2 • λ -μ + 2m S (r S ) 3 - 2m r 3 + M0 + p M (p) J (p) -ω + 1 4 κ 2 r S - 2 r -κ + ω + 1 4 κ 2Υ r - 2Υ S r S + Ċ0 + p Ċ(p) J (p) + C0 + p C(p) J (p) -κ - 1 2r S Ċ0 + p Ċ(p) J (p) + Err 2 [∆ S • λ ] + Err[µ S ], h 4 = 1 2 div S 2m r f + Err 1 [∆ S • b ] , b 0 = r S -r S .
Step 2. In view of Corollary 7.5, S is an O(δ 1 + • )-sphere in R, so for δ 1 and

• small enough, we may apply Proposition 4.13. In particular, the following a priori estimates hold for 3

≤ s ≤ s max + 1 (f, f , q • λ S ) h s+1 (S) + p r 2 | Ċ(p) | + r 3 | Ṁ (p) | r ( q h 1 S , q h 1 S , q h 2 S , q h 2 S ) hs(S) + r 2 q h 3 S h s-1 (S) + r q h 4 S h s-2 (S) + |Λ| + |Λ|, (7.8) and r 2 | Ċ0 | + r 3 | Ṁ0 | + r • λ S r ( q h 1 S , q h 1 S , h 2 , h 2 ) L 2 (S) + r 2 h 3 L 2 (S) + r q h 4 S L 2 (S) +|Λ| + |Λ| + |b 0 |, (7.9) 
where h 1 , h 1 , h 2 , h 2 , h 3 , h 4 and b 0 are given in Step 1.

Step 3. We will need to rewrite h 3 . We have

-ω + 1 4 κ 2 r S - 2 r -κ + ω + 1 4 κ 2Υ r - 2Υ S r S + Ċ0 + p Ċ(p) J (p) + C0 + p C(p) J (p) -κ - 1 2r S Ċ0 + p Ċ(p) J (p) = 1 2r - 1 2r S Ċ0 + p Ċ(p) J (p) + 2m S r(r S ) 2 - 2m r 2 r S + ω + 1 4 κ - 2 r 2Υ r - 2Υ S r S + Ċ0 + p Ċ(p) J (p) + ω + 1 4 κ κ -ω + 1 4 κ + 2Υ r 2 r S - 2 r + ω + 1 4 κ C0 + p C(p) J (p) -κ ,
and hence, in view of its definition in Step 1, we may rewrite h 3 as • the control of the background foliation provided by Corollary 7.4,

h 3 = -V - 2 (r S ) 2 • λ -μ + 2m S (r S ) 3 - 2m r 3 + M0 + p M (p) J (p) + 1 2r - 1 2r S Ċ0 + p Ċ(p) J (p) + 2m S r(r S ) 2 - 2m r 2 r S + ω + 1 4 κ - 2 r 2Υ r - 2Υ S r S + Ċ0 + p Ċ(p) J (p) + ω + 1 4 κ κ -ω + 1 4 κ + 2Υ r 2 r S - 2 r + ω + 1 4 κ C0 + p C(p) J (p) -κ +Err 2 [∆ S • λ ] + Err[µ S ]. ( 7 
• the assumptions (6.2) on κ, κ and μ,

• the control of C0 , C(p) , M0 , and M (p) using Corollary 7.6 respectively with D = C 0 , D = C (p) , D = M 0 and D = M (p) , the control of C 0 , C (p) , M 0 and M (p) provided by the background foliation, and the a priori control of (f, f ) provided by (7.2),

• the control of the error terms Err

1 [curl S f ], Err 1 [curl S f ], Err 1 [div S f ], Err 1 [div S f ],
Err 2 [∆ S

• λ ] and Err 1 [∆ S

• b ] in view of their structure in Definition 4.2, the control of the background foliation, and the a priori control of (f, f , λ) provided by (7.2), we infer

r ( q h 1 S , q h 1 S , q h 2 S , q h 2 S ) hs(S) + r 2 q h 3 S h s-1 (S) + r q h 4 S h s-2 (S) • δ + 1 • r + • + δ 1 (f, f , • λ ) hs(S) + r -1 r -r S hs(S) + r -1 m -m S hs(S) +r Err[κ S ] hs(S) + r 2 Err[µ S ] h s-1 (S)
and

r ( q h 1 S , q h 1 S , h 2 , h 2 ) L 2 (S) + r 2 h 3 L 2 (S) + r q h 4 S L 2 (S) • δ + 1 • r + • + δ 1 (f, f , • λ ) L 2 (S) + sup S |r -r S | + sup S |m -m S | +r Err[κ S ] L 2 (S) + r 2 Err[µ S ] L 2 (S) .
Now, in view of the third property of Lemma 7.3, Corollary 7.7 and Corollary 7.8, we have sup

S |r -r S | + r -1 r -r S hs(S) rδ 1 , sup S |m -m S | + r -1 m -m S hs(S) δ 1 + ( • ) 2 .
We infer

r ( q h 1 S , q h 1 S , q h 2 S , q h 2 S ) hs(S) + r 2 q h 3 S h s-1 (S) + r q h 4 S h s-2 (S) • δ + ( • ) 2 + rδ 1 1 • r + • + δ 1 + 1 • r + • + δ 1 (f, f , • λ ) hs(S) +r Err[κ S ] hs(S) + r 2 Err[µ S ] h s-1 (S)
and

r ( q h 1 S , q h 1 S , h 2 , h 2 ) L 2 (S) + r 2 h 3 L 2 (S) + r q h 4 S L 2 (S) • δ + ( • ) 2 + rδ 1 1 • r + • + δ 1 + 1 • r + • + δ 1 (f, f , • λ ) L 2 (S)
+r Err[κ S ] L 2 (S) + r 2 Err[µ S ] L 2 (S) .

Step 5. In view of the estimates of (7.8), (7.9), and the estimates for

h 1 , h 1 , h 2 , h 2 , h 3 and h 4 of Step 4, we deduce (f, f , q • λ S ) h s+1 (S) + p r 2 | Ċ(p) | + r 3 | Ṁ (p) | • δ + ( • ) 2 + rδ 1 1 • r + • + δ 1 + 1 • r + • + δ 1 (f, f , • λ ) hs(S) + |Λ| + |Λ| +r Err[κ S ] hs(S) + r 2 Err[µ S ] h s-1 (S)
and

r 2 | Ċ0 | + r 3 | Ṁ0 | + r • λ S • δ + ( • ) 2 + rδ 1 1 • r + • + δ 1 + 1 • r + • + δ 1 (f, f , • λ ) L 2 (S) +|Λ| + |Λ| + sup S |r -r S | + r Err[κ S ] L 2 (S) + r 2 Err[µ S ] L 2 (S) .
The above estimates yield for δ 1 and

• small enough (f, f , q • λ S ) h s+1 (S) + p r 2 | Ċ(p) | + r 3 | Ṁ (p) | • δ + ( • ) 2 + rδ 1 1 • r + • + δ 1 + |Λ| + |Λ| +r Err[κ S ] hs(S) + r 2 Err[µ S ] h s-1 (S)
and

r 2 | Ċ0 | + r 3 | Ṁ0 | + r • λ S • δ + ( • ) 2 + rδ 1 1 • r + • + δ 1 + |Λ| + |Λ| + sup S |r -r S | +r Err[κ S ] L 2 (S) + r 2 Err[µ S ] L 2 (S)
which are the desired estimates. This concludes the proof of Corollary 7.1.

A Proof of Proposition 3. 

f a e 3 = 2ξ + f b χ ba + 1 2 |f | 2 η a + 2ωf a + f • ζ f a + l.o.t. = 2ξ + 1 2 (trχf a -(a) trχ f a ) + 2ωf a + f b χ ba + 1 2 |f | 2 η a + f • ζ f a + l.o.t., f b g D λ -1 e 4 e b , e a + 1 2 f a e 3 = f b g D λ -1 e 4 e b + 1 2 f b e 3 , e a + 1 2 f a e 3 - 1 2 f b f b g D λ -1 e 4 e 3 , e a + 1 2 f a e 3 = -f b g D λ -1 e 4 e a + 1 2 f a e 3 , e b + 1 2 f b e 3 - 1 2 |f | 2 g D λ -1 e 4 e 3 , e a = -f b g D λ -1 e 4 e a - 1 2 f a λ -1 e 4 , e b - 1 2 f b λ -1 e 4 - 1 2 |f | 2 g (D e 4 e 3 , e a ) + l.o.t. = -f b g D λ -1 e 4 e a , e b + λ -2 f a f b ξ b + λ -2 f b f b ξ a -f b f b η a + l.o.t.
+ λ -1 ∇ 4 f a + 1 2 (trχf a -(a) trχ f a ) + 2ωf a + f b χ ba + 1 2 |f | 2 η a + f • ζ f a +λ -2 f a f b ξ b + λ -2 f b f b ξ a -f b f b η a + 1 2 |f | 2 η a + l.o.t.
and hence

λ -2 ξ = ξ + 1 2 λ -1 ∇ 4 f + 1 4 (trχf -(a) trχ f ) + ωf + Err(ξ, ξ ), Err(ξ, ξ ) = 1 2 f • χ + 1 4 |f | 2 η + 1 2 (f • ζ) f - 1 4 |f | 2 η + 1 2 λ -2 (f • ξ ) f + λ -2 (f • f ) ξ + l.o.t.
as desired.

A.2 Transformation formula for ξ

We have 

(f a ) + λ -2 f b g D λe 3 e b , e a - 1 2 λ -2 |f | 2 η a = λ -2 g D λe 3 e 3 , δ b a + 1 2 f a f b e b + 1 2 f a e 4 + λ -1 ∇ 3 f a - 1 2 λ -2 |f | 2 η a = λ -2 g D e 3 +f b e b + 1 4 |f | 2 e 4 e 3 , e a + 1 2 f a e 4 + λ -1 ∇ 3 f a - 1 2 λ -2 |f | 2 η a + l.o.t. = 2λ -2 ξ a + 2f a λ -2 ω + f b λ -2 χ ba -f b f a λ -2 ζ b + 1 2 |f | 2 λ -2 η a + λ -1 ∇ 3 f a - 1 2 λ -2 |f | 2 η a + l.o.t.
and hence

λ 2 ξ = ξ + 1 2 λ∇ 3 f + ω f + 1 4 trχ f - 1 4 (a) trχ f + Err(ξ, ξ ), Err(ξ, ξ ) = 1 2 f • χ - 1 2 (f • ζ)f + 1 4 |f | 2 η - 1 4 |f | 2 η + l.o.t.
as desired.

A.3 Transformation formulas for χ

Next, we have 

+ 1 2 f a f c )ec+ 1 2 f a e 4 +( 1 2 fa+ 1 8 |f | 2 f a )e3 e 4 , e b + 1 2 f b g D (δ c a + 1 2 f a f c )ec+ 1 2 f a e 4 +( 1 2 fa+ 1 8 |f | 2 f a )e3 e 4 , e 3 = δ c a + 1 2 f a f c χ cb + f a ξ b + f a η b + f b ζ a + ωf b f a -ωf b f a + l.o.t., f c g D e a e b + 1 2 f b e 3 , e c = f c g D e a e b + 1 2 f b e 3 , e c + 1 2 f c e 3 - 1 2 f c f c g D e a e b + 1 2 f b e 3 , e 3 = f c g D e a e b - 1 2 f b λ -1 e 4 , e c - 1 2 f c λ -1 e 4 + 1 2 |f | 2 g D e a e 3 , e b + 1 2 f b e 3 = f c g D e a e b , e c - 1 2 f c λ -1 e 4 - 1 2 f c f b λ -1 g D e a e 4 , e c + 1 2 |f | 2 g (D ea e 3 , e b ) + l.o.t. = f c g D e a e b , e c + 1 2 f c f c λ -1 χ ab - 1 2 f c f b λ -1 χ ac + 1 2 |f | 2 χ ab + l.o.t.,
f a f d )ed+ 1 2 f a e 4 + 1 2 fae 3 e 3 , δ c b + 1 2 f b f c e c + 1 2 f b e 4 + l.o.t. = χ ab + 1 2 f a f d χ db + 1 2 f b f c χ ac + f a η b + f a ξ b -f b f a ω + f b f a ω -f b ζ a + l.o.t.
and hence

λχ ab = χ ab + ∇ a f b + 1 2 f a f d χ db + 1 2 f b f c χ ac + f a η b + f a ξ b -f b f a ω + f b f a ω -f b ζ a - 1 4 |f | 2 λ -1 χ ab + l.o.t.
We deduce

λtrχ = trχ + div f + f • η -f • ζ + Err(trχ, trχ ), Err(trχ, trχ ) = 1 2 (f • f )trχ + f • ξ -|f | 2 ω + (f • f )ω - 1 4 |f | 2 λ -1 trχ + l.o.t., λ (a) trχ = (a) trχ + curl f + f ∧ η -ζ ∧ f + Err( (a) trχ, (a) trχ ), Err( (a) trχ, (a) trχ ) = 1 2 (f • f ) (a) trχ + f ∧ ξ + (f ∧ f )ω - 1 4 |f | 2 λ -1 (a) trχ + l.o.t., and 
λ χ = χ + ∇ ⊗f + f ⊗η -f ⊗ζ + Err( χ, χ ), Err( χ, χ ) = 1 2 (f ⊗f )trχ + f ⊗ξ -(f ⊗f )ω + (f ⊗f )ω - 1 4 |f | 2 λ -1 χ + l.o.t.
as desired.

A.5 Transformation formula for ζ

Next, we have 

= g D (δ c a + 1 2 f a f c )ec+ 1 2 f a e 4 +( 1 2 fa+ 1 8 |f | 2 f a )e3 e 4 , e 3 +f b g D (δ c a + 1 2 f a f c )ec+ 1 2 f a e 4 +( 1 2 fa+ 1 8 |f | 2 f a )e3 e b , e 3 = 2ζ a + 2ωf a -2ωf a -χ ba f b + f a f c ζ c -f a f b η b + l.o.t.
We infer 2ζ a = -2e a (log λ) + g D e a (λ -1 e 4 ), e 3 + λ -1 f b χ ab = 2ζ a -2e a (log λ) -

1 2 trχf a + 1 2 (a) trχ f a + 2ωf a -2ωf a + 1 2 λ -1 f a trχ + 1 2 λ -1 f a (a) trχ -χ ab f b + f a f c ζ c -f a f b η b + λ -1 f b χ ab + l.o.t.
and hence,

ζ = ζ -∇ (log λ) - 1 4 trχf + 1 4 (a) trχ f + ωf -ωf + 1 4 λ -1 f trχ + 1 4 λ -1 f (a) trχ - 1 2 χ • f + 1 2 (f • ζ)f - 1 2 (f • η)f + 1 2 λ -1 f • χ + l.o.t.
Using also the above transformation formulas for trχ and We infer

Err(ζ, ζ ) = - 1 2 χ • f + 1 2 (f • ζ)f - 1 2 (f • η)f + 1 4 f (f • η) + 1 4 f (f • ζ) + 1 4 f (f ∧ η) + 1 4 f (f ∧ ζ) + 1 4 f div f + 1 4 f curl f + 1 2 λ -1 f • χ - 1 16 (f • f )f λ -1 trχ + 1 16 (f ∧ f )f λ -1 (a) trχ - 1 16 f (f • f )λ -1 (a) trχ + 1 16 f λ -1 (f ∧ f )trχ + l.o.t.
2η a = 2 1 + 1 2 f • f η a -2ωf a + f b χ ba + f a f b ζ b + λ∇ 3 f a -2f b f b η a + f a f b η b + l.o.t.
and hence

η = η + 1 2 λ∇ 3 f + 1 4 f trχ - 1 4 f (a) trχ -ω f + Err(η, η ), Err(η, η ) = 1 2 (f • f )η + 1 2 f • χ + 1 2 f (f • ζ) -(f • f )η + 1 2 f (f • η ) + l.o.t.
as desired.

A.7 Transformation formula for η

Next, we have 

= α ab + f a β b + f b β a ) + f a f b ρ -β b f a + 1 2 f a f b ρ + 1 2 f a f b ρ + f a f b ρ -β a f b + 1 2 f b f a ρ + 1 2 f b f a ρ + f b f a ρ - 1 2 |f | 2 ρδ ab + l.o.t. = α ab + f a β b + f b β a ) -f a β b + f b β a ) + 2f a f b -f a f b - 1 2 |f | 2 δ ab ρ + 3 2 f a f b + f b f a ) ρ + l.o.t.
Since α is traceless, we infer

λ -2 α = α + Err(α, α ) Err(α, α ) = f ⊗β -f ⊗ β) + f ⊗f - 1 2 f ⊗ f ρ + 3 2 f ⊗ f ρ + l.o.t.
as desired.

A.11 Transformation formula for β

To derive the transformation formula for β we write (δU (n) , δS (n) )

h 3 ( • S) (B.12)
where Γ (n) , Γ (n-1) denote the Christoffel symbols of the metrics g (n) , g (n-1) relative to the coordinates y 1 , y 2 on r ( (δh 1 ) (n)

• S,g (n) , (δh 1 ) (n)

• S,g (n) , (δh 2 ) (n) , (δh 2 ) (n) )

L 2 ( , (δh 1 ) (n)

• S,g (n)

)

h 2 ( • S)
• δ ((δf ) (n) , (δf ) (n) , (δ

• λ ) (n) ) h 3 ( • S)
+ r -1 (δU (n) , δS (n) ) , (δh 2 ) (n)

• S,g (n)

) 

h 2 ( • S) • δ|r (n) -r (n-1) | + • δ|r (n-1) -r (n-2) | + r -2 r #n -r # n-1 h 2 ( • S) +r -1 m #n -m # n-1 h 2 ( • S) + r κ#n -κ# n-1 h 2 ( • S) + r κ#n -κ# n-1 h 2 ( • S) + • ((δf ) (n) , (δf ) (n) , (δ • λ ) (n) ) h 3 ( • S) + r -1 (δU (n) , δS (n) ) h 3 ( • S) and r ((δh 2 ) (n) , (δh 2 ) (n) ) L 2 ( • S) |m (n) -m (n-1) | + (r -1 + • δ)|r (n) -r (n-1) | + • δ|r (n-1) -r (n-2) | + r -2 r #n -r # n-1 h 2 ( • S) +r -1 m #n -m # n-1 h 2 ( • S) + r κ#n -κ# n-1 h 2 ( • S) + r κ#n -κ# n-1 h 2 ( • S) + • ((δf ) (n) , (δf ) (n) , (δ • λ ) (n) ) h 3 ( • S) + r -1 (δU (n) , δS (n) ) h 3 ( • S)
+ ω #n -ω # n-1 h 2 ( • S) + • ((δf ) (n) , (δf ) (n) , (δ • λ ) (n) ) h 3 ( • S)
+ r -1 (δU (n) , δS (n) )

h 3 ( • S) +r 2 • |δ Ċ(n) 0 | + p |δ Ċ(n),p | + r 2 |δ C(n) 0 | + p |δ C(n),p | .
Using Proposition B.1 and A1, we deduce

r 2 (δh 3 ) (n) • S,g (n) h 1 ( • S) (r -1 + • ) ((δf ) (n) , (δf ) (n) , (δ • λ ) (n) ) h 3 ( • S)
+ r -1 (δU (n) , δS (n) ) r -1 (δU (n) , δS (n) )

h 3 ( • S)
+ (r -1 + • ) ((δf ) (n) , (δf ) (n) , (δ

• λ ) (n) ) h 3 ( • S) +r 2 • |δ Ċ(n) 0 | + p |δ Ċ(n),p | . (B.32)
The estimates for (δh 4 ) (n) and (δb 0 ) (n) , (δΛ) (n) and (δΛ) (n) are similar and in fact easier. We obtain for those quantities

r (δh 4 ) (n) • S,g (n) L 2 ( • S) + |(δΛ) (n) | + |(δΛ) (n) | (r -1 + • ) ((δf ) (n) , (δf ) (n) , (δ • λ ) (n) ) h 3 ( • S)
+ r -1 (δU (n) , δS (n) ) h 3 ( .

In view of the above definition of δh .

Also, proceeding as in section B.5, we easily obtain the following analog of (B.37) r -1 (δU, δS)

h s+1 ( • S) (δf, δf ) hs( • S)
.

Gathering the above estimates, we deduce r -1 (δU, δS)

h s+1 ( • S)
+ (δf, δf , δ as desired. This concludes the proof of Corollary 6.11.

Figure 1 :4

 1 Figure 1: The GCM admissible space-time M

  this background foliation of R, we look for a O( • δ) deformation of it, i.e a map Ψ :• S → S of the form Ψ( 1 , y 2 ) = • u + U (y 1 , y 2 ), • s + S(y 1 , y 2 ), y 1 , y 2 (1.4)with (U, S) smooth functions on • S, vanishing at a fixed point of • S, of size proportional to the small constant • δ.

m

  denoting respectively its area radius and Hawking mass, with • r sufficiently large. Then, for any fixed triplets Λ, Λ ∈ R 3 verifying

D a e b = ∇ a e b + 1 2 χ ab e 3 + 1 2 χ ab e 4 ,D a e 4 =

 44 e b ), χ ab = g(D a e 4 , e b ), χ ab e bζ a e 4 , D a e 3 = χ ab e b + ζ a e 3 , D 3 e a = ∇ 3 e a + η a e 3 + ξ a e 4 , D 3 e 3 = -2ωe 3 + 2ξ b e b , (2.5) D 3 e 4 = 2ωe 4 + 2η b e b , D 4 e a = ∇ 4 e a + η a e 4 + ξ a e 3 , D 4 e 4 = -2ωe 4 + 2ξ b e b , D 4 e 3 = 2ωe 3 + 2η b e b .

Finally, note that e 3

 3 (a) trχ = (a) trχ = 0. Next, recall that L is geodesic, e 4 = ςL and L(ς) = 0. This immediately implies that e 4 is geodesic, and hence we have ω = ξ = 0. Also, applying the vectorfield [e 4 , e a ] = (η a + ζ a )e 4 + ξ a e 3χ ab e b to s, and since e 4 (s) = 1 and e a (s) = 0, we derive, η + ζ = 0. (u) = g(e 3 , -L) = -ς -1 g(e 3 , e 4

m

  the Hawking mass of • S, where S(u, s) denote the 2-spheres of the outgoing geodesic foliation (u, s) on R. 4. R is covered by two coordinates charts R = R N ∪ R S such that:

3. 1 3 . 1 .

 131 General null frame transformationsLemma Given a null frame (e 3 , e 4 , e 1 , e 2 ), a general null transformation from the null frame (e 3 , e 4 , e 1 , e 2 ) to another null frame (e 3 , e 4 , e 1 , e 2 ) can be written in the form,

Proposition 3 . 4 .the

 34 appear among the error terms. Under a transformation of type (3.1), in the particular case where the frame (e 3 , e 4 , e 1 , e 2 ) is the one attached to the geodesic foliation of R, and under the assumption Ricci coefficients χ, χ and ζ, and the curvature component ρ, transform as follows:

1 . 3 . 5 .

 135 3 and getting rid of the Γ on the RHS thanks to the assumption |F | Remark For convenience in what follow we will use the following notation (a) κ = (a) trχ, (a) κ = (a) trχ, κ = trχ, κ = trχ. (3.31)

  (a) κ S = (a) κ S = 0.

  a fixed sphere of the (u, s) foliation of R. Definition 5.1. We say that S is a deformation of • S if there exist smooth scalar functions U, S defined on • S and a map a map Ψ : • S → S verifying, on either coordinate chart (y 1 , y 2 ) of • S,

•S

  relative to which the spacetime metric takes the form (2.14) g = -2ςduds + ς 2 Ωdu 2 + g ab dy a -ςB a du dy b -ςB b du , where Ω = e 3 (s), B a = 1 2 e 3 (y a ), g ab = g(∂ y a , ∂ y b ). be a fixed sphere of the background foliation of R and consider a deformation Ψ : • S → S in R as in Definition 5.1. Then 1. The push-forward vectorfields Y (a) = Ψ # (∂ y a ) on S have the form Y (a) = Y 4 (a) e 4 + Y 3 (a) e 3 + Y c (a) e c (5.2)

• S |f # | 2

 2 da g S,# = S |f | 2 da g S . Proof. Let Y (a) , a = 1, 2, denote the push forwards to S of the coordinate vectorfields ∂ y a on • S. More precisely at every point Ψ(p), p ∈ • S,

•S

  → S as in Definition 5.1, we denote • At points Ψ(p) in S, g S ab (Ψ(p)) := g S Ψ(p) Y (a) , Y (b) = g S,# ab (

2 (

 2 7 for Y c (a) Y c (b) (Ψ(p)) -Y c (a) Y c (b) (p), and since s + 1 ≤ s max -1, so that at most s max + 1 derivatives fall on (U, S) and at most s max on (Ω, ς, Z c , Y c (a) ), we infer a,b,c=1,5.21) with s replaced by s + 1.

  and a,b,c=1,2

•u((

  + U (y), • s + S(y)) on S. Then, we have r(y, • u + U (y), • s + S(y)) -• r = r(y, • u + U (y), • s + S(y))r(y, |∂ u r| + |∂ s r|) U, S L ∞ ( used |∂ u r| + |∂ s r| 1 from the expression for ∂ u and ∂ s and from the control of the background foliation on R given by assumptions A1-A3. Together with Lemma 5.8|∂ u m| + |∂ s m|) U, S used |∂ u m| + |∂ s m| • from the expression for ∂ u and ∂ s and from the control of the background foliation on R given by assumptions A1-A3. Hence, since • Given a deformation Ψ : • S → S we say that a new frame (e 3 , e 4 , e 1 , e 2 ) on S, obtained from the standard frame (e 3 , e 4 , e 1 , e 2 ) via the transformation (3.1), is S-adapted if the horizontal vectorfields e 1 , e 2 are tangent to S. Proposition 5.14. Consider a fixed deformation Ψ : • S → S in R generated by the functions U, S : • S → R. A new frame e 4 , e 3 , e 1 , e 2 on S generated by (f, f , λ) from the reference frame e 4 , e 3 , e 1 , e 2 according to the transformation formulas (3.1) is S-adapted if and only if the following relations are satisfied

Corollary 5 .41

 5 16. Let • S ⊂ R. Let Ψ : • S → S be a deformation generated by the functions (U, S) as in Definition 5.1. Let (f, f , λ) frame coefficients between the background frame of R and a frame 41 (e S 1 , e S 2 , e S 4 , e S 3 ) adapted to S. Assume that (U, S) satisfy the bound (U, S) Note that (e S 1 , e S2 ) and (f, f ) are uniquely prescribed, while λ > 0 is free, so that (e S 1 , e S 2 , e S 4 , e S 3 ) is unique up to a choice of λ.with s max ≥ 2. Then (f, f ) hs max (S)• δ.

Corollary 5 .

 5 18. Let • S ⊂ R. Let Ψ : • S → S be a deformation generated by the functions (U, S) as in Definition 5.1. Assume the bound (U, S)

Ss max ≥ 3 .

 3 ⊂ R. Let Ψ : • S → S be a deformation generated by the functions (U, S) as in Definition 5.1. Assume the bound (U, S) Then, S is an O( • )-sphere. Proof. In view of the definition of O( • )-spheres in Definition 2.15, this follows immediately from the control of rr S in Corollary 5.12, taking into account that • δ ≤ • by assumption, and the control of K S in Corollary 5.18. Corollary 5.20. Let • S ⊂ R. Let Ψ : • S → S be a deformation generated by the functions (U, S) as in Definition 5.1. Let (f, f , λ) frame coefficients between the background frame of R and a frame (e S 1 , e S 2 , e S 4 , e S 3 ) adapted to S. Assume that (f, f ) satisfy the bound (f, f ) hs max (S) ≤ • δ, with s max ≥ 2. Then, for any scalar function D = D(u, s) on R depending only on the coordinates (u, s) of the background foliation, we have

6 .

 6 . The Hawking mass m S of S verifies the estimate m S -The well defined 45 Ricci and curvature coefficients of S verify, Γ S g hs max (S) • r -1 , Γ S b hs max (S)

Proposition 6 .Then 1 .

 61 10. Under the assumptions of Theorem 6.1, let S(Λ, Λ) the deformed spheres constructed in Theorem 6.1 for parameter Λ, Λ ∈ R 3 verifying The transition parameters (f, f ,• λ ) are continuous and differentiable with respect to Λ, Λ and verify

  be a fixed sphere from this foliation, and let • r and • m denoting respectively its area radius and its Hawking mass. Then for any fixed pair of triplets Λ, Λ ∈ R 3 verifying |Λ|, |Λ| • δ, there exists a unique GCM sphere S = S (Λ,Λ) Kerr , which is a deformation of • S, such that the GCM conditions (6.4) are verified, and

Corollary 7 . 6 .

 76 Let 2 ≤ s ≤ s max . There exists a small enough constant δ 1 such that given f, f on R satisfyingf hs(S) + (r S ) -1 f hs(S) ≤ δ 1 ,then, for any scalar function D = D(u, s) on R depending only on the coordinates (u, s) of the background foliation, we haveD -D S hs(S) r f hs(S) + r -1 f hs(S) sup R |d ≤s D|.Proof. The proof is a simple adaptation of the one of Corollary 5.20.

3 A. 1 2 f a e 3 = 4 |f | 2 e 3 , e a + 1 2 f a e 3 = 2 f a e 3 + 1 4 2 f a e 3 =

 312343323123 Transformation formula for ξ We have 2ξ a = g(D e 4 e 4 , e a ) = λ 2 g(D λ -1 e 4 (λ -1 e 4 ), e a ) = λ 2 g D λ -1 e 4 (λ -1 e 4 ), e a + 1 λ 2 g D λ -1 e 4 e 4 + f b e b + 1 λ 2 g D λ -1 e 4 e 4 , e a + 1 2 f a e 3 + λe 4 (f a ) + λ 2 f b g D λ -1 e 4 e b , e a + 1 |f | 2 λ 2 g D λ -1 e 4 e 3 , e a . We compute the terms on the right-hand side g D λ -1 e 4 e 4 , e a + 1 g D e 4 +f b e b + 1 4 |f | 2 e 3 e 4 , e a + 1 2

and |f | 2 2 f a e 3 + 1 4

 2231 g D λ -1 e 4 e 3 , e a = |f | 2 g (D e 4 e 3 , e a ) + l.o.t. = 2|f | 2 η a + l.o.t. We infer 2λ -2 ξ a = g D λ -1 e 4 e 4 , e a + 1 2 f a e 3 + λ -1 e 4 (f a ) + f b g D λ -1 e 4 e b , e a + 1 |f | 2 g D λ -1 e 4 e 3 , e a = 2ξ a

  2ξ a = g(D e 3 e 3 , e a ) = λ -2 g(D λe 3 (λe 3 ), e a ) = λ -2 g D λe 3 e 3 + f b e b -1 4 |f | 2 λ -1 e 4 , e a = λ -2 g D λe 3 e 3 , e a + λ -1 e 3

λ - 1 χ 2 f b e 3 = g D e a e 4 + f c e c + 1 4 |f | 2 e 3 , e b + 1 2 f b e 3 = g D e a e 4 , e b + 1 2 f b e 3 + 2 f b e 3 + 1 4 2 f b e 3 = g D e a e 4 , e b + 1 2 f b g D e a e 4 , e 3 =

 123443343242343 ab = g D e a (λ -1 e 4 ), e b = g D e a (λ -1 e 4 ), e b + 1 e a (f b ) + f c g D e a e c , e b + 1 |f | 2 g D e a e 3 , e b = g D e a e 4 , e b + 1 2 f b e 3 + e a (f b )f c g D e a e b + 1 2 f b e 3 , e c + 1 4 |f | 2 g D e a e 3 , e b . We compute the terms on the right-hand side g D e a e 4 , e b + 1 g D (δ c a

and |f | 2

 2 g D e a e 3 , e b = |f | 2 χ ab + l.o.t. We compute g D e a e 3 , e b = g D (δ d a + 1 2

4 |f | 2 e 3 , e 3 =

 43 2ζ a = g(D e a e 4 , e 3 ) = -2e a (log λ) + g(D e a (λ -1 e 4 ), λe 3 ) = -2e a (log λ) + g D e a (λ -1 e 4 ), e 3 + f b e b = -2e a (log λ) + g D e a (λ -1 e 4 ), e 3 + λ -1 f b χ ab . We compute the term on the right-hand side g D e a (λ -1 e 4 ), e 3 = g D e a e 4 + f b e b + 1 g D e a e 4 , e 3 + f b g D e a e b , e 3

f trχ + 1 4 f

 4 (a) trχ , we inferζ = ζ -∇ (log λ)trχ f + ωfωf + 1 4 (a) trχ + Err(ζ, ζ ),

A. 6 2 f a λ -1 e 4 + 1 2 f a e 3 = 2 f a e 3 = g D λe 3 e 4 + f b e b + 1 4 |f | 2 e 3 , e a + 1 2 f a e 3 = g D λe 3 e 4 , e a + 1 2 f a e 3 + 2 f a e 3 + 1 4 2 f a e 3 = 2 f a e 3 , e b + 1 2 f b e 3 + 1 2 |f | 2 g D λe 3 e a + 1 2 f a e 3 , e 3 = -f b g D λe 3 e a - 1 2 f a λ -1 e 4 , e b - 1 2 f b λ -1 e 4 - 1 2 |f | 2 g D λe 3 e 3 , e a + 1 2 f a e 3 =

 62323443343242323234233 Transformation formula for η Next, we have 2η a = g(D e 3 e 4 , e a ) = g(D λe 3 (λ -1 e 4 ), e a ) = g D λe 3 (λ -1 e 4 ), e a + 1 g D λe 3 (λ -1 e 4 ), e a + 1 λe 3 (f a ) + f b g D λe 3 e b , e a + 1 |f | 2 g D λe 3 e 3 , e a .We compute the term on the right-hand sideg D λe 3 e 4 , e a + 1 2 f a e 3 = g D (1+ 1 2 f •f + 1 16 |f | 2 |f | 2 )e3+(f b + 1 4 |f | 2 f b )eb+ 1 4 |f | 2e 4 e 4 , e a f g D e 3 e 4 , e a + 1 2 f a e 3 + f b g D e b e 4 , e a + f a e 3 + l.o.t. η a -2ωf a + f b χ ba + f a f b ζ b + l.o.t., f b g D λe 3 e b , e a + 1 -f b g D λe 3 e a + 1 2 f a e 3 , e b = -f b g D λe 3 e a + 1 -f b g D λe 3 e a , e b -2f b f b η a + f a f b η b + l.o.t., and 1 4 |f | 2 g D λe 3 e 3 , e a = l.o.t.

1 2 f a f b e b + 1 2 f a e 4 = δ b a + 1 2 ff a f b g D e 4 +f c ec+ 1 4 |f | 2 e 3 e 3 , e b + 1 2 f a g D e 4 +f b e b + 1 4 |f | 2 e 3 e 3 , e 4 = δ b a + 1 2 f a f b 2η b + f c χ cb + 1 2 |f | 2 ξ b + 1 2 f 2 λ 4 |f | 2 e 3 = 4 |f | 2 R 2 |f | 2 2 f a f c e c ) + 1 2 f a e 3 , e 4 , (e b + 1 2 f b f d e d ) + 1 2 f b e 3 4 + 1 2 2 f a e 3 + 1 2 f e 4 , e c , e b + 1 2 f b e 3 + 1 2 f b e 4 = -∈ ac β b f c + 1 2 f c f a ρδ cb -ρ ∈ cb + 1 2 f c f b 2 ∈= -β b f a + 1 2 f a f b ρ + 1 2 f

 1423422243422223434124422 2η a = g(D e 4 e 3 , e a ) = g(D λ -1 e 4 (λe 3 ), e a ) = g D λ -1 e 4 e 3 + f b e b -1 4 |f | 2 λ -1 e 4 , e a = g D λ -1 e 4 e 3 , e a + g D λ -1 e 4 f b e b , e a -1 2 |f | 2 λ -2 ξ a . We compute the terms on the right-hand side g D λ -1 e 4 e 3 , e a = g D λ -1 e 4 e 3 , δ b a + a f b g D λ -1 e 4 e 3 , e b + 1 2 f a g D λ -1 e 4 e 3 , e 4 a -4ωf • ζ + l.o.t. and g D λ -1 e 4 f b e b , e a = λ -1 e 4 (f a ) + f b g D λ -1 e 4 e b , e a = λ -1 e 4 (f a )f b g D λ -1 e 4 e a , e b = λ -1 ∇ 4 f a .We infer2η a = g D λ -1 e 4 e 3 , e a + g D λ -1 e 4 f b e b , e a -1 2 |f | 2 λ -2 ξ a = 2η a + λ -1 ∇ 4 f a + 1 2 trχf a -1 2 (a) trχ f a -2ωf a + f c χ ca + f a f b η b -1 2 f a (f • ζ) trχ fωf + Err(η, η ), -2 ξ + l.o.t.as desired.A.10 Transformation formula for αNext, we haveλ -2 α ab = R(e a ,e 4 , e b , e 4 ) = R e a , e 4 + f c e b + 1 4 |f | 2 e 3 , e b , e 4 + f d e d + 1 R(e a , e 4 , e b , e 4 ) + f c R e a , e c , e b , e 4 + f d R e a , e 4 , e b , e d + 1 e a , e 3 , e b , e 4 + 1 4 |f | 2 R e a , e 4 , e b , e 3 + l.o.t. = R(e a , e 4 , e b , e 4 ) + f c R e a , e c , e b , e 4 + f d R e a , e 4 , e b , e d + 1 4 |f | 2 R e a , e 3 , e b , e 4 + R e a , e 4 , e b , e 3 + f c f d R e a , e c , e b , e d + l.o.t. = R(e a , e 4 , e b , e 4 ) + f c R e a , e c , e b , e 4 + f d R e a , e 4 , e b , e d -1 ρδ ab -∈ ac ∈ bd f c f d ρ + l.o.t. We have R(e a , e 4 , e b , e 4 ) = R (e a + 1 , e 4 + l.o.t. = R (e a + 1 2 f a f c e c ), e 4 , (e b + 1 2 f b f d e d ), e 4 + 1 2 f a R(e 3 , e 4 , e b , e f b R(e a , e 4 , e 3 , e 4 + 1 4 f a f b R(e 3 , e 4 , e 3 , e 4 ) + l.o.t. = α ab + f a β b + f b β a ) + f a f b ρ + l.o.t. Also, f c R e a , e c , e b , e 4 = f c R e a + 1 , e 4 + l.o.t. = f c R e a , e c , e b , e 4 + 1 2 f c f a R e 3 , e c , e b , e 4 + 1 2 f c f b R e a , e c , e 3 , e 4 + l.o.t. ac ρ + l.o.t. a f b ρ + f a f b ρ + l.o.t. and, f d R e a , e 4 , e b , e d = f c R e b , e c , e a , e 4 =β a f b + 1 2 f b f a ρ + 1 2 f b f a ρ + f b f a ρ + l.o.t. Consequently, λ -2 α ab = R(e a , e 4 , e b , e 4 ) + f c R e a , e c , e b , e 4 + f d R e a , e 4 , e b , e d -1 2 |f | 2 ρf a f b ρ

2λ - 1 4 |f | 2 e 3 = 2 f a f b )e b + 1 2 f a e 4 + 1 2 f a e 3 2 f a e 4 + 1 2 f b e 3 3 = λ - 1 R 2 f a λ -1 e 4 + 1 2 f a e 3 +f a R λ -1 e 4 , e a + 1 2 f a λ -1 e 4 + 1 2 f a e 3 2 f a e 3 +f a R λ -1 e 4 , e a + 1 2 f a e 3

 14323233123432343 β a = R(e a , e 4 , e 3 , e 4 ) = R e a , e 4 + f b e b + 1 4 |f | 2 e 3 , e 3 , e 4 + f b e b + 1 R(e a , e 4 , e 3 , e 4 ) + f b R e a , e b , e 3 , e 4 + f b R e a , e 4 , e 3 , e b + 1 4 |f | 2 R(e a , e 3 , e 3 , e 4 ) + 1 4 |f | 2 R(e a , e 4 , e 3 , e 3 ) + f b f c R(e a , e b , e 3 , e c ) + l.o.t. = R(e a , e 4 , e 3 , e 4 ) + f b R e a , e b , e 3 , e 4 + f b R e a , e 4 , e 3 , e b + l.o.t. We have, R(e a , e 4 , e 3 , e 4 ) = R (δ ab + 1 , e 4 , e 3 , e 4 + l.o.t. = R(e a , e 4 , e 3 , e 4 ) + 1 2 f a R(e 3 , e 4 , e 3 , e 4 ) + l.o.t. β a + f b α ab + 2f a ρ + l.o.t. = 2β a + 2f a ρ + f b α ab + l.o.t. Since R e a , e b , e 3 , e 4 = 2 ∈ ab ρ and R e a , e 4 , e b , e 3 = -ρδ ab -∈ ab ρ f b R e a , e b , e 3 , e 4 = f b R e a + 1 , e b , e 3 , e 4 + l.o.t. = f b R e a , e b , e 3 , e 4 + l.o.t. = 2 f a ρ + l.o.t. f b R e a , e 4 , e 3 , e b = -f b R(e a , e 4 , e b , e 3 ) + l.o.t. = f a ρ + f a ρ + l.o.t. Hence, 2β a = R(e a , e 4 , e 3 , e 4 ) + f b R e a , e b , e 3 , e 4 + f b R e a , e 4 , e 3 , e b + l.o.t.= 2β a + 2f a ρ + f b α ab + 2 f a ρ + f a ρ + f a ρ + l.o.t.Therefore,β a = β a + 3 2 f a ρ + f a ρ + Err a (β, β ) Err a (β, β ) = 1 2 f b α ab + l.o.t.as stated.A.12 Transformation formula for ρWe start with ρ. We have 4ρ = R(e 4 , e 3 , e 4 , e 3 ) = R e 4 , λ -1 e 3 + f a e a -1 4 |f | 2 λ -1 e 4 , e 4 , e (e 4 , e 3 , e 4 , e 3 ) + λ -1 f a R (e 4 , e a , e 4 , e 3 ) = λ -1 R e 4 , e 3 , e 4 , λ -1 e 3 + f a e a -1 4 |f | 2 λ -1 e 4 + f a R λ -1 e 4 , e a , λ -1 e 4 , λe 3 , and hence 4ρ = R λ -1 e 4 , e 3 , λ -1 e 4 , e 3 + f a R λ -1 e 4 , e 3 , λ -1 e 4 , e a + 1 , λ -1 e 4 , λe 3 + l.o.t. = R λ -1 e 4 , e 3 , λ -1 e 4 , e 3 + f a R λ -1 e 4 , e 3 , λ -1 e 4 , e a + 1 , λ -1 e 4 , λe 3 + l.o.t. = R λ -1 e 4 , e 3 , λ -1 e 4 , e 3 + f a R λ -1 e 4 , e 3 , λ -1 e 4 , e a +f a R λ -1 e 4 , e a , λ -1 e 4 , λe 3 + 4(f • f )ρ + l.o.t. We compute R λ -1 e 4 , e 3 , λ -1 e 4 , e 3 = R e 4 + f a e a , e 3 , e 4 + f b e b , e 3 = 4ρ + f a R (e a , e 3 , e 4 , e 3 ) + f b R (e 4 , e 3 , e b , e 3 ) + l.o.t. = 4ρ -4f • β + l.o.t., f a R λ -1 e 4 , e 3 , λ -1 e 4 , e a = f a R e 4 + f b e b , e 3 , e 4 + f c e c , e a + l.o.t. = f a R (e 4 , e 3 , e 4 , e a ) + f a f b R (e b , e 3 , e 4 , e a ) +f a f c R (e 4 , e 3 , e c , e a ) + l.o.t.= 2f • βf a f b (-ρδ ba + ρ ∈ ba ) + 2f a f c ∈ ac ρ + l.o.t. = 2f • β + ρ(f • f ) -3 ρ(f ∧ f ) + l.o.t.and f a R λ -1 e 4 , e a , λ -1 e 4 , λe 3 = f a R e 4 + f b e b , e a , e 4 + f c e c , e 3 + f d e d = f a R (e 4 , e a , e 4 , e 3 ) + f a f b R (e b , e a , e 4 , e 3 ) +f a f c R (e 4 , e a , e c , e 3 ) + l.o.t. = 2f • β + ρ(f • f ) -3 ρ(f ∧ f ) + l.o.t. We infer 4ρ = R λ -1 e 4 , e 3 , λ -1 e 4 , e 3 + f a R λ -1 e 4 , e 3 , λ -1 e 4 , e a +f a R λ -1 e 4 , e a , λ -1 e 4 , λe 3 + 4(f • f )ρ + l.o.t. = 4ρ + 4f • β -4f • β + 6ρ(f • f ) -6 ρ(f ∧ f ) + l.o.t.

4 .

 4 We have|m (n)m (n-1) | r -1 (U (n) , S (n) )where m (n) is the Hawking mass of S(n) and m (n-1) is the Hawking mass of S(n-1).5. We havea,b,c=1,2(Γ (n) ) c ab -(Γ (n-1) ) c ab h 2 (

•S. 6 .F 7 .

 67 and h k ( • S) the Sobolev spaces w.r.t. the metric • gWe have for every F ∈ S k ( • S), for all k ≤ s max , We have for every F ∈ S k (R), for all k ≤ 2,F #n -F # n-1 any scalar function on R, we have F S(n) -F S(n-1)r -1 (δU(n) , δS(n) ) The proof follows by a simple adaptation of the proofs of Lemma 5.7, Lemma 5.8, Proposition 5.10 and Corollary 5.17.B.3 Equations for (δf) (n+1) , (δf ) (n+1) , (δ • λ ) (n+1) Lemma B.2. The quantities (δf ) (n+1) , (δf ) (n+1) , (δ • λ ) (n+1) verify the following system curl (n) (δf ) (n+1) = (δh 1 ) (n) , curl (n) (δf ) (n+1) = (δh 1 ) (n) ,

+ r 2 (δh 3 )

 23 δΛ) (n) | + |(δΛ) (n) | + |(δb 0 ) (n) |. (B.27)Next, we estimate each term in the RHS of (B.26) and (B.27). In view of the definition (B.21) of (δh 1 ) (n) and (δh 1 ) (n) , Proposition B.1, and the uniform in n bound (6.40), we have r ( (δh 1 ) (n)• S,g(n) 

  view of the definition (B.22) of (δh 2 ) (n) and (δh 2 ) (n) , Proposition B.1, and the uniform in n bound (6.40), we have r ( (δh 2 ) (n)• S,g(n) 

  (n)m (n-1) | + (r -1 + • ) |r (n)r (n-1) | + |r (n-1)r (n-2) | + r -1 r #nr # n-1

λ

  = δM 0 + p δM (p) J (p) + δh 3 + 1 2r S δC 0 + p δC (p) J (p) , (C.3) ∆ S,# Ψ δ • b -1 2 div S,# Ψ δfδf = δh 4 , S,# Ψ δf ) =1 = δΛ, (div S,# Ψ δf ) =1 = δΛ, (C.5)where δh 1 , δh 2 , δh 4 , δh 1 , δb 0 , δΛ and δΛ have a very similar structure to their analogs in (B.21), (B.22), (B.24) and (B.25), while for δh 2 and δh 3 , we have δh 2 = δh ( J (p) -J (p) ), δh

= p Mr 2 2

 p22 (p) ( J (p) -J (p) ) + ω + ( J (p) -J (p) ) , very similar structure to their analogs in (B.22) and (B.23).We then proceed as in section B.4 and obtain the following analog of (B.35) (B.36)(δf, δf , |δC (p) | + r 3 |δM (p) | (r -1 + • )r -1 (δU, δS) |δC 0 | + r 3 |δM 0 | + r δ

r 2 2

 22 |δC (p) | + r 3 |δM (p) | (r -1 + • )r -1 (δU, δS) |δC 0 | + r 3 |δM 0 | + r δ

+ r 2

 2 |δC 0 | +r 3 |δM 0 | + p r 2 |δC (p) | + r 3 |δM (p) | • p r -1 J (p) -J (p)

  .10)Step 4. In view of the a priori estimates of Step 2, we need to estimate h 1 , h 1 , h 2 , h 2 , h 3 and h 4 . In view of • the definition of h 1 , • • • , h 2 and h 4 in Step 1, and using (7.10) for h 3 ,

For an in depth introduction to the conjecture, see our introduction in[START_REF] Klainerman | Global Non-Linear Stability of Schwarzschild Spacetime under Polarized Perturbations[END_REF] as well as the survey article[START_REF] Dafermos | The mathematical analysis of black holes in general relativity[END_REF] and the lecture notes[START_REF] Dafermos | Lectures on black holes and linear waves[END_REF].

This means, roughly, that observers which are far away from the black hole may live forever.

See discussion in section 1.5.

Here u = tr * , dr * dr = Υ -1 and r = s. Recall also that in standard spherical coordinates, we have g m = -Υdt 2 + Υ -1 dr 2 + r 2 dσ 2 .

See section 2.1.1 and (2.12) for the precise definition of these quantities.

In reality (1.2) had to be slightly modified on the = 0, 1 modes of κ and µ, see more explanations below.

A null pair adapted to S is a pair of null vectors such that e 3 and e 4 are orthogonal to the tangent space of S and g(e 3 , e 4 ) = -2, see section 2.1.1.

A null pair adapted to S is uniquely determined up to the transformation (e 4 , e 3 ) → (λe 4 , λ -1 e 3 ) for any scalar function λ > 0.

The dot product and magnitude | • | are taken with respect to the standard euclidian norm of R 2 .

Recall that a distribution generated by linearly independent vectorfields X, Y is integrable if the commutator [X, Y ] belongs to the distribution.

See precise definitions in section 2.1.1.

We refer here to a generalization of the spherical harmonics of the standard sphere S 2 . This is itself an additional difficulty one has to overcome, i.e. to define a suitable generalization of modes for deformed spheres.

Note that the equations for (U, S) in (1.9) do not imply the ones in (1.7). It is thus a priori not clear that solving (1.9) will lead to a GCM sphere. The fact that it does is discussed in section 1.3.5.

The free parameters (Λ, Λ) ∈ R 3 × R 3 in Theorem 1.1 correspond to the deformation of the sphere S by translations and Lorentz boosts.

Up to a rotation of S 2 .

Note that the definition of ∇ ⊗ differs from the given in[START_REF] Giorgi | A general formalism for the stability of Kerr[END_REF] by a factor 1/2.

That is the quantities on the left verify the same estimates as those for Γ b , respectively Γ g .

Note that the operation q has a different meaning here than the one we used earlier in the definition of Γ g , Γ b . To avoid confusion we will always useq S to refer to the average free part of a scalar function on S.

Note however that the precise error terms differ in each particular case and that we only emphasize here their general structure.

Note that ∇ (r) = 1 2 f e 3 (r) +[START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF] 2 f e 4 (r) + l.o.t. and hence the term ∇ (r)(rErr 1 ) is a lower order term.

Note however that the precise error terms differ in each particular case and that here we only emphasize their general structure.

i.e.(e S 1 , e S 2 ) are tangent to S.

Note that C0 , C(p) , M0 and M (p) are nonlinear in view of Corollary 5.20 applied to D = C 0 , D = C (p) , D = M 0 and D = M (p) .

S j (p) J (S,q) which holds in view of (2.49).

The extra r -2 in r -s-1 comes from the fact that the coordinates derivatives are unweighted, contrary to the orthonormal frame.

Note that a 11 a 22a 12 a 21 = 0 in view of (5.27) so that (5.25) is well defined.

Note that the change of frame formulas for ρ S , κ S κ S and ϑ S ϑ S do not involve λ, and involve at most one tangential derivative to S of (f, f ).

Recall from Remark 5.22 that we choose J (p) as our basis of = 1 modes on S.

See Remark 4.1.

Note that (6.2) implies (6.12) in view of (5.17).

where 47 h (n)

4 := div S(n-1) 2m r f

with the notations Ċ(n+1)

0

,p : = M (n+1),p -M (p) S(n) , M (n+1),p := -(M (p) -M (p) S(n) ), 47 Note that the terms p C (p) J S(n),p -J (p) ) and p M (p) J S(n),p -J (p) ), which should normally appear in the definition of h

and h

(n) [START_REF] Dafermos | Lectures on black holes and linear waves[END_REF] , vanish in view of Remark 6.4 according to which J S(n),p = J (p) .

and where the error terms Err 1 [curl S(n-1) f (n) ], Err 1 [curl S(n-1) f (n) ], Err 1 [div S(n-1) f (n) ],

Err 1 [div S(n-1) f (n) ], Err 2 [∆ S(n-1)

• λ (n) ] and Err 1 [∆ S(n-1)

• b (n) ] depend only on the previous iterates (f (n) , f (n) ,

• λ (n) ) defined on S(n -1).

The existence, uniqueness and control of (f (n+1) , f (n+1) ,

• λ (n+1) ) and of the constants (C (n+1) 0 , C (n+1),p , M (n+1) 0 , M (n+1),p ) is ensured by the following proposition. Proposition 6.5. Under the induction assumptions (6.21) (6.22) (6.23), there exists unique constants

, M (n+1),p such that the system (6.24)-( 6.26)

relative to the basis of = 1 modes J (p) of S(n). Moreover, we have

and

uniformly for all n ∈ N.

Proof. Since S(n) is an O( • )-sphere, see Remark 6.3, we may apply Proposition 4.12. We deduce the existence of unique constants

, M (n+1),p such that the system (6.24)-( 6.26) has a unique solution (f (n+1) , f (n+1) ,

• λ (n+1) ) with prescribed = 1 modes

relative to the basis of = 1 modes J (p) of S(n). Moreover, we have

) hs max (S(n))

Next, we estimate h

4 . We have

and hence, in view of (6.27), we may rewrite h

We also use, for a scalar ν defined on S(n -1), the following consequence of (5.16), which applies in view of (6.21),

ν hs(S (n-1) ) , 0 ≤ s ≤ s max . (6.33)

In view of

• the definition (6.27) of h

2 and h

(n) 4 , and using (6.32) for h

• the control of the background foliation provided by Corollary 5.11,

• the control of C(j) 0 , C(j),p , M (j) 0 , and M (j),p for j = n and j = n + 1 using Corollary 5.20 respectively with D = C 0 , D = C (p) , D = M 0 and D = M (p) , the control of C 0 , C (p) , M 0 and M (p) provided by the background foliation, and the induction assumptions (6.21) for (U (n-1) , S (n-1) ) and (U (n) , S (n) ),

• using (6.33) for the terms composed with

] in view of their structure in Definition 4.2, the control of the background foliation, and the induction assumptions for (f (n) (6.22) and (6.23),

The adapted frame on S (∞)

We associate to the sphere S = S (∞) a second null frame, which is adapted to S, as follows. We use the limiting functions U = U (∞) , S = S (∞) of the deformation map

With this choice of (f, f ), we then define the null frame (e S 1 , e S 2 , e S 3 , e S 4 ) as the one obtained from the background frame (e 1 , e 2 , e 3 , e 4 ) using the frame transformation coeffi-

In view of the choice of (f, f ), e S 4 and e S 3 are orthogonal to S, and hence (e S 1 , e S 2 , e S 3 , e S 4 ) is adapted to S as desired. Furthermore, using (5.24), (2.34), (5.28) and the control of U and S to control (f, f ), it is straightforward to check that

6.5 End of the proof of Theorem 6.1

So far we have produced a sphere S = S (∞) , defined by the functions U = U (∞) , S = S (∞) and two frames

induced by the transition functions (

The functions U, S and transition functions (

) verify the coupled system (6.45)-(6.51).

• The geometric frame e S

1 , e S 2 , e S 3 , e S 4 , induced by the deformation map defined by U = U (∞) , S = S (∞) , with corresponding transition functions (

Corollary 7.7. Assume that (f, f ) given on R satisfy for a small enough constant δ 1

Then, we have

Proof. Recall the Gauss equation and the definition of the Hawking mass

On the spheres • S and S, integrating the Gauss equation, and using the definition of the Hawking mass and the Gauss Bonnet formula, we obtain

In view of the transformation formulas for χ S and χ S , and noticing that the product χ S • χ S only involves (f, f ) but not λ, we infer from the assumptions A1-A3 for the background foliation of R, and the assumptions on (f, f ) that

We infer

and hence

Next, we apply Lemma 7.3 with δ 1 =

• and infer in particular

We deduce

We infer

Hence

as desired.

A.4 Transformation formula for χ

Next, we have 

and hence

as desired.

A.9 Transformation formula for ω

Next, we have 4ω = g(D e 3 e 3 , e 4 ) = 2e 3 (log λ)

We compute 

Together with the above transformation formula for η , we deduce

as desired.

and hence

as desired. Finally, the transformation formulas for α, β and ρ follow respectively from the ones for α, β and ρ by symmetry consideration. This concludes the proof of Proposition 3.3.

B Proof of Proposition 6.7

B.1 Notations for differences

To compare the ninetets

we start by introducing notations for differences.

Recall the notations

We also introduce the operators,

defined with respect to the pull back metric

i.e. the pull back by Ψ (n) of the metric g S(n) . We also introduce a notation for the area radius and the Hawking mass of S(n)

as well as

We define the differences

and 1. We have, relative to the coordinates y 1 , y 2 on

B.2 Comparison results for iterates

.

(B.8)

2. For every f ∈ S k (S) we have,

) . (B.9)

3. As a corollary of (B.9) (choosing f = 1) we deduce

), (B.10)

where r (n) is the area radius of S(n) and r (n-1) that of S(n -1).

and,

where (δh 1 ) (n) , (δh 2 ) (n) , (δh 3 ) (n) , (δh 4 ) (n) , (δh 1 ) (n) , (δh 2 ) (n) and (δb 0 ) (n) are given by

Ċ(n-1)

and where (δΛ) (n) and (δΛ) (n) are given by

Proof. The proof follows by pulling back the system (6.24)-(6.26), (6.27) on

• S and then taking differences on

• S between successive iterates. In particular, we use the identities

• S which follow from the proof of Proposition 5.21.

B.4 Estimates for (δf ) (n+1) , (δf ) (n+1) , (δ

In view of Lemma B.2, ((δf

) satisfy the assumptions of Corollary 5.23. As a consequence, the following a priori estimates are verified

)

)

Using Proposition B.1 and A1, we deduce

)

,(B.29) and

. (B.30)

Next, we estimate (δh 3 ) (n) . First, we have in view of the definition (B.23) of (δh 3

where (δh 3 )

(n) 0 is given by (δh 3 )

(n) 0

Ċ(n-1)

In view of (6.31), we infer

Ċ(n-1)

.

Coming back to (δh 3 ) (n) , using Proposition B.1 and the uniform in n bound (6.40), we have 49

, so that δ C(n) and

. (B.34)

Gathering the above estimates for (δh 1 ) (n) , (δh 2 ) (n) , (δh 3 ) (n) , (δh 4 ) (n) , (δh 1 ) (n) , (δh 2 ) (n) , (δb 0 ) (n) , (δΛ) (n) and (δΛ) (n) , and plugging in (B.26) (B.27), we infer

)

According to (6.34) we have

, or, setting

we write,

By elliptic estimates we deduce, r -1 (δU (n+1) , δS (n+1)

+ S (n+1) #n -S (n) # n-1 h 2 (

• S)

.

In view of the definition of U(f, f , Γ) and S(f, f , Γ), see (5.25) (5.26), we infer r -1 (δU (n+1) , δS (n+1)

.

(B.37)

We are now in position to conclude the proof of Proposition 6.7. We decompose P (n) as P (n) = P , f n,# , f n,# , C (n),p , M (n),p ,

, C In view of (B.38), we infer

3,

• S (r -1 + • ) P (n) -P (n-1) 3,

• S + P (n-1) -P (n-2) 3,

• S + P (n-2) -P (n-3)

3,

• S as desired. This concludes the proof of Proposition 6.7.

C Proof of Corollary 6.11

The proof of Corollary 6.11 is very similar to the one of Proposition 6. Then, we pull back the system for (f, f , λ) and for ( f , f , λ) to

• S, and take the difference, which yields the following system for (δf, δf , δ