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ON THE IMPLOSION OF A COMPRESSIBLE FLUID II:
Singularity formation

FRANK MERLE, PIERRE RAPHAEL, ICOR RODNIANSKI, AND JEREMIE SZEFTEL

ABSTRACT. In this paper, which continues our investigation of strong singularity
formation in compressible fluids, we consider the compressible three dimensional
Navier-Stokes and Euler equations. In a suitable regime of barotropic laws, we
construct a set of finite energy smooth initial data for which the corresponding
solutions to both equations implode (with infinite density) at a later time at
a point, and completely describe the associated formation of singularity. An
essential step in the proof is the existence of C* smooth self-similar solutions to
the compressible Euler equations for quantized values of the speed constructed
in our companion paper (part I). All blow up dynamics obtained for the Navier-
Stokes problem are of type II (non self-similar).

1. Introduction

1.1. Setting of the problem. This is a second paper in our study of singularity
formation in compressible fluids. In our first [32], we constructed a family of smooth
self-similar profiles of the compressible Euler equations. In this paper, we consider
the three dimensional barotropic compressible Navier-Stokes equation:
Op+V-(pu)=0
Oy + pu - Vu + V1 = pAu + p/'Vdiv u
(Navier — Stokes) i v v—lppry H 1%
=1
(p|t:07u|t=0) = (po(z),uo(x)) € RY x R3
for v > 1, as well as the compressible Euler equations:
Op+V-(pu)=0
pou+ pu - Vu+Vr=0

(1.1)

(Euler) 7= 1=y (1.2)
(Pji=0, Ujt=0) = (po(x), uo(x)) € RY x R3
with non-vanishing density p > 0, but possibly decaying at +oo
lim p(t,z) =0. (1.3)

|z| =400
The problem of understanding global dynamics of classical solutions of compressible
fluid dynamics is notoriously difficult, as was already observed in the 1-dimensional
inviscid case by Challis, [7]. It becomes even more complicated in higher dimensions,
including a physically relevant 3-dimensional problem, and in the viscous case due
to the lack of access to the method of characteristics.

1.2. Breakdown of solutions for compressible fluids. For non-vanishing den-

sities, smooth initial data satisfying appropriate fall-off conditions at infinity yield

unique local in time strong solutions, [40, 26, 27, 8, 15|. However, for the Euler

equations, it has been known since the pioneering work of Sideris [45], that well

chosen initial data (with density which is constant outside of a large ball) cannot

be continued for all times as strong solutions. The result applies to both large and
1
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“small” data and holds for all v > 1. Similarly, for the Navier-Stokes equations,
there are regimes in which strong solutions to (1.1) can not be continued, however
such results require vanishing conditions on the data. It was first shown in [47]
for all compactly supported data and then in [42] for non-vanishing (density) but
decaying at infinity data for v > g. In both Euler and Navier-Stokes cases the un-
derlying convexity arguments give no insight into the nature of the singularity and
while for the compressible Euler equations subsequent work (see below) produced
complete description of singularity (shock) formation (at least in the small data near
constant density regime), the questions about quantitative singularity formation in

Navier-Stokes and in other Euler regimes remained open.

In this paper we address the classical problem of singularity formation in com-
pressible fluids arising from smooth well localized initial data with non-vanishing
density. We study both the three dimensional Navier-Stokes equations and its invis-
cid Euler limit. For a suitable range of equations of state, we exhibit a class (finite
co-dimension manifold in the moduli space) of smooth, well localized (without vac-
uum) initial data for which the corresponding solutions blow up in finite time at a
point and completely describe the associated formation of singularity. The results
also extend to the two dimensional Euler equations. These solutions describe self-
implosion of a fluid/gas in which smooth well localized (in particular finite energy)
distribution of matter collapses upon itself (with infinite density) in finite time while
remaining smooth (in particular, free of shocks) until then. At the collapse time,
remaining matter assumes a certain universal form.

With the focus on both the Navier-Stokes and the Euler equations we examine the
question of failure of classical solutions to be continued globally in time. Specifically,
we study the first time singularity problem, identifying the first time that solutions
stop being classical and the singular set on which it happens. In the Navier-Stokes
case such results are completely new. For the Euler equations in two and three
dimensions such results are connected with the more general singularity formation
in quasilinear hyperbolic equations and originate in the works of John [20] and
Alinhac [1, 2]. In the Euler case, due to the hyperbolic nature of the equations, one
can also study a richer problem of shock formation which in particular addresses
the structure of the full singular set of the solutions.

1.3. Quantitative theory of singularity formation for the compressible Eu-
ler. We (mostly) limit our discussion to the three dimensional case and completely
bypass the rich and storied narrative of the one dimensional case, see e.g. [16].
Shock formation for the three dimensional Euler equations was shown in the work
of Christodoulou [9] in both the relativistic and non-relativistic cases (see also [11].)
The work covered a small data regime of near constant density and small velocities,
with the shock forming in the irrotational part of the fluid, and provided a complete
geometric description at the shock. One of the key features of the work and the
reason why the result may be called “shock formation" is that it constructed and
showed a particular structure of the mazimal Cauchy development of solutions. Such
a maximal Cauchy development possesses a boundary 0# U # U C, part of which
— a smooth null 3-d hypersuface # and 2-d sphere 0# — is the singular set of the
solution. The past endpoints # are precisely the set OH — the first singularity of the
solution. It is also that aspect of the construction that later allowed Christodoulou
to study the (restricted) shock development problem, [10].
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While shock formation and shock development problems require studying the
maximal Cauchy development and the associated first singularity, one could, es-
pecially in the non-relativistic setting where the time variable ¢ is well defined,
investigate the problem of the first time singularity. That problem amounts to
understanding a singular set of the solution at the first time T" when it becomes sin-
gular. In the setting described above, this would be the set T'NoFH U FH C OF U H
which a priori may not coincide with the first singularity set 0 (or even have the
same dimension). On the other hand, just the knowledge of the first time singular
set provides no information about the maximal Cauchy development, the full sin-
gular set or shock formation. In fact, in principle, it may be completely consistent
with the full singular set being a 3-d space-like hypersurface, rather than the null
# U 0#, and thus be incompatible with the shock development picture. (For the
multi-dimensional semilinear wave equations examples of singular sets have been
considered and analyzed in e.g. |6, 22, 37, 39]).

Having drawn a distinction between the first singularity (shock formation) and
first time singularity formation, we should recall again that the latter problem for
multi-dimensional compressible Euler equations had been studied in the works of
Alinhac (with a precursor in John, [20]) in two and three dimensions for a more gen-
eral (quasilinear hyperbolic) class of equations, including Euler, [1, 2|, in the small
data regime and was tied to the failure of Klainerman’s null condition, [23], and
to a I-dimensional Burgers mechanism of singularity formation. Recently, this has
been extended in [46]; open set of data leading to solutions of the Euler equations
with non-trivial vorticity at the first time singularity have been constructed in [25]
and later, in different regimes in [4, 5|. The 1-dimensional Burgers phenomenon has
been lifted to higher dimensions also recently in [13] for the Burgers equation with
transverse viscosity.

1.4. Results. We now contextualize our results. Once again we limit our discussion
to the three dimensional case. There are three critical issues.

First, since in this paper we study the Navier-Stokes and Fuler problems simulta-
neously, we can not even define maximal Cauchy development, which is associated
with hyperbolic PDE’s, and thus properly speak about shock formation. Ours is a
first time singularity result.

Secondly, shock formation and development for the three dimensional compress-
ible Euler equations has been shown only in the small data, near constant density,
regime. For such data Navier-Stokes solutions remain global, [28]. Our solutions
to both Navier-Stokes and Euler belong to a very different, large data regime. For
Navier-Stokes, in this regime the density decays at infinity. For Euler, in view of the
domain of dependence principle, behavior at infinity, in principle, is less important.
See also comment 5. after the statement of the main theorem.

Lastly, the first time singularities constructed in this paper occur at one point.
We do not speculate about the structure of the full singular set. However, we
emphasize two important issues. One is that at a singular point all directions are
singular, unlike the picture established in [9] where each point of the singular set O
possesses 3 regular tangential direction (along #). The other one is perhaps the most
important point: in formation of shock type singularities one expects to maintain
boundedness of both density and velocity (with their first derivatives blowing up).
In solutions constructed in this paper both density and velocity blow up at the
singularity. This is a new phenomenon of formation of strong singularities. It relies
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on the existence of appropriate self-similar solutions to the Euler equations and
makes no connection to the link between the Euler equation and explicit solutions
of the Burgers equation.

1.5. Statement of the result. We recall that v is the parameter describing the
equation of state and define the following additional parameters:

(=2
T*(d g) _ _d+¢t
’ +Vd’ it
T+(d,€) =1+ (1+_ )2 (14)
| r*(d, ) for £<d
(O =1L 4 0) for > d.

The standard physical restrictions on the viscosity parameters yu, u’ is given by
>0, 3 —p>0
In what follows, we will allow the weaker assumption
p+p >0

Theorem 1.1 (Implosion for a three dimensional compressible fluid). There exists a
(possibly empty) exceptional countable sequence (€y)neny whose accumulation points
can only be at {0, 3, +00} such that the following holds. Let £ be related to ~y according
to (1.4), and assume

(#£3 = y#32
(>3 1<y<1l+ % for (Navier — Stokes) (1.5)

{>0<=1<7v<+o00 for (Euler)
and ¢ avoids the countable values:
¢ {l,,n €N} (1.6)

Then for each such admissible £, there exists a discrete sequence of blow up speeds
(Tk:)k:21 with
1<rp<re(3,£), lim 7y =r<(3,¢)
k—+4o00

such that for each k > 1, there exists a finite co-dimensional manifold (in the moduli
space) of smooth spherically symmetric initial data (po,up) € Nm>oH™(R3, R xR3)
such that the corresponding solutions to both (1.1) and (1.2) in their respective
regimes (1.5) blow up in finite time 0 < T' < 400 at the center of symmetry with
lugt, e = 2Ty gy = e Fomr@) g )
(T —1t) (T—t) "

for some constants c,, ¢, > 0 only depending on (ry,d,7). In addition, let us define
the renormalized quantities

u(t, o) = ———alty), pltr) = —— o pty), Y= — . (18)
(T —t) ™ (T —t) "* (T —t)m

Then, (,p) — (up,pp) ast — T in some suitable topology, where (ap,pp) is a
self-similar solution to the compressible Euler flow.

Remark 1.2. A corresponding statement holds for Euler in dimension 2 in the
range £ > 0, ¢ # 2, see the third comment of section 1.6.
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1.6. Comments on the result. We begin our discussion by emphasizing the point
that for the Navier-Stokes equations the results of Theorem 1.1 do not describe a
self-similar (type I) singularity formation. The blow up profile dominating the be-
havior on the approach to singularity is a front for the Navier-Stokes equations and
obeys (one of) the Euler scalings® rather than the Navier-Stokes one. The scaling
is super-critical for the Navier-Stokes problem: the scale invariant Sobolev norm?
blows up at the singular time. Blow up is therefore of type II similar to our previous
work [31].

1. Inviscid limit. The results of Theorem 1.1 are uniform relative to the viscosity
parameters u, ¢ of the Navier-Stokes equations. Neither the sequence £, nor the
blow up speeds 7 depend on u, u’. Moreover, the singularity formation in Navier-
Stokes survives in the inviscid limit. To describe that we note that the finite co-
dimensional manifold of data, for which our results hold, are constructed as a pair
of elements (z,x’), where x belongs to a small ball (in appropriate topology) in
the linear space U, while 2’ = ®,, (z) lies in V. The linear stable space U and
(finite-dimensional) unstable space V' are the same for all viscosity parameters u, p’
and constitute a decomposition of the full Hilbert space H = U @@ V. The nonlinear
map ®, /() is uniformly bounded with respect to the parameters p, 1’ and admits
a limit in the regime p > 0, ¢/ > 0 and u, u’ — 0.

As a consequence, singularity formation in the Euler equations in this paper
falls into two categories: in the Navier-Stokes regime ¢ > /3 singular solutions of
the Euler equations also correspond to (and arise as limits of) singular solutions
of Navier-Stokes; in the remaining allowed range ¢ < /3 singular solutions of the
Euler equations do not have their viscous analogs. We should however stress that
both in the Navier-Stokes regime and the “pure” Euler regimes blow up occurs via
a self-similar Fuler profile.

2. The range (1.5). The value £ = 3 or v = g, which corresponds to the law
for a monoatomic ideal gas, is exceptional and signals a phase transition from the
blow up rate 7*(3,¢) for £ < 3 to r(3,¢) for £ > 3. The nature of the phase
portrait underlying the existence of suitable blow up profiles for Euler degenerates
dramatically for ¢ = 3 with the formation of a critical triple point, see [32]|. In the
general dimension d this phenomenon happens at £ = d. The lower bound restriction
¢ > /3 for the Navier-Stokes problem is also essential and sharp and measures the
compatibility of the Euler-like blow up with the dissipation term in the Navier-
Stokes equations. Viewing dimension d as a parameter, this compatibility can be
sharply measured by the condition, see (2.9):
L<d:

d+¢ _2+¢ 2Vd —d
ng\/g> 1+€<:>€>120(d) 1V
which always holds for d > 4 (all terms > 0), never holds for d = 2 (all terms < 0),
and for d = 3 demands ¢ > /3, this is the lower bound (1.5).

(d, 0) = (1.9)

IThe Euler equations possess a 2-parameter family of scaling transformations containing a 1-
parameter family of Navier-Stokes as a subfamily. The parameter r — what we call here speed —
labels a particular choice of a 1-parameter subfamily of the scaling transformations of the Euler
equations.

2The Navier-Stokes scaling preserves the ||p(t, )| gsns With sys = 1 + %, while the Euler
scaling used for the profile preserves the Sobolev norm with the exponent s. = % + % The
condition (2.9) ¢ > 0 which dictates the compatibility of Eulerian regimes with Navier-Stokes is
precisely s < snys, which means that the scale invariant Navier-Stokes Sobolev norm blows up.
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d—1 S 244
(1+0)2  1+¢
also never holds for d = 2 but always holds for d = 3, £ > 3.

This shows the fundamental influence of both the dimension and the blow up speed,
attached to the Eulerian regime, on the strength of dissipation for fluid singularities.

T+(d7 E) =1+

8. The Euler case. Our theorem also holds for the two dimensional Euler equations
in the range v > 1 and 7 # 2. Both the inviscid limit statement and the validity of
the “pure” Eulerian regimes (d = 3,¢ < v/3), (d = 2,£ > 0), arise from the proof of
the theorem. Let us note that in the case of Euler, a direct analysis of the dynamical
system governing the self similar dynamics [21, 32] easily produces a continuum of
self-similar solutions which, in principle, using the finite speed of propagation, one
could try to localize, to produce finite energy® self similar blow up solutions. These
solutions however arise from the data of limited regularity, see section 1.8.1. This
procedure cannot be applied in the Navier-Stokes case, and, more generally, our
understanding of the finite co-dimensional stability of these self similar solutions is
directly linked to the C*° regularity.

4. The sequence £,,. The discrete sequence ¢,, of possibly non admissible equations
of state is related to the existence of C* self similar solutions to the compressible
Euler. In [32], we proved that for all d > 2, such profiles exist for discrete values
of the blow up speed in the vicinity of the limiting speed 7= (d,¥) provided a cer-
tain non vanishing condition Sy (d,f) # 0 holds. The function Sy (d,¥) is given
by an explicit series and is holomorphic in ¢ (in a small complex neighborhood of
each interval (0,d) and (d,00)). We do not know how to check the non vanishing
condition analytically, but we can prove that the possible zeroes of Sy (d,-) are
isolated and possibly accumulate only at ¢ € {0,d}. For small ¢, this condition can
easily be checked numerically, but the series becomes exceedingly small as ¢ — d
and hence the numerical check of a given value becomes problematic, see [32]. We
do not know whether the condition Sy (d,f) # 0 is necessary for the existence of
C° self-similar profiles, understanding this would require revisiting the asymptotic
analysis 7 1 r=(d, ) performed in [32] in the degenerate case.

5. Behavior at infinity (1.3) and other domains. In this paper our results apply to
the solutions (p, u) which decay at infinity. As such, the solutions have finite energy.
However, from that point of view it is unnecessary for both p and u to decay. A
particularly interesting case is when p approaches a constant at infinity and u van-
ishes appropriately. For Navier-Stokes such solutions are specifically excluded even
from qualitative arguments in [47, 42]. Our analysis begins with a construction of
rp—1
self-similar Fuler profiles which decay rather slowly. In particular, p ~ |1:\_2 T
For |z| > 5 we then reconnect our profiles to rapidly decaying functions and consider
similarly rapidly decaying perturbations. The reconnection procedure is not subtle
and its main goal is to create solutions of finite energy. One could, in principle, be
able to reconnect the profile to one with constant density for large x and rapidly
decaying velocity, instead. This should lead to a singularity formation result for
Navier-Stokes for solutions with constant density at infinity. Even more generally,
the analysis should be amenable to other boundary conditions and domains, e.g.

3Note that the energy f(%p"’ + 1plu|?) is preserved by the flow of (1.2).
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Navier-Stokes and Euler equations on a torus. An example of such adaptation in
the context of a nonlinear heat equation and a domain with Dirichlet boundary
condition is provided by [12].

6. Spherical symmetry assumption. Theorem 1.1 is proved for spherically symmetric
initial data. The symmetry is used in a very soft way, and we expect that the blow
up of Theorem 1.1 is stable modulo finitely many instabilities for non symmetric
perturbations, including in particular solutions with non trivial vorticity.

7. Blow up profile. The proof of Theorem 1.1 involves a more precise description of
the blow up dynamic. (1.8) means that, after renormalization, on the singular point
x = 0, the solution converges in some local in space sense to a universal blow up
profile as t — T" which is given by a suitable self-similar solution to the compressible
Euler flow, see Theorem 2.3 for the existence and description of this object. The
proof of our main result also implies that x = 0 is the blow up set in the sense that
for any = > 0, p(t,z) and u(t,z) have a finite limit as ¢ — 7. A similar picture
occurs for semilinear evolution PDEs, see e.g. [30]. We should emphasize, that in
contrast to the previously studied (in mathematical literature) singularity and shock
formation for the two and three dimensional Euler equations where solutions remain
bounded up to and including the first singularity, both the density and velocity of
our solutions blow up at the first singularity, see (1.7).

8. The stability problem. The results of Theorem 1.1 hold for a ball in the moduli
space of initial data around the self similar profile modulo a finite number of un-
stable directions, possibly none. The proof comes with a complete understanding
of the associated linear spectral problem. Providing a precise count for (non real
valued) eigenvalues analytically does not seem obvious, but clearly this problem can
be addressed numerically since the radial nature of the self-similar profile allows one
to reduce the problem to standard ode’s. This remains to be done.

9. Weak solutions. Solutions to the compressible Navier-Stokes equations con-
structed in this paper coexist, in principle, with the theory of weak global solutions
of P.-L. Lions [24| and its extension in [19]. Existence of weak global solutions
is asserted under finite energy assumptions and in the range v > 3/2 (originally,
~v > 9/5) in dimension three. These solutions, in particular, have the property that
for any T' < oo, p € L°°([0,T]; L”(R?)). On the other hand, solutions considered in

3(y—1)
this paper fail to obey a uniform bound in the space LZ"x~=1 (R3) on the approach

to the singular time T":
3(v—1)
p & L((0,T); L1 (R?))

with 7 chosen to be close to the value re (d, ) from (1.9).

1.7. Connection to the blow up for the semilinear Schrédinger equation.
Somewhat surprisingly, the mechanism of singularity formation in compressible flu-
ids exhibited in this paper turns out to be connected with the singularity formation
in defocusing super-critical Schrodinger equations. In [33], we obtain the fist result
on the existence of blow up solutions emerging from smooth well localized data for
the energy super-critical defocusing model

(NLS) i0u + Au — ufulP1 =0, zeR? (1.10)
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in a suitable energy super-critical range p > p(d) and d > 5. Neither soliton
solutions nor self-similar solutions are known for (1.10), but we rely on a third blow
up scenario, well known for the focusing non-linear heat equation, see e.g. [3, 36|
and in more recent [34, 14]: the front scenario. After passing to the hydrodynamical
variables, which for (NLS) are the phase and modulus, the front renormalization
maps (1.10) to leading order onto the compressible Euler flow (1.2) with the behavior
at infinity given by (1.3). The analysis then follows three canonical steps. These
steps run in parallel to the treatment of the Navier-Stokes equations in this paper,
which is also approximated by the FEuler dynamics. The description below applies
to both.

1.8. Strategy of the proof.

1.8.1. Self-similar Fuler profiles. We first derive the leading order blow up profile
which corresponds here to self-similar solutions of (1.2). Continuums of such solu-
tions have been known since the pioneering works of Guderley [21] and Sedov [44].
However, the rich amount of literature produced since then is concerned with non-
smooth self-similar solutions. This is partly due to the physical motivations, e.g.
interests in solutions modeling implosion or detonation waves, where self-similar
rarefaction or compression is followed by a shock wave (these are self-similar solu-
tions which contain shock discontinuities already present in the data), and, partly
due to the fact that, as it turns out, global solutions with the desired behavior at
infinity and at the center of symmetry are generically not C°°. This appears to be
a fundamental feature of the self-similar Euler dynamics and, in the language of
underlying acoustic geometry, means that generically such solutions are not smooth
across the backward light (acoustic) cone with the vertex at the singularity.

The key of our analysis is the construction of those non-generic C* solutions and
the discovery that regularity is an essential element in controlling suitable repulsivity
properties of the associated linearized operator. This is at the heart of the control
of the full blow up. In [32], we constructed a family of C*° spherically symmetric
self-similar solutions to the compressible Euler equations with suitable behavior
at infinity and at the center of symmetry for discrete values of the blow up speed
parameter r in the vicinity of the limiting blow up speed ry_(d,l) given by (1.4).

1.8.2. Linearized stability. The second step is to understand how C*° regularity of
the blow up profile is essential to control the associated linearized operator for the
Euler problem (1.2) in renormalized variables. Here the problem is treated as a
quasilinear wave equation and we rely on spectral and energy methods to derive
the local linearized asymptotic stability of the blow up profile. The local aspect of
the analysis is manifest in the fact that it is only carried out in the region which
includes, but only barely, the interior of the backward acoustic cone (associated
with the profile) emanating from the singular point (z = 0,¢t = T'). The statement
of linear stability holds for a finite co-dimension subspace of initial data. This is
ultimately responsible for the assertion that results of Theorem 1.1 hold for a finite
co-dimensional manifold of the moduli space of initial data. Full details of this
analysis are given in [33].

1.8.3. Nonlinear stability. The final step of our analysis is the proof of global non-
linear stability. Here, the details of the treatment of (NLS) and (NS) are differ-
ent. However, one unifying feature is the dominance of the Eulerian regime. For
Navier-Stokes it means that, in a suitable regime of parameters, the dissipative term
involving the Laplace operator A is treated perturbatively all the way to the blow
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up time. The reason for this is that the renormalized equations take the form (cf.
(2.7))
L(r—1)

Orpr = —prdiv ur — =5~>pr — 2ur + Z) - Vpr
p20;ur = b2 (uAur + p'Vdiv ur) — [2ur - Vur + (r — 2+ d)ur + Z - Vur| p + V.
(1.11)
Here, pr corresponds to the square root of the density. The blow up time corre-
sponds to 7 — oo and the point is that the renormalized viscosity factor is given by
b2 ~ €727 with the parameter
1 r—2 1
:(‘;(3)_1)722[@(74—1)“—2]. (1.12)
The positivity of e for r close enough to r<, which makes the dissipative term decay
as 7 — 00, is precisely the restriction on the upper bound for v: v < (2 + \/g)/\/g

For the Schrodinger equations, similar but more subtle (not all the terms involving
the original A disappear) considerations lead to the restrictions on the range of the
power p.

The key to our claim that the results hold uniformly in the vanishing viscosity
limit and apply directly to the Euler equations is that all of our estimates hold
uniformly in the vanishing viscosity limit. In fact, we exploit the dissipative term
exactly once, in Lemma 5.2, but it is then used to control only the dissipative term
itself.

We should finally mention that the methods used in both this paper and [33] are
deeply connected with the analysis developed in our earlier work, in particular in

131].

We will give the proof of Theorem 1.1 explicitly in the case of (NS) only. The
Euler case follows verbatim the same path, is strictly simpler, and the condition
¢ > /3 will not appear there as it measures only the compatibility of (NS) with
(Euler). We will introduce a dimension parameter d. This is not to concern ourselves
here with the higher dimensional Navier-Stokes (even though a certain range of
is available) but rather to facilitate considerations of the two dimensional Euler
problem. As will be clear from the proof, the parameter d enters meaningfully only
in the treatment of the dissipative term.

1.9. Organization. In section 2, we introduce the front renormalization and recall
the main results of our first paper [32] concerning the existence of C*° self-similar
profiles to the compressible Euler equations. In section 3, we recall the main decay
estimates for the associated linearized operator. Their detailed proofs are contained
in [33]. In section 4, we describe our set of initial data and detail the bootstrap
bounds needed for our analysis. In section 5, we derive some non-renormalized esti-
mates which are used to control the exterior region |z| > 1. In section 6, we derive
a general quasilinear energy estimate at the highest level of regularity. In section
7, we use its unweighted version to close the bounds for the highest derivative in
the d = 3,¢ > /3 case. In section 8, we repeat the argument but this time with a
combination of cut-off functions, to close the bounds for the highest derivative in
the remaining Euler cases d = 2 and d = 3,¢ < /3. In section 9, we derive and
close weighted energy bounds for all sufficiently high derivatives. Sections 5-9 will
allow us to close the pointwise bounds on the solution. In section 11 we upgrade the
linear estimates of section 3 to nonlinear ones and propagate them to any compact
set in the renormalized variable Z relative to which the acoustic cone terminating
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in a singular point corresponds to the equation Z = Z5. Theorem 1.1 then follows
from a now standard Brouwer like topological argument.

Constants and notations. Below we list constants, relations and conventions
used throughout the text.
— Parameters p and « from the equation of state m = 7771 o7

p—1=2(y—1). (1.13)

— Parameter ¢

2 4
v-1 p-1
— Front speed parameter r which is assumed to be strictly less but arbitrarily close
to one of the limiting values

(1.14)

r*(d, ¢) = % for £ <d

ry(d,f) =1+ (1172)2 for ¢>d.

with d — general dimension parameter. In particular, we will always use that

re(d, ) = (1.15)

r>1;
— Parameter ¢ measuring compatibility between the Fuler and Navier-Stokes

I+~y)r—2y 1
=——=—[l(r—1 —2]. 1.16
The requirement ¢ > 0 will be imposed in the Navier-Stokes case to ensure the
dominance of the Eulerian regime. It forces the restriction

2v/d —d

0> ly(d) = 1 Vi (1.17)
— Original variables (¢, ) — Renormalized variables (7, Z)
(T—t)=2e""", Z=¢"zx.
— Original unknowns (p(t, z), u(t, z)) and the potential ¥ = Vu.
— First renormalization
plt,z) = (271—1p(2t,:p)>% . alt.x) = u(2t,z).
— Second renormalization
pr(1,2) = e_g(r_l)T[)(t,x), ur(r, Z) = e~ ITa(t, ).
— Renormalized viscosity parameter b?
b = e 2T (1.18)

— Profile in renormalized variables (pp(Z),¥p(Z)) and the corresponding pair
(ﬁp(t,l‘),‘l’p(ﬁ,l‘)).

— Dampened profile in renormalized variables (pp(7, Z),Vp(7,Z)) and the corre-
ponding pair (pp(t,z), Up(t, z).

— Linearization variables

ﬁ<7—7 Z) = pT<T7 Z) - pD(Ta Z)v \il(Tv Z) = \IIT(T7 Z) - lIID(Tv Z)v
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and velocity @ = V.

— Depending on context, V may denote either derivatives in x or Z. V* with
a=(a1,...,09) €N Jal=a1+ - +ag=k

will denote a generic 97" ....95- derivative of order k. Sometimes we will abuse the
notation and write V¥,

— 8% will denote the vector (0F,...,8%) of k-th order derivatives.

— By abuse of notation we will identify Z with |Z| and denote by 9z the radial
derivative.

Acknowledgements. P.R. is supported by the ERC-2014-CoG 646650 SingWave.
P.R would like to thank the Université de la Céte d’Azur where part of this work
was done for its kind hospitality. I.R. is partially supported by the NSF grant DMS
#1709270 and a Simons Investigator Award. J.S is supported by the ERC grant
ERC-2016 CoG 725589 EPGR.

2. Front renormalization

We compute the front renormalization which allows one to treat (1.1) as a per-
turbation of (1.2) in a suitable regime of parameters. We then recall the main facts
concerning the existence of C*° smooth decaying at infinity self similar solutions to
(1.2) for quantized values of the blow up speed obtained in [32].

2.1. Equivalent flow for non vanishing data. Let us consider the flow (1.1) for
non vanishing density solutions:

Op+V-(pu)=0

pou+ pu-Vu+ V1 = pAu+ p/'Vdive | g e R

q=21"1 p7
v

We change variables:

1 A2t
P(t,ﬂf)—zﬁp (3,7)

(2.1)
u(t,z) =1a (5, 2) = V\I/( )
The first equation is logarithmic in density:
0 Vp Op 2Vp
PV out+ L vu=0eLiv.at+ L a0
p p p p
& Op+pV-u+2Vp-u=0%< 0ip+ pAY +2VVY - V5 = 0.
The second equation becomes:
1 \Y
—— (pAd+ Vv i) + i Vit (v - 1) 2 =0
-
1
1 27-1 -1 2Vp
o —— (pAd+ /' Vdiv @) + @ - Vi + —— 2D L g
2 1 2 p
1, . 95T 1V,0

& gﬁtu—T(,uAu—i—qulvu)+u Vu+ pp_
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and hence the equivalent formulation:
Op+pV-u+2Vp-u=0
oyt — /% (uAa+ p'Vdiv i) +2a-Va+Vp=0
p=p"
o =271
and hence for spherically symmetric solutions:

1 A At 'Vdiv 1 1
§@awf“ “*“VIV“+§@Um%+aAm4):o

1 - .
& 50|00 = F(@,p) + 10, 0|? + [32(7—1)} =0
& Ol —F(a,p) + 0,0 + 207D = B(1)

where B(t) is the Bernoulli function and

r Y — 20
F (i1, p) = 277 (+ 1) /O (a0 5 " ))drt (2:3)

By changing ¥ — ¥ + a(t) with

t
a=®B, at) :/ B(T)dT,
0
which does not change velocity, we have the equivalent flow

‘&ﬁ+ﬁA®+2&@@ﬁ=0

) v 2.4
o — F(a, p) + 0,02 + p?0-D =0 (24)

2.2. Front renormalization. Let us recall that compressible Euler has the two
parameter symmetry transformation group

2
(%)7*1 p(t,7), %U(T, 7Z)
7 — dr 1

%7 t v
which becomes for (2.4):

_1 A
(3)7 T ilr.2), (. 2)
7z dr _ 1

— XN dt T v

Lemma 2.1 (Renormalization). Let r be the front speed, recall (1.16), and let
AMr)=eT, v(r)=e"", b(r)=e 7 (2.5)

then the renormalization

plt2) = (3) 7 pr(r, 2)
Uiw) = (I ol ), ur =05 (26)
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transforms (2.4) into:

87'pT = —PTA\I’T - K(TQ;I)PT - (283\IJT + Z)asz

_ 2.7
0V = bQG(UT, pT) — [(GZ‘I’T)Q + (’l“ — 2)\I’T + Z0z9 T + pé: 1] ( )
with
y " (AUr(r') — ZUrp(r’
F (ur, pr) = 2“(M+M,)/ (Al )2 " ot ))dr/ (2.8)
0 PT(T)

where Ur = 0, V.

Proof of Lemma 2.1. We renormalize the first equation and obtain, using the nota-
tion A := Z0yg,

r—1
- [Pt Apr + pr AV + 202V 70zpr =0

Lr—1)

anT +

T — (282\IIT + Z)0zpr.

& Orpr = —prAV¥r —
For the second equation:

1+

—1
O-(Up + a(r)) + (r — 2)(V + a) + AUy + <> U F(ur, pr) + 10297 + 207D _g

A2
& 0. U = bQG(uT, pT) — |:(8Z\I/T)2 + (7“ — 2)\I/T + Z0zVr + pg_l}

with ar 4+ (r —2)a = 0 and
1
I+y\ 7-1 1
b2 = <V)\2’y >7 — (67[(1+’y)7’72ﬂ7'> R 672(’7’
this is (2.7). O

We now observe from (1.16)

2+ 7
e>0<:>r>1—j:€. (2.9)
and compute for d = 3:
for ¢ < d,
d+ ¢ 2+7¢
r*(d, 0) = > Sd+01+0)>@2+0(+Vd
(@0 = s> g e (L) > 24 0(+ V)
& d+dl+0+02>2042Vd+ %+ 0Vd
2Vd —d
s U(d-1-Vd)>2Vd—d e > lh(d) = ———|
( ) 0() Cl—l—\/&
which for d = 3 is
2¢/3 -3
0> 0p(3) = 22— = V3,
0() 27\/3
for £ > d,
d—1 2+ 7 2 2+ 7
r(d,0) =1+ i T 1=VE2 >0

> <1+ >
(1+\/Z)2 1+¢ (1+\/Z)2 1+¢
and thus always holds for ¢ > d = 3.
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Remark 2.2. The requirement that ¢ > 0 is equivalent to the decay (as 7 — o0)
of the parameter b2. This is precisely the value of renormalized viscosity in (2.7)
and its decay signifies the dominance of the Euler dynamics on the approach to
singularity. We therefore assume from now on and for the rest of this paper that
the parameter ¢ is in the range (1.5).

The function 7*(d, £) is a decreasing function of ¢. In particular, for £ > 0

r*(d, f) < Vd (2.10)

2.3. Blow up profile and Emden transform. A stationary solution to (2.7) for
b = 0 satisfies the self similar equation

az\l’p —{—p?_—, T—2\I’p+A\I’p:0

2.11
AWp+ U 4 (20,0 p + 2) %228 = 0 (2.11)
which can be complemented by the boundary conditions
1
Up(0) = T U'5(0) =0, pp(0)=1. (2.12)
Following [21], [44], the Emden transform
¢ = %\f p—1=1%
Q:pp ﬁ, Y =9¢Zo |, y=logZ (2.13)
% =l
maps (2.11) into
dw _
Efu;w 1) —i—E de 7 4 (w? —rw+ lo?) = (2.14)
77+(w—1)@+0[w(7+1)—r] =0
or equivalently
a1 dy + b1 —|— di =0
a2 dy + b2 —|— do =0
with
a=w—1, by =Llo, d =w?—rw+lo? (2.15)
az =7, bp=w-—1, dQZU[(l—i—%)w—r]. '
Let
lr—1
w, = (Td ) (2.16)

and the determinants
A = a1by — bias = (w—1)? — o2
Ay = —bydy + bady = w(w — 1)(w — 1) — d(w — we)o? (2.17)
Ay =daar —diag = § [((+d — Dw? —w(l +d+br —7) + lr — lo?] .

then

dw . Al do . AQ dw . Al

dy A dy A do Ay
A solution w = w(o) of the above system can be found from the analysis of the
phase portrait in the (o, w) plane, see Figure 1 and Figure 2. The shape of the phase
portrait relies in an essential way on the polynomials A, Ay, Ay and the range of
parameters (r,d,¢). In particular, it is easily seen that there is a unique solution
which satisfies (2.12) and is C*° at Z = 0. The key question is the behavior of this
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unique solution as x — +o00. In particular, this solution needs to pass through the
point P,, determined by the conditions

A(P,) = A1(P2) = Ay(P,) = 0. (2.18)

At Py, generically (i.e., among all solutions passing through P,,) solutions will
experience an unavoidable discontinuity of higher derivatives. Nonetheless, for a
discrete set of values of the speed r, our unique solution curve passes through P, in
a C fashion. The following structural proposition on the blow up profile is proved
in our first paper [32].

Theorem 2.3 (Existence and asymptotics of a C> profile, [32]). Let d € {2,3}.
There exists a (possibility empty) countable sequence 0 < £, whose accumulation
points can only be at {0,d,+oo} such that the following holds. Let

r*(d, 0) = -2+L for€<d

é+xf
T+ (d7 e)

re(d, ) = (H\[ for £>d

be the limiting blow up speed. Then there exists a sequence (ry)g>1 with

lim ry =r<(d,?), 1 <7r<(d,{) (2.19)
k—o0

such that for all k > 1, the following holds:

1. Existence of a smooth profile at the origin: the unique spherically symmetric
solution to (2.11) with Cauchy data at the origin (2.12) reaches in finite time Zo
the point Ps.

2. Passing through P»: the solution passes through P with C*° regularity.

3. Large Z asymptotic: the solution has the following asymptotics as Z — 400:

w(Z)=%(1+0(%))
o(2) = % (1+0 (L)) (2.20)
or equivalently
Q(2) :p};;l(z) 7o (1+O( 7)) (2.21)
Z079p(Z) = 5% (1+ 0 (57))

for some non zero constants ¢y, ¢o, Cp, cy, and similarly for all higher order deriva-
tives.
4. Non vanishing: there holds

VZ >0, pp>0.
5. Repulsivity inside the light cone: let
F=o0p+ Aop, (2.22)
then there exists ¢ = c¢(d, ¢, r) > 0 such that
(1-—w—-Aw)?-F?>c¢

<zZ<
We2<2, l—w—Aw—i(l_;”)FZc

(2.23)
The property (2.23) will be fundamental for the dissipativity (in renormalized
variables) of the linearized flow inside the light cone® Z < Z,. This is however
insufficient. Dissipative term in the Navier-Stokes equations requires control of
global Sobolev norms which, in turn, demands (2.23) to hold globally in space.

“We should explain here that the cylinder (7, Z = Z») corresponds to the light (null) cone of the
acoustical metric associated to the solution (pp, Up) of the Euler equations. In original variables,
this is the backward light cone (¢, |z| = (T — t)%) from the singular point (T',0).
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FIGURE 1. Phase portrait in the range 1 < r < r*(d,¥). Dashed
curve is the trajectory of the solution constructed in Theorem 2.3.

Lemma 2.4 (Repulsivity outside the light cone, [32]). Let d =3 and
lo(3) = V3 < £,
then

(1—w—Aw)?—-F?>¢

1—w—Aw>c (224)

(P) de=capr >0, VZ > Zy, ’

From now on and for the rest of this paper, we assume

Z 2)3< , (Navier — Stokes)
0
g : ?’ 3 (Euler)

and pick once and for all a blow up speed r = ry, close enough to r-(d, ) so that
(P) holds and e > 0.

2.4. Linearization of the renormalized flow. We aim at building a global in
self-similar time 7 € [r9, +00) solution to (2.7) with non vanishing density pr > 0.
We define

Hy=1+2"% =1-w 2.95)
H1=—<A\I'p+@>=H2%=§(1—w)[1+%} '
We linearize B
pr=pp+p, Vr=VUp+ V. (2.26)
We compute, using the profile equation (2.11), for the first equation:
— f(r—1 —
&p = —(pp+P)A(Yp+T)— ( )(pp +7) — (2029 p + Z +2079)(Dzpp + OzP)

= —pTAﬁ —2Vpr- V@—i— Hip— HQAﬁ
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P5’

P1

P4

FIGURE 2. Phase portrait in the range r*(d,¢) < r < ry(d,?), £ >
d. Dashed curve is the trajectory of the solution constructed in
Theorem 2.3.

and for the second one:
0T = b2F(ur,pr) — {\V\IIPP +2VUp - VT + VT2
+ (r=2)Up+ (r—2)U + (AUp +AV) + (pp +p)p‘1}
= VF(ur,pr) — {2V\pr VU + AV + (1 —2)T + [VU? + (pp +p)PF — p';‘l}
= BF(ur, pr) — {HZAE +(r—2)T + VI + (p— 1) 25+ NL(p)}
with
NL(p) = (pp + )" ' = b ' — (0 — 1)} °p.
Hence the exact linearized flow®
O;p = Hip — HoAp — pr AV — 2V pr - VU
0,V = b2F (ur, pr) — {HQA@ F(r=2)U + [VUP + (p—1)p5 %5+ NL(p)}
(2.27)
Theorem 1.1 is therefore equivalent to constructing a finite co-dimensional mani-

fold of smooth well localized initial data leading to global in renormalized 7-time
solutions to (2.27).

5by exact linearized flow, we mean that all the nonlinear terms are still present in (2.27), see
the terms pr AV, Vpr - VU, F (ur, pr), |[VE|? and NL(p).
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3. Linear theory slightly beyond the light cone

Our aim in this section is to study the linearized problem (2.27) for the exact Euler
problem b = 0. We in particular aim at setting up the suitable functional framework
in order to apply classical propagator estimates which will yield exponential decay
on compact sets in Z, modulo the control of a finite number of unstable directions.
We mainly collect here the results which were proved in detail in [33] and apply
verbatim.

3.1. Linearized equations. Recall the exact linearized flow (2.27) which we rewrite:
O0;p = H1p — HoAp — ppAV — 2V pp - VU — pAV — 2Vp - VU
0. = V2F (ur, pr) — {HQA@ F(r =200+ (p— 1) 5+ V2 + NL(p)}

We introduce the new unknown
® = pp¥ (3.1)
and obtain equivalently, using (2.25):

aTﬁ:Hlﬁ—HQAﬁ—A(I’—‘ng(I)—FGp (3 2)
0-P=—(p—1)Qp— HoADP+ (H, — (r —2))® + Gop '
with A
Q = pZ])Dila H3 = ﬂ
pp
and the nonlinear and viscous terms:
‘ G, =—pAV —2Vp- V¥ (3.3)

Go = —pp(|VY|* +NL(p)) + b*ppF (ur, pr)
We transform (3.2) into a wave equation for &:

D20 = (p — 1)QAD — HA’® — 2Hs A0, ® + AjAD + A0, D + A3d
A
+ 0,Go — <H1 + H2C§2> Go + HoAGy — (p — I)QGP

with
Ay = HyoHy — HyAHy + Hy(Hy — (r — 2)) + HzQ%Q
Ay =2H; — (r —2) + Hy4S
Ag = —(Hy — (r — 2))Hy + HyAHy — Hy(Hy — (r — 2))55 — (p — 1)QH3
Remark 3.1 (Null coordinates and red shift). We note that the principal symbol
of the above wave equation is given by the second order operator
Og := 82 — ((p— 1)Q — H3 2*)0% + 2Hy 2070

This operator governs propagation of sound waves associated to the background
solution (pp, ¥p) of the Euler equations.

In the variables of Emden transform (7, y = logZ), Og can be written equivalently
as

Og =02 —[0° — (1 —w)?*] 92 + 2(1 — w)d,0;
The two principal null direction associated with the above equation are
L=0;4+[1-w)— o]0y, L=0,+[(1—-w)+0]0y,

so that
Og =LL
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We observe that at P», we have L = 0, and the surface Z = Z5 is a null cone.
Moreover, the associated acoustical metric® is

9o = Adr? — 2(1 — w)drdy + dy?, A=(1-w)?-o?

for which 0, is a Killing field (generator of translation symmetry). Therefore, Z =
Zy is a Killing horizon (generated by a null Killing field.) We can make it even more
precise by transforming the metric gg into a slightly different form by defining the
coordinate s:

so that

and then the coordinate y*:

so that

9@ = Ad(s+y")d(s —y7)
and y + 2" and y — z* are the null coordinates of gg. The Killing horizon Z = Z3
corresponds to y* = —oo and A ~ e“Y" for some positive constant C. In this form,
near Zo the metric gg resembles the 1 + 1-quotient Schwarzschild metric near the
black hole horizon. Note that the region Z > Z5 corresponds to the interior of a
black hole in a sense that the null geodesics of the acoustical metric never leave that

region
The associated surface gravity k can be computed according to
Dy= A Oy A —w'(1 —w) —d'o)
TN - 7
1—w)F
= (—w' — d')|p, :1—w—Aw—ﬂ|p2 >0

This is precisely the repulsive condition (2.23) (at P,). The positivity of surface
gravity implies the presence of the red shift effect along Z = Z5 both as an optical
phenomenon for the acoustical metric gg and also as an indicator of local monotonic-
ity estimates for solutions of the wave equation Oge = 0, [17]. The complication
in the analysis below is the presence of lower order terms in the wave equation as
well as the need for global in space estimates.

We focus now on deriving decay estimates for (3.2).

3.2. The linearized operator with a shifted measure. Pick a small enough
parameter

I<axl
and consider the new variable
O =0;P+aHyA?, (3.4)
we compute the (0, ) equation
0. X = MX + G, X:‘g , G:‘% (3.5)
S

6This is the metric on the 1 + 1-dimensional quotient manifold obtained after removing the
action of the rotation group.
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with
o —CLHQA 1
= < (p—1)QA — (1 — a)2H2A? + AyA + A5 —(2 — a)HaA + Ay > (3.6)
where A
Geo = 0-Go — <H1 + HzQQ) Go + HoAGo — (p— 1)QG, (3.7)
and

/12 = A+ (2a — CL2)H2AH2 — aAqHo.
The fine structure of the operator (3.6) involves the understanding of the associated
shifted light cone.

Lemma 3.2 (Shifted measure, [33]). Let

Dy =(1—-a)?*(w—-1)%*—-0? (3.8)
then for 0 < a < a* small enough, there exists a C* map a — Z, with
0Z,
Zo=0 = Z2, —7— >0
da
such that
D.(Z,) =0
—Dy(Z) >0 on 0<Z < Z, (3.9)

limy .o Z%(—Dg) > 0.
3.3. Commuting with derivatives. We define
0, = A*O, ¢, =AFP
and commute the linearized flow with derivatives.

Lemma 3.3 (Commuting with derivatives, [33]). Let k € N. There exists a smooth
measure g defined for Z € [0,Z,] with 0 < a < a* small enough such that the
following holds. Let

£, — ngdlaZ (2 29(~Da)os4)
then there holds
AFMX) = my, g’; + M X (3.10)
with
m, op ‘ —aHyA®), — 2ak(Hy + AH) Py + O,
O Ly®y, — (2 — a)HaAOy — 2k(2 — a)(Ha + AH2)Op + A0,

where T”INYk satisfies the following pointwise bound
2k—1

A
—
] bt (3.11)

2k
> oo+ Y |aLel.
3=0 j=0

Moreover, g > 0 in [0, Z,) and admits the asymptotics:

9(Z)=1+0(Z% as Z—=0
9(2) = caart(Za — Z)9 1+ O(Z — Zy)| as Z 1 Zg,

M X | <k

(3.12)

with
cg >0 (3.13)
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for all k > ki large enough and 0 < a < a* small enough.

3.4. Maximal accretivity and spectral gap. The linear theory we use relies on
the spectral structure of compact perturbations of maximal accretive operators.

Hilbert space. We define the space of test functions
Do = Do x f;dial([()? Za]v (C)v

and let Hy be the completion of @g for the Hermitian scalar product:
(X.3) = (@) + (01,60, + [ 1062 1z (3.14)

where”

(®,)) = —(ng)k,(i)k)g—i-/x@(i)gZd_le, (3.15)

(Or: Or)g = /Qkékgzd_ldza
x be a smooth cut off function supported on the set |Z| < Z3 such that®
1
g=5 on Suppx.

Unbounded operator. Following (3.6) we define the operator

m = —aHQA B 1
o (p — I)QA — (1 — a)2H22A2 + AQA + A3 —(2 — Q)H2A+A2

with domain

D(M) = {X € Hyp, MX € Hy} (3.16)

equipped with the domain norm. We then pick suitable directions (X;)i<i<n € Hag
and consider the finite rank operator

N
A= (X)X,
=1

The following fundamental accretivity property is proved in [33].

Proposition 3.4 (Maximal accretivity/dissipativity, [33]). There exist k, > 1 and
0 < c¢*,a* < 1 such that for oll k > k,, YO < a < a* small enough, there exist
N = N(k,a) directions (X;)1<i<n € Hoy such that the modified unbounded operator

m:=m-Aa
1s dissipative )
VX e (M), R{(-MX,X) > cak(X,X) (3.17)
and mazimal:
VR >0, VF € Hy,, 3X e D(M) such that (—NM1 + R)X = F. (3.18)

Exponential decay in time locally in space will now follow from the following
classical statement, see [18, 33| for a detailed proof.

"Note that ((®,®)) is a Hermitian scalar product on the completion Hg of D from the form
of L, and an integration by parts.
8Note that x exists in view of (3.12).
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Lemma 3.5 (Exponential decay modulo finitely many instabilities). Let §; > 0
and let Ty be the strongly continuous semigroup generated by a maximal dissipative
operator N + dg1, and T be the strongly continuous semi group generated by 111 =
M + A where A is a compact operator on H. Then the following holds:

(i) Let o(1) denote the spectrum of 1, i.e. the complement of the resolvent set.
Then, the set As, (111) = o(NM)N{X € C, R(\) > —%9 is finite, and each eigenvalue
A € As, (M) has finite algebraic multiplicity ky. In particular, the subspace Vs, (1)
given by Vs (1) = Usens, omyker(11 — M) s finite dimensional.

(i) We have As, (111) = A5, (111*) and dimVs, (%) = dimV;, (111). The direct sum

decomposition
H = Vi, () P Vi) (3.19)
is preserved by T(t) and there holds:

3
VX € Vi (m"), |IT()X ] < Ms,e™ 2|1 X]). (3.20)

(iii) The restriction of MM to Vs, (M) is given by a direct sum of (my x m)\))\EA(;g m)
matrices each of which is the Jordan block associated to the eigenvalue A\ and the
number of Jordan blocks corresponding to X is equal to the geometric multiplicity of
A = mf = dim(ker(M — XI)). In particular, m$ < m$kx. Each block corresponds
to an invariant subspace Jy and the semigroup T restricted to Jy is given by the
matriz

eM e a1l
0 eM . gmaT2eM
T(t) ’J,\ -
0 0o .. et

Our final result in this section is a Brouwer type argument for the evolution of
unstable modes.

Lemma 3.6 (Brouwer argument, [33]). Let 1M, §, and As,(111) as in Lemma 3.5.
Also, let the decomposition
H=UPV

into stable and unstable subspaces, i.e. U and V are invariant subspaces for 1M and
V is the image of the spectral projection? Ps(111) of N associated to the set As, ().
Fiz a sufficiently large to > 0 (dependent on 11). Let F(t,x) such that, Vt > to,
F(t,xz) € V, depends continuously on x and

24
IF(t )| <e s
be given. Let x(t) denote the solution to the ode
Cé—gt” =Mz + F(t,x)
x(to) =z € V.

Then, for any constant T' > 0, there exists ty (which only depends on M and T')
such that for any xg in the ball

35
lzol] < e,
we have S
lz(t)| <e 3, to<t<to+T. (3.21)

e Ps(M) = = fw 2, where « is an arbitrary contour containing the set As, (11).
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Moreover, there exists x* € V in the same ball as a above such that ¥t > tg the
solution x(t) with initial data x(tg) = x* obeys

3dg

lz@®)l < e

4. Setting up the bootstrap

In this section we detail the set of smooth well localized initial data which lead
to the conclusions of Theorem 1.1.

4.1. Cauchy theory and renormalization. We use local Cauchy theory for
strong solutions for Navier-Stokes from [15].

Theorem 4.1 (Local Cauchy theory NS, [15]). Assume

00 c H'nwtb

up € H' N H? (4.1)
—Aup+Vpo c 12
VPo

then there exists a unique local strong solution (p,u) € L>([0,T) N H' N W10) x

Loo([O,T),H1 N H?) to (1.1). Moreover, the mazimal time of existence T is char-
acterized by the condition

T
/O [Vull Lo sy = o0 (4.2)

In the Euler case we can use the results from [27] and [8]

Theorem 4.2 (Local Cauchy theory, Euler, |27, 8]). Assume

=1
Py’ suo € H? (4.3)
-1
for some s > 1+ %, then there exists a unique local strong solution (va,u) €

CY([0,T)NH?) to (1.2). Moreover, the mazximal time of existence T is characterized
by the condition

T
/0 IVl ety = 0 (4.4)

On an interval [0,7%], T* < T, where p(t,x) does not vanish, we equivalently
work with (2.4) and proceed to the decomposition of Lemma 2.1

1
ﬁ(ta .73) = (%) vt pT(T, Z)

u(t,z) = %UT(S, Z), up=VVYp="Ure,
with the renormalization:

Z:y\/l;:Z*:c, Z*:%:e'r

M) = e, w(r) =", b(r) = e (4.5)

—log(T—t) _ —logT
— s o= ——-

T =

Our claim is that given

To =

large enough, we can construct a finite co-dimensional manifold of smooth well lo-
calized initial data (po, Gg) such that the corresponding solution to the renormalized
flow (2.7) is global 7 € [r9, +00), bounded in a suitable topology and non vanishing.
Going back to the original variables yields a solution to (1.1) which blows up at T’
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in the regime described by Theorem 1.1.

4.2. Regularity and dampening of the profile outside the singularity. The
profile solution (pp, ¥p) has an intrinsic slow decay as Z — +o0 forced by the self

similar equation
cp 1
PP(Z):T_<1+O< r))
<Z>% (Z)

which need be regularized in order to produce finite energy non vanishing initial
data.

1. Regularity of the profile. Recall the asymptotics (2.21) and the choice of param-
eters (2.5) which show that in the original variables (¢, z) both the density and the
velocity profiles are regular away from the singular point = 0:

(r=1)

pp(t,z) = (i‘)vllpp <§) = c;ig—;: [1+O ((Zl>’">]

and
Up(t,z) = —)\82\1113 <7) — T Yy +0 1
’ v A zZr—1 <Z>7"

- o ()] 7

2. Dampening of the tail. The above regularity allows us to turn our profile into
a finite energy (and better) solution. We dampen the tail outside the singularity
x> 1,1ie., Z > Z" as follows. Let a smooth function K, such that

0 for |z| <5 18
ol7) = np — 25::11) for |x| > 10’ (4.8)
for some large enough universal constant
np = np(d) > 1.
We then define the dampened tail profile pp: in the original variables
. . _ e Kpl) 4y pp(t,x) for |z| <5
t,x) = ppt,x)e Jo ' = | I —rr , (4.9
pp(t,x) = pp(t, ) ‘ b [14+0(e ) for [of =10 + (49
and in the renormalized variables:
A== A
po(r.2) = (%) bplta), v = . (4.10)
Let
x Kp(@') 5 4
Gola) = eI e

we have the equivalent representation:

pp(7.Z) = (WB)7 pp(1,2) = (WD) 71 pp(t, 2)¢y(x) = ((AZ)pp(Z)  (4.11)
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Note that by construction for j € N*:

P _1y-1(2(r—1) J 1 < *
e | ) (BR) 10 () for Z<52 o)
pD (—1)7~ 1nP—|—O<<Z)T)for Z >102*
and )
ALY
ZY%pp| < (4.13)
PD Lo

We proceed similarly for the velocity profile which can be even made compactly
supported. Let a smooth function (, such that

@)= g ol 10
and define .
ot =t | TR IS g
and thus in renormalized variables:
U(r.2) = {Up(tx) = G.AZ)Up(2), = Zi (4.15)
We then let
Vp(r,Z) ——+/ Up(t,2)d

so that by construction Wp = Up for Z < 52*.

4.3. Initial data. We now describe explicitly an open set of initial data which are
perturbations of the profile (pp, ¥p) in a suitable topology. The conclusions of The-
orem 1.1 will hold for a finite co-dimension set of such data. Our first restriction is
that the initial data (pg,ug) in the original, non-renormalized variables satisfy the
assumptions (4.1) and (4.3) for the validity of the local Cauchy theory.

We now pick universal constants 0 < a < 1, Zp > 1 which will be adjusted along
the proof and depend only on (d, ¢). We define two levels of regularity

d
§<<k‘|7<<]{3Ii

where k? denotes the maximum level of regularity required for the solution and k,
is the level of regularity required for linear spectral theory on a compact set.

0. Variables and notations for derivatives. We define the variables

pr=pp+p

Vr=V¥p+ V¥

up =VUp, @4=VU¥ (4.16)
Up =0,%p, U=09,T

D =pp¥

and specify the data in the (g, \I!) variables. We will use the following notations for
derivatives. Given k € N, we note

o = (0F,...05), fM:=0d"f

the vector of k-th derivatives in each direction. The notation 82 f is the k-th radial
derivative. We let 3
pr=A0p, U =AM
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Given a multiindex o = (o, ..., aq) € N4, we note
Va:810‘1...8§‘d, \a|:a1+~~+ad.

Sometimes, we will use the notation V¥ to denote a V derivatives of order k = |a.
1. Initializing the Brouwer argument. We define the variables adapted to the spec-
tral analysis according to (3.1), (3.4):

B = pp BE:
T—0.0+alAD * X = |0 (4.17)

and recall the scalar product (3.14). For 0 < ¢g,a < 1 small enough, we choose
k, > 1 such that Proposition 3.4 applies in the Hilbert space Hy;, with the spectral

gap
VX € D(M), R((=M + )X, X) > cy(X, X). (4.18)

Hence
M=0N—-A+cqg) —cg+ A
and we may apply Lemma 3.5:
Ao={AeC, RN\ >0}Nn{\ is an eigenvalue of M} = (\;)1<i<n (4.19)

is a finite set corresponding to unstable eigenvalues, V' is an associated (unstable)
finite dimensional invariant set, U is the complementary (stable) invariant set

Hor, = UEPV (4.20)

and P is the associated projection on V. We denote by 1 the nilpotent part of the
matrix representing 171 on V:

My =N + diag (4.21)
Then there exist C,d, > 0 such that (3.20) holds:
/ _%g
VX €U, (€ X|luy, < Ce 27Xy, V7 =70
We now choose the data at 7y such that
b 35y
I = P)X (o), < 57, [IPX(r0)llitgy, < ™5,
where I is the identity.
2. Bounds on local low Sobolev norms. Let 0 < m < 2k, and
2(r—1) 4,
=" 4+ = 4.22
o p— 1 + 2 ) ( )
let the weight function
1 A 1 for Z <2
Svom = T r2l—m © (z) » ¢2) = ‘ 0 for Z>3. (423)

Then:
2k,

> [ € (0= DA (Tm0lr)? + [PV 0(m)?) < ebm a2
m=0

3. Pointwise assumptions. We assume the following interior pointwise bounds

(2)*9%p(10)
PD

VO < k < 2kF,

) + H<Z>r_1<Z>kvka(TO)HLoo(zgzg) <A

(4.25)

L (Z<Z
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for some small enough universal constant ¢, with Zj = €™, and the exterior bounds:

ZF19% p(7o) 121 (o) || oo (22 )

PD L(2>23) Y

Y0 < k < 2kF, H < 250 (4.26)

for some large enough universal Cy(d,r,¥¢). Note in particular that (4.25), (4.26)

ensure that for all 0 < Ay small enough:

H p(70)
PD

and hence the data does not vanish.

<dp K1 (4.27)
LOO

4. Global bounds for high energy norms. We pick a large enough constant k*(d, r, ¢)
and consider the global energy norm

K —2 o 5)2 2 a2
S T2 (p— 1) “pr(V*p)? + p7: | VV |
15, ¥l -—]EO'E | GECE : (4.28)
=0 |a|=j
then we require:

15(70), ¥ (70) I < do (4.29)

We now define the weight functions

_20r=1(p+1)
2k—20—d+2r=Dp D) < Z >2nP+20 p-1

Xk = (Z) 7 (4.30)
and the associated weighted energy norms
50 =20 Y [ [ 0y orl 7 4 O] s
=0 |a|=j
We fix 0 < o(k*) < d, and require that, for o = o (k*),
17(0), ¥ (70) 52, < doe™™ (4.32)

Remark 4.3. dy will denote any small constant dependent on the smallness of
initial data and 7 !

Remark 4.4. We note that a straightforward integration by parts and induction
argument implies that the norms ||p, ¥||,,» and ||p, ||+ are equivalent to the ones
with V*p and V*U replaced by

Fp={0{p,...00}, PV ={0]V,.. 00}

as well as A7p, A7 with j varying from 0 to % and %ﬁ respectively (if m and &

are even.) In what follows, we will use this equivalence continually and without
mentioning. In fact, in what follows we will specifically work with the norms

1o “pr(AIp)* + pp | VAT U2
HP»‘I’HM —Z/ (Z)2(k*=2j)

and

15.91200 =3 [ % [0~ 065 2prl0 5 + $3V OO
=0
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4.4. Bootstrap bounds. Since the initial data satisfy (4.1) we have a local in time
solution which can be decomposed and renormalized according to (4.5) and (4.16).
We now consider the maximal time interval [rg, 7*), 79 < 7* < 400, such that the
following bounds hold on [ry, 7*):

1. Control of the unstable modes: Assume (see (4.21)) that

1964

le™ PX (1) ||z, < €507 (4.33)

2. Local decay of low Sobolev norms: for any 0 < k < 2k,, any large Z < Z* and
universal constant C' = C'(k,):

.z Lo %
1P, ) gy < 2% 7 (4.34)

3. Global weighted energy bound. We fix 0 < o (k*) < 6,. For o = o(k*), we assume
the bound:

1. 9%, < e (4.35)

4. Pointwise bounds:

0<k<ki_2 HM
- - ’ PD

Lo + H<Z>k<Z>Pl&kHLw(zgz*) <d
(4.36)

0<k<kl— 1, H<Z>k<Z>T71 <%>7(Pl) akHL°°(1<Z) =4

for some small enough universal constant 0 < ¢ < 1.
The heart of the proof of Theorem 1.1 is the following:

Proposition 4.5 (Bootstrap). Assume that (4.33), (4.34), (4.35), (4.36) hold on
[70,7*) with T« mazimal and 41, 79 large enough. Then the following holds:

1. Exit criterion. The bounds (4.34), (4.35), (4.36) can be strictly improved on
[10,7%), i.e. they hold on [19,7*) with a corresponding RHS divided by 2. FEquiva-
lently, 7" < +o00 implies

*

||eT*nPX(T*)||H2kbe%T =1. (4.37)
2. Linear evolution. The right hand side G of the equation for X (1)
0 X=MX+G
satisfies
IGiy, <57, V1€ [r0,77] (4.38)

Remark 4.6. For the convenience of the reader, we list below the various constants
appearing in the proof:

dg > 0 is the constant appearing in (3.20).

0 <a< 1, Zy>1 are adjusted along the proof and depend only on (d, /).
0 < d <« 1 is some small enough universal constant.

Then, we choose % < ky < k! where kf = E¥(d, r, ().

Then, we choose o(k#) such that 0 < o (k%) < 4.

Then, we choose 79 = 79(k*) large enough.

Finally, dg denotes any small constant dependent on the smallness of initial
data and 7, L

Remark 4.7. We note that the assumption (4.33) implies that

6
IPX(P)lbtyy, <€ 27, 7€ [m0,7) (4.39)
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We will prove the bootstrap proposition 4.5 under the weaker assumption (4.39).
Specifically, we will define [7p, 7*] to be the maximal time interval on which (4.39)
holds and will show that both the bounds (4.34), (4.35), (4.36) can be improved
and that G satisfies (4.38).

An elementary application of the Brouwer topological theorem will ensure that
there must exist a data such that 7* = +o00, and that these are the blow up solutions
of Theorem 1.1.

We now focus on the proof of Proposition 4.5 and work on a time interval [y, 7],
7o < 7* < +00 on which (4.34), (4.35), (4.36) hold.

5. Global non-renormalized estimate

Recall the original (NS) equations (2.2) (written for the square root of the den-
sity):
Op+pV-u+2Vp-1u=0
28tu—oz(,uAu+,qu1V @) +2p%0-Va+ (p—1)pPVp =0 (5.1)
—

The standard energy estimate for the above equation takes the form

d . N s
dt (]?-Flppﬂ 2\u]2> + (/MVU,\Q + ¢ |div u\z) =0.

In view of the assumptions on initial data, consistent with rapid vanishing of the
dampened profile density pp ~ z7"F, this estimate and its higher derivative versions
provide very weak control of solutions for large . To gain such control we use an
auxiliary estimate. First, we once again observe that for spherically symmetric
solutions A4 = Vdiv 4.

Lemma 5.1 (Velocity dissipation). There following inequality holds for any t €

(0.7)
Jiwater+ a5

[ [ lawansar+wpisal) + [1vuoor. 62

The main feature of the above estimate is the second term on the left hand side
generated by the dissipative term in the Navier-Stokes equations. With the density
in the denominator, it provides very strong control on the velocity at infinity.

Proof. Recall (2.2): Dividing by p? and multiplying the second equation in (5.1) by
A1 we compute:

2 ‘AUP / / Ap—2\7 A ~
th/yw —i—oz(u—i—u)/ = @ Vi Au+ [(p— 1P 2V5- Ad
which concludes the proof of (5.2).

O

We now reinterpret this estimate in the renormalized variables and show the
boundedness of the right hand side. Recall that
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and

vy = Vf = -, V:(T_t):efr‘r

A7) = e = (T —t)7, Z*=e", bP = (z7) e,
Then

(M+M/)/T/\Aﬁ|2 _ M+M / /Z* —d—r+4+2(r—1)—6(r—1) ’AUT’
0 p?
= (u+u’)/ bR(Z%) [Aurf
) p%

and

T
/0 / (Jal|VallAdl + V52| Adl)

/ /(Z*)dr+3+3(r1) <|UTHVUTHAUT| + \Vﬂ}%_lHAUTI) ‘
To

We observe that by the definition of the weight function yg in (4.30)
7 20—2(r—1)
A —d+2(r—1)—-20 /| “ < 2
(%) 7 ~ X0PD
We now use the pointwise bootstrap estimates (4.36), which hold for both p, 4 and
pr,ur to estimate, recalling also that we are in the case d = 3,

T
/0 / (Ia]|Val|Ad] + [V || Adl)

S /OO (Z*)fdfT+3+3(7‘fl)
70

Z ’I"—].
< [@rs e (2N (urll@url + @ el ™)
/W(Z*)—d—r+3+3(r—1)+20

70

o 7 3(r—1)
x / xonh (Z) " 1><Z*> (lurl2)Vurl + o~ (2)Vprlpf %)

o
S / (7)== o W7,
70
In the last inequality we used the fact that » > 1 and the definition of the norm
llpr, Y71, from (4.31). We now note that (4.35), together with the decay of the
profile (pp,up) and the fact that o > 0, implies that ||pr, Ur|1, < D with some
constant @ which depends on the size of the profile (pp,up). As a consequence,

T o
/ /(WHVQHAM + |V |Adl) £ g)/ (7%) AT 3301420
0 -~

As long as the constant ¢ is chosen to be sufficiently small, the convergence of the
above integral is guaranteed under the condition

A

d
r< 5
Since r is either close to r*(d, ¢) or r4(d, ) and r* < r, we need
d—1 d
ry =1+ —

A+vo2 "2
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For d = 3 this holds for £ > 1, which is satisfied in view of the condition ¢ > v/3.
Hence, we have obtained

T
/0 / (lal|Val|Aal + VP Ad) < D.

Furthermore, since @ at ¢t = 0 is assumed to be in H', we infer, in view of Lemma

5.1,
u+u/ |A“’2 < o
and hence
(M+M')/0052(Z*)d+2r M S D
T0 P

We now observe that by bootstrap assumptions (4.36).

2
/OO bZ(Z*)—d+2r/ ’uT‘2+Z4’AUT’
70 Z<7* (Z)%p3
S /OO(Z*)E(TI)T+2d+27"/ <Z>7472(r71)+€(r71)+d71
T0 Z<Z*

/ max{ Z* ( ) L(r—1)—r+2— d+2r} <1
70

as long as r > 0 and
r=1)4+r—2+d—-2r>0
For r = r*(d, ?)

d—+d {+d
lr—1)+r—2+d-2r = ¢ Vd 2+4+d +

(+vVd (+Vd
Ud—Vd)—t—d—20—2Vd+ td+dVd
B (+Vd
_Ud—Vd)—d+(d—3)+(d—2)Vd
B (+d '

For d = 3, this is equivalent to £ > 1, which holds. On the other hand, the value of
ry(d,f) ford =3 and ¢ > 3

d—1 < d
(1+Ve?z 2
which, in view of the condition ¢(r — 1) +r —2 > 0, gives us the desired conclusion.

So, for Z < Z* we control both up and Aurp.
In the region Z > Z*, we note again that

r_i'_(d,E) =1 +

2 -
AuT = (AUT — ZQUT> €.

2 1
<AUT — Z2UT> =0y <2282(Z2UT)>

Using the bootstrap assumption

In addition,

PT
PD

<<

| =
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with

2(r—1) 2(r—1)

VA —np+ 1 _2(r—1) VA —npt 1 _2(r—1)
{z) @ swso(f) T @

zZ* Z*
we can apply a Hardy type inequality (twice) in the region Z > Z*, to arrive at the
following global dissipative estimate in renormalized variables:

Lemma 5.2.

* o e—arer [ lurl® + 2% Aur|?
(n+ ) /TO b2 (Z%) 4+ / G <D, (5.3)

where D is a constant dependent only on the (full, i.e., including the profile) initial
data.

Remark 5.3. The inequality (5.3) is used in the treatment of the Navier-Stokes
case only. As a result, the same applies to the dimensional calculations appearing
in its proof.

We also use the opportunity to translate our bootstrap assumptions back to the
original variables. Below we will include estimates which apply to the full solution
U, p rather than the full solution minus the profile and only in the exterior region
|z| > 10.

1. Euxterior weighted Sobolev bounds. (4.35) translates into the following bounds for
the velocity 4: Y0 < k < k*

/| e (5.4)

and the density p: V0 < k < kf

| vk (5.5)
10<|z|<12

2. Eaterior pointwise bounds. (4.36) translates into the following bounds 4: V0 <
kxgk 4
x)*V"p N
v 1@ T iz S 1 (5:5)

k<®
‘ PD Lo (ja>10)
We now derive improved, relative to the bootstrap assumptions, exterior weighted
Sobolev and pointwise bounds for the density p. We let
Cn,s
[P

pr(x) =
denote the t-independent leading order term in pp, so that according to (4.9)

pI_pD‘ <Se 7, x| > 10,
PD
with the similar inequalities also holding for derivatives. In particular, (5.6) holds
with pr in place of pp.
Let ¢(x) be a smooth function vanishing for |z| < 10 such that

((z) S (@)[V{(2)] S ¢(#) + Lio<ja<iz (5.7)

and V® denote a generic z-derivative of order |a| < kf — 1. Applying V® to the
first equation of (5.1)

aVep=— Y VvV —2VVpvia, (5.8)
Bty=a
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Vo ()

multiplying by ¢? (x)(q:)ma‘% and integrating we easily derive
I
) 1

¢ ()2l | VP (/C2 )2lal-1
& [ew
181+1yI= | 41,18 <&

X (/<2<x>2v|—1|vm\2> (/g y2lal-1( 'V p 2)
o < z)261-1 ) ’ H@)\v\vm
B+ |=la+1, 1<|v|<kﬁ
> ||U||L°° (Jz|>10)

(/C \2lol-1(
o, 2\ %
(/Cz 2lal-1( ’V P ) (/(v§)2<x>2|a|“ > 1l oo (1 10)

where the last two terms on the right hand side come from the integration by parts
of V¥pVV%p, and where while integrating by parts we used the bound

pI

VA5
pr

Lo (|| >10)

V

vep

o Yol !V/)I!
pI

We now examine our pointwise and integrated bootstrap assumptions (5.4), (5.5),
(5.6) to see that we can choose ¢ to be a smooth function supported in |z| > 10 and
for large x behaving like

CQ(x) -~ <x>—d+2(r—l)’

but with this choice, after time integration, the initial data would be an infinite
integral. Therefore, we first integrate the above differential inequality with

(@) ~ ()t

for large x and for some o > 0 to obtain that

/ <x>fd720+2|a\
|z[>12

with a constant @ depending on the full profile. We now rewrite (5.8) by subtracting
Vepr, and by noticing that d;pr = 0,

2
(t) <D

vep
pI

AV (p—pr)=— > VIpVVi - 2VVPpvTi,
B+y=a

5 V’p

Loo(|z|>10)
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multiply by ¢2(z)(z)?l! % and derive the energy identity, similar to the above:
I
1
2
/C2 y2lad (P p1) /C2 y2lal-1 (P pr)|?
dt
ﬁ ~
X > <x>\5|vA P (/C2 \2h1=197g ‘2>
PI Lo (|z|>10)

181+ ]y|=lal+1,/8] < &

20\ 2lal-1 Ve (s —pr)|? ?
. </<<> ”‘m )

DY ( [ aper

1Bl+ |y |=lal+1,1< ]| < EE

+( [ ooy =0
(/C2 2lal-1¢ )‘V (P pr) )é (/(VC)2($>2Q|+1
</< J2lal=1 () ) </ ¢ ()2l

We integrate this differential inequality with
() ~ )2,

1
B A 2\ 2
I

2
) 18l oo (> 10)

Loo(|z|=>10)

[SIE

ve(p—pn)|?

) 14| oo (12> 10)

-

vve ,01
pI

V(P P]

> @/l oo (joj>10)  (5:10)

where
pw=min{l,2(r — 1)} > 0.

All the norms involving p and p — p; (note that we can either control the latter
by absorbing them to the left hand side or split them into p and p; and use the
previous step to control p and the integrability of the function ¢(?(x)~! to control
pr) on the right hand side will be finite by the previous step, the norms involving
4 will be finite by the bootstrap assumptions and the choice of y, the initial data
will be small in view of the assumptions on p — pr and so will be the time interval

[To,T]. We obtain
/ <1,> —d—20+p+2k
| >12

for any 0 < k < k% — 1. This estimate immediately implies the pointwise bound

(2)* 2 =7V*(p — pp)
PD

~ ~ 2
V*(p = pr)

- <d 5.11
5 0 (5.11)

< dy (5.12)

Lo (ja|>12)

forany 0 < k < k! —2. We can translate the above bounds to renormalized variables

to obtain
_9 2
[ ()
Z>127* zZ*

VEp

PD

< dy (513)
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foranyOSkSkﬁ—land
< >kvk~
Z* pD

foranyOﬁk:gku—Z

< dy (5.14)
Loo(Z>122%)

6. Quasilinear energy identity
6.1. Linearized flow and control of the potentials. We derive the equations
taking into account the localization of the profile.
step 1 Equation for g, ¥. Recall (2.7):

a'rIOT = _pTA\IJT - @ﬂT — (282\117’ + Z) 8z,0T
0, Uy = B2F — [|V\I/T\2 (= 2)Up + AU+ p?_l}

We define
0D + | [V + oy + (r = 2)Up + ATp| = Epy .
8-pp + pp [Aqf + 8D 4 (20,0 + 2) 32@} &p, '
with & P, 3 pw supported in Z > 3Z*. We introduce the modified potentials
o’ ~ -1
H2—1+27D le—(A\IfD+€(r2 )>. (6.2)

Their leading order asymptotic behavior for large Z is the same as Hy, Hs. It is not
affected by dampening of the profile. We now compute the linearized flow in the
variables (4.16):

0rp = —pTA\IJ—vaT V‘I/+H1,0 HQAp é;pp
0.0 = 12F — |HoAT + (r — 2)0 + |V + (p — 1)p% 25 + NL(5 )} —épy
(6.3)

with the nonlinear term

NL() = (oo + )" = ol = (0= 1)l °Pr (6.4)
Our main task is now to produce an energy identity for (6.3) which respects the
quasilinear nature of (6.3) and does not loose derivatives. Observe that the as-
ymptotic bounds for Z large (11.16), (6.5) of the potentials are still valid after
localization. They will be systematically used in the sequel.

step 2 Estimate of the potential. We recall the Emden transform formulas (2.25):

Hy=(1—w)
leé(l—w) [1+ 42]
Hy = 5ee

which, using (2.20), (2.21), yield for Z large enough the bounds:
— 1 — _20=1) 1

Hs = 1‘—|-O (W)’ AHl = +0 <(Z)T)

(2O + (ZPOLH S e, 521

2yl < ks

= 1+ 0 ()| 5 2V 0501 S5
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and the commutator bounds

m m— 8
o, ol £ S e

o7,
IV ([0, Hilp) | S Sy zpthir
107(Qp) ~ Qoml S QI S (6.5)
m 9,
107, Ho)Ap| S STy o i

m m 8%
IV ([0, Ho]A®) | S S i

The same bounds hold for the modified potentials Hy, Hy from (6.2).

6.2. Equations. We have
87-,5 = *pTA\i/ — QVpT . V‘ij + ﬁlﬁ - f[gAﬁ — gp’p
0.0 = b2F — {FIQA\TJ +(r=2)U + VI + (p— 1)p% %5+ NL(5)| — Epw.

For K such that k! = 2K, we let
Py = ASpy Wiy = AW gy = Vg
We use
[AK A] = KFAK
and (recall (B.1)):
(AR V)@ - 2kVV - VAR 1P = > ChasVOVVID
|| +|B8|=2k,| 8| <2k—2
which gives:
AR (HaAp) = k*(Hy + NHy)p(gsy + HaApgisy + Aps (p)
with from (11.16):
7 (P) 5 e z’“” et

VIp :

where V/ = 9! ...07%, j = o1+ -+ ag denotes a generic derivative of order j.
Using (B.1) again:

8713(“) = [ﬁl — kﬁ(ﬁg + Aﬁg) ﬁ(kjj) — .E[QAﬁ(kﬁ) — (AKpT)A\i/ — kﬁVpT . v\i/(ku) — ,OTA\iJ(ku)
— 2V(A¥pp) - VU —2Vpp - VO ) + Fy (6.7)
with
_ K& K 71x ~
Fi = —A%&p, +[A%, Hilp — A;s(p) (6.8)
- > Cir o VI pr 02 AT — > i VIV pr - V2V
‘.h-l-]ézku ‘Jﬁ-l-]ézku
J122,52>1 Ji,j2 >1

For the second equation, we have similarly:
= —kM(Hy+ AH2) W ) — HoAW 3y — (r — 2) Wy — 2V T - VI

— 0=V gy + K (p— 1) (p— 2)p *Vpp - VAR5 + Fy
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with
Fy = BARF = AREpy — A4a() - (p—1) (185, o5 %15 — K(p — 20l *Vpp - VAF5)

- > VAT - VEVE — AKNL(). (6.10)
Jit+ja=kH j1,52>1
step 1 Algebraic energy identity.

Let x be a smooth function y = x(7,Z) and compute the quasilinear energy
identity:

%% {(P -1) /XP%_QPTKNJ%M) + /XFPTW\TJ(M)F}
— ;{(p 1)/87XP]Z)2/0T15?M) +/37xp2T!V‘i’(kﬁ)|2}
+ p%l x(p— 2)8Tpr€)_3pTﬁ%ku) + /Xar,OT [p;lp%_Qﬁ%k“) + pT’V\i/(kﬁ)F]
+ [ ortus) (0= Dy *prig)

We inject the equation (6.7)
- 9 . _9 .
/an(kﬁ) [(p— Dxpp pr(kﬁ)} = /F1 [(p— Dxrp pr(ku)}

+ / [(ﬁ[l — K*(Ha + AH2)) ey — Halp(gay — (A pr) AT — 2V(AK pp) - VI

X

[(p - 1>XPPD_QPT5(M)}
= /kﬁVPT -V ) [(P = 1>Xp€)_2pTﬁ(kﬁ)}
- /(PTA@(M) +2Vpr - V) [(p - 1)XP}520T5(M)}
and the equation (6.9)
- /3r‘i’(kn) [QXPTVPT VW sy + XPPAT (1 +PQTVX'V‘T’(M)} = —/F2V - (xP7 VY (1)
= [{ - F U A b — b — (- 2 — 298 Vg
- {(p = 1) 2pey + K (0 — 1) (p = 2)p% Vo - VAK_lﬁ] }

[QXPTV/)T -V sy + X AW g5 + pT VX - V\I'(’f”)}

X

= /XP%V‘i’(kﬁ) - VE
- / [_kﬁ(ﬁg + A ) — HoAW ) — (r — 2)¥ ) — 2V - v@(kﬁ)} V- (V)
+ / (P — Db By [QXPTVPT VU oy + XpP A gy + 7V x - V‘Tf(m}

4 / K- 1)(p— 205 Vop - VAK 157 - (xph Vi )
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Adding both identities yields the quasilinear energy identity:

1d 2 =
>dr {(p - 1) /Xp]jD “prij) + /XPQT’V‘I’(M)\Q}

2
+ /le(P — 1)} 2 prpga + /prTVFQ V)

< (p =X 2prpus

1 / (&X Orpr «%)p) p—2 9 1 / <8T>< Orpr
= 5 +——=+P—=2)—— ) (P = LXpp TPty + 5 +2
X or ( ) oD ( ) D PT (k) 2 X o1

- /{—k%ﬂ2+Aﬁ9®@m—}bA@wm—(r—2ﬁhm)—QVQ-Viwm}V-Qm%VWWM)

— [ B0 Vi [0 - 1l priie
- /kﬁ(p —1)(p—2)p *Vop - VAKXV - (xpF V¥ 1))

+ /(P— 1) o5 2 sy [P%VX ‘ V‘i’(ku)} :

step 2 Reexpressing the quadratic terms. We integrate by parts:

- /ﬁ2Aﬁ(kﬁ)(P — Dxpl 2prhgsy = ])gl/Xﬁ2PTp%_2ﬁ?ku) <d+ A s
Then
K /(ﬁz + M)W )V - (XPFV ¥ (1))
= —kﬁ/xp%(ﬁz + AH) [V > — K /XPQT‘i’(ku)V‘i’(ku) -V(Hs + AH>)
and using spherical symmetry:
/ﬁzl\‘i’(w)v - (XPFV O (1)) = —/XPQTV‘I’(M) - V(Ho AT 4z))

= —/XAFIQPQT\V@(M)’Q —/FbXPQTaZ‘i/(ku)aZ(A‘i’(ku))

- - 1 - - AH. A 2Apr
2 2 2 2 2 2 X 4
= — AH. VA +/ Hy|VU d—2+ —+ =+ ——
/ xprAH2p07 | (k) | B xprHz| (kt) | [ 72 X P

= Hyp2| VU 01 2 -
/X 2071V | | —5 2 T2y o

d—2 1AH, 1AX+ApT]

and

(TQ)/\I’(M)V'(XP%V‘I’(M)) = (7‘2)/><r’)2T|V‘i’(mt)|2

X

AH —2)A A
2+(P )PD_i_X).

>ﬁT|V‘I’(ku)\2

(6.11)
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and integrating by parts and using radiality:
[ H =06~ 265 " Tpp - VAK5T - (AT )
= —kp-1)(p-2) /XP%“V\I’(M) -V [p%_?’vpp : VAK’I/?}
= —kp-1)(p-2) /XP?FPPD_SazPDﬁ(m)az‘i/(kn)
— Hp-1Dp-2) /Xp%azli’(ku) [82 (p%*?’aZpDOZAK—lﬁ) - p%*:”@zppﬁ(ku)

We therefore arrive to the quasilinear energy identity:

1d P -
ST {(p— 1)/xp’,5 2pr i, +/xp2T|V‘I’(ku)|2} (6.12)

1 o-x 87',0T a‘rpD) -2 .92 1 / (8TX aTPT) ~ )
- - + +(p—-2 — 1)xp" + = +2 Vv
5 / ( . o7 (p—2) s (P = 1)xPp “prhs) + 5 . P oIV iy

- - - d -~ - _ ]
—H, + k*(Hy + AHy) — g2 = Ay — == Hy— = — ===

- / (p = VXA 2 priges

5 . 8 d—2- 1.~ HyA - A
- /xp%\V\P<kn>!2 [kﬁ(HQ + AHy) 4+ —2 = Sy + SAHy — 22X - =T
X pT

+//3(ku)3z‘i’(ku) [—kﬁ(P— 1)XP%_QPT32PT
— Ko -1 —2)xp405 “0zpp + (0 — 1),0%_2/)%82@
+ /F1X(P — Dol prige) + /XPQTVF2 VW)
+ / [—(AK pr)AY — 2V (AKX pr) - V‘if} (p— D)XPD 2 prigs)
— Kp-1)p-2) /XPQTﬁz‘I’(kn) [52 (P%7332PD32AK_1ﬁ) - P%igaZpDﬁ(kﬁ)}

6.3. Quadratic forms. We study the (x, Ax) quadratic forms appearing in (6.12).
step 1 Leading order x quadratic form. We recall from (2.23), (2.24):
Hy+AHy = (1 —w — Aw) > cqpr > 0. (6.13)

We assume that k% > 1, so that the terms with k* dominate:

~ o d A 1\, - -
—H+ K (Ho+ A o) — g—fAHQ—iﬂg PD_ ki (1+0(=)) (H+Al)
2 2 pD Kt

d—2 - Apr 1 ~ ~
Kt (H2+AH2)+T—2—7H2+ AHQ_HQT = kﬁ (1 + 0 <k‘ﬁ)> (H2+AH2)
T
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and claim the pointwise coercivity of the quadratic form: deg),, > 0 such that
uniformly VZ > 0,

kH(Hy + AHy) [ VP ey + P71V )| } + K (p — 1)ppdz (ol ) hsy0z¥ iy
> Capekt (0= Dby 2orite) + 0HV ¥ ] (6.14)
The cross term is lower order for Z large:
ppfl

|(p—1)pp0z (0% ) Akey 029 )| S

for Z > Z(d) large enough. For Z < Z(d), using the smallness (4.36), (6.14) is
implied by:

(Hz + M) | (p = Qi) + IVt 2] + (0 = 1pp02 Qi) 07D )
> Cdpr [(p — D)Qpfs) + p?a\V\if(kn)P] (6.15)

We compute the discriminant:

Discr = (p — 1)*pp(92Q)* — 4(p — 1)ppQ(Ha + AH>)?
2
= (p—1)ppQ [(p - 1)(8252)

We compute from (2.13) recalling (2.22):

2
o022 = 1) (202vQ) = - 1) (*5Vioutor2)) = (1= 0(0s(200))
7%(az(zap))2 = 4F?

2 P yp10zY¥ 11y < d [ — )b 2o} (k) + p7 VO | ]

—4(1—w — Aw)ﬂ

and hence from (2.23), (2.24) the lower bound:

—D=4(p—1ppQ [(1 — w = Aw)* = F*] > capr(p — 1)PpQ, Capr >0
which together with (6.13) concludes the proof of (6.14).

step 2 Leading order Ay quadratic form. The quadratic form containing Ax:
Hs ~ ~ 1 ~ ~
/—AX {2 [(P - 1)Qp?ku) + ﬂ%|v‘1’(ku)|2} - E(P - 1)PPQP(M)3Z‘I’(M)}

Its discriminant is'®

Discr = <(p_12)QpP>2 — (p— DQppHS = (p — 1)Qp} [0? — (1 - w)?] <0

for Z > Z5.

We note that (6.14) holds for all Z only under the condition (2.24) which hold in
d =3 and £ > /3. On the other hand, for d = 2 or d = 3 and £ < /3, (6.14) still
holds for Z < Z and Z sufficiently large Z > Z(d). In those cases, choosing

1 Z< 2y

—i8(Z—2Z3) 7~ Z2 (6.16)

X:

10We use here that o — (1 —w)? < 0 for Z > Z». Indeed, (o, w) crosses the sonic lines A = 0
only once at Z = Z» so that 02 — (1 — w)? does not change sign on Z > Z». Since (o, w) — (0,0)
as Z — 400, we thus deduce o® — (1 — w)? < 0 as stated.
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with j# > kf ensures that the full (x, Ax) quadratic form is positive definite:

Kx(Hy + AH) [(P — V)P prigey + P%’V‘i’(kﬁ)\z} +(p = Vxppdz(ply ) 029 1)
Hs N ~ 1 N ~
- Ax {2 [(P - 1)Qp?ku) + P?DW‘I’(M)H - E(P - 1)PPQP(ku)3Z‘I’(m)}

Caprkix [(p = Do) + PV ] (6.17)

v

7. The highest unweighted energy norm

In this section we establish control of the highest energy norm. This is an es-
sential step to control the b dependence of the flow. It will be achieved through
an unweighted energy estimate for the highest order derivatives. Below we will
systematically exploit the gains achieved through faster decay in Z of various tail
terms, see e.g. (11.16). Typical improvements will be usually of order r or (r—1)*.
Sometimes, we will replace them by a generic constant § > 0.

7.1. Controlling the highest energy norm. We now prove the highest order en-
ergy estimate without weight. Coercivity of a quadratic form arising in the estimate
will follow thanks to the global lower bound (2.24) and (6.14). We let

k*=2K, KeN
and denote in this section
Py = AFp, Wy = AR, Gy = VI gz,

Lemma 7.1 (Control of the highest unweighted energy norm). For some universal
constant ¢y (0 < cpp <K dg),

0= [ dy o1y + [ IV <o (7.1)

Proof of Lemma 7.1. step 1 Control of lower order terms. We interpolate the rough
bound inherited from (4.35):

(r—1) /ﬂ%_QPTﬁ%ku) + /P%N‘i’(mﬁ)F <1

with the low Sobolev bound (4.34) for Z < (Z*)¢, with 0 < ¢ = ¢(k*,d,) < 1, and
use (4.35) for Z > (Z*)¢ to estimate:

ki—

) - -~
—2 (81]10)2 2 |V81J\Ij|2 —C, 4T
> Z<p—1>/f”13 PT<Z>2<M+/PT<Z>2<M sewr o (72)

=0 =1

—_

<.

where ¢z = c(k, dg) > 0. The estimate (7.2) will be used repeatedly in the sequel.

HRecall that in the range of considered 7, close to the limiting values 7<= (d, £), we have r4(d, £) >

r(d,0) = S > 1,
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step 2 Energy identity. We use the identity derived in (6.11) with x = 1:

1d _ N =

Sdr {(p— 1)/0% QPTP%M) +/P2T|V‘I’(kn)\2} (7.3)
1 Orpr Orpp -2 9 1 / Orpr \ <2 2

- il B\l _ -

2/( o =2 >(p Do “prigey + 5 [ 2 o) P11V ¥

/F1 (p = 1) P + /pQTVFQ VAT
/ {(Hl — kF(Hy + MH2)) pirsy — HaA sy — (A% pr) A¥ —2V(A" pr) - V‘T’] (0 = D)o oo
/ [—k:ﬁ(flz + AH) W gy — Hy A 9 — (r — 2)U 5y — 2V T - V%u)} V- (PVT )

K / Vor V¥ [(p - 1>p%‘QpTﬁ(ku>] + / K (p—1)(p—2)p} *Vop - VAKXV - (07 VT 1),

We now estimate all terms in (7.3). We track ezactly the quadratic terms which arise
at the highest level of derivatives and which will be shown to be coercive provided
k? > k¥ (d,r, p) > 1 has been chosen large enough.

We denote

_9 ~ ~
I = (p— 1)/#1’) PT P +/p2T|V‘I’kul2-

step 3 Leading order terms.

Cross term. We use

- A
M+M§& (7.4)
PT PT

to compute the first coupling term:

K(p—1) /VPT VW gy 0 2prpgsy = — K /PDVP%_l VW () Pt

Lo &/|Vi'(kﬁ)|p%1PT|l5(kﬁ)
(2)2

= —kﬁ/PDVP%_1 VW e ey + O (L) (7.5)

The second coupling term is computed after an integration by parts using (7.4), the
control of lower order terms (7.2) and the radial assumption:

Fp-1p- 2)/V : (P%FV‘I’(M))PIE;SVPD VAR5
—k(p—1)(p —2) /P%V‘I’(ku) -V (p%_3VpD . VAKflﬁ)

—K(p—1)(p—2) | p702% 40z (0 *0zpp0z A5
(k)

. o 3 8ku—1~
_ku(p_l)(p_m/p%382/)DP2T‘92‘I’U<“>8%AK '5+0 (/c(ku)p:rlv‘l’(kﬁ)\ﬁ? ! <Z>p|>

) i N B 8kﬁ—1~
—/kﬁ(p— 20002 (o5 1)8Z\I’(kn)/?(kﬁ) +0 (&Iku +/C(kﬁ)pT‘v\I/(kﬁ)’P]% 1] <Z>P|>

—k(p—2) /pDVple VW oy Basy + O(e™ W7 + dyy). (7.6)
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Pty terms. We compute:

[ (b B M)y YoV ey = [ (= (ot A L)) (=Ll i,
We now use the global lower bound
Hy + AHy = (1 —w — w') > Cpdyrs Cpdr > 0

to conclude that the same bound holds for Hy, see (6.2), and to estimate using
(11.16), (7.2):

[ = K+ AL )6l it

1 - ~ 2
< —kﬁ/ |:1 +Okﬁ*>+oo </€ﬁ>] (Ho + AHs)(p — 1)p]lj) 2pr?kﬁ) (7.7)
Next,
[ (8% oo~ 29(a% o) - 98] (6~ 1ty e
o C _ 9202 |0W |2
2 2 p—2 2
< &/PIE) PTP(kﬁ)‘l'&/PT Pr <Z)2ku + <Z>2(ku+1)
< Al 4 e Rt (7.8)

and for the nonlinear term after an integration by parts:

St [ oy toritey (19

‘/ [ﬁ(ku)A‘i’ — 2Vt - Vﬂ (p— 1)ppD72PTﬁ(kﬁ)
Integrating by parts and using (11.16), (7.16):

_/ﬁgAﬁ(kﬁ) [(p— 1)p’,§,‘2pT,5(ku)] + p%l /(p— 2)0-ppply P + p%l /&pr%_Zﬁ?ku)

= 2 By [V ity on) + 00 e + 0oy = 0 ([ ditendty) 110

W) terms. We estimate:
(r—2) /pT\il(kn) [2VpT : V\if(ku) + pTA\i/(ku)}
= =) [ BV (Vo) - (0 2) [ Ty Vi)
— (-2 [V (7.11)
and similarly, using (11.16), (7.2):
K /PT(H2 + AH2)W 1 [QVPT VW ) + PTA@(M)} = k* /(E@ + AHo) W )V - (7Y 1))

V- (p3V (s +Aﬁ2))>]

)
2p2T

/‘V\i}(kﬁ)P(ﬁI? + AH2)p7 |V ) +/P%‘i’?;€u) (

1 - - -
= —kﬁ/ [1 + 0 (M)] (Hy + AH2)p7 | VW g |* + €747 (7.12)
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Then from (4.36):
‘/QPTV@'V@(W)(QVPT'V‘i’(ku))‘ S /P%Wi’(ku)F (7.13)

and using (11.21):

/QpTV\TJ . V\if(ku)(,OTA‘i’(kn))

< / IV o [210(2 VD) < / AV ) [.(7.14)

Arguing verbatim like in the proof of (9.25):

/pTHQA\T/(k,u) (zva.vif(kn) —|—pTA\if(ku)>‘ < /p%vq/(km?. (7.15)

Remaining terms. We claim the following exact identities:

Orpp + App 2(r —1) ( 1 >
O+ 00D _ ey 7.16
o 1 zp (7.16)
and 0, pr+ A 2r—1) |
-pT + Apr T —
= — + O 7.17
pT p—1 <<Z>5> (7.17)

which imply the rough bound

1 87—pT 8’7’pD p—2 ~92 1 / anT -2 9
‘2 / ( pT +r=2) D > (= 1rp PTPgzy + 9 or oIV (et

S e (7.18)
Proof of (7.16), (7.17). From (4.11) and since A = e~ ":
Orpp + App = —AC(AZ)pp(Z) + AC(AZ)pp(Z) + C(AZ)App = ((AZ)App

Orpp +App _ App :_2(r—1) +O<< 1 >

pD pp p—1 z)
and (7.16) is proved. We then recall (2.7):
lr—1
O-pr = —prAV¥T — ( > )PT — (202¥7r + Z) 0zpr
which yields:
A -1 v
Orpr + Apr N O(r )‘ _ ‘—A\IIT - 232 T0zpT
pT 2 pT
and (7.17) follows from (4.36).
step 4 F} terms. We claim the bound:
/ P2 <ALy + e (7.19)
Source term induced by localization. Recall (6.1)
. lr—1 d
&p, = O:pp+pp [A\I/D + (r=1) + 20,V + Z) pr
D
Lr—1)
= Orpp +App + 5 PD + ppA¥p +202¥Yp0zpp

which together with the cancellation (7.16) which holds with similar proof for higher

derivative, and the space localization of &p, ensures:

PD

VHEp | <
‘ Pyp‘ chﬁ <Z>
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for some § > 0. This implies that for k* large enough:
/p%_QpT!AKép,pIQ <e W

[AK | Hy] term. We use (7.2), (6.5) to estimate

T Y > P

Az (p) term. From (6.6), (7.2):

i Nl
2 —C 4T
—1/% (e (P <Z/P% i) S
and (7.19) is proved for this term.

Nonlinear term. Changing indices, we need to estimate

. . i< Kt
Njyjo = VI prVEVE, i+ = K + 1, ‘ ;; <k-1

For j; < k* — 1, we may use the pointwise bound (4.36) to estimate:
VRVY| VRV
@y~ PPz

|07 prd2 V| < pp

Then, after recalling (7.2),

2 (T2 |2
2 p—2 pT‘V V\Ij’ —C T
since jo < k* — 1. For j; = Kk, jo = 1 and hence using (4.36):
PTW”V‘M2 Kt 12192812 -
/(p JljzppD pT </< >2(kﬁ+1 j2)+2(r— 1) p% V ‘ |V \II‘ se cmT_F&Ikn

with ¢ smallness coming form the bound on V2¥. This concludes the proof of
(7.19).
step 5 Dissipation term. We treat the dissipative term in F5:
AVUYp
2

Diss — /p%V(bQAKS*)V@(ku)=(u+u’)b2/p%AK< 5 )'V‘i’m)v
T

where we used that in spherical symmetry AVWr = Vdiv VW7 so that one has
VF = pAVYr + p@/'Vdiv VU = (u+ ¢/ )AVE 7. We claim the bound

b2
Diss < —(,u+,u')4/]Vﬂ(ku)|2 +e T, (7.21)
The term with most derivatives falling on ¥ is
AK—FIV\PT B ~ ~
(b +p )bQ/ T Vs = (bt M/)bQ/ [AKH(UD) + Qb | - U
T

b2 . _
< i)y [ Vil + e
By Leibniz, we then need to estimate a generic term with k; + ko = kﬁ, ko >1

1 N
Ikl,k2 = (:U’ + MI)bQ/p%vkl+2uTvk2 <p2) . ’U,(kﬁ)
T
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Pointwise bound. We claim:

L for jo < k¥ —2

pr(Z)72 !
i 1 1 [V Lpr| o f
% ()' S| oen T2 for jo=k* -1 (7.22)
T 1 [V =1pr| | [V* pp . 4
o2y T (Z)p%, + PT for ja =k

We estimate from the Faa di Bruno formula, using the pointwise bound (4.36) for
jo < kF— 2

‘v” <>‘ Sl > 120 [(V pr)™ | (7.23)
PT PT  mi+2mattjams,=jo
; mi j2
S ‘11H§20<pD.> << L
ijer - \(2) ngr (Z)32 pp(Z)2

where mo +mq1 +--- +mj, = 1.
For jo = k* — 1, mj, # 0 implies mj, = 1, my = --- = mj,_1 = 0, mg = jo — 1
and therefore,

L
ot ()| b o 70

pr )|~ ppl(Z)k-1 P
Similarly, if jo = kF, mj, # 0 implies mj, =1, my =--- =mj,_1 =0, myg = jo — 1.
Also, if mj, = 0 and mj,_1 # 0 thenmj,_1 =1, m; =land mg = --- = mj,_2 = 0.
Hence
f_ #
N
pr )|~ pp(Z)¥ (Z)p% P

and (7.22) is proved.

We now estimate Iy, g,.
case k; = k* — 1. By Leibniz and (7.22) for j < k¥ — 2:

(1 1
I — <
‘v (p%)‘ ~rh(Z2) (724)
This yields:
LR 2 ~ 2
o [ o VM ug| b o o [ |0
M1l S (e + )b /PT<Z>IO%|“(I<:”)|§(M+M’)1O [V |” + Cb (Z)2
b2 ~ —C, 4T
< i)y [ Vsl + e (7.25)

where in the last step we used that

‘ﬂ(kﬁ)p okt 2 —b(r1 ) |ﬂ(kﬁ)|2 o )
/ <Z>2 < /<Z> a—£( )XkﬁpT <Z>2 < ||p’\IIHM,O'-I-kﬁ-i-l—%-}—%(r_l)_a <e CkuT’

since k? is a large parameter > g and o is fixed and small.
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case ky < kf —2. Since ky > 1, we integrate by parts and use (4.35), (4.36) to

estimate in the case when ko < kf — 1:
1
2 ko—1
< [ (3)
PT

1
/P%‘VIQHUTV]62 <2) “ Ut
PT

IV AHIVE2ur i | + o395 e + 731V 2ur] Vi |

(1 + )b

1 VR 20| s | _ _
< (u+u’)b2/<Z>k2_l %) (+) + VR P ug a4 V2| | Vi)
1 b2 ~ 2 —C 4T
< (wt )y [ I Vigsl” e

It leaves us with the case k¥ = ko and k; = 0. We will take the highest order term
n (7.22)

# .
(w4 u)b ‘/pTVQ Vk< >'U(kﬂ)

VFlpr
Zypr D

vV or
< (p+ )b / ‘VQUT prT )

1
+(p A+ p)b? / Viur + (4 )7 / ‘VQUTW Uy

The last term is easily controlled:

| gty |2 ey
(M+/.L b2/’V2UT ’U,(ku) S <M+/Ll)b2/<z>2](€u_:4_2d+(ﬂ+,u/)b2 <e Kl ,

1
(Z)¥
where in the last step we used that k% is large and the line of argument similar to
(7.25). The most difficult term is

v
(1 + M/)bQ/ Viur~T g

u
T (k%)

< IND V¥ Loy 3, s 2 . 2 - Vel
< (u+up)b o IV2ur |t + [Vour|[Vige | + [Vour|dgs)|

We can estimate

ki1 2 E—-1_ 2
N2 |V PT| 2 ~ N ~ 2 2 W PT|
()b / E P9 Vi) < (ot1) 7 / Vi) 2+ Cb / S

To control the last term we first see that

1 2
2 |Ck P ‘ 1 2
b / b /<Z>4+2(k”—1) <b

and for the remaining p contrlbutlon could again use the bootstrap assumptions on
the ||, ¥|| norm

b2 / v 1p|2
pp

using that in the expression

’vkﬁfl ~’2

7< —ckﬂ’r
VT

1
1
P%+ Xkt

okt . . . _ .
2k since k* is chosen to be large. Since le contains a

the dominant factor is (Z)
factor of (Z)™P, this would however require imposing the condition that k* > np
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which is acceptable but not necessary. We can take a slightly different route and
use the estimate (5.13) instead:
V™p

—20
/ <Z>fd+2m <Z>M
Z>122* z* pD

which holds with g = min{1,2(r — 1)} for any m < k* — 1 and ¢ > 0. Then

1~
b2/ ‘vk 113‘2 §b2
7122+ (Z)*p%

just under the condition that k! > d On the other hand,

bz/ M < b2/<Z>—2ku+d—€(r—1) 2(r—1)+2(r— 1 pp 1M
z<122+ (Z)4p% ~ D e

2
<d

<12 optra, p1|VETP ¢
<ot [ (2) Xkt P GE < e CktT,

The remaining lower order terms can be treated similarly. This concludes the proof
of (7.21).

step 6 F5 terms. We claim:
/pT|V( b — DPART + AKNL(p)|? < Cly + e 07 (7.26)
for some universal constant C' independent of kf. The nonlinear term AXNL(5) will

be treated in the next step.
Source term induced by localization. Recall (6.1):

Epy = 0. Up + [yWDP T (- 2T + A\I/D}
which yields
8ZéP,‘P = O0rup + [QUDaZUD +(p— 1)p%_1azpp + (r—1)up + AUD} .

In view of the exact profile equation for up and the fact that up coincides with up
for Z < Z*, 078p,w is supported in Z > Z*. Furthermore, from (4.10):

up(7,Z) = ((AZ)up(Z)
and hence
O-up + Aup + (r — Dup = —Al(x)up(Z) + Al(x)up(Z) + ((x)Aup(Z) + (r — 1)((x)up(Z)

1z<102
= ((@)[(r = Dup + Aup](Z) = O <<Z)7—1+5) :
p=1
Using that |up|+ py S (Z)=(r=1) | with the inequality becoming ~ in the region
Z* < Z <10Z* and that up vanishes for Z > 10Z*, we infer

\6281:,‘1;\ S W

with a similar statement holding for higher derivatives

1Z2Z*

Kt g
IVV¥Epg| (Z)Fr1
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Then,
2

2 Kt 5 2 d—1 Pt —c 4T
/pTWV Erl S/Z>Z*Z <Z>2kzﬁ+2(r—1)+25dZ§6 a

if kf > % is large enough.
Az (¥)t term. From (6.6)

VI
|V A (W ‘ N Z Z)yrtki—j+1

and hence from (7.2) :

kf—1

2 ~2 |V63\I!\2 —C T
/PT‘Vﬂkﬁ ’<Z/ mﬁe KA

[AK pP7%] term. We first claim the bound: let o € R and 8 € N¢ with || = m.
Then for any m

V2 (pB) = Oam ( < gf’m) (7.27)
This is proved below. We conclude from (B.1):
IVl
1A%, 05215 — K (0 — 2)0l *Vpp - VAR 15| 2; : Z),fj oy
j=

and similarly, taking a derivative and using (7.2),

/ o4 |V [I6%, 15215~ (o — 200l *Vpp - VAN 5] |

kt—1 Ef—1

(p— 2)+2 |V]P|2 2(p- 1) |V]P| T
Z/ 2(kﬁ —3)+ Z [ 7\2(ki—j)+2 < e

Proof of (7.27). Let g = p%), then

and (4.13) yields:
Vol < 0 < 2

(z) ~(2)
We now prove by induction on m > 1:
m D
Vgl S D (7.28)
(Z)m

We assume m and prove m + 1. Indeed,

avm[gap[)] S [Vl

vty =
PD Jitje+iz=m

. 1 .
V2 <pD>‘ |v]3+1pD‘.

From (7.23) with pp in place of pr:

M
pp )|~ pp(Z)*
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and hence using the induction claim:

PT 1 PD PT
|am+lg| < Z D < D
~ (Z)7v pp(Z)72 (Z)Is+1 ~ (Z)m+

Jitje+jz=m
and (7.28) is proved. This concludes the proof of (7.27).

Nonlinear ¥ term. Let

ONj, j = VIV - V2V, i+ o=k +1, j1 <jo, j1,52> 1.

We have j; < %ﬁ and hence the L smallness (4.36) yields:

VJ2V\IJ‘2
V]lv vjzv 2 < |
/p VAVEVEVY ‘Q/ T Z)2(=52)

The estimates of Step 6 yield (7.26) as claimed.

< e T 4 01,

step 7 Pointwise bound on the nonlinear term. From (6.4):

NLD) = (oot ol -y 2= 5 F (2] F(0) = (0 o1

which satisfies for |v] < 1:
v? for m=0
|F™ ()] < | 0] for m =1
1 for m > 2.

We claim with v = £
pD

1 VOt

~ - Vip
VAKNL(p) = F'(v)p Py +0 p%lz ’km'] . (7.29)

Indeed, we expand:
VAKNL(p) = VAK [ P 1F(u)}
p% AKF (v) + Z Cj1,j2 V p% VJQF (v)
J1+je=kt+1,52<kf

and claim:

Vﬂkﬁ v/
PV AK pv) = gyt 22 ( = 12 |kuf1‘] (7.30)

and

W 1o 1 V75|
Yo Ve HVEE(v) <ﬂ% Z s (1)
1tia=ki+1,jo <k
which yield (7.29).

Proof of (7.30). We recall the general Faa di Bruno formula
VIFG@)= Y emm P @I (VG @)™

mi+2ma+--+jmi=j
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For j = k' +1 the highest order derivative is mys,1 = 1, m; = -+ = myy = 0 and
hence:

VAR F(G(x)) = F'(G(x)) VAEG(x)
+ 3 Commyy F M) ()T (VIG)™ . (7.32)

mi+2mat--4kbm, y=ki41

From Leibniz with G = £

PD

) J1g 1 J g
via s Y M<7z V2ol

g2 ™~ 3—J
Jitj2=j ppiZ)” PD J1=0 (Z)y=
First term. We compute:
! ,
2T 1< |Vip|
/ K _ / (k%) L P
FA@VARGE) = FE@) | = 20|03 s
PGy Y 1o (L3 1
oD pp = (Z)kF+1=;
with ¢-smallness coming from |F'| < p% <d.
Faa di Bruno term (7.32). We distinguish cases.
If mys =1, then m; =1 and mg = --- = myz_; = 0 and therefore
Fmom) ()T (VG ™| = | P70 TG V] < o Z o
(Z)pp(Z)¥—

7=0
Z |V]P|
kﬁ+1
PDJ 0 —J

with d-smallness coming from the bound for VG.
If my: = 0, then all j-derivatives are of order < k* — 1. If j < k* — 2 then

P,

J <

vels pD]ZO<Z>J SRRV
-

Now, either there exist ig < jo with m;, > 1,m;, > 1, or there exist ig < Kt —2
with m;, > 2. In the either case:

kf—1

L1 (yigia)ms -
m (<Z>J@JG)J_ kﬁﬂz Y|V gl

kf—1 m;
11 VIS (Z)F

The collection of above bounds concludes the proof of (7.30).

Proof of (7.31). First

Kt

o |VIF(v
Z cjhjzv]l(p]l)) )V2F(v)| < pp Z k:ﬁ-‘rl—J '

J1tje=ki+1,j2<kt Jj=
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Let n < k?, then

IVPF(v)] < > | Flmttma) (o) |[T7_ | VI G ()™
m1+2ma+--+nmp=n
1 o ‘
S ar > |Flmattma) (o) [TT7_ [(Z) VI Ga) ™
mi1+2ma+-+nmp=n
Either m,, = 1 in which case m; = --- = m,_1 = 0 and hence
- _ d |V7p|
Flmuttma) ()17 (ZY VI G ()™ < — :
| (v) I, [(Z) (@)™ < op (2
or m, = 0 and there at least two terms as above:
V75l

F(m1+~--+mn) DI {7 jij mj < —
| ()T, [(2) V/G(a)) pDJZO<Z> =h

Hence, by Leibniz:

] B ) pp—l d J2 vij
> RV IVEFE)| S Y] <Z%J’1;m;)<’2>jf|j

J1tjo=ki+1,j2 <kt J1t+je=ki+1
Kt
< Ly VI
~ D >kﬁ+1 j
j= 0

and (7.31) is proved.
step 8 NL(p) term. We claim
~ T, d —C, 4T
g = /pQTVAKNL(p) VU ey = . {OWIs)} + O (e7 %7 4+ dI}y) . (7.33)

Indeed, we inject (7.29) and estimate:

V7p e
/ p%lz ’kﬁ+1| J VU (g | < 78T + d

Hence

5 Vp -
g /pTF, ( > 71 Z(kﬁ) . V‘l/(ku) + O (e_ckﬁT + &Ikﬁ) .
D

We now integrate by parts:

1 VPkt) = . Z - =
/p%F/ < > o ( VW) = — /ﬂ(kﬁ)v' <F/ <p[;> b 2/’2Tv‘l’(kﬂ))
F/

N Y _ ~ ~ p _
= —/P(ku) [F/ (pp) P% 2V (PFVV (t)) + 7V (gay - V (pp) b 2)} :

We estimate

and hence

~ P P -2\| < ﬁ(ku)wi’(kn)fp%_lpD
pusnyPTV ¥ ey -V ( F'{ — Jpp 7 )| S 7 < Ay

PD
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We now insert (6.7)
/P(ku < >P% PPV ) (7.34)

= /p(k“ < )P% PT[ Ay — (Hy = K (Hy + AH2))pgy + HaAps

+ (AKpT)A\I’ + kﬁV,OT . V\IJ(ku) + QV(AK/)T) VU — Fl}

and treat all terms in the above identity. The 0;p) Is integrated by parts in time:

5 1d A
/ Py F' (p )PD P07 Pty = Sdr {/F/ <pD> o ZPTP?M)}
1 2 / i p—2
B /P(kﬁ)ar <F (PD) Pp PT> .

We estimate the boundary term in time

0 _
/F/ (PD) PpD QPTP?M)

‘F/ < ) > 87(/3D72PT)
PD
and using (6.3), (4.36):
< 100l | P [0-p0] _,

7 (7).
T pD pPpD  PD PD

with ¢-smallness coming from the pointwise estimates for p and F’, which ensures

Joon (7 (1))

The remaining terms in (7.34) are estimated by brute force. First

/ﬁ(kﬁ)F’ <pf;) p%—sz[ (H — KA (o + M) )H <dI,

with d-smallness coming from F’. Integrating by parts,

/ﬁ(ku)F/ <pﬁ> b ot [HzAﬁ(ku)H
= [3 [t 17 (5 ) ) <4 (7 (5 ) )|

< Ay

< J/PPD_lﬁ?kﬁ)-
Then from (7.17):
<ot

S (ﬂ[kﬁ

with ¢-smallness coming from either F’ or the pointwise estimates for p. Then using
(7.2):
’/ Pty E < > o PTAKPTA‘I" <d / Pt Py

1 ) [AV[*

We finally estimate

/ﬁkF, (pi)) o 2 prkVpr - VI,

1 | prlAY|

S (ﬂ[kﬁ + e_ck“.

< &/p%lﬁkf%]V@k| < d1
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and from (7.19):
S e_ckﬁT —+ &Ikﬁ

o ()

The collection of above bounds in Step 8 concludes the proof of (7.33).

step 9 Conclusion for k% > k*(d,r) large enough. (7.3), (7.5)-(7.15), (7.18)-(7.19),
(7.21), (7.26) and (7.33) yield, using also (7.16), (7.17), the differential inequality

S (14 0@)

1 3 ~ L -
)t [1 +0 <k5ﬁ)] /(H2 + AH,) [(p —1)ph 2,0T/3?ku) + PQT\V\I’(M)|2

IN

- kﬁ /(p - 1)PD6Z(0%_1>ﬁ(kn)az\if(ku) -+ Jfkﬂ 4+ e Kt
We now recall (6.14): Jcqp,» > 0 such that uniformly VZ > 0,

(Hy + ML) |(0 = 1)l prifsy + o3IV 2] + (0 = D00z (6 ey 07 ¥ e

= Cdpyr [(p - 1)0%_2,0T,5?kﬁ) + P%”V‘i’(m)ﬂ (7.35)

which taking k¥ > k*(d,p) yields the pointwise differential inequality:

1d
5, Urs(1+OW)}+ VI < e T, (7.36)
Integrating in time, we obtain (7.1). O

8. The highest energy norm: the Euler case

The Euler case in d = 2 and d = 3 for £ < /3 requires special consideration. In
those cases, property (P) of (2.24), which ensures coercivity of the corresponding
quadratic form in (6.14), does not hold for Z > Z;. On the other hand, (2.23)
still gives us the required coercivity for Z < Z3. To address this we use the energy
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identity (6.12)

1d o -
ST {(p— 1)/xp% 2pr i, +/xp2T|V‘If(ku)l2} (8.1)

1 O-x = Orpr anD) -2 .2 1 / <8TX a7-,0T) ~2 2
= = + I (p—2) P2 (p—1 += +2 V¥
5 / ( v T T2 ) 0= DX prie + o) P11V )

d

- - - - 1 - 9. ]
—H, + k*(Hy + AHy) — g = Ay — == Hy— = — ===

- / (p— DxPh 2 prifes

- - . d—2- 1. - HyA _ A
= /xﬁ%lV%u)F [kﬁ(Hz + AHy) 4+ —2 = Sy + SNy — 22X - =T
X T

+/ﬁ(kﬁ)aZ\ij(kﬁ) {"fﬁ(ﬁ— Dxep *prozer
— K= )p— 2000 *zop + (0= 1)l o0
+ /le(p— Dol prie +/XP%VF2'V@<M>
+ / [_(AKpT)M/ —2v(AKpr) - V\if} (p = DxPh “prie
—- He-1)p- 2)/X/?2T32‘1’(m) 02 (¢l *0200028 7 5) — Iy *Dzp0ig)|

In the previous section we used this energy inequality with y = 1. This time we

first choose
1 Z<Zy

67jﬁ(ZiZ2) Z > Zs,

with j% > Ekf. This guarantees the coercitivity of the quadratic form (6.17):

Kx(Hy + AHy) [(p — V)P prie + p%“|v\i’(kﬁ)|2} +(p = Vppdz(hy ) pwsy029 gz

X:

(8.2)

Ax [ H B ~ 1 B ~
T {22 [(p - 1)@0@) + P%D|V‘I’(ku)|2} - E(p - 1)pPQP(ku)3Z‘I’(kn)}
> caprkix [(p — VP priey + PEIVE iy !2} (8.3)

We then add (8.1) with x = 1, multiplied by § > 0, recalling that the analog of
(6.14) holds for Z < Zy and for Z > Z(d) for Z(d) large enough. The error term
estimates are identical to the ones carried out in the proof of Lemma 7.1, and we
obtain the following analog of (7.36)

1d
2dr
where x(Z2, Z(d)) denotes the characteristic function of the set Zo < Z < Z(d).
We now choose § such that

{(Ik”,x + 6Ik”7x:1) (1+ O(‘Q))} + m(lk”,x + 5II€”,X:1) <e T 4 5kﬁ[k”7x(2272(4))’

1T _
6 <« ——e J (Z(‘![) ZQ)
Vit
which implies
1d

55 {(Ik?i,x + 5Ikﬁ,X=1)(]‘ + O((Q))} + \/M(Iku,x + 51’{)’1,)(:1) S e_ckﬁT.
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This yields the following lemma.

Lemma 8.1 (Control of the highest unweighted energy norm). For some universal
constant ¢y (¢ <K dg),

-1 [ iy o1y + [ TP < e (8.4)

9. Weighted energy estimates

We now rerun the energy estimates with suitable growing weights. This will allow
us to close the bound (4.35). Given o € R, we recall the notation

m Inp—
PO k20 _dy2r=De+)) [ 7 P
10, =3 [t S (2

k=0

2(r—1)(p+1)
pflerZr

(0= Vel prift + PV TP

We let
27 _w_‘_gg
Im—90—di2c=Det) [ Z P p—1 _ B ~
I = /<Z> MR T <Z> (p— 1A% *pri, +p?r!V‘IfmI2}
(9.1)
and claim:

Lemma 9.1 (Weighted energy bounds). There exists 0 < o(k*) < d, such that for
o =o(k'), and 79 > 1o(k*) > 1, for all 1 < m < k¥, I, given by (9.1) satisfies
the bound for all T > 19

Im,o(T) < 4067207— (92)
where dg is a smallness constant dependent on the data and 7.
Proof of Lemma 9.1. The proof is parallel to the one of Lemma 7.1 with one main
difference: exponential decay on the compact set Z < (Z*)¢ for 0 < ¢ < 1 is
provided by Lemma 7.1, and we use the optimal weight in (9.1) to propagate the

sharp exponential decay. This will be essential to close the scale invariant pointwise
bounds (4.36).

step 1 Equation for derivatives. In this section we use
" = (dF,...,08)
and
o =08p, Uy, = okU.
We use
(0%, A] = ko*
to compute from (6.3):
Orpe = (Hi—kHs)p — HoApy, — (0% pr) AV — kOprd™ AT — pr AT,
2V (0 pr) - VU — 2V pr - VI,

+ R (9.3)
with
B = —9%&p,+ (0", Hi]p— (0", Ho]Ap (9.4)
— Z thanjlpTahA@ — Z thanjlv,OT . 3j2V\i'.

‘Ji-i-]ézk 'j1+j2=/€
J122,52>1 Ji1,Jj2 > 1
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For the second equation:
0-U), = —kHoWy — HyAUy — (r — 2)Ty, — 2V - VI,
= [0 =00+ ko — 10— 26 20000 + B (95)
with
By = V0" — 0%py — [0F, LAY — (p = 1) (10", o5 215 — k(p — 20l 0pp0* ' 5)

- > VTRV - OMNL(). (9.6)
J1+je=k,j1,522>1

step 2 Algebraic energy identity. Let y be a smooth function x = x(7,2Z) and
compute:

1d o i

2dr {(p_ 1)/XP’E> 2pri} + /prTIV‘IkaQ}

1 L )
) {(P— 1)/87xp’i> 2pri+/87xp%!V\I'kI2}

p—1 _ ~ p—
+ = [ x(p—2)0-ppp *pri} + /XaTPT [ 5

1 o -

5 P2+ pr V[
~ —2 ~

+ /BTpk [(p— 1)xoh, PTPk:]

- /&\ifk [2XPTVPT -V + xp7r AV + p7 V- V‘i’k] ,

/arﬁk [(P — 1)XP]1))_QPTﬁk} = /Fl [(P - 1)X/7€)_2PTﬁk}
+ / {(1{[1 — kHy)pr — HaApy — (0°pr) AV — 2V(0* pr) - V‘i’} [(p - 1)XP}]3_ZPT/31¢}
- / kOprd* ' AT [(p - 1)Xﬂ§’52pTﬁk} - / (prATy, + 2Vpr - Vi) [(p - 1)XP%72PTﬁk}
and
- /&\Pk [2xpTVpT Vg + xp7 Ay + p7Vx - V\i’k} = _/F2V - (xpPrV )
- /{ — kHy Uy — HoATy, — (r — 2)Ty — 2V - VT,
- [ — D) 2o+ k(p — 1) (p — 2)p} *0ppd* ! ] } [2XPTVPT‘V\i'k+Xp%A\i/k+P%vX'v\i’k
= /XP2TV‘I’k VI
- / [k, — BNy — (r—2)Ty — 290 - V] V- (V)
+ / (p— 1)o% % [2XpTVpT VO + xp7 ATy + p7V X - V\ifk}

+ /k(p —1)(p — 2)p, *0ppd LoV - (xp3V Ty
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This yields the energy identity:

1d o -

S dr {(P - 1) /XP]Z) 2priq + /XP%’V‘I%F} (9.7)

1 8TX anT 87'/7D > -2 -9 1 / <87—X anT> ) 2
= 3 t——+-2 — L)xpy +5 +2 \A

5 / ( o (p—2) e (v = Lxpp P+ 5 . o PrIV VL]

+ /F1X(p — Db 2prpn + /XPQTVF2 -V,

+ / {(}}1 — kHa)pr, — HoApy, — (0" pr) AY — 2V (9* pr) - V‘i’} (p— V)X P

_ / [-kﬁﬂk ~ Ho ATy — (5 — 2)T), — 2V - v\i/k] V- (xp2V )

- / kdpro*t AT [(p — 1)Xﬂ%72PTﬁk} + / k(p — 1)(p — 2)p% *0ppd* 15V - (xp7V )

+ /(P — 1) [ﬂTVX ' V‘i’k]

step 3 Bootstrap bound. We now run (9.7) with

2(r—1)(p+1)
ey

dg—dg 20y [ 7\ 2P
(7. 2) = i = ()RS () i<k<k
(9.8)

with Z* = €7 and estimate all terms. We will use the algebra

2= D0tD gy (1425 ) =) (14 ) = @2)r-1) = -1 +20-)

p—1 p—
90 d lr 1) 421 7 2np—L(r—1)—2(r—1)+20
Xi, = (2Pt ><Z> (9.9)
We will use the bound for the damped profile from (4.9), (4.10):
1 1 1
‘ZkaépD‘ < sy Lz<zs + S AN R (9.10)
(Z) 7T (29 ()
and .
Z%0
| szD| < .
D
In particular,
20—-2(r—1
2 %20 —drt(r—1)+2(r—1) 2 | £ (=)
Xkpp ~ (Z) PP\ 7
20—2(r—1
\2k—dt2(r—1)  p\-20 [ £ 2= 0.11
() 2y (9.11)
as well as
7\2k—d B A 20—-2(r—1)
Xk < 7 2> —(Z)7% <Z> (9.12)
PHPp

One of our main tools below will be the following interpolation result

Lemma 9.2. For any a > 0 and any m < k¥,
15, Ul e < € kT (9.13)
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Proof. For 0 < m < k¥, on the set Z < Z% = (Z%)° 0 < ¢ < 1 we control the
desired norm by interpolating between the bootstrap bound (which controls all the
lower Sobolev norms) and the bound (7.1) of Lemma 7.1 for the highest Sobolev
norm. For Z > Z* we just use the extra power a of Z and the bootstrap bound
(4.35)

s O 1 .
15 Wl 5 (22574 4 719 Wl €50 (9.14)
]

Unlike the proof of Lemma 7.1, estimates below do not require us tracking the
dependence on the parameter k. Therefore, we will let < to include that dependence.

step 4 Leading order terms.

Cross term. We estimate the cross term using in particular (9.13):

k(p—1) ' [ xoondt - aiy 2orin| < [ x@wa’“—wuﬁk

X -1~ X T ~ T —C 4T
[ it [ TR < I, e (@19

The other remaining cross term is estimated using an integration by parts and

(9.13):
k(p—1)(p —2) ‘/ V- (03 VU)xAY, *0ppd* T

X p-liox |2 X  p-1-2 X 2 1o, 12 PRI
< [ X -ty 2y [ X + [ X202 < |50
~ / <Z>p% ‘ Pk 1’ / <Z>3pD pk)*l / <Z>pT‘ k’ — Hp7 ”k;p"f‘%
< oe T (9.16)

pr terms. We compute using (11.16):

/ (Hy — kHy)pi((p — V)oY > i)

2( - 1) 1 -2
< - k+ —= — —1)p" 2
T 2(r—1 o .
< e Rt — /X (k + i)_1)> (p— 1)ﬂ219) QPTP%- (9.17)
We next recall that by definition of the norm:
k+1

VAL UAVA T |Zmam\1/|2
Hp,wsz/ e oL -

and hence, using again (9.13),

‘/ 0" pp) AT +2V (0 pp) - V‘i’} (p—1)p} prin

022 ov|?
5//)%/>Tpk/p;;pT!| 0V

k=T T (Z)2kHD)-1
Hp,‘l’ll,m+ Se wT (9.18)

IN
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For the nonlinear term, we integrate by parts and use (4.36):

—92 ~9
< / XWSG—W_ (9.19)

‘ / X [ﬁkmif + 2V - V\if} (p— 1A%y > pri >

Integrating by parts and using (11.16):

= 2 . p—1 3 o p—1 D
—/XHQAPk [(p - 1) 2,0T,0k} + = /x(p —2)8,ppp prig + S /xﬁTprp *p

—1 [ o _ _
= pT i [V (ZxHap% 2 pr) + xprd: (05 %) + xO-pro?, 2]

1 B A 0.pp + A 0. pr + A 1
= pT xp%QpTﬁi{dJrXHp—?)( PD+ pD>+ pr pT+0< >]
X PD pr

We now estimate from (7.16), (7.17):

- P -1 PR -1 L
_/XHQAPk {(p —1)pp 2PTPk} + pT /x(p —2)0, pppy prit + pT /&pr” *br

—1 P A 1
=p2 xp%Qpri{dJrX)(—?(T—l)JrO( )]

(Z)
-1 _ A
= ° 2 /Xp% *prin [d " 7X —2(r— 1)] +0 (%) (9:20)
U, terms. Integrating by parts:
(=2 [ 0T (A V) =~ -2) [T (9.21)

Similarly using (11.16):
k/ﬁQ\ika (xpFVV) =k [/ XH2 ULV - (p3 V) + Ho W p3V - V\I’k:|
- k{—/p%vq/k- [Xﬁgv\pk +ﬁ2xpkvx+xvﬁ2xyk} +/ﬁ2xpkp2TvX-vq/k}

-k [/x [1+O(<Zl>T>] p7|V¥[* + O (/Xﬁ&ii)]

= —k‘/xp%p|V\i/k2+O(e_ckW), (9.22)

where we also used that » > 1 and k # 0 (since otherwise the above term vanishes.)
Next, using (4.36):

2 0, |2
< / L < e (9.23)

’/ 2xpTV\i/ . V\ilk(QVpT . V‘T/k) 7) N

and from (11.21), (4.36):

’ / 2xprV¥ - VU (prATy)

(Z) (2)?
e ekt T (9.24)

i i 20 217, |2
S /X|W"f’2 <\8(p2TV\If)I+ or |> g/xpﬂ’f'

N
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We now carefully compute from (11.21) again:

/ xor oAy (2907 - Vi + praiy) + / AWV - Ty
- - - - - - 1 - -
2y / XprH2Z;0; 010,70 — Y / 05 (X Z; Hop>)0; 01,0, 0, + 3 / V - (XZHyp2) | V)2

Z Ho03.2;0; 9 ,0ix0; ¥y,

4,J

Z H20;V1.0; 9y, [2xp10iprZ; — OiXZip3 — 6ijp3 — 2Z;p10ipr + Zjp30iX]
4,J

1 .
2/><Hzp2T|V‘Ifk\2 d+

ﬂ AH, Apr

H, pT ((%)

1 2 2{ Ax | Apr < 1 )]
- A\ d—24+—=42—+4+0|-—= || - 9.25
5 [ v X0 ( (9.25)

Finally, recalling (7.17), (9.25) yields:

/ xor oAy (2907 - Vi + proiy) + / Ho B39 - Vi + / \Orprpr VT2
~ (d—2 1Ax Apr  O.pr < 1 )]
2 2
VI P2 S 2 2L T o (o
/XPT| g 2 2x  pr  pr (Z)

- 5[d—2 1Ax 2(r—1) 1
2 g |0 — 24 L1AX L
/XPTW\M 2 Tay i +O(<Z>)]
[d—2 1Ax 2(r-—1)

2 17, |2 -aX TCRETY. 2
Jaoiving? | S5 52X - A o) (9.26)

Conclusion for linear terms. (9.7), together with (9.15)-(9.24) and (9.26), yields:

_l’_

1d . - -
ST {(p— 1)/xp’2> 2p:rﬂ%+/xp2T|V\I'kl2} < e Ot

d 2(r—1)  10;x+ Ax —2 9 9 ioF |2
/X[—k+2—(r—1)— T T3 [(p—l)p% PTﬂk"i_pT‘v\IJk’}

/FIX(P - 1)P%_2PTﬁk + /xp%VFg V.

We now compute from (9.8):

—k+g—(7"—1) 2;74 11) n ;&x;—AX
C ey MDAy g e (1]
- eof)
and hence the first bound: Vm < kf
A (9.27)

+ /F1X ) prk+/Xp2TVF2-V‘1/k.
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step 5 F; terms. We recall (9.4) and claim the bound:
-1 [ ol pr S o (9.25)

Source term induced by localization. Recalling (9.12), (9.10), (7.20):

2k—d
p—2 kS 12 Pp( ) P% PDPD d—1 dz —95r
xph pr|0¥Ep,| 5/ VAR VAR e Se .
/ D P zoze pRpot (Z)E go g (Z)25H1

[0%, H] term. From (6.5), (9.13):

~ 2
0=1) [y (0 P Z / A ’aiﬁ’k -

—C

rg Hpv\Iijfl,chrr <e 'k i

[0%, Hy) term. We argue similarly using (6.5):

k P
~ 5 ol
(0%, FRlAT] 3 (9.29)

7j=1
Hence, using > 1 and (9.13):

-1 [y A < Z [ o

5 ”pvquk,cH»rfl <e T

Nonlinear term.

Njjy = ppVRVY, ji+jo=k+1, 2<ji <k ja<k—1

If j; < k* — 2 then we use the pointwise bound (4.36) to estimate:

VEVE| |02V

J SPAVAT
107 pr V2V Y| S pp 2y PP

and hence recalling (9.13):
2 | 972 T\ |2
pr|0”V Y|
/( —x leﬂp% PT S /Xk<Z>2(k+1—j2)+2(r—1)

S [ evvip et

In the other case, when jo < k¥ — 2, we use the pointwise bound (4.36) for V¥
instead and estimate similarly. The bounds of Step 5 yield (9.28) as claimed.

step 6 Dissipation. [Calculations below and specification d = 3 are only needed in
the Navier-Stokes case.|
We now compute carefully the dissipation term in (9.7):

Dissy, = / XepFV (B2OFF) - V.

Recalling (2.3):
Aur

PT

VF (ur, pr) = (u+ ')
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yields

. Au -
Dissy = (u + p')b? / Xkp7 0" < p2T> - G,
T
case k = 0. We have:

. Au
Dissg = (u+ ')b? / X0 —5+

T
For Z < 10Z*, we use the bootstrap bound |(Z)*0Fur| < (Z)T = as well as that up
is supported in Z < 10Z* to estimate, recalling (9.9),(9.11),

b2/X0\AuT-ﬂ| < b2/xg|AuT-uT|+b2/X0|AuT~uD|

—2(r—1)+20
< 2 [ (7 -2-20-d+20—1) Z (r=0420 02 4 | 22 Aur|?
D

= (p+ u')bQ/XOAuT <.

P S / @
(Z*)K(r—l)—i—r—Z 7<102* <Z>20+3

—2(r—1)+2
. / <z>220d+2(”)<;> U |2
PD

with
ce =min{l(r —1)+r—2,7} >0
Exactly the same bounds apply to

—2(r-1)+20 2 2 2
b2/X0|v,L~L|2 < b2 /<Z>—2—20—d+2(r—1) <Z> UT+ |Z AUT‘ 4T

z* p2D
Therefore,
Dissg < —(u+u’)b2/><0|va|2 (9.30)
—2(r—1)+2
+ (p+ p)b? /<Z>_2_20—d+2(r—1) <Z> s |Z;AUT|2 toemCeT
zZ* P
case k > 1: For k > 1, we claim the bound
1
Dissy, < —2 (1 + )b /XMVUM + (u+ )0 ZXJ!WJ\ (9.31)
We have
. _ INY) 2 ok AUT k1 ko 1
Dissi, = (u+ 10" [ xuopd* (=5 ) it = (n+ w) Z Xkpr 0™ Augd pa
T T

ki1+ko=

For ko = 0 we decompose ur = up + @ and estimate, using that up localized for
Z <102*

bZ/XkakAUD'ﬁk < b%/XkP%“ﬁk‘Q

4-26 (z)2-2o—dtleD2Y)
v /Z<1oz* (Z)2(r=1+2+k) (2) Z°dz

e—ckﬁ7+b4—26/ <Z>2e(ril)dZ
z<10z+ (Z)%°F>

IA

< e T 4 b4725 S e Gt T
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°T and since the condition

since b = e~

(r—1) <2 holds for d=3 (9.32)

in view of
d—1

r*(d,0) <ry(d, ) =1+ m

The main dissipation term is
1
(M + Nl)b2/XkAak . ka = —(,u + ,u/)bQ |:/ Xk|Vﬂk|2 — 2/AXk’ﬂk’2:|
- Xk |~
—(u+u’)b2/Xk\Vuky2+0(b2)/W\ukP

IN

< —(u+u’)b2/><k|wk| +(p+ 10 ZXJIVUJI

If 1 < kg < kP — 2, we estimate from (7.24) and Leibniz (similarly to the above,
every term below should have a factor of (u + '), which we suppress):

b2 2 Z 6k1Au 8k2 i |’l] | < b2 2 ’ﬂ, ’ Z ‘VakluT’
XkPT T p% kl S XEPT Uk TS ks (Z)k2

k1+k2—k k1<k—1 ki+ko=k+1,k1 <k Pb

k—1
vV Xk|UW .
< b2/ | : Z VX VO up| < — /Xk|‘9kWT|2+CkaZ/XJ (IVa;[* + |V ur[?).
=0

k1=0

For ky = kf — 1, k; < 1, we integrate by parts once and use (7.24) to estimate

1
/ka%aklﬁwab (2> - T,
Pr

b2

2 k ~
Xk P _ |0 Aup| |y e~
b2 k—1
< 3% Xel Vi |? + Ceb? > x5 (IV) + [Voiur?) .
7=0

For ky = kf, k1 = 0 and k = k¥, we integrate by parts once and use (7.24) to
estimate (the highest derivative term)

1
/XkPQTAUTakQ < 2) .
Pr

b2

o1 Aurl|
] <2 [0 oy + R dur v
PT (Z)

(Lower derivative terms are easier to estimate. We omit the details.) Estimates for
the three terms are similar but for the first two we can use estimates from the step
k = k* — 1. We therefore will only explicitly treat the term

ok—1 ~
? [ 27} A [V
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First,

oF PT‘ b Xk’akilpT‘Q
b2/ LAu vuk</XkVUk2+Cb2/ X0 pr|T
7<127* pT | ! | 10 | | 7<122+ <Z>4+2(r71)p%

b2 2(r—1) 2 2 _2(r—1 1|07 pr]?
S Vi 2+Cb2/ 7 (r— ) (r—1) L
10 Xk| Vg ZSIZZ*< ) kapD <Z>2
b2 1 05 pp|?
< C— Z (r—1)—2 1
— 10 Vel + (Z*)tr=1+r=2 /ngz*( xifp. (2)?
b? 10" )
< — [ x|Vl +C Z) " XkPp e
10 |Viig|? Z§122*< ) D gy
1 o B ‘ak—lpD|2
o~ g\r=1-2, p-1
+ (Z*)Z(r—1)+r—2 /Z§12Z* > XkPD <Z>2
2
<70 Xk | Vig|* + e~ 7
I O(r—1)—2—d-2k+0(r—1)—2 z4!
+C(Z*)e(r71)+r72 /Z§122*<Z (Z)2+2(k=1)+(r=1) dz
b2 1 ( )E(r Vdz
< Vi 2 R e — -
< b2 V 2 CtT
<70 Xk| Vg + e~

where we used the condition that ¢(r — 1) +7 —2 > 0, see (2.9), as well as (9.32).
We now estimate

ak—l
b2/ XEO Pl 1
Z>122* pr

We first decompose pr = pp + p.

k-1

k|0 D _ _ _

v [ MOl i [ v
Z>127* pT Z>127*

b2
<15 Xkquk12+Cb2/ (Z) 722y | Aug |
Z>127,
b* 2 2 2
< — 10 Xk|Vig|* + Cb Z/XJ\VUJI

where we used that y, = (Z)272y; and that up is supported in Z < 10Z*.
Integrating from infinity and using Cauchy-Schwarz,

Zd—lxzz\AaP(Z)g/ 201y, |V Al dZ+/ 74 1X2;Au\2dz</ngva2\2+/><1\val\2
z
Using that up is supported in Z < 10Z* and that y; = (Z)?~%y, we then obtain

0 b2
52/ MMUTHVUM < X Vg |?
Z>122* T 10

k—1
7 k—lak—l ~12
Jj=0

Z>127* %%
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2
<4

We now use the estimate (5.13)
VEp

—20
/ <Z>—d+2k <Z>M
7>122+ z* pPD

which holds for any k& < kf — 1 and positive g = min{1,2(r — 1)}, to conclude that

2 Xk|0" 1 gl - b? - 12 2k71 =12
b S |Aup||Vig| < 10 Xk|Vig)* + Cb Z Xj‘Vuj| .
Z>122* Pr =0

The above bounds for k£ > 1 yield the proof of (9.31) as claimed.

We now set

—2(r—1)420 _ 2 2 2
R <Z> b +12%Aur|

Choose a sufficiently fast decreasing sequence of positive constants C,, and define

Kt
=) Culpg. (9.33)
m=0

Summing Cy times (9.30) with C,, times (9.31) for m > 1, we obtain, together with
(9.27) and (9.28),

Kt
1dI 1
o 7 I ~b? m m ~m2
2dT+O' +2meZOC /X |V,

IN

Kt
CJ+ Z Cm/xmp%Vﬁ’Qm SV, + e T (9.34)
m=0
where
B = B = 00" g™

denotes the F5 terms minus the contribution from the dissipative terms.

step 7 Fy terms. We claim:

Kt
3 - . 1
T
m=0

with K given by (9.46) and satisfying
(K| < dljs o

Source term induced by localization. Recall (6.1):

Epy = 0, Vp + DV\I/DP (= 2)Up + A\I/D}
which yields
8ZéP,‘I/ = Orup + [2UD8ZUD +(p— 1)p%_1azpp + (r—Dup + AUD} .

In view of the exact profile equation for up and the fact that up coincides with up
for Z < Z*, 078p,y is supported in Z > Z*. Furthermore, from (4.10):

up(r, Z) = CAZ)up(2)
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and hence
Orup + Aup + (r — Dup = —A{(z)up(Z) + A{(z)up(Z) + ((z)Aup(Z) + (r — 1){(z)up(Z2)

= ((2)[(r — Vup + Aup] (2) = O <1ZZSZ§§Z> :

p=1
Using that |up|+ py S (Z)~(r=1) | with the inequality becoming ~ in the region
Z* < Z <10Z* and that up vanishes for Z > 10Z*, we infer

17>z« Bt
(2)° PP

with a similar statement holding for higher derivatives

02Epw| <

< 1z>2- P32

.
VO Epw ZyrrePD

Then, using (9.12),

~ 7d—1 72k p2 pP—l

2 k 2 T7FD -2

/X,0T|va Epul” S /Z>Z* dep—lpg <Z>2k+26dZ <e (9.36)
Z P PD

(0%, Ho) AW term. From (6.5):

k+1 k
ko |0; V| |VoIy|
V(0" Ho]A)[ S (Z)yr+1+k=j N Z (Z)r+k=i
j=1 J=0
and hence:
k =
2 k 17 2 2 |V8]\Ij’ —C 4T
/kaT|V([3 H)AD)? < E%/XWTW Se T, (9.37)
J:

[ﬁk,p%d] term. By Leibniz and (7.27):

k=2 | qi~
o _ 1 0’ _
0% 25~ ko~ 2% “0p00* 3] | £ 3 ot
5=0
and hence taking a derivative and using (9.13):
B B 9 k—1 B a] ~12
/ka% )V 105, 0315 = k(o = 2)6fy *0pp0"™ 7] ’ S /Xkﬂ%p 2>+2<z>|2(kp—|j)+2

j=0

< ewT (9.38)

since 2(p—2)+2=2(p—-1)>p—1.
Nonlinear ¥ term. Let

ONj, jy = ONVUOPVY, ji+jo=k+1, ji<jo, ji,j2>1.

We have j; < %ﬁ and hence the L*> smallness (4.36) yields:

j 2
2 19j ; 2 2 072V |
/kaTa IVUo2VY[? < C(’/Z<Z* XkPT (22032720 T) (9.39)
j 2
—2(r—1)7 2 ’8]2v‘ll|
+ de /ZZZ* XkPT <Z>2(k_j2)

< NP Y gy e 2TV 2 < e
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step 8 NL(p) term. Arguing as for the proof of (7.29) yields:
kny (5 o [P —1V/0k e~ [0
VO*NL(p) = F <pD> o P pD ; g |- (9.40)
We recall that
Foy=(1+vP " =1-(p—1lv, F)=@p-1)(1+v)?-1)

We need to estimate going back to (9.7)

G =~ [ XAVINLG) - Vi

and claim
|G| < e 7T for k <k —1 (9.41)
and for k = k!
I < L {/XkF/ <ﬁ> PP_Q,OTP2} - U/XkF’ (ﬁ> o2 prot
S 57 o) D k on ) D 3
+ O(e 7). (9.42)
Indeed, we estimate:
2 1ka p—1 - ‘3]/)\ X
gk:_/XkPT < >p% pD Z 2 VU,
j=
. R .
- _/XkPQTF/ (p) Py SPE T 4 O T)
PD PD

and we now integrate by parts:
- R . i - B .
—/XkPQTF/ (p) rp VPR, = /ka' <XkFI <p> b QP%V\I/k>
PD PD
= /ﬁk [XkF/ <p )P‘EQ (ppVIL) + 7V - V (XkF,< )PD )} :
PD PD

We estimate
~ B 6pp—2
(e(5)a)<%
' < pp ) P (Z)
< 5/ Xkﬁk\v‘i’k\P%_lpD e

~ 2 7, i P -2 T
Pkp V‘I/k'V<XkF <)pp > S <e W,
‘/ T pp) P (Z)
For k < k — 1, we estimate directly

‘/ﬁka;F' (pi) PoEV - (pRVTy)

—C 4T
S Ikﬁ,a—&-lge it

~

and hence

oo lp
< [l ['< D>'|wk| AT,

and (9.41) is proved.
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Next, we focus on proving (9.42). We let k = k* and insert (6.7)
/XkﬁkF/ <p€)> PV - (P2 (9.43)
= - /XkﬁkF/ (pi)) o2 pr [aTﬁk — (Hy — k(Hy + AHy) py, + HaApy,
+ @y%ﬂA@+kvmmv@h+ﬁmA%ﬁyv@—Fﬂ

and treat all terms in the above identity. The 0, py is integrated by parts in time:

) N\ 0 .. 1d A
- F L o220, = —= / jo 2
/kak (pp) D PTOPk 5 dr Xk oD P PTP
1 N 0 _
+ 2//)%67 (XkF, (p’;) o 2PT> :

We now recall the identity

- . 1 [,
/PkGAPk =-3 /Pz(dG +AG)

0. (e (2) 257w
PD

1
2
- /XkﬁkF' (;;3) oy 2 pr [—[ﬁl — k(Ha + AH>))px + ﬁzAﬁk] = /ﬁiﬂ

Therefore,

leading order term. We claim

s (Balaro(d)] o

which ensures

—/XkﬁkF/ (pi)) oy 2 pr0- i (9.45)

1d p —2 / p ) _
[, F/ A 2 _ F/ P 2 O CLT )
2W{/M (M>ﬁ>mm} o | xk (m o “prpy, + O(e” %)

Therefore, see (9.35),

K = —/XkF’ <p> 2 pri (9.46)
PD
and
\%wgé/xw%*ﬁ. (9.47)
Proof of (9.44): First
0 ~ C
F<p>AH <
‘ pD 1~ 2y
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Then from (9.8), (7.16), (7.17), (11.16):

10:(p% 2 pr) + HaA (b N —d  10:yvk+ AxiH
10-(p PT)p_2 2A(pp PT) L g e, 4 o L0t At
2 o “pr 2 2 Xk
1 2(r—1) 2(r—1) 2(r—1) d

= — —2 — — — — —
2[(;9 )< p—1> p—1 p—1 sy
2k—20—d+L_11)+2(r—1) 1 1

+ - +O< >_—a+o< >

2 (Z)" (Z)"

We then estimate from (6.3), (4.36), (11.16), (7.20):

(0- +A) [F’ (’3)] = F" <’3> { @O, +A)p  p (O +A)pp }

125) PD 125) D PD

- (S o (g o)

and (9.44) is proved.

lower order terms. Using (7.2), (4.36):

[anr (”) ngpTAKpTAi' < [y 1A% [ 22 m@
pPD (Z)
< e (9.48)
The term
‘/XkﬁkF/ (pf)) o 2prVAK pp - V‘if‘

is treated similarly after integrating by parts once. Furthermore,

‘/Xkﬁk:F/ <£;> o2 prVpr - VI,

<5 | X i g IV < €07 (9.49)

Finally, from (9.28):

'/Xkﬁk:F' <p> P%fszﬂ
PD
(9.43), together with (9.45) and (9.48)-(9.50), concludes the proof of (9.42).
Finally, (9.36)-(9.39) and (9.41)-(9.42) imply (9.35).

< e (9.50)

step 9 Conclusion. Going back to (9.34) we obtain, plugging (9.35),

kb
1d(I + CpK) 1 INT =2 —c T
§T+J(I+Ckn9{)+§(u+u)b mgocm/xmwum] < OJ 4 e i,

(9.51)
We integrate in time and use (9.47) to obtain for 20 < ¢

I(T) < 6—20(7’—7'0)1(7_0) + 06—207 /T 6207’J+ e_(ckﬁ_QJ)TOe_QUT

70



71

We now recall (7.25), choose a small constant 6 > 0 (which will depend only on the
constants r and np) let Z; = (Z*)1*¢ and estimate

i ot 4 *\ 20 r—1)—2—20— Z 20=2(r=1) uz + (Z2Aur)?
/ e2 J = (M+M/>/ b2(Z )2 /<Z>2( 1)—2—20—d <Z*> T ( 8 T)
T0 70 pD

T . I 7 20—2(r—1) u2 + ZQA’UJT 2
_ (N+/'L,)/ bQ(Z )20/ <Z>2(7" 1)—2—2¢ d<Z*> T ( . )
70 Z<Z; PD

+ (4 ) /T b2(Z*)2r=D) / <Z>—2—dU2T + (Z2*Aur)?
70 727; Ph

We first obtain

T 90 )9 9g 7 20—2(r—1) u2 + (ZQAUT)2
wrw) [ v [ e (2 1+
0 7<7; PD

(N+H/)/ (Z*)—é(r—l)—r+2+2o /Z<Z* <Z>—2—2(r—1<Z>E(r—1)+2ﬁnde
70 =<

A

< e—(r—%np)m +e—(€(7‘—1)+r—2—2a)7'o < =970

as long as 6 has been chosen small enough, so that » > 6np and o is small enough
so that 20 < l(r —1)4+r —2.
To control the second integral we use the global bound (5.3)

T vl ol 4 (Z2Aup)?
(M‘l‘ﬂl)/ b2(Z )2( 1) <Z> 2—d =T ( . )
0 Z>7Z; PD

. 7\ 2+ (22 Aur)?
T0 ZZZ; A

(Z)*}
) T 2 ZZA 2
< (M+M/)Q—IV(d—2)To/ bZ(Z*)—d+2r/uT+( ur) < Pe—td=2)m0 < 6—67’07
To

(Z)iph,  ~

where the penultimate and last inequalities hold since'? d = 3. This concludes the
proof of (9.2). O

10. L*° bounds

We are now in position to improve the bound (4.36).

Lemma 10.1 (Improved L> bounds). For all 0 < k < kf — 2,

ok
”W + H(Z)’”“’—l)vka < dy (10.1)
PD L Lo (2<2%)
andforallogkgkﬁ—l,
7 —2(r—1)
<Z)k+(”’1) <*> \vAY < dy (10.2)
z Lo (Z>1)

Proof of Lemma 10.1. For any spherically symmetric function vanishing at infinity

ny(Z)g/Z Z—d\ZaszZd—le+/Z Z=Uf2z dz (10.3)

120nce again, dimensional restriction arises in the treatment of the dissipative term. It is not
needed in the Euler case.
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We apply this to f2 = (Z)Ixp%|VFi|? with yi from (9.9). For Z > 1 we then
obtain

2/ asbIVHIP2) S [ bl [ asbIvhal < ey
We now observe that from (9.11)

7\ 20-2(r=1)

<Z>kap%) ~ <Z>2k+2(7“71)720 <Z*> )

The estimate (10.1) for V*@(Z) with Z > 1 and k < kf — 1 follows immediately.
For Z < 1 the estimates for both Vkﬁ and V¥4 for k < k¥ — 2 follow from the
boundedness of the Sobolev norm ||p, ¥||;: in dimension d < 3 established in (7.1)
and (8.4).

The exterior estimates for p have been already established in (5.14)
B

(%) e

for any 0 < k < k* —2 and p = min{1,2(r — 1)}. It remains to prove (10.1) for 5
for 1 < Z < 12Z*. We again use (10.3) but integrating from 12Z* instead. Setting
f? = (Z)dxkp%_1|vk[)|2, we obtain

N

< dp
L (Z2>122%)

1ok ~ 1ok ~ 1 -
(Z) Xy IVERE S (2) e IVkp|2!zzmz*+/ Xer1ph V52
7<127*
1 -
+ / ot VR
Z<127*

We now observe that for Z7 < 122*
<Z>2k72o

(Z>kaP%_1 ~ <Z>2k:—20+€(r—1) ~ -
PD

9

which implies
V¥ 5]
—20 P
b

The result now follows immediately. O

<Z> < (Z*)fQU(QO + 67207600

11. Control of low Sobolev norms and proof of Theorem 1.1

Our aim in this section is to control weighted low Sobolev norms in the interior
region |z| < 1 which in renormalized variables corresponds to Z < Z*. On our way
we will conclude the proof of the bootstrap Proposition 4.5. Theorem 1.1 will then
follow from a classical topological argument. In this section all of the analysis will
take place in the region Z < 57* where pp = pp and Vp = ¥p. We recall the
decomposition (2.26)

pr=p+pp, Yr=Up+ ¥, &=ppV¥
and note that (5, V) = (p, ¥) for Z < 5Z*.
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11.1. Exponential decay slightly beyond the light cone. We use the expo-
nential decay estimate (3.20) for a linear problem to prove exponential decay for
the nonlinear evolution in the region slightly past the light cone. We recall the
notations of Section 3, in particular Z, of Lemma 3.2.

Lemma 11.1 (Exponential decay slightly past the light cone). Let

~ Zo+ Z
7y = Q
2
Then, for 9 < 17 < Ty, we have
_ _%g
||V(I)||H2’%(Z§Za) + HPHHQ’%(ZSZa) NCEERE (11.1)

Proof. The proof relies on the spectral theory beyond the light cone and an elemen-
tary finite speed propagation like argument in renormalized variables, related to [38].

step 1 Semigroup decay in X variables. Recall the definition (4.17) of X = (®,0)
d = pp@
O =0, + aHy AP = —(p — 1)Qﬁ — HoA® + (Hl — e)@ + G + aHyAD
(11.2)
with G given by (3.3), the scalar product (3.14) and the definitions (4.19), (4.20):

Ao={AeC, RN\ >0}n{X is an eigenvalue of M} = (N\j)1<i<n
V= UlgiSNkel"(m — )\Z'I)kki

the projection P associated with V', the decay estimate (3.20) on the range of (I — P)
and the results of Lemma 3.6. Relative to the X variables our equations take the
form

9. X = MX + G,

which are considered on the time interval 7 > 73 > 1 and the space interval Z €
[0, Z,] (no boundary conditions at Z,.) We consider evolution in the Hilbert space
Hyg, with initial data such that

I = P)X (o), < ™, |PX(ro)lli, <e™ 5™ (113)
According to the bootstrap assumption (4.39)
IPX (M), <€ 37 Vr € [ro, 7] (11.4)
Lemma 3.6 shows that as long as
G, < e, w2 (11.5)
there exists I', which can be made as large as we want with a choice of 7y, such that
IPX(7)ly, S€ 37, m<T<m+T. (11.6)

This will allow us to show eventually that if we can verify (11.5), the bootstrap time
T*>7+T.
Moreover, as long as (11.5) holds, the decay estimate (3.20) implies that

5 T 5
I = PIXll, S e F X ), + [ H 60, do
TO

o
5 +

— 1)
S X (), + |

70

8 s
e‘é”dr] <e 27 (11.7)
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As a result,
6
||X(’7')HH2,% S 8_7973 <1< 71" (118)
Below we will verify (11.5) V7 € [1, 7*] under the assumption (11.7), closing both.

Once again, this will allow us to show eventually that the length of the bootstrap
interval 7% — 17y > I is sufficiently large.

Recall from (3.7), (3.5), (3.14):

(Gl < [ IVARGoPgzttaz+ [ Ghzlaz ()
Z<Zq Z<Z,
with
Gg = 0;Gop — (Hl + Hg%) Go + HoAGo — (p — 1)QGP
G, = —pAV¥ —2Vp- V¥
Go = —pp(|[VI[* + NL(p)) + b*ppF (ur, pr).-

step 2 Semigroup decay for (p, V). We now translate the X bound to the bounds
for p and ¥ and then verify (11.5). We recall (11.2) and obtain for any Z > Z

||@||H2kb(Z§Z) + ||(I)HH2%+1(Z§2) S HEHHZ’%(ZgZ) + H@”H%ﬁl(zgm + ||G‘1>||H2’%(Z§2)
S HTHH?’%(ZSZ) + ||(I)HH21%+1(Z§2) + ||G‘1>||H2’%(Z§2)
and claim:
T — -
1Gallyons 22y S IVE Wty gy + 1ty gy + € (11.10)

Indeed, since H?#»(Z < A ) is an algebra for k;, large enough:

The remaining term, see (2.8), is treated using the pointwise bound (4.36) and the
smallness of b which imply:

||b2pP<7(UT7PT)HH%b(ZgZ) < ZOp < e0T

provided §, > 0 has been chosen small enough, and (11.10) is proved. Choosing
7 > Z, this implies from (11.2) and the initial bound (4.24):

T — —0gT(
X et S T ot gy + 1P070) g 7y + €507

_ %970

< et (11.11)
This verifies (11.3). On the other hand, choosing Z = Z, with
~ Zo+ Z
Zg = 2 —;— (l’

we also obtain from (11.8)

_ B s 5y
()| gz +1(z< 2,y + 1P g2es (z<2,) S NX (T llg2e, +e77 S em> (11.12)
( ) ( )
The estimate (11.1) follows.

step 3 Estimate for G. Proof of (11.5). We recall (11.9). On a fixed compact
domain Z < Zy with Zy > Zs, we can interpolate the bootstrap bound (4.34) with
the global energy bound (7.1) and obtain for k* large enough and by < bg(k*) small
enough:

HEHH%VHO(Zgzo) + HEHH%WH}(ZSZO) < CKe_[g_ﬁ](ng < e‘[%‘%]tﬂn (11.13)
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and since H?* is an algebra and all terms are either quadratic or with a b term,
(11.13) implies

|’G9”H2’“b+5(Z§ZO) + ||GPHH2’%+5(Z§ZO) + HG‘I’HHQ’%‘*‘S(ZgZO)

< e (d-3)0m < T (11.14)
which in particular using (11.9) implies (11.5). O

11.2. Weighted decay for m < 2k, derivatives. We recall the notation (3.1).
We now transform the exponential decay (11.1) from just past the light cone into
weighted decay estimate. It is essential for this argument that the decay (11.1) has
been shown in the region strictly including the light cone Z = Z5. The estimates in
the lemma below close the remaining bootstrap bound (4.34).

Lemma 11.2 (Weighted Sobolev bound for m < 2k,). Let m < 2k, and vy =

%9 - 22;__11), recall (4.23)

B 1 Z |1 for Z <2
Svom = <Z>d—2(7ﬂ—1)+2(uo—m)C <Z*> » ¢(4) = ‘ 0 for Z >3,

then:
2k,

Z/ —1)Q(8™D)* vy + VI P2y m < C Ce 37, (11.15)

Proof of Lemma 11.2. The proof relies on a sharp energy estimate with time de-
pendent localization of (p, ®). This is a renormalized version of the finite speed of
propagation. (Remember: this part of the argument treats the dissipative Navier-
Stokes term as perturbation and, at the expense of loosing derivatives, relies on the
structure of the compressible Euler equations.)

step 1 H™ localized energy identity. Pick a smooth well localized spherically sym-
metric function (7, Z). For integer m let

D, = 0D, Oy, = 0",

We recall the Emden transform formulas (2.25):

Hy = p(1 —w)
Hy = EE( w) [1+47]
Hy = <L
which yield the bounds using (2.20), (2.21)
H2—1+O<Z1>r H1 ‘11)+O(<Z1>T)
Z)i0LHy| + |(Z) 0 ., j>1
(Z) G 1] \(1> J= (11.16)
(Z )]3 H3| S 7
= 1+ 0 ()| 5 102V 95Q1 S5 o
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and the commutator bounds:

o7, Hpl S X' A
V([0 Hilp) | $ X5 et
0, QA S QL7 s

07 Ho)Ap| S Sy 7ot

m .®
[V ([0, Ho)A®) | < zj;f e

Commuting (3.2) with 0™

= Hip,, — Ho(m + A)p,, — APy, + 0"Gp + Enp

OrPm
0r P = —(p — 1)Qpy, — Ha(m + A) @y, + (Hy — (r — 2))Pp, + 0]"Go + Eno

with the bounds

|<9 |

Bl S 00 10 + e
| Z] - i e (11.17)

8 1

We derive the corresponding energy identity:

d
s - n@aa+ 1venid = 1 [ onx(o- a7, + Ve,

[ 0= Qb (Hipy ~ Halm + A)py ~ A2+ 0G4 )

+ /me V[~ (p — 1)QB,, — Ha(m + ADy,) + (Hy — (r — 2))®p + 0, G +
- ;/&x [(p = D)@pr + VO[]

+ /(p — DQPmX [H1D,, — Ha(m + M)y, + 07" Gp + Em o] + /(p - 1)@p,,Vx -

+ /qu)m -V [—Hg(m + A)q)m + (Hl — (’I" — 2))(I)m + asz@ + Em@} .

In what follows we will use w > 0 as a small universal constant to denote the power
of tails of the error terms. In most cases, the power is in fact r > 1 which we do

not need.
Py, terms. From the asymptotic behavior of @ (2.21) and (11.16):

A A A
S e B

X
- /an(p— x@ {2 —r=1+0 <<Zl>“>}

+5 [0 DQmAE, (11.19)

Em,fb]

vo,,

(11.18)



7

®,,, terms. We first estimate recalling (11.16):

/me YV [(—mHs + Hy — (r — 2))®y] (11.20)

= [Cmtta s = 20w+ 0 ([ 2 veaen))

_ [(m+7“ —92)+ 25:__11)] /><|V‘1>m\2 +0 </<ZX>w ['wbmﬁ - fj;?])

We recall Pohozhaev identity for spherically symmetric functions

/IR fBgdgde = e [ L o100 10, gar

_ 1 2|p_d—1
- 2/}Rd|arg| [f - f]dw

and for general functions

/AgF~ngx = /8 gF;0;9dx = — Z /&g 8F8]g+F87jg)
7.7 1 ,] 1
= — Z /8Fazgajg+ /ng\ V.F (11.21)
1,j=1

Now, taking F' = xHs(Z1,...,Zy) in the above:

- / XV, - V(HAD,,) = / HoAD,, [YAD,, + Vy - VB,,]

= —Z/@F(?@ ;P + = /ywm\ V- F+/H2A<I> Vyx - V&,

1,j=1
1 A AH
= Z 0; @m0 ®Pm [—0i(xH2Zj) + H2Z;0; x| + 2/|V‘1>m|2x15fz [ + 7)( + H2]
~ 2
2,0=1
_ (d—2)/ 2 1/ 2 / X 2
= 5 XIV®,,| +2 HyAx|V®,,|*+ O ) ml (11.22)

(11.18), together with (11.19)-(11.20) and (11.22), using also (11.17) for the terms
involving F,, , and E,, ¢, yields for some universal constant w > 0 the weighted
energy identity:

d
%% {/(p— DQprmx + \V@ml2x} (11.23)

= - [xlo-v@z s iear) [ (m-gar-1) 2 w0 ()]

1 1
+ 5 [o= 0@ Dot g + 5 [ Ve P maAN + [0 1085, Tx- T,

m—+1 m
|0, @2 Qlf?] P\Q
+ O (/X ]ZO <Z> (m+1—5)+ Z Z )

+ o [uvealvenGel+ / x@|pm||amap|)
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step 2 Nonlinear and source terms. We claim the bound for x = &, m:

2k, d
Z Z/ﬁm,m!va’”G@P + /(p — 1)Q&y.m|0™G,|?
m=0 i=1
2k, d
DY Z/Qp%§y0+1,m+ V®n[Eppsrm | +e7  (11.24)
m=0 i=1

for some positive ¢4 > 0.

Remark 11.3. Crucially, the constant ¢, can be chosen to be such that ¢, > 4.
More accurately, the constant ¢, will be computed to explicitly depend on the speed
e=4L(r—1)+7r—2,rand d,. It will be clear that adjusting J, while keeping all
the other universal constants (¢,r) fixed we can satisfy the inequality c, > 4.

G term. Recall (3.3)
G, = —pAV¥ —2Vp -V,
then by Leibniz:
"G, < > |07 5]% |02 2.
J1t+je=m+2,j2>1

We recall the pointwise bounds (4.36) for Z < 3Z*,

Ck - Ck
e P S g

This yields, recalling (11.38), for j; < 2k,:

NP Y |45
2 2
/fuo,mQ|3jlﬂ| 072 0| S/QC <Z*> 72(a—m)+d—2(r—1)12(r—2) 20

0717 <

VA 87152 Jt -
S /C (Z*) Q<Z>d—2(7‘—1)+2(V0—j1)+2 S Z)/§V0+1,j1Q|aij’
J:
2k, d
S Z Z/ngngu(ﬂrl,m + |V(I)m|2£u0+1,m-
m=0 i=1

For j1 = m+ 1, jo = 1, we use the other variable:

o Z |0720|?
vo.m Q|07 219722 < / < >
/5 0, Q| p’ | | ~ QC Z* ZQ(jl_m)+d_2(r_1)+4(pr_—1l) +2l/0

T
~ zZ* <Z>d—2(7"—1)+2(l/0—]2)+2 ~ = 7% <Z>d—2(r—1)+2(1/0—])+2
J2 ] 2k, d
S 2/&’(’*1’1‘(‘3]2(1)|2 S Z/ngngv(ﬂrl,m + V@24 1.m
Jj=0 m=0 i=1

and (11.24) follows for G, by summation on 0 < m < 2k;, .
Gg term. Recall (3.3)

Go = —pp(IVU* +NL(p)) + b*ppF (ur, pr).
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We estimate using the pointwise bounds (4.36) for jz < 2k;:

VO™ (pp| V)| < > éﬁ\afﬁ@aﬁw@
Jit+i2+jz=m+1,52<j3
2k, j3+1
< Z — 1) 1 ’8j3+1@| < Z |0 3+ (I)|'
~ — ~ r+m—js3
JitintismmtLa<js (Z) p=1 THTTTAHIH = l2)
and since r > 1:
2]9;, 1 2 2k,
|3]5+ <I>| )
/51/07 ) ~ S GtV
Jj3=0 73=0

For js = 2k, + 1, we use the other variable and the conclusion follows similarly.
The dissipative term is estimated using the pointwise bounds (4.36):

m+1 : 2
m (2 2 g 2 |05 (ur, pr)°
/guo, ‘Va (b pPg(UTva))‘ S /Z§3Z* fuo-m Jz;) Pp <Z>2(m+1*j)

e | ! SS9 (urpr)P
Z<3Z* <Z>d+5g—2('r 1) M 2m =0 <Z>% <Z>2(m+l—])

. 2(7" 1) mtl
S b / (2 F (ur, pr)|?
s 1 M = 2|
For j > 1, we estimate pointwise from (4.36):

@05 arpn)| < )@ 97 (S0) | S rarizy ¥ G

T ptiamim1 P20
. 4(r=1) 1 1 <Z>£(r—1)
< / J+== } : s < n_. - N
~ (N + )<Z> Pt <Z>r—1+j1+2+j2 ~ (M + ) <Z>T 4(pr 11 ('u +u ) <Z>r

Ntje=j—1

Therefore, recalling (1.13):

. 2(7~ 1) mtl
b /Z<3Z* (Z)d+0,+2 Z (2)! & F (ur, pr)[*

<Z>2(r—2) <Z>2€(T—1)

1
< ,—CgT
<Z*>2[€(r71)+r72] 7<32* <Z>1+59 2 dzZ Se 97,

S (p+i)
where ¢g = min{2[l(r — 1) +r — 2], 4+ 2r} > 0. For j = 0, we have the bound:

(w4 T o) S i) [ gy [
omT U T,PT)| ~ (BT [ 0 < >'r 1+2—6(r—1) w 0 <Z>1+T—€(T—1)

We observe at 7*(3,4):

r*(ﬂ)ﬁ(r*(f)1)>0<:>£(r*(€)1)<7"*(€)<:>€< £rs 1> <t

(++/3 (+/3

& (3—\/§)£<£+3<:>£<2

! w
=
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which holds since £ < 3 < 5.
|F (ur, pr)| < (u+ p'), which yields the contribution:

o+t |

Z<3Z*

<Z>2(r—1) i1 (1 + 1) oira)s L
WZ dz < (Z*)2er=D)+r=2] <1+(Z )2 g) se

where ¢ = min{2[/(r — 1) + 7 — 2],64 + 2{(r — 1)} > 0. In the case of r ~ 74, we
have either |F (up, pr)| < (1 + 1) in which case we obtain the bound as above, or
|F (up, pr)| S (n+ ,u’)Zg "=1=7_ Then, we obtain
Z\(

(,U + :u‘l) dz —2e
u+'u/ b4/ = S ,7'.
( ) 7<37* z<3z+ (Z)1H00+2

This concludes the proof of (11.24).

< >7“ 2)+4(r—1) i1 -
<Z>d+6g+2 Z7dZ 5 <Z*>[£(r71)+r72]

step 2 Initialization and lower bound on the bootstrap time 7*.
Fix a large enough Zy and pick a small enough universal constant wy such that

VZ >0, —wo+ Hy > % >0, (11.25)

where we used that Ho = 1 — w has a strictly positive minimum on Z > 0, and let
I' =T'(Zp) such that
2o
27,

We claim that provided 7y has been chosen sufficiently large, the bootstrap time 7*
of Proposition 4.5 satisfies the lower bound

e~wol =1 (11.26)

™" >10+1T. (11.27)

Indeed, in view of the results in sections 7 and 8 there remains to control the bound
(4.34) on [r9,70 + I']. By (11.6), the desired bounds already hold for Z < Z, on
[10, 70 + T

We now run the energy estimate (11.23) with x = &, and obtain from (11.23),
(11.24) and the Remark 11.3 the rough bound on [r, 7*]:

d —04T
o {/(p - 1)Qp$n£l/o,m + ’vq)m|2£zxo,m} § C/(p_1)szn€l/o,m+|vq)m|2£zxo,m+e 6g

dr
which yields using (4.24):
[0 0GB+ 98 6m < T [ (0= QB0 + VP (0) s
+ €7 /T e~ (CH0)0 g5 < CT [Coe 0970 4 o~ 970} < 26T Cye %™
70
and hence
L9, —2 2
e s (p - 1)me€1/0,m + ‘V(I)m| fVo,m
< eQCFCOe—agme%m < 2T~ < 1

which concludes the proof of (11.27) and (11.15) for 7 € [19, 70 + T'].
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step 3 Finite speed of propagation. We now pick a time 74 € [19 + I',7*] and
Zy < Zp < oo and propagate the bound (11.1) to the compact set Z < Zj using a
finite speed of propagation argument. We claim:

—12 112 -5

1612 20y + IV 20, < O (11.25)
Here the key is that (11.1) controls a norm on the set strictly including the light

cone Z < Zy. Let
. L+ Z
Za:%

and note that we may, without loss of generality by taking a > 0 small enough,
assume:

QNI

— < 2. 11.29
% < (11.29)
Recall that I' = I'(Z)) is parametrized by (11.26). We define
A Zo _ _
T, Z) = , w(r) = —Lewolrs=)
2 =¢(25). = =2

with wp > 0 defined in (11.25) and (11.26) and a fixed spherically symmetric non-
increasing cut off function

1 for OSZgZa

= . "< 11.
We define
m=T1;—T
so that from (11.26):
o< T ST
W(Tl“) — 2Z20a e—wo(Tf—Tr) — 2Z70ae—wol—‘ =1. (1131)
We pick
0 <m <2k,
then (11.30), (11.31) ensure Supp(x(mr,-)) C {Z < Z,} and hence from (11.1):
([ - D@mac+ V8P ) () 5 o (11.32)

This estimate implies that we can integrate energy identity (11.23) just on the in-
terval [, 7¢]. We now estimate all terms in (11.23).

Boundary terms. We compute the quadratic terms involving Ax which should be
thought of as boundary terms. First

8TWZ6Z<<Z
w w

Orx(1,Z) = — ) = —wolx.

@
We now assume that wp has been chosen small enough so that (11.25) holds, and
hence the lower bound on the full boundary quadratic form using Ay < 0:

1 1
5 [0 07 o+ max+ 5 190, 0o+ i + [ (0- 0GP, V- Ve,

= [ {50 DGR [+ Hl 4 TR [ 4l + (0~ ) G020 |
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The discriminant of the above quadratic form is given by the following expression
in the variables of Emden transform

2
-DZ| - et 2= D@ = 6- 10 [P - Cun+

= (p-1Q [02 — (~wo +1—w)*| = (p—1)Q[~D(Z) + O(wp)] -

where D(Z) = (1 — w)? — 02, see Lemma 3.2.
We then observe by definition of x that for 7 > m:

<Zo=2>w(1) 24> w(m) 2 = Z4

. Z
Z € SuppAy & Z, <
@(7)
from which since Za > Zo:
Z € SuppAx = —D(Z) + O(wp) < 0

provided 0 < wp < 1 has been chosen small enough.

Together with (11.25) and Ay < 0, this ensures: V7 € [, 7%],

1

1
5 [0 007 o+ maan+ 5 190, 00+ ad + [ (0- 0GP,V Ve,

<0 (11.33)
Nonlinear terms. From (11.30), (11.29) for 7 < 74:

Suppx C {Z < @w(1)Z,} C{Z < w(7})Za} = {Z < % } c{Z < Zy},

and hence from (11.14):

/X\VamG¢>|2 + /(p —1)Qx|0"G,* S HVG<I>||§{2I%(ZSZO + 107G, HHQ’% (Z<Zo)

A
[Q)
|
|
t

(11.34)

Conclusion. Inserting (11.33) and (11.34) into (11.23) and summing over m € [0, 2k, |
yields the crude bound: V7 € [, 7¢],

2k, 2k,

46
dT Z/ — 1)Qpax + VO [*x <02/p D)QP2, X+ V| x+e 5 7.

We integrate the above on [, 7] and conclude using

X1.2) = ¢ (505 ) =¢ (ZZ

) =1 for Z < Z,
2Za
and the initial data (11.32):

180228, <2y + 19T 228, 2 )] (77)

~

< Clr=m)g=tymr / 7 e R4y < O(T)e 5 = O(Zo)e 05
T

Since the time 7 is arbitrary in [r + I', 7*], the bound (11.28) follows.

step 4 Proof of (11.15). We run the energy identity (11.23) with &,, ,, and estimate
each term.
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terms Z < % In this zone, we have by construction
p=p
and hence the bootstrap bounds (4.35) imply
<1

HpHHkﬁ(ZS%) + HVWHHM(ZS%) ~

and hence interpolating with (11.28) for k* large enough:

_ "L 757‘9 17@
Pz, S WPl e P05 20 S #(132)
484
s e (11.35)
and similarly
— 9 (1_m 45,
IV ey S ¢ 2 UTH) <o, (11,30

Linear term. We observe the cancellation using (11.16), (2.6):
o HoA&yy o = . ac(Z
Tfuovm + 5’/07"1 - <Z>d—2(r—1)+2(1/o—m) —A¢ ?

1 z 1 Z
+ (=) (Z)d=2(r=D)+2(vo—m) AS (Z*> A <<Z>d‘2(’”‘1)+2(”0‘m)> ‘ (Z*ﬂ

1
= —[d—=2(r—1)+2(vo —m)|&vym + O <<Z>d—2(r—1)+2(u0—m)+w> (11.37)

for some universal constant w > 0. We now estimate the norm for 27* < Z < 32*.
Using spherical symmetry for Z > 1 and m > 1:

mam— % m|a]p‘ G i1aJ =
Zmompl < Y 2L NZZJ\C')’sz (11.38)

j=1
and hence using the outer L> bound (4.36):

(p— DQIO™p|* + |0V |2
27+ <Z<37* <Z>d_2(r—1)+2(l/0—m)+w

. 2
m —
/ S| L
da w
27*<7Z<37Z* 2 2

i01(Z)2tte

719,
(Z*)l/o+%*(1“*1)+l+%

A

m—+1
2
j=1

2

_ m Zjajzﬁ m+1 Ly ZJ(?JZ@
~ . . Z i+1/ +2(7‘—1>+£ + Z <Z> U +M+Q+£
27*<7<3Z _j=0 PP<Z>2 (U - 2 j=1 <Z> (U - 27T
1
< < e 0T 11.39
D i e = )

using the explicit choice from (4.22):
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Conclusion Inserting (11.35)-(11.37) and (11.39) into (11.23) yields:

d
! { [ 0= 100 + 19806

2(r —1
= /f p—1)QFE, + VO[] {Vo-i- ( >]
p—1
0 N e QL) sty
O f g S0 | 2 it 2 gy s |
- J= j=

e ( [ Gl vonlvocol+ [ suo,mczrpmuaw)

and hence after summing over m:

2k,

1d
5% Z / - ]- mefvmm + |v©m’ 51/0 m

2k,

2(r —
= —|:I/0—|— i) :|Z/£V0, _lme—i_‘vq)m’]

2k,
+ 0 ( T4 Z/ — 1D)QP2 vt + VP2t m)

2k,

+ 30 ([ ganlv2190"Col + [ € n@iplion,)

Using (11.28) we conclude

2k,
1d
2 dr Z/ ~ DQPm&vom + |V 8| *evom (11.40)
o 2(r — 1) < ) 2’% B
— [1/0 + b1 +0 /51/0, 1) me + |V, ]

2%,

FoleF ey / Enl V0" Gol? + [ (0= 1)Q6u0nl07 G

Therefore, using also (11.24), for Zj large enough and universal and

2(r—1)\ _
2<V0+ p—1 )-59,

2k,
dT { Z / - 1 meflfo,m + |V(I)m| 51/0 m}

2k,

_ 4097
< ity Z/sm, P~ QR + V@] + Cem

there holds

Integrating in time and using (4.24) yields (11.15).



85

11.3. Closing the bootstrap and proof of Theorem 1.1. At this point all the
required bounds of the bootstrap Proposition 4.5 have been improved. This now
will immediately imply Theorem 1.1.

Proof of Theorem 1.1. We conclude the proof with a classical topological argument
a la Brouwer. The bounds of sections 5,6,7,8 have been shown to hold for all initial
data on the time interval [rp, 79 + I'] with T" large. Moreover, as explained in the
proof of Lemma 11.1, they can be immediately propagated to any time 7% after a
choice of projection of initial data on the subspace of unstable modes PX (7y). This
choice is dictated by Lemma 3.6. A continuity argument implies 7% = oo for this
data, and the conclusions of Theorem 1.1 follow. O

Appendix A. Hardy inequality
Lemma A.1 (Hardy inequality). There holds for a # 2 —d and ro > 0:

4
|x|0‘_2|u de <c , ||u||20<> — + / x|% I Vu QdZL'. Al
/x|2r0 ‘ T0,Q L (r=ro) (d — 24+ Oé>2 le|>r0 ‘ | ‘ | ( )

Proof. We compute

and hence

1
x| 2uldr = / u?V - (r* e, )dx
/x|27"0 ’ d—2+« |x|>ro ( T)

1 2
= / r* llde — ———— / r* 19, vudx
d—2+a« |z|=ro d—2+« |z|>ro

1 1
2 2 2
Crollul|F oo (ppey + T / |2 2t da / z|*|Vu|*dx
0 Lo (r=rq) |d—2+al - a[>ro 2| Vul

and (A.1) is proved using Holder and optimizing the constant. ]

IN

Appendix B. Commutator for A*

Lemma B.1 (Commutator for A¥). Let k > 1, then for any two smooth function
V,®, there holds:

[AF V]® — 2kVV - VA 1o = > hasVeVVID, (B.1)
|l +]8]=2k, |5 <2k—2

where V& = 8% ... 95%, |a] = a1 + - + aq.
Proof. We argue by induction on k. For k = 1:

A(V®) — VAD =2VV - V.
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We assume (B.1) for k& and prove k + 1. Indeed,

AFTHV®) = A([AR, V]® + VAFD)

= A[2kVV.VAFIO 4 > ChasVOVVIO + VAR | = 2kVV
|l +18=2k,|8| <2k —2
+ > ko gVOVVPD 4 2kVV - VAFD + VAR D 4 2VV . VAP
|la|+]8]=2k+2,|al>1
= VA1 4+ 2(k+1)VV - VAFD + > Chi1.asVOVVPD
la]+]B]=2k+2,|a|>1
and (B.1) is proved. O
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