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Abstract

Videos and images from camera traps are more and more used by ecologists

to estimate the population of species on a territory. It is a laborious work

since experts have to analyse massive data sets manually. This takes also

a lot of time to őlter these videos when many of them do not contain an-

imals or are with human presence. Fortunately, deep learning algorithms

for object detection can help ecologists to identify multiple relevant species

on their data and to estimate their population. In this study, we propose

to go even further by using object detection model to detect, classify and

count species on camera traps videos. To this end, we developed a 3-step

process: (i) At the őrst stage, after splitting videos into images, we annotate

images by associating bounding boxes to each label thanks to MegaDetector

algorithm; (ii) then, we extend MegaDetector based on Faster R-CNN archi-

tecture with backbone Inception-ResNet-v2 in order to not only detect the

13 relevant classes but also to classify them; (iii) őnally, we design a method

to count individuals based on the maximum number of bounding boxes de-

tected. This őnal stage of counting is evaluated in two different contexts:

őrst including only detection results (i.e. comparing our predictions against



the right number of individuals, no matter their true class), then an evolved

version including both detection and classiőcation results (i.e. comparing

our predictions against the right number in the right class). The results

obtained during the evaluation of our model on the test data set are: (i)

73,92% mAP for classiőcation, (ii) 96,88% mAP for detection with a ratio

Intersection-Over-Union (IoU) of 0.5 (overlapping ratio between groundtruth

bounding box and the detected one), and (iii) 89,24% mAP for detection at

IoU=0.75. Highly represented classes, like humans, have highest values of

mAP around 81% whereas less represented classes in the train data set, such

as dogs, have lowest values of mAP around 66%. Regarding the proposed

counting method, we predicted a count either exact or ± 1 unit for 87% with

detection results and for 48% with detection and classiőcation results of our

test data set. Our model is also able to detect empty videos. To the best

of our knowledge, this is the őrst study in France about the use of object

detection model on a French national park to locate, identify and estimate

the population of species from camera trap videos.

Keywords: Camera trap, CNN, Deep learning, Image classiőcation, Object

detection

1. Introduction

The potential of Machine Learning (ML) on wildlife conservation has been

more and more investigated in the last years, to address diverse tasks such

as recognizing species from different modalities (audio for birds or cetaceans,

visual for animals or humans, ...), tracking and pose estimation, etc. This

potential has been well described in Tuia et al. (2022).
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Among all modalities and sensors explored in the recent works, camera

traps are increasingly exploited to monitor and conserve species, with pro-

fessional users such as researchers in Ecology, or private individuals who

want to detect and track animals on their own property. For species preser-

vation, ecologists need to identify species presence on a territory, estimate

their quantity and spatial distribution, to possibly further investigate inter-

actions between species or the impact of the anthropic pressure. In the south

of France, the łParc National du Mercantourž (PNM) aims to monitor the

different wildlife species present on its territory in order to better under-

stand how animals live, and thus better protect them, using camera traps.

Indeed, this national park located between the Alps and the Mediterranean

sea gathers several endangered species. In particular, the wolf has reappeared

in the 90’s and since it is protected in the park. However, most of ecology

researchers who currently use camera traps to monitor wildlife species in the

national French parks, have to make this monitoring it manually: they watch

each camera trap videos and manually count the different species presence

in it. Therefore, the PNM current goal is to develop a tool able to auto-

matically identify and count the different species present on their territory

thanks to a network of camera traps. In the future, the PNM would like to

wider deploy camera traps that would allow a better spatial and temporal

knowledge of the species movements. Deep learning methods appear to be

the most suitable options to solve their issue. Thanks to these methods,

ecology researchers will be able to estimate the population of common and

rare species and they will avoid wasting time on tedious tasks.

In this study, we developed a process to őlter empty images extracted
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from camera trap videos and to label them thanks to preexisting object

detection model and to manual checking. Then, we extended a pretrained

model in order to detect relevant classes of interest for the PNM. Finally, we

elaborated a method to count individuals on each camera trap video from

resulting bounding boxes.

2. Related work

Deep learning. In recent years, deep learning methods are increasingly used

for video and frame analyses from camera traps in order to identify and

classify species (Wäldchen and Mäder, 2018). It helps ecologists to avoid

doing this task manually. Convolutional Neural Network (CNN) is certainly

the most used deep learning method for image classiőcation, in other words to

identify one or multiple species on images (Chen et al., 2019). Vargas-Felipe

et al. (2021) proposed to use not only data from their camera traps but also

to augment the training sets with pictures from the web of related species

to their study, then they design a pipeline with two possible application

scenarios: (i) a binary output targeting the presence or absence of a speciőc

species (in their work they focus on the Desert Bighorn Sheep, DBS) or (ii)

a multiclass output aiming 7 species which are often collocated with DBS.

In addition to species identiőcation, variants of CNNs can localise species on

different frames from a video, it is called object detection (Schneider et al.,

2018). For example, as a őrst step of their classiőcation, (Ferreira et al.,

2020) used Mask R-CNN (He et al., 2017), a model for object detection,

which automatically localises one of the three studied bird species and crops

them in the images. In this work in order to detect and classify the relevant
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classes, we őne-tuned MegaDetector based on Faster-RCNN with Inception-

ResNet-v2 backbone as object detection model.

Count species. Thanks to object detection methods, which can localise species

precisely on images, it is also possible to quantify species on images, which

is a key element in the wild life conservation. There are many different ap-

proaches to count species on images. The easiest way consists of applying an

object detection method and then counting the number of bounding boxes

detected by species on each image. We provide a literature review here-

after. For example, Norouzzadeh et al. (2020) simply considered a unique

class "animal" then they counted individuals by summing the number of

bounding boxes detected on an image with at least 90% of conődence. In

order to obtain these bounding boxes, they used a pre-trained object detec-

tion model, based on Faster-RCNN object detection algorithm (Ren et al.,

2015) and trained their own model on different camera trap data sets. They

obtained satisfactory results, since they provided the exact number of ani-

mals for 72.4% of images and the predicted count is either exact or ± 1 unit

for 86.8% of images. In addition, in (Beery et al., 2021), authors created

a challenge to classify and count species based on bounding boxes detected

across camera trap videos. They considered bounding boxes detected with

at least 80% of conődence. Thus, for instance, one of their methods is to

take the sum of bounding boxes across the sequence as a upper bound of the

actual number of individuals. Another method is to take the maximum num-

ber of bounding boxes from any image in the sequence as a lower bound of

the actual number of individuals across the sequence. The method to count

species based on bounding boxes could be also applied on unmanned aerial
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vehicle videos. Sarwar et al. (2018) used this technique in order to detect

and count sheeps in a paddock to help farmers. For this, they compared two

methods, one with R-CNN (Girshick et al., 2014) and another one with hand

crafted technique. A similar approach is applied by (Xu et al., 2020) on im-

ages captured by a quadcopter, but with another object detection algorithm.

In this last work, the authors used pre-trained model Mask R-CNN with a

ResNet-101 (He et al., 2016) to detect and count cattle populations.

More accurate methods to count species on a video, like tracking methods,

could be used in complementary to object detection algorithms. Currently,

these methods are mainly used for counting pedestrians or vehicles rather

than counting animals. Nonetheless, it starts to be used in Ecology: Levy

et al. (2018) apply the Simple Online Realtime Tracker (SORT) algorithm

(Wojke et al., 2017) combined with RetinaNet (Lin et al., 2017) for the de-

tection step in order to detect, classify and count the marine organisms on

two different marine video data sets, one evaluation is conducted on aerial

video frames and another one on underwater video frames. Another track-

ing method is used in (Zhang et al., 2018) called Multiple Object Tracking

(MOT). It is applied on multiple objects and it estimates the trajectory

of each species on frame. It concerns frames from videos of pigs in pens

recorded over 3 days by day and night. The combination of object detection

and tracking methods consist of testing 3 different CNN detection architec-

tures (Faster-RCNN (Ren et al., 2015), R-FCN (Dai et al., 2016) and SSD

(Liu et al., 2016)) with VGG16 (Simonyan and Zisserman, 2014) as backbone

and using Discriminative Correlation Filters (DCF) based on on-line tracking

method to track each pig.
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Among alternative approaches to object detection methods, we can men-

tion (Norouzzadeh et al., 2018) which also calculates the number of species

only as a problem of classiőcation, the number of species on images is as-

signed as a label associated with each image. They used 12 different bins and

tested different types of deep neural networks. Notice that it is only used

to count one unique species by frame, not multiple species as we consider in

this work.

For the counting step in our work, we apply the easiest method based on

bounding box detection. On one hand, we count individuals as a whole as in

Norouzzadeh et al. (2020) and on the other hand we count only individuals

assigned to the relevant classes as in (Beery et al., 2021).

Class imbalance problem. There are multiple challenges associated to study

frames of videos from camera traps: blurred, over-exposed, or poor illu-

minated frames, occlusion, complex animal pose, size of species, daytime or

nighttime frames, animals far away from the camera or too close, background

variations, multiple species on the same frames, empty images or lack of im-

ages. (Villa et al., 2017) enumerate these different issues for species recogni-

tion in camera trap image analyses and decided to focus on the most problem-

atic one: the class imbalance problem. This occurs when there are not enough

images of each species, while the number of each class should be around the

same to guarantee a stable behaviour of the models. They conducted multi-

ple experiments with distinct databases: unbalanced, balanced, images with

animal in foreground, and animals manually segmented. They used CNN to

classify 26 species with 6 different architectures (AlexNet (Krizhevsky et al.,

2012), VGGNet (Simonyan and Zisserman, 2014), GoogLenet (Szegedy et al.,

7



2015), Resnets: ResNet-50, ResNet-101, ResNet-152 (He et al., 2016)) and

2 additional ones with őne-tuning (AlexNet,GoogLenet). They concluded

that the accuracy is better when data is balanced, and that results are bet-

ter when empty images are removed or when species are segmented. The

class imbalance problem could happen when there are rare species to classify

(Beery et al., 2020), multiple empty images (Yang et al., 2021) or background

variations (Kellenberger et al., 2018).

Thus, having enough training images is important to be able to build

models able to detect and classify species correctly. The quantity of training

images is also important as shown by (Shahinfar et al., 2020), if the database

is balanced. According to them, 150-500 images per class is sufficient to

obtain correct classiőcation accuracy.

In our work, to handle this problem of class imbalance, we did data aug-

mentation with horizontal ŕip on randomly selected images and we selected

only relevant classes with enough bounding boxes detected (at least 400) and

we remove empty images from our data set.

Background variation issue. When we have to work with frames from differ-

ent camera traps at different places, the background variation issue happens.

The difficulty is to be able to construct a model of detection and classiőcation

generalized for all localizations and new environments (modiőcation of back-

ground or lighting conditions). In Beery et al. (2018), the authors studied

the generalization of these models to be able to recognise the same species

in the same region but with different camera trap backgrounds. They con-

sidered two data sets, one where training and testing images are from same

location and one with different locations. For the detection step, they used
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pre-trained Faster R-CNN model with two different backbones (ResNet-101

and Inception-ResNet-v2 (Szegedy et al., 2017)). They found that the model

outperforms on data set with images in train and test from same location.

However, when a new background appears, the results are badly affected.

The background variation issue is not considered in our work, the train,

validation and test data sets contain images from same locations (i.e. the

different camera traps installed in the Park are present in both the learning

and test sets).

Empty images. Another important problem is to deal with empty images,

without any species on it. Indeed, if a movement is detected, the camera

trap starts recording a video during a time-lapse őxed according to the cam-

era settings. In many cases, the recorder video may be empty if the camera

detected a movement of a branch or if the animal goes through the video

quickly. Empty images biased results of CNN. To avoid having too many

empty images and work only with images containing species, multiple soft-

wares are developed to distinguish empty images (Tacka et al., 2016; Wei

et al., 2020; Yousif et al., 2019) and allow to reduce time and costs instead of

checking images one by one manually. As in most of previous works, we had

to face to many empty videos in our data and we exploited the MegaDectector

capabilities in the őrst stage to remove empty videos.

3. Material and methods

This section presents the 3-step process that we developed to detect,

identify and count relevant species from camera trap videos collected by the

Park National du Mercantour (PNM).

9



3.1. Material

3.1.1. Collecting data

The PNM, one of the 11 national French parks, is located in Region Sud

in France and covers an area of 1801 km2. The highest peak of the park has

an elevation of 3,143 m and is located less than 50 km from the sea. Located

at the crossroads of multiple climatic, geological and altitudinal inŕuences,

the PNM is made up of a mosaic of natural environments whose extreme

diversity explains the exceptional richness of fauna and ŕora. In order to

monitor and protect the fauna, the PNM has installed 43 camera traps in

"Vallée de la Roya" and "Vallée de la Vésubie" (Figure 1). When a movement

is detected by a camera trap, it records a video or takes a picture. The video

duration depends on the period of the day: day videos last approximately 30

seconds whereas night videos last 20 seconds. Ecologists from PNM teams

referenced manually every detection from February to April 2020.

Figure 1: Map of camera traps in PNM

3.1.2. Study population

We considered in this work only camera traps which record videos. It

concerns 1,744 annotated non empty videos from 35 different camera traps.
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Notice that 4% of videos have multiple relevant classes on the same sample.

There are 31 relevant classes present on videos: human, chamois, deer, hind,

stag, fox, badger, wolf, hare, dog, boar, bike, ibex, marten, car, mountain

hare, pigeon, squirrel, blackbird, jay, sparrowhawk, thrush, tengmalm’s owl,

wood sandpiper, owl, genette, chaffinch, weasel, lizard and butterŕy. Then,

each whole video is split into images all 5 tenth of a second with a resolution

of 1920 × 1080 pixels. We obtain 87,839 images associated to one or more

relevant classes (Figure 2).

(a) Fox (b) Hind (c) Badger (d) Chamois

(e) Human and bike (f) Ibex (g) Dog (h) Boar

(i) Stag (j) Wolf (k) Hare (l) Deer

Figure 2: Example of camera trap images

3.2. Methods

3.2.1. Labeling images

To train a model able to identify and count relevant classes on video, we

setup a 3-step process explained in detail in step 1 of Figure 3. In a pre-

processing step, MegaDetector (Beery et al., 2019) is used to locate using
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bounding boxes the detected individuals. This model is classically used now

by ecologists to őnd animals, people, and vehicles (cars, trucks and bicycles)

on their images. Notice that the MegaDetector model is used here not to

identify animals but just to detect them. It allows to do a őrst őlter on their

data and focus only on the animal images because human and vehicles im-

ages are not relevant for them. The accessibility of code is free and multiple

organisations all over the world use it. It is trained on several hundred thou-

sand bounding boxes from a variety of ecosystems among which public data

from WCS Camera Traps, NACTI (North American Camera Trap Images),

and Island Conservation Camera Traps. After applying this model on our

images (during 8 hours with one GPU Nvidia Tesla V100 32Go), we obtain

the coordinates of bounding boxes that we can associate with the labels of

each image provided by the National Park agents. To retain the bounding

boxes that we will use in the second step, the threshold on the detection

conődence of the bounding boxes is őxed to 90%. It is the best conődence

threshold of the bounding box detection to obtain accurate object detections.

We have evaluated values between 0.5 and 0.9 by step 0.1 on the training

and validation sets. We found that a value of 0.9 has the best trade-off be-

tween missing detection (with a conődence threshold higher than 0.9) and

too many false detections (with a conődence threshold lower than 0.9).

When multiple labels are associated with one image (35,803 images are

associated with one label while 2,355 images are associated with 2 or 3 labels),

the images had to be processed manually. In this case, each image with more

than one label is checked in order to know which label corresponds to which

bounding box coordinates. The remaining images are classiőed as empty
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since MegaDetector detects nothing.

Most of the relevant classes are detected by MegaDetector, among 31

relevant classes only 3 relevant classes are not detected due to their small size

(weasel, lizard and butterŕy). In order to have enough images for training

our object detection model, we restricted ourselves to 13 relevant classes

(human, chamois, deer, hind, stag, fox, badger, wolf, hare, dog, boar, bike,

ibex) which are correctly detected by MegaDetector.

Figure 3: Process developed for analysis camera trap videos

3.2.2. Transfer learning and őne tuning

In second the step of the process (see Figure 3), we őne-tuned the object

detection model to allow it to classify the detected individuals to one of the

considered species. Fine tuning is a type of transfer learning (Yosinski et al.,

2014). It consists in freezing a part of the current model already trained on
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another data set, and retrain the last fully connected layers of the network

with a new, randomly initialized őnal layer providing the predictions. It

enables to learn new classes, which were not yet learned by the originally pre-

trained model. This method helps to reach high accuracy and reduces model

training time by avoiding training the entire model from scratch. (Willi et al.,

2018) corroborates that transfer learning improves the model performance

and outperforms training from scratch, especially when the data set available

is small.

We used MegaDetector v4.1 (release 2020.04.27) as our pre-trained model.

There are several advantages to use this pre-trained model: it was trained

on a variety of data sets from different locations, with different species, and

it shares common classes with our own model (humans in both daytime and

nighttime, animals and vehicles). To begin with, we have frozen the őrst

part of MegaDetector model, i.e. we restored the entire pre-trained feature

extractor, and have only retrained the last layers (the bounding box and class

prediction heads) for our own relevant classes.

3.2.3. Object detection model

An object detection model is able to locate and classify species on images

from camera traps. Deep learning methods, such as CNNs (LeCun et al.,

2015), are mainly used to accomplish this task, since they have shown ex-

cellent performances on image recognition. An Artiőcial Neural Network is

composed of multiple layers, each layer is deőned by a set of neurons and

the connections of these neurons to the previous layer, these connections or

weights are optimized through several iterations of gradient descent tech-

nique, also called backpropagation. The őrst "layer", called "input layer",
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corresponds to the raw pixels of the image. The last layer, called "output

layer", outputs the predictions of both the coordinates of bounding boxes and

the associated probability for each box to belong to each class. In a Convo-

lutional Neural Network (CNN), several of the hidden layers (i.e. neihter the

input one nor the output one) are convolutional layers. A convolution layer

is a speciőcally structured hidden layer, made of one unique neuron repli-

cated (as many times as the layer size requests it). The weights of this single

replicated neuron can then be interpreted as a convolution őlter (whereby

the name). Learning these convolution layers leads thus to learn convolution

őlters which extract different image features (e.g. edges, corners, textures,

animal parts and so on). The more the number of layers, the more the model

is "deep" and the more it is learning complex (visual) features. It exists 2

different types of object detection algorithms: nowadays the most popular

for camera trap images are models based on region proposals such as Faster

R-CNN (Ren et al., 2015), Mask R-CNN (He et al., 2017), Context R-CNN

(Beery et al., 2020), or models based on regression such as YOLO (Redmon

et al., 2015) and SSD (Liu et al., 2016).

In this work, we őne-tuned MegaDector composed of Faster R-CNN ar-

chitecture as object detection model with backbone Inception-ResNet-v2

(Szegedy et al., 2017). Faster R-CNN is a region-based object detection

algorithm. It works in two steps. The őrst step consists in Region Proposal

Network (RPN) in order to predict where in an image a potential species

could be, without knowing what kind of species it is. Then, the second step

consists in applying Region-of-Interest (RoI) pooling from each RPN. RoI

Pooling is used to merge multiple overlapping detections then resulting into
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őxed-size windows of features which are then passed into two fully-connected

layers to obtain the class label prediction and reőne the location prediction.

3.2.4. Counting relevant classes

The őnal step, illustrated in the Figure 3, aims at determining how many

relevant classes are present on camera trap videos based on bounding boxes

detected. We őxed the conődence threshold on bounding box detections

to 90%. For each camera trap images, if the detection score is under the

conődence threshold, we consider the images as empty. If all frames of a

video are detected as empty, then we conclude the video is empty.

Our method to estimate relevant classes is detailed in Figure 4. The

method is based on bounding boxes detected by our model. Firstly, the eas-

iest way, consists in retaining maximum number of bounding boxes detected

in each frame of a video sequence, no matter which relevant classes are de-

tected, we count only the individuals. Secondly, the more focused version

of this method takes into account the classiőcation results additionally to

the detection results. It corresponds to retaining the maximum number of

bounding boxes by relevant classes detected on one frame from a video se-

quence, in this case we count relevant classes. It is a challenging way but it

allows to obtain more accurate results. As an example, in Figure 4, there are

3 individuals whose 2 are humans and 1 is a dog.

In order to evaluate our method to count relevant classes on camera trap

videos, we selected 52 videos split into two sets of 24 and 28 videos respec-

tively. Among the set of 24 videos, some frames had been used during the

second step of őne-tuning MegaDetector. We thus identify these videos as

the so called "train videos". To avoid introducing a bias in the counting
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Basic method: there are 3 individuals (maximum bounding boxes detected on one image

by individuals). Evolve method: there are 2 humans and 1 dog (maximum bounding boxes

detected on one image by relevant classes).

Figure 4: Example of our method to count relevant classes on camera trap videos

process evaluation, we have added the set of 28 brand new videos (never

used for training) to better assess the performance of our counting approach.

They are hence called "new videos" among which 4 videos are empty. The

"new videos" provided by PNM were not annotated, we manually annotated

these videos (labels and count) helped by PNM team. In both cases the se-

lection of videos was done manually, we tried to select heterogeneous videos

which represent all relevant classes with variety of locations of camera traps,

weather (fog, rain, snow) and moment of the day (day, night, dawn, twilight).

Videos could contain one or multiple relevant classes (same or different) with

different conditions (far away or hidden). Thanks to this variety of videos,

we can challenge our own model.

4. Experiment and results

This section presents the main results of the application of our approach

on the data provided by the Parc National du Mercantour.
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4.1. Experiment

4.1.1. Data sets

We have 37,424 single images for 52,470 bounding boxes from day and

night conditions and this for our 13 relevant classes. To evaluate the robust-

ness of our model, we split these images into 3 data sets: training, validation

and test. The train data set corresponds to 80% of data (29,976 frames), the

validation data set of 10% of data (3,705 single images) and the test data

set of 10% of data (3,743 single images). Notice that, since it is possible to

have multiple relevant classes on a same image, the number of single images

is different from the number of images by relevant classes (Table 2) and from

the number of bounding boxes detected by relevant classes (Table 1). Fur-

thermore, images are not entirely randomly affected in each data set since

we considered that an image could be only in one data set (i.e. training, or

validation, or test). For instance, if they are more than one relevant class

on an image, the image (with its labels and the bounding boxes associated)

is assigned to only one of these 3 data sets. The aim is to avoid identical

image repetitions in multiple data sets in order to not bias our results. In

addition, to increase the ability of our model to generalize with more robust

features learned (reducing overőtting) and to generate additional training

data, we did data augmentation. We generated new training samples by ap-

plying an horizontal ŕip to randomly selected original images. Nevertheless,

we faced the problem of unbalanced data sets: the human is over-represented

in comparison to other relevant classes.
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Table 1: Number of bounding boxes by relevant classes in the data set

Species Train Validation Test Total

Human 14775 1726 1826 18327

Chamois 6270 774 779 7823

Deer 4893 655 594 6142

Hind 4811 578 554 5943

Stag 3501 481 454 4436

Fox 3439 434 415 4288

Badger 983 115 118 1216

Wolf 767 84 102 953

Dog 586 65 64 715

Boar 565 81 66 712

Hare 563 81 88 732

Bike 553 66 90 709

Ibex 378 44 52 474

Total 42084 5184 5202 52470
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Table 2: Number of images by relevant classes in the data set

Species Train Validation Test Total

Human 9086 1080 1160 11326

Chamois 3816 466 472 4754

Deer 4187 549 515 5251

Hind 3429 419 395 4243

Stag 2706 360 360 3426

Fox 3399 426 409 4234

Badger 983 114 118 1215

Wolf 722 78 97 897

Dog 585 64 64 713

Boar 478 64 58 600

Hare 555 80 86 721

Bike 535 65 84 684

Ibex 351 41 49 441

Total 30832 3806 3867 38505
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4.1.2. Experimental setup and architecture

We used TensorFlow 1 Object Detection API (version 1.12.0) and python

language to őne-tune the MegaDetector model on a machine with one GPU

Nvidia Tesla V100 32 Go. We őne-tuned MegaDetector model in order to

obtain accurate results from our data rather than starting from scratch. The

őne-tuning is applied until detection step, only the 4 last layers (detection

and classiőcation) are trained to our own 13 relevant classes. It lasted for

16 hours and 12,000 epochs with an evaluation at each 500 epochs. The

architecture of MegaDetector is adjusted to our study but most of its settings

remain unaltered. In our work, just as MegaDetector architecture, the feature

extractor is Faster R-CNN with Inception-ResNet-v2, the output layer is a

Softmax activation function and the evaluation protocol is "COCO detection

metrics".

Compared to MegaDetector, few parameters modiőcations are tested:

number of batches, optimizers, learning rate values and image size. We iden-

tiőed the optimal parameters using the validation data set. We established

that the optimal number of batches is 14 and the optimal size of the images

is 480x270 (i.e. original size divided by 4). The best algorithm optimisation

is Adam with initial learning rate value of 1e-5. Notice that our algorithm

can detect 100 bounding boxes on each image, which could be useful in the

case of multiple relevant classes present at that moment.

Finally, monitoring training and validation losses, we were able to do an

early stopping and we selected the model saved at 10,000 epochs (Figure 5).
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Figure 5: Loss functions

4.2. Results

4.2.1. Detection and classiőcation

Table 3 presents the results obtained with our model on validation and

test data sets. To evaluate performance of our object detection model,

for both detection and classiőcation steps, we used mean Average Preci-

sion (mAP) metric. This metric is based on Intersection-over-Union (IoU)

measure. It gives the overlap between the ground truth bounding box and

the predicted bounding box. It is commonly admitted that a IoU value at

least equal to 0.50 validate a detection. The mAP corresponds to the average

of Average Precision (AP) values over all relevant classes for IoU from 0.50

to 0.95 with a step size of 0.05. Furthermore, we also considered mAP at

IoU=0.50 and at IoU=0.75.

It is őrst interesting to notice that the model results on test data set

are very close to validation data set, validating in turn the robustness of our

model. Secondly, the evaluation model achieves around 74% mAP, 97% mAP

at IoU=0.50 and 89% mAP at IoU=0.75. Human is the easiest species to

detect and classify with around 81% mAP, we expected this result because
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we have lot of images with human individuals under different conditions. It

is different for dog and hare, which are the hardest to detect and classify with

around 66% mAP. These are satisfactory results accounting for the difficulty

of the task and the amount of images for these speciőc classes. Results of

mAP per class can be seen in Figure 6.

Table 3: mAP across validation and test data sets

Metrics Validation Test

mAP 74,11% 73,92%

mAP at IoU=0.50 96,79% 96,88%

mAP at IoU=0.75 89,32% 89,24%

Figure 6: mAP by relevant classes across test data set

Figure 7 shows model capacity to detect relevant classes in multiple sit-

uation: far away from lens, with fog, by night and with occlusion. We ob-

served that overall, our model achieved best performance in detection step.

As regards to classiőcation step, our model also presents satisfactory results

especially for big species and species over-represented like human. Figure 8

shows that good detection and classiőcation of relevant classes depend mostly
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on the context of the image. For example, we suppose hare videos by night

is more frequent than by day, so it is more difficult to detect them by day.

Moreover, it is less frequent to see dogs’ back than to see them by the side

on camera trap videos. We also notice, that distinguishing deer from hind or

stag is not easier for deep learning models than it is for humans. In the case

of wolf, we observe that detecting and classifying a wolf far away from the

lens represents no difficulty for our model, even with the head of a chamois

in its mouth.

(a) Night (b) Faraway

(c) Fog (d) Occlusion

Figure 7: Relevant classes detection in different conditions (detection threshold on the

bounding boxes conődence of 90%)

4.2.2. Count of detected individuals

Figure 9 shows the results we obtained to predict the number of indi-

vidual presents on 52 camera trap videos. These results are only based on

detection results. Overall, for 62% of videos we predicted the exact number
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(a) Correct detection and classiőcation (b) Correct detection but misclassiőed

Figure 8: Examples of results of detection and classiőcation (detection threshold on the

bounding boxes conődence of 90%)

25



of individuals and for 87% of them the count predicted is either exact or ± 1

unit. Detection algorithm works well on both data set of videos, we obtained

similar results for "train videos" and "new videos". As regards to empty

videos, for 50% of them we predicted exactly to be empty videos. The 50%

remaining are predicted with difference of one unit.

Figure 9: Results of counting individuals detected on camera trap videos

4.2.3. Count of detected relevant classes

The results obtained to predict the number of relevant classes present on

camera trap videos are showed in Figure 10. Due to the difficulty of the task,

to count relevant classes based on detection and classiőcation results, lower

results are obtained in this experiments than in the previous experiments.

We obtained 81 predictions of relevant classes associated to count for really

58 relevant classes associated to count. Generally, for both "train videos" and

"new videos", we correctly predicted 38% relevant classes with exactly count

and for 48% of videos we correctly predicted relevant classes with either exact

count or ± 1 unit. Here, results obtained for "train videos" are better than

"new videos". For 55% of "train videos", we predicted the exact number

of relevant classes whereas for "new videos" is 28%. Finally, concerning

26



empty videos, we reached same results as in the previous experiments, for

50% of them we predicted them correctly to be empty videos. The 50%

remaining are predicted with difference of one unit, which remains a totally

acceptable count given the wildlife monitoring objectives of the Parc National

du Mercnatour.

Figure 10: Results of counting relevant classes detected on camera trap videos

5. Discussion

The environment preservation őeld becomes more and more interested in

beneőting from recent advances in AI. Deep learning methods in particular

to avoid to ecologists to do tedious tasks (Tuia et al., 2022). In this paper, we

demonstrated that it is possible to locate, identify and estimate population

of relevant wildlife species from camera trap videos thanks to deep learning

models. Firstly, we split videos into images and label them. Then we őne-

tuned an object detection model for our problem. We obtained convincing

results for detection and classiőcation steps. On the one hand, our work

demonstrates how crucial is an accurate selection for the hyperparameters

of the deep model. These parameters (batch size, learning rate, optimiser,
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method of data augmentation and size of images) have been selected on the

training data by splitting them into learning and validations sets. The re-

sults on test data have shown the robustness of the hyperparameter selection.

On the other hand, transfer learning, i.e. exploiting databases composed of

variety of species from different locations to pre-train our model, improved

signiőcantly the results. In last step of our work, we considered the question

of counting the species individuals and our counting method, based on the

maximum number of bounding boxes detected on one frame, obtained sat-

isfactory results for the National Park objectives. Our model, DeepWILD,

detects and classify 13 relevant classes with different conditions (night, fog,

snow, rain, far away or close to lens, occlusion) from different locations of

camera traps. It is a őrst step to follow species in the Parc National du Mer-

cantour. The model can distinguish empty videos from wildlife or human

or vehicles. The performances for detection and classiőcation steps of our

model are bounded to the quantity of images available during training phase

and the acquisition conditions of images. The method used to count relevant

classes allows to have a őrst good estimation of the population present on

camera trap videos. These tasks still remain a challenge: using object de-

tection models for camera trap videos with variety of images and especially

counting species. Few of the articles reviewed address these issues. Nev-

ertheless, this work brings new ways to estimate wildlife population and it

represents a great support for ecologists, that will save a huge amount of

their time to analyse plenty of videos each month.

Limitations. At the moment, the originality of DeepWILD is that our model

covers all the critical tasks: detection, classiőcation, and counting species on
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videos from camera traps. However, to train such deep models, the amount

of training data required has to be of several thousands (not to say more).

Even though most of camera traps available in PNM (81%) capture videos

rather than images, we have decided to work at the frame level to get enough

training/validation/test data, splitting thus the videos with short time-lapse

into images. In order to reduce bias in these data sets, when there are

multiple species present in a frame, we avoid having the same image present

in both train, validation and test sets. An image can only be in one of these

sets. The impact of this data set curation is negligible on the őnal size of

the training data. However, if this process solved the question of the size

of the training set, it introduced new problems such as the generalisation of

our model. Indeed, since the time-lapse is short, consecutive images from

the same video show very high visual similarities. If consecutive frames are

then distributed in the training, validation, and test sets, the impact on the

generalisation power of our model is immediate.

Although, the quantity of videos provided by the PNM allowed us to

build a large enough data set and to design a model able to detect 13 relevant

classes by night and day, this amount of data is still not enough to train a

model from scratch robust to all possible conditions. We would need more

videos with different conditions (day, night, rain, fog, snow ...) and a better

balance between classes to improve the results.

Finally, it is still a hard challenge to count species on camera trap videos.

Our current main problem is to deal with several individuals from the same

species passing in front of a camera trap with few seconds between each

individual as illustrated in Figure 11. In this situation our algorithm will
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consider that there is only one individual on the video while they are two

but from the same species. Distinguishing that those two individuals from the

same species are not the same individual passing twice in front of the camera

trap, is also a challenge for human so we need to őnd how to integrate this

higher level temporal consistency in the model in order to solve this frequent

conőguration.

DeepWILD is not yet fully deployed by PNM because the main objec-

tive was to speciőcally monitor the wolf presence in PNM, but automatic

detection, classiőcation, then counting of wolves are not accurate enough at

the moment. We would need more images of wolves to improve the results.

However, in its actual stage, it is already used to őlter data, to remove empty

videos and videos with humans in order to avoid GDPR issues, and to easily

and quickly focus on animal videos. The őnal deployment is still expected in

a soon future.

Future work. As for further directions, we ambition to improve our detection

and classiőcation performances by either increasing the number of anno-

tated videos thanks to labelling image application, considering images rather

than only videos from camera traps or testing other deep learning models

such as Mask R-CNN or Context R-CNN. The combination of these 3 ap-

proaches could also be considered to further improve the detection and clas-

siőcation performance in a ensemble decision ŕavor. Furthermore, regarding

new species passing in front of the camera traps (for example jackal or lynx)

or even young animals (for example young wild boar or wolf cub), which is

a challenging situation, we could use models as Few-shot learning, One-shot

learning or Zero-shot learning. We could also consider to add an extra class
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named "other", gathering all additional relevant classes provided by PNM

(15 other relevant classes than the 13 we have worked with) and that we did

not study in the current work. Finally, a future work concerning the counting

of species could be to use tracking methods, such as Multi-Object Tracking

(MOT) into offline tracking, to be able to follow species on camera traps

videos and therefore improve our counting method. We could also consider

more precise segmentation methods such as, for instance, the one proposed

in (Giraldo-Zuluaga et al., 2019).

(a) Frame 2 (b) Frame 3 to 40 (c) Frame 41

Figure 11: Example of issue meet to count relevant classes on camera trap videos
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