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Introduction

The potential of Machine Learning (ML) on wildlife conservation has been more and more investigated in the last years, to address diverse tasks such as recognizing species from different modalities (audio for birds or cetaceans, visual for animals or humans, ...), tracking and pose estimation, etc. This potential has been well described in [START_REF] Tuia | Perspectives in machine learning for wildlife conservation[END_REF]. Among all modalities and sensors explored in the recent works, camera traps are increasingly exploited to monitor and conserve species, with professional users such as researchers in Ecology, or private individuals who want to detect and track animals on their own property. For species preservation, ecologists need to identify species presence on a territory, estimate their quantity and spatial distribution, to possibly further investigate interactions between species or the impact of the anthropic pressure. In the south of France, the łParc National du Mercantourž (PNM) aims to monitor the different wildlife species present on its territory in order to better understand how animals live, and thus better protect them, using camera traps.

Indeed, this national park located between the Alps and the Mediterranean sea gathers several endangered species. In particular, the wolf has reappeared in the 90's and since it is protected in the park. However, most of ecology researchers who currently use camera traps to monitor wildlife species in the national French parks, have to make this monitoring it manually: they watch each camera trap videos and manually count the different species presence in it. Therefore, the PNM current goal is to develop a tool able to automatically identify and count the different species present on their territory thanks to a network of camera traps. In the future, the PNM would like to wider deploy camera traps that would allow a better spatial and temporal knowledge of the species movements. Deep learning methods appear to be the most suitable options to solve their issue. Thanks to these methods, ecology researchers will be able to estimate the population of common and rare species and they will avoid wasting time on tedious tasks.

In this study, we developed a process to őlter empty images extracted from camera trap videos and to label them thanks to preexisting object detection model and to manual checking. Then, we extended a pretrained model in order to detect relevant classes of interest for the PNM. Finally, we elaborated a method to count individuals on each camera trap video from resulting bounding boxes.

Related work

Deep learning. In recent years, deep learning methods are increasingly used for video and frame analyses from camera traps in order to identify and classify species [START_REF] Wäldchen | Machine learning for image based species identiőcation[END_REF]. It helps ecologists to avoid doing this task manually. Convolutional Neural Network (CNN) is certainly the most used deep learning method for image classiőcation, in other words to identify one or multiple species on images [START_REF] Chen | Wildlife surveillance using deep learning methods[END_REF]. [START_REF] Vargas-Felipe | Desert bighorn sheep (ovis canadensis) recognition from camera traps based on learned features[END_REF] proposed to use not only data from their camera traps but also to augment the training sets with pictures from the web of related species to their study, then they design a pipeline with two possible application scenarios: (i) a binary output targeting the presence or absence of a speciőc species (in their work they focus on the Desert Bighorn Sheep, DBS) or (ii) a multiclass output aiming 7 species which are often collocated with DBS.

In addition to species identiőcation, variants of CNNs can localise species on different frames from a video, it is called object detection [START_REF] Schneider | Deep learning object detection methods for ecological camera trap data[END_REF]. For example, as a őrst step of their classiőcation, [START_REF] Ferreira | Deep learning-based methods for indi-vidual recognition in small birds[END_REF] used Mask R-CNN [START_REF] He | Mask r-cnn[END_REF], a model for object detection, which automatically localises one of the three studied bird species and crops them in the images. In this work in order to detect and classify the relevant classes, we őne-tuned MegaDetector based on Faster-RCNN with Inception-ResNet-v2 backbone as object detection model.

Count species. Thanks to object detection methods, which can localise species precisely on images, it is also possible to quantify species on images, which is a key element in the wild life conservation. There are many different approaches to count species on images. The easiest way consists of applying an object detection method and then counting the number of bounding boxes detected by species on each image. We provide a literature review hereafter. For example, [START_REF] Norouzzadeh | A deep active learning system for species identiőcation and counting in camera trap images[END_REF] simply considered a unique class "animal" then they counted individuals by summing the number of bounding boxes detected on an image with at least 90% of conődence. In order to obtain these bounding boxes, they used a pre-trained object detection model, based on Faster-RCNN object detection algorithm [START_REF] Ren | Faster r-cnn: Towards real-time object detection with region proposal networks[END_REF] and trained their own model on different camera trap data sets. They obtained satisfactory results, since they provided the exact number of animals for 72.4% of images and the predicted count is either exact or ± 1 unit for 86.8% of images. In addition, in [START_REF] Beery | The iwildcam 2021 competition dataset[END_REF], authors created a challenge to classify and count species based on bounding boxes detected across camera trap videos. They considered bounding boxes detected with at least 80% of conődence. Thus, for instance, one of their methods is to take the sum of bounding boxes across the sequence as a upper bound of the actual number of individuals. Another method is to take the maximum number of bounding boxes from any image in the sequence as a lower bound of the actual number of individuals across the sequence. The method to count species based on bounding boxes could be also applied on unmanned aerial vehicle videos. [START_REF] Sarwar | Detecting and counting sheep with a convolutional neural network[END_REF] used this technique in order to detect and count sheeps in a paddock to help farmers. For this, they compared two methods, one with R-CNN [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF] and another one with hand crafted technique. A similar approach is applied by (Xu et al., 2020) on images captured by a quadcopter, but with another object detection algorithm.

In this last work, the authors used pre-trained model Mask R-CNN with a ResNet-101 [START_REF] Dai | R-fcn: Object detection via region-based fully convolutional networks[END_REF] to detect and count cattle populations.

More accurate methods to count species on a video, like tracking methods, could be used in complementary to object detection algorithms. Currently, these methods are mainly used for counting pedestrians or vehicles rather than counting animals. Nonetheless, it starts to be used in Ecology: Levy [START_REF] Ren | Faster r-cnn: Towards real-time object detection with region proposal networks[END_REF], R-FCN [START_REF] Dai | R-fcn: Object detection via region-based fully convolutional networks[END_REF] and SSD [START_REF] Liu | Ssd: Single shot multibox detector[END_REF]) with VGG16 [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] as backbone and using Discriminative Correlation Filters (DCF) based on on-line tracking method to track each pig.

Among alternative approaches to object detection methods, we can mention [START_REF] Norouzzadeh | Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning[END_REF] which also calculates the number of species only as a problem of classiőcation, the number of species on images is assigned as a label associated with each image. They used 12 different bins and tested different types of deep neural networks. Notice that it is only used to count one unique species by frame, not multiple species as we consider in this work.

For the counting step in our work, we apply the easiest method based on bounding box detection. On one hand, we count individuals as a whole as in [START_REF] Norouzzadeh | A deep active learning system for species identiőcation and counting in camera trap images[END_REF] and on the other hand we count only individuals assigned to the relevant classes as in [START_REF] Beery | The iwildcam 2021 competition dataset[END_REF].

Class imbalance problem. There are multiple challenges associated to study frames of videos from camera traps: blurred, over-exposed, or poor illuminated frames, occlusion, complex animal pose, size of species, daytime or nighttime frames, animals far away from the camera or too close, background variations, multiple species on the same frames, empty images or lack of images. [START_REF] Villa | Towards automatic wild animal monitoring: Identiőcation of animal species in camera-trap images using very deep convolutional neural networks[END_REF] enumerate these different issues for species recognition in camera trap image analyses and decided to focus on the most problematic one: the class imbalance problem. This occurs when there are not enough images of each species, while the number of each class should be around the same to guarantee a stable behaviour of the models. They conducted multiple experiments with distinct databases: unbalanced, balanced, images with animal in foreground, and animals manually segmented. They used CNN to classify 26 species with 6 different architectures (AlexNet [START_REF] Krizhevsky | Imagenet classiőcation with deep convolutional neural networks[END_REF], VGGNet [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF], GoogLenet [START_REF] Szegedy | Going deeper with convolutions[END_REF]), Resnets: ResNet-50, ResNet-101, ResNet-152 (He et al., 2016)) and 2 additional ones with őne-tuning (AlexNet,GoogLenet). They concluded that the accuracy is better when data is balanced, and that results are better when empty images are removed or when species are segmented. The class imbalance problem could happen when there are rare species to classify (Beery et al., 2020), multiple empty images [START_REF] Yang | A systematic study of the class imbalance problem: Automatically identifying empty camera trap images using convolutional neural networks[END_REF] or background variations [START_REF] Kellenberger | Detecting mammals in uav images: Best practices to address a substantially imbalanced dataset with deep learning[END_REF].

Thus, having enough training images is important to be able to build models able to detect and classify species correctly. The quantity of training images is also important as shown by [START_REF] Shahinfar | how many images do i need?" understanding how sample size per class affects deep learning model performance metrics for balanced designs in autonomous wildlife monitoring[END_REF], if the database is balanced. According to them, 150-500 images per class is sufficient to obtain correct classiőcation accuracy.

In our work, to handle this problem of class imbalance, we did data augmentation with horizontal ŕip on randomly selected images and we selected only relevant classes with enough bounding boxes detected (at least 400) and we remove empty images from our data set.

Background variation issue. When we have to work with frames from different camera traps at different places, the background variation issue happens.

The difficulty is to be able to construct a model of detection and classiőcation generalized for all localizations and new environments (modiőcation of background or lighting conditions). In [START_REF] Beery | Recognition in terra incognita[END_REF], the authors studied the generalization of these models to be able to recognise the same species in the same region but with different camera trap backgrounds. They considered two data sets, one where training and testing images are from same location and one with different locations. For the detection step, they used pre-trained Faster R-CNN model with two different backbones (ResNet-101 and Inception-ResNet-v2 [START_REF] Szegedy | Inception-v4, inception-resnet and the impact of residual connections on learning[END_REF]). They found that the model outperforms on data set with images in train and test from same location.

However, when a new background appears, the results are badly affected.

The background variation issue is not considered in our work, the train, validation and test data sets contain images from same locations (i.e. the different camera traps installed in the Park are present in both the learning and test sets).

Empty images. Another important problem is to deal with empty images, without any species on it. Indeed, if a movement is detected, the camera trap starts recording a video during a time-lapse őxed according to the camera settings. In many cases, the recorder video may be empty if the camera detected a movement of a branch or if the animal goes through the video quickly. Empty images biased results of CNN. To avoid having too many empty images and work only with images containing species, multiple softwares are developed to distinguish empty images [START_REF] Tacka | Animalőnder a semi-automated system for animal detection in time-lapse camera trap images[END_REF][START_REF] Wei | A tool to identify empty images in camera-trap data[END_REF][START_REF] Yousif | Animal scanner: Software for classifying humans, animals, and empty frames in camera trap images[END_REF] and allow to reduce time and costs instead of checking images one by one manually. As in most of previous works, we had to face to many empty videos in our data and we exploited the MegaDectector capabilities in the őrst stage to remove empty videos.

Material and methods

This section presents the 3-step process that we developed to detect, identify and count relevant species from camera trap videos collected by the Park National du Mercantour (PNM).

Material

Collecting data

The PNM, one of the 11 national French parks, is located in Region Sud in France and covers an area of 1801 km 2 . The highest peak of the park has an elevation of 3,143 m and is located less than 50 km from the sea. Located at the crossroads of multiple climatic, geological and altitudinal inŕuences, the PNM is made up of a mosaic of natural environments whose extreme diversity explains the exceptional richness of fauna and ŕora. In order to monitor and protect the fauna, the PNM has installed 43 camera traps in "Vallée de la Roya" and "Vallée de la Vésubie" (Figure 1). When a movement is detected by a camera trap, it records a video or takes a picture. The video duration depends on the period of the day: day videos last approximately 30 seconds whereas night videos last 20 seconds. Ecologists from PNM teams referenced manually every detection from February to April 2020. Notice that 4% of videos have multiple relevant classes on the same sample.

There are 31 relevant classes present on videos: human, chamois, deer, hind, stag, fox, badger, wolf, hare, dog, boar, bike, ibex, marten, car, mountain hare, pigeon, squirrel, blackbird, jay, sparrowhawk, thrush, tengmalm's owl, wood sandpiper, owl, genette, chaffinch, weasel, lizard and butterŕy. Then, each whole video is split into images all 5 tenth of a second with a resolution of 1920 × 1080 pixels. We obtain 87,839 images associated to one or more relevant classes (Figure 2). 

Methods

Labeling images

To train a model able to identify and count relevant classes on video, we setup a 3-step process explained in detail in step 1 of Figure 3. In a preprocessing step, MegaDetector [START_REF] Beery | Efficient pipeline for camera trap image review[END_REF] We have evaluated values between 0.5 and 0.9 by step 0.1 on the training and validation sets. We found that a value of 0.9 has the best trade-off between missing detection (with a conődence threshold higher than 0.9) and too many false detections (with a conődence threshold lower than 0.9).

When multiple labels are associated with one image (35,803 images are associated with one label while 2,355 images are associated with 2 or 3 labels), the images had to be processed manually. In this case, each image with more than one label is checked in order to know which label corresponds to which 

Transfer learning and őne tuning

In second the step of the process (see Figure 3), we őne-tuned the object for camera trap images are models based on region proposals such as Faster R-CNN [START_REF] Ren | Faster r-cnn: Towards real-time object detection with region proposal networks[END_REF], Mask R-CNN [START_REF] He | Mask r-cnn[END_REF], Context R-CNN (Beery et al., 2020), or models based on regression such as YOLO [START_REF] Redmon | You only look once: Uniőed, real-time object detection[END_REF] and SSD [START_REF] Liu | Ssd: Single shot multibox detector[END_REF].

In Pooling is used to merge multiple overlapping detections then resulting into őxed-size windows of features which are then passed into two fully-connected layers to obtain the class label prediction and reőne the location prediction.

Counting relevant classes

The őnal step, illustrated in the Figure 3, aims at determining how many relevant classes are present on camera trap videos based on bounding boxes detected. We őxed the conődence threshold on bounding box detections to 90%. For each camera trap images, if the detection score is under the conődence threshold, we consider the images as empty. If all frames of a video are detected as empty, then we conclude the video is empty.

Our method to estimate relevant classes is detailed in In order to evaluate our method to count relevant classes on camera trap videos, we selected 52 videos split into two sets of 24 and 28 videos respectively. Among the set of 24 videos, some frames had been used during the second step of őne-tuning MegaDetector. We thus identify these videos as the so called "train videos". To avoid introducing a bias in the counting process evaluation, we have added the set of 28 brand new videos (never used for training) to better assess the performance of our counting approach.

They are hence called "new videos" among which 4 videos are empty. The "new videos" provided by PNM were not annotated, we manually annotated these videos (labels and count) helped by PNM team. In both cases the selection of videos was done manually, we tried to select heterogeneous videos which represent all relevant classes with variety of locations of camera traps, weather (fog, rain, snow) and moment of the day (day, night, dawn, twilight).

Videos could contain one or multiple relevant classes (same or different) with different conditions (far away or hidden). Thanks to this variety of videos, we can challenge our own model.

Experiment and results

This section presents the main results of the application of our approach on the data provided by the Parc National du Mercantour.

Experiment

Data sets

We have 37,424 single images for 52,470 bounding boxes from day and night conditions and this for our 13 relevant classes. number of batches, optimizers, learning rate values and image size. We identiőed the optimal parameters using the validation data set. We established that the optimal number of batches is 14 and the optimal size of the images is 480x270 (i.e. original size divided by 4). The best algorithm optimisation is Adam with initial learning rate value of 1e-5. Notice that our algorithm can detect 100 bounding boxes on each image, which could be useful in the case of multiple relevant classes present at that moment.

Finally, monitoring training and validation losses, we were able to do an early stopping and we selected the model saved at 10,000 epochs (Figure 5). we have lot of images with human individuals under different conditions. It is different for dog and hare, which are the hardest to detect and classify with around 66% mAP. These are satisfactory results accounting for the difficulty of the task and the amount of images for these speciőc classes. Results of mAP per class can be seen in Figure 6. As regards to classiőcation step, our model also presents satisfactory results especially for big species and species over-represented like human. Figure 8 shows that good detection and classiőcation of relevant classes depend mostly on the context of the image. For example, we suppose hare videos by night is more frequent than by day, so it is more difficult to detect them by day.

Detection and classiőcation

Moreover, it is less frequent to see dogs' back than to see them by the side on camera trap videos. We also notice, that distinguishing deer from hind or stag is not easier for deep learning models than it is for humans. In the case of wolf, we observe that detecting and classifying a wolf far away from the lens represents no difficulty for our model, even with the head of a chamois in its mouth. 

Count of detected individuals

Figure 9 shows the results we obtained to predict the number of individual presents on 52 camera trap videos. These results are only based on detection results. Overall, for 62% of videos we predicted the exact number of individuals and for 87% of them the count predicted is either exact or ± 1 unit. Detection works well on both data set of videos, we obtained similar results for "train videos" and "new videos". As regards to empty videos, for 50% of them we predicted exactly to be empty videos. The 50% remaining are predicted with difference of one unit. We obtained 81 predictions of relevant classes associated to count for really 58 relevant classes associated to count. Generally, for both "train videos" and "new videos", we correctly predicted 38% relevant classes with exactly count and for 48% of videos we correctly predicted relevant classes with either exact count or ± 1 unit. Here, results obtained for "train videos" are better than "new videos". For 55% of "train videos", we predicted the exact number of relevant classes whereas for "new videos" is 28%. Finally, concerning empty videos, we reached same results as in the previous experiments, for 50% of them we predicted them correctly to empty videos. The 50% remaining are predicted with difference of one unit, which remains a totally acceptable count given the wildlife monitoring objectives of the Parc National du Mercnatour. 

Discussion

The environment preservation őeld becomes more and more interested in beneőting from recent advances in AI. Deep learning methods in particular to avoid to ecologists to do tedious tasks [START_REF] Tuia | Perspectives in machine learning for wildlife conservation[END_REF]. In this paper, we demonstrated that it is possible to locate, identify and estimate population Limitations. At the moment, the originality of DeepWILD is that our model covers all the critical tasks: detection, classiőcation, and counting species on videos from camera traps. However, to train such deep models, the amount of training data required has to be of several (not to say more).

Even Although, the quantity of videos provided by the PNM allowed us to build a large enough data set and to design a model able to detect 13 relevant classes by night and day, this amount of data is still not enough to train a model from scratch robust to all possible conditions. We would need more videos with different conditions (day, night, rain, fog, snow ...) and a better balance between classes to improve the results.

Finally, it is still a hard challenge to count species on camera trap videos.

Our current main problem is to deal with several individuals from the same species passing in front of a camera trap with few seconds between each individual as illustrated in Figure 11. In this situation our algorithm will consider that there is only one individual on the video while they are two but from the species. Distinguishing that those two individuals from the same species are not the same individual passing twice in front of the camera trap, is also a challenge for human so we need to őnd how to integrate this higher level temporal consistency in the model in order to solve this frequent conőguration.

DeepWILD is not yet fully deployed by PNM because the main objective was to speciőcally monitor the wolf presence in PNM, but automatic detection, classiőcation, then counting of wolves are not accurate enough at the moment. We would need more images of wolves to improve the results.

However, in its actual stage, it is already used to őlter data, to remove empty videos and videos with humans in order to avoid GDPR issues, and to easily and quickly focus on animal videos. The őnal deployment is still expected in a soon future. 

  et al. (2018) apply the Simple Online Realtime Tracker (SORT) algorithm (Wojke et al., 2017) combined with RetinaNet (Lin et al., 2017) for the detection step in order to detect, classify and count the marine organisms on two different marine video data sets, one evaluation is conducted on aerial video frames and another one on underwater video frames. Another tracking method is used in (Zhang et al., 2018) called Multiple Object Tracking (MOT). It is applied on multiple objects and it estimates the trajectory of each species on frame. It concerns frames from videos of pigs in pens recorded over 3 days by day and night. The combination of object detection and tracking methods consist of testing 3 different CNN detection architectures (Faster-RCNN
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 1 Figure 1: Map of camera traps in PNM
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 2 Figure 2: Example of camera trap images

  bounding box coordinates. The remaining images are classiőed as empty since MegaDetector detects nothing. Most of the relevant classes are detected by MegaDetector, among 31 relevant classes only 3 relevant classes are not detected due to their small size (weasel, lizard and butterŕy). In order to have enough images for training our object detection model, we restricted ourselves to 13 relevant classes (human, chamois, deer, hind, stag, fox, badger, wolf, hare, dog, boar, bike, ibex) which are correctly detected by MegaDetector.

Figure 3 :

 3 Figure 3: Process developed for analysis camera trap videos

  detection model to allow it to classify the detected individuals to one of the considered species. Fine tuning is a type of transfer learning[START_REF] Yosinski | How transferable are features in deep neural networks?[END_REF]. It consists in freezing a part of the current model already trained on another data set, and retrain the last fully connected layers of the network with a new, randomly initialized őnal layer providing the predictions. It enables to learn new classes, which were not yet learned by the originally pretrained model. This method helps to reach high accuracy and reduces model training time by avoiding training the entire model from scratch. (Willi et al., 2018) corroborates that transfer learning improves the model performance and outperforms training from scratch, especially when the data set available is small. We used MegaDetector v4.1 (release 2020.04.27) as our pre-trained model. There are several advantages to use this pre-trained model: it was trained on a variety of data sets from different locations, with different species, and it shares common classes with our own model (humans in both daytime and nighttime, animals and vehicles). To begin with, we have frozen the őrst part of MegaDetector model, i.e. we restored the entire pre-trained feature extractor, and have only retrained the last layers (the bounding box and class prediction heads) for our own relevant classes.3.2.3. Object detection modelAn object detection model is able to locate and classify species on images from camera traps. Deep learning methods, such as CNNs[START_REF] Lecun | Deep learning[END_REF], are mainly used to accomplish this task, since they have shown excellent performances on image recognition. An Artiőcial Neural Network is composed of multiple layers, each layer is deőned by a set of neurons and the connections of these neurons to the previous layer, these connections or weights are optimized through several iterations of gradient descent technique, also called backpropagation. The őrst "layer", called "input layer", corresponds to the raw pixels of the image. The last layer, called "output layer", outputs the predictions of both the coordinates of bounding boxes and the associated probability for each box to belong to each class. In a Convolutional Neural Network (CNN), several of the hidden layers (i.e. neihter the input one nor the output one) are convolutional layers. A convolution layer is a speciőcally structured hidden layer, made of one unique neuron replicated (as many times as the layer size requests it). The weights of this single replicated neuron can then be interpreted as a convolution őlter (whereby the name). Learning these convolution layers leads thus to learn convolution őlters which extract different image features (e.g. edges, corners, textures, animal parts and so on). The more the number of layers, the more the model is "deep" and the more it is learning complex (visual) features. It exists 2 different types of object detection algorithms: nowadays the most popular

  Figure 4. The method is based on bounding boxes detected by our model. Firstly, the easiest way, consists in retaining maximum number of bounding boxes detected in each frame of a video sequence, no matter which relevant classes are detected, we count only the individuals. Secondly, the more focused version of this method takes into account the classiőcation results additionally to the detection results. It corresponds to retaining the maximum number of bounding boxes by relevant classes detected on one frame from a video sequence, in this case we count relevant classes. It is a challenging way but it allows to obtain more accurate results. As an example, in Figure 4, there are 3 individuals whose 2 are humans and 1 is a dog.

  Basic method: there are 3 individuals (maximum bounding boxes detected on one image by individuals). Evolve method: there are 2 humans and 1 dog (maximum bounding boxes detected on one image by relevant classes).
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 4 Figure 4: Example of our method to count relevant classes on camera trap videos
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  Figure 5: Loss functions
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 6 Figure 6: mAP by relevant classes across test data set
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 7 Figure 7 shows model capacity to detect relevant classes in multiple situation: far away from lens, with fog, by night and with occlusion. We observed that overall, our model achieved best performance in detection step.
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 7 Figure 7: Relevant classes detection in different conditions (detection threshold on the bounding boxes conődence of 90%)
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 8 Figure 8: Examples of results of detection and classiőcation (detection threshold on the bounding boxes conődence of 90%)
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 9 Figure 9: Results of counting individuals detected on camera trap videos

Figure 10 :

 10 Figure 10: Results of counting relevant classes detected on camera trap videos

  of relevant wildlife species from camera trap videos thanks to deep learning models. Firstly, we split videos into images and label them. Then we őnetuned an object detection model for our problem. We obtained convincing results for detection and classiőcation steps. On the one hand, our work demonstrates how crucial is an accurate selection for the hyperparameters of the deep model. These parameters (batch size, learning rate, optimiser, method of data augmentation and size of images) have been selected on the training data by splitting them learning and validations sets. The results on test data have shown the robustness of the hyperparameter selection. On the other hand, transfer learning, i.e. exploiting databases composed of variety of species from different locations to pre-train our model, improved signiőcantly the results. In last step of our work, we considered the question of counting the species individuals and our counting method, based on the maximum number of bounding boxes detected on one frame, obtained satisfactory results for the National Park objectives. Our model, DeepWILD, detects and classify 13 relevant classes with different conditions (night, fog, snow, rain, far away or close to lens, occlusion) from different locations of camera traps. It is a őrst step to follow species in the Parc National du Mercantour. The model can distinguish empty videos from wildlife or human or vehicles. The performances for detection and classiőcation steps of our model are bounded to the quantity of images available during training phaseand the acquisition conditions of images. The method used to count relevant classes allows to have a őrst good estimation of the population present on camera trap videos. These tasks still remain a challenge: using object detection models for camera trap videos with variety of images and especially counting species. Few of the articles reviewed address these issues. Nevertheless, this work brings new ways to estimate wildlife population and it represents a great support for ecologists, that will save a huge amount of their time to analyse plenty of videos each month.

Future work .

 work As for further directions, we ambition to improve our detection and classiőcation performances by either increasing the number of annotated videos thanks to labelling image application, considering images rather than only videos from camera traps or testing other deep learning models such as Mask R-CNN or Context R-CNN. The combination of these 3 approaches could also be considered to further improve the detection and classiőcation performance in a ensemble decision ŕavor. Furthermore, regarding new species passing in front of the camera traps (for example jackal or lynx) or even young animals (for example young wild boar or wolf cub), which is a challenging situation, we could use models as Few-shot learning, One-shot learning or Zero-shot learning. We could also consider to add an extra class named "other", gathering all additional relevant classes provided by PNM (15 other relevant classes than the 13 we have worked with) that we did not study in the current work. Finally, a future work concerning the counting of species could be to use tracking methods, such as Multi-Object Tracking (MOT) into offline tracking, to be able to follow species on camera traps videos and therefore improve our counting method. We could also consider more precise segmentation methods such as, for instance, the one proposed in[START_REF] Giraldo-Zuluaga | Camera-trap images segmentation using multi-layer robust principal component analysis[END_REF].

Figure 11 :

 11 Figure 11: Example of issue meet to count relevant classes on camera trap videos

  is used to locate using bounding boxes the detected individuals. This model is classically used now by ecologists to őnd animals, people, and vehicles (cars, trucks and bicycles) on their images. Notice that the MegaDetector model is used here not to identify animals but just to detect them. It allows to do a őrst őlter on their data and focus only on the animal images because human and vehicles images are not relevant for them. The accessibility of code is free and multiple organisations all over the world use it. It is trained on several hundred thou-

sand bounding boxes from a variety of ecosystems among which public data from WCS Camera Traps, NACTI (North American Camera Trap Images), and Island Conservation Camera Traps. After applying this model on our images (during 8 hours with one GPU Nvidia Tesla V100 32Go), we obtain the coordinates of bounding boxes that we can associate with the labels of each image provided by the National Park agents. To retain the bounding boxes that we will use in the second step, the threshold on the detection conődence of the bounding boxes is őxed to 90%. It is the best conődence threshold of the bounding box detection to obtain accurate object detections.

Table 1 :

 1 To evaluate the robustness of our model, we split these images into 3 data sets: training, validation and test. The train data set corresponds to 80% of data (29,976 frames), the validation data set of 10% of data (3,705 single images) and the test data set of 10% of data (3,743 single images). Notice that, since it is possible to have multiple relevant classes on a same image, the number of single images is different from the number of images by relevant classes (Table 2) and from Number of bounding boxes by relevant classes in the data set

	features learned (reducing overőtting) and to generate additional training
	data, we did data augmentation. We generated new training samples by ap-
	plying an horizontal ŕip to randomly selected original images. Nevertheless,
	we faced the problem of unbalanced data sets: the human is over-represented
	in comparison to other relevant classes.

the number of bounding boxes detected by relevant classes (Table

1

). Furthermore, images are not entirely randomly affected in each data set since we considered that an image could be only in one data set (i.e. training, or validation, or test). For instance, if they are more than one relevant class on an image, the image (with its labels and the bounding boxes associated) is assigned to only one of these 3 data sets. The aim is to avoid identical image repetitions in multiple data sets in order to not bias our results. In addition, to increase the ability of our model to generalize with more robust architecture of MegaDetector is adjusted to our study but most of its settings remain unaltered. In our work, just as MegaDetector architecture, the feature extractor is Faster R-CNN with Inception-ResNet-v2, the output layer is a Softmax activation function and the evaluation protocol is "COCO detection metrics".

Compared to MegaDetector, few parameters modiőcations are tested:

Table 3

 3 

	measure. It gives the overlap between the ground truth bounding box and
	the predicted bounding box. It is commonly admitted that a IoU value at
	least equal to 0.50 validate a detection. The mAP corresponds to the average
	of Average Precision (AP) values over all relevant classes for IoU from 0.50
	to 0.95 with a step size of 0.05. Furthermore, we also considered mAP at
	IoU=0.50 and at IoU=0.75.
	It is őrst interesting to notice that the model results on test data set
	are very close to validation data set, validating in turn the robustness of our
	model. Secondly, the evaluation model achieves around 74% mAP, 97% mAP
	at IoU=0.50 and 89% mAP at IoU=0.75. Human is the easiest species to
	detect and classify with around 81% mAP, we expected this result because

presents the results obtained with our model on validation and test data sets. To evaluate performance of our object detection model, for both detection and classiőcation steps, we used mean Average Precision (mAP) metric. This metric is based on Intersection-over-Union

(IoU) 

Table 3 :

 3 mAP across validation and test data sets

	Metrics	Validation Test
	mAP	74,11%	73,92%
	mAP at IoU=0.50	96,79%	96,88%
	mAP at IoU=0.75	89,32%	89,24%

  though most of camera traps available in PNM (81%) capture videos rather than images, we have decided to work at the frame level to get enough training/validation/test data, splitting thus the videos with short time-lapse into images. In order to reduce bias in these data sets, when there are multiple species present in a frame, we avoid having the same image present in both train, validation and test sets. An image can only be in one of these sets. The impact of this data set curation is negligible on the őnal size of the training data. However, if this process solved the question of the size of the training set, it introduced new problems such as the generalisation of our model. Indeed, since the time-lapse is short, consecutive images from the same video show very high visual similarities. If consecutive frames are then distributed in the training, validation, and test sets, the impact on the generalisation power of our model is immediate.
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