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With deep neural networks as universal function approximators, the reinforcement learning paradigm has been
adopted in several commonplace services such as autonomous vehicles, aircrafts and domestic assistance, which is
raising new safety requirements. Indeed, a deep reinforcement learning agent obtains its states through observations,
which may contain natural accuracy errors or malicious adversarial noises. Since the observations may diverge from
the true environment states, they can lead the agent into taking risky suboptimal decisions. This vulnerability is
well-known in computer vision literature where it has been emphasized via adversarial attacks. In terms of defense,
various techniques have been proposed, including heuristic and certified methods, mainly to improve the robustness
of deep neural networks-based classifiers. It is therefore necessary to propose solutions adapted to this learning
challenge faced by reinforcement learning agents. In this paper, we propose two defense mechanisms based on
reward shaping and adversarial training as a countermeasure against attacks on environment observations. The
results reported from experiments conducted on autonomous vehicles controlled by reinforcement learning policies
demonstrate that our approach successfully provide sufficient information to effectively learn the task in the context
of highly perturbed environments. Furthermore, the defense mechanisms improve the robustness and generalization
capacities of the learning models decreasing risky decisions in the presence of adversarial attacks.

Keywords: Deep reinforcement learning, Safe exploration, Observation perturbation, Adversarial training, Reward
shaping, Autonomous vehicles.

1. Introduction

Among Machine Learning (ML) paradigms, Re-
inforcement Learning (RL) provides an effective
framework for controllers to learn through infor-
mation collected in real time and to behave appro-

priately without relying on a perfect model of the
environment. With deep neural networks (DNNs)
as universal function approximators, Deep Rein-
forcement Learning (DRL) has been applied to
Cyber Physical Systems, where the search space
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becomes intractable for tabular algorithms. These
complex physical entities interacting with the real
world are progressively used in commonplace ser-
vices, such as autonomous vehicles, aircrafts , and
domestic assistance (Jaafra et al. (2019)). Given
the involvement of costly equipment and human
safety, deploying DRL algorithms requires rigor-
ous assessments before their deployment in order
to prevent high-risk situations.

More specifically, it has been demonstrated that
DRL is vulnerable to adversarial attacks, where
an imperceptible perturbation incorporated in the
networks input causes inconsistencies in the be-
havior of the algorithm. Such perturbations in the
input space of DNN, may result in a significant
variation of the predicted output as shown by
Goodfellow et al. (2014). This well-known prob-
lem in computer vision literature, has been re-
cently detected for neural network policies gener-
ated by state-of-the-art DRL algorithms . Indeed,
when an RL agent obtains its current state via
observations, the latter may contain uncertainty
that originates from unavoidable equipment in-
accuracies or malicious perturbations leading to
catastrophic failures.

In terms of defenses, various techniques have
been proposed recently, mainly assigned to DNN-
based classifiers. Heuristic defenses are experi-
mentally validated and operate without theoretical
guarantees. Currently, the most common heuristic
defense is adversarial training, which integrates
adversarial samples into the training phase . Other
heuristic defenses mainly achieve input transfor-
mations and denoising to alleviate the perturbation
in the feature domains. On the contrary, certified
defenses are provable methods providing theo-
retical error-rate guarantee reflecting their low-
est accuracy under a well-defined type of attacks
Raghunathan et al. (2018).

Motivated by these safety concerns, we con-
sider in this paper the problem of improving the
robustness of DRL models applied to autonomous
control systems. To this end, we propose the fol-
lowing contributions: (i) Develop a safe reward
function to shape and guide agents training us-
ing Safety of The Intended Functionality (SOTIF)
standard (ii) Train an agent through an online

DRL algorithm in presence of adversarial attacks
generated by state-of-the-art techniques adapted
to RL settings (iii) Present a case study on au-
tonomous vehicles equipped with DNN policies
that process environment observations to produce
control actions.

The rest of this paper is organized as follows. In
Section 2, we introduce the required background
knowledge and related work on DRL, reward
shaping and adversarial attacks. Section 3 gives
a description of our methodology to implement
the proposed defense mechanisms and section 4
presents and discusses the experiments results.
Finally, we draw conclusions and perspectives in
section 5.

2. Background and related work

In this section, we discuss the fundamentals of the
DRL process and its application. Then, we recall
the concept of reward shaping. Finally, we present
a taxonomy of adversarial ML attacks and their
recent implementations.

2.1. Deep Reinforcement Learning

The mathematical formulation of RL derives from
Markov Decision Process (MDP) in terms of the
state, action, reward, and dynamics of the system.
At each time step, the agent observes the current
state st and performs an action at based on its
current policy π. After the action is executed, the
agent observes its reward rt and next state st+1.

More formally, an RL task Ti is defined accord-
ing to the tuple (S,A, p, r, γ,H) where S is the
set of states, A is the set of actions, p(st+1|st, at)
is the state transition distribution, r is a reward
function, γ is the discount factor and H the hori-
zon. A RL setting aims at learning a policy π of
parameters θ that maps each state s to an opti-
mal action a maximizing the return of the agent
trajectories Rt =

∑t+H−1
k=t γk−t rk+1. The dis-

counted return stated above allows the definition
of a state value function V π(s) = E [Rt|st =

s] and a state-action value function Qπ(s, a) =

E [Rt|st = s, at = a] to measure, respectively,
the current state and state-action returns estimated
under the policy π. In high dimensional envi-
ronments, the estimation of these value functions
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becomes intractable. Through non-linear approxi-
mation, DRL proposes to control RL agents with
function approximations based on DNN to learn
the optimal policy or the value/reward functions.

There are three main approaches to solving RL
problems. In value-based RL algorithms such as
Q-learning, a value function is approximated to
select the best action according to the maximum
value attributed to each state and action pair.
On the other hand, policy-based methods directly
optimize a parameterized policy without using a
value function. They use instead gradient descents
like in the family of REINFORCE algorithms.
Actor-critic (AC) methods combine the advan-
tages of the two previous approaches by learning
both a policy and a value function in order to
reduce variance and accelerate learning (Sutton
and Barto (2018)).

2.2. Reward Shaping

A crucial role is played by reward functions to
build driving policies in large-scale applications.
However, learning in such sparse settings is com-
plicated and slow. A powerful technique for scal-
ing up RL approaches to handle complex tasks
is to transform domains knowledge into comple-
mentary rewards. The combination of the origi-
nal and new rewards is known as reward shap-
ing, inspired by the concept of operant condition-
ing from psychology discipline. It guides the RL
agents to learn faster and more efficiently

The review of shaping methods reveals that,
despite the current dominance of reward shaping,
the concept itself extends perfectly beyond de-
signing a powerful reward scheme and applies to
any supervised transformation of the learning task
including environment dynamics, internal param-
eters and the action space Marthi (2007). Never-
theless, it is the reward scheme that evolves in
most modern shaping scenarios, where the learn-
ing agent is rewarded for meeting additional sub-
goals.

More practically, in order to improve the re-
turn assignment by making the correct behavior
apparent at early stages of training, we apply a
shaping function F acting similarly to the native
reward function r. At each transition, F oper-

ates an assessment of the trajectory, and returns a
corresponding reward value yielding a more sup-
portive environment to the RL agent. In the most
general form, namely the additive form Randløv
and Alstrøm (1998), the new environment is de-
fined as a transformation of the original MDP
to a shaped MDP with supplementary rewards
(r + F ). Besides this approach, other important
works of reward shaping include the Potential-
based reward shaping (PBRS) Ng et al. (1999) and
its variants, the potential-based advice (PBA), the
dynamic PBRS and the dynamic potential-based
advice (DPBA) Harutyunyan et al. (2015). They
express F as the difference of potential function
ϕ defined over a source s and a destination state
s
′
: F = γϕ(s

′
)− ϕ(s).

2.3. Adversarial attacks

Among security attacks, the malicious input gen-
erated by inserting crafted perturbations into the
original input is identified as an adversarial ex-
ample. Formally, given f(·) a DNN classifier, the
adversarial example x̂ is created by adding an
imperceptible perturbation δ to the initial example
x. The perturbation δ is computed by iteratively
approximating the optimization problem until the
resulting adversarial example is classified in tar-
geted class c where x̂ = x + arg minδx ||δ||
until f(x+ δ) = c.

The attacks on DRL can be divided into four
categories based on the functional components of
the DRL process: reward, action, state or model
spaces. In this study, we are interested in adversar-
ial attacks on DRL state observations. For exam-
ple, Huang et al. (2017) provided a first attempt
to evaluate the robustness of deep reinforcement
learning policies through attacks based on fast
gradient sign method. The experiments show a
significant decrease in the accuracy of the DRL
algorithms. Lin et al. (2017) considered a more
complicated case where the adversary is allowed
to attack only a subset of time steps, and used
a generative model to predict the future states
and actions in order to formulate the misleading
actions.

The countermeasures proposed to deal with ad-
versarial attacks on DRL include many strate-
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gies based on adversarial training, randomization
schemes, denoising methods, and provable de-
fenses Ren et al. (2020). In our work, we will rely
on adversarial training as defense mechanism. It
attempts to improve the robustness and the gener-
alization of DNN policies outside of the standard
training manifold by learning a better distribu-
tion. Researchers such as Kos and Song (2017)
proposed to re-train the model with perturbations
generated by adding noises to states and rewards
where the attacker is considered to be competing
in a game with the agent. Pinto et al. (2017)
configured interactions between both the agent
and the attacker as a zero-sum minimax objective
function where the agent improves its policy by
trying to win the attacker.

3. Approach

In this section we propose our approach to deal
with adversarial attacks on DRL. The strategy
adopted to build on the framework robustness
includes adversarial training and the design of a
safer reward function.

3.1. Task environment

First, we consider an MDP environment imple-
mented in the 2D open-source simulator for au-
tonomous driving Highway-v0 Leurent (2018).
The agent task consists in driving a car on an
infinite 4 lanes unidirectional highway. The ego-
vehicle controlled by the agent is inserted in
the traffic flow with the exo-vehicles that follow
the Intelligent Driver Model and MOBIL model
Kesting et al. (2007). The setting implemented
to collect the environment states consists of the
transversal position of the agent yego and its ve-
locity vego. In order to account for interactions
between the traffic participants, we use relative
data for exo-vehicles. Hence, the zi are the po-
sitions of the exo-vehicles relative to the agent
in the longitudinal direction of the road and vi
their relative velocities. Furthermore, we identify
the exo-vehicles according to their topological
relation with the ego-vehicle. In this regard, bl,
fl, b, f , br, and fr represent respectively the
closest exo-vehicles to the agent, in the back-left,
front-left, back, front, back-right, and front-right
positions.

The goal of the agent is to drive as fast and
as long as possible while avoiding the accidents.
The episode ends when the agent has a collision
with another vehicle or reaches a time limit. The
ego-vehicle can be controlled with a finite discrete
set of tactical decisions implemented by low-level
controllers: no-action, right/left change lane, ac-
celerate/decelerate.

3.2. Reward shaping for safe driving

The basic reward function implemented in Highway-
env is expressed in 1. It prompts the agent to reach
high speed mainly by avoiding collisions.

Rv = max

(
−1,

Vego −
∑n

i=0 Vexoi

n

Vmax −
∑n

i=0 Vexoi

n

)
(1)

Nevertheless, the speed-based reward function fails
to enhance the agent performance in terms of
collisions number and episodes duration, notably
in high-density traffic scenarios. Since the focus
of this work is shed on RL safety, we propose to
shape the basic reward function by extending it to
a safe design reward in relation with Safety Of
The Intended Functionality (SOTIF) and defined
in ISO Standards under the reference ISO/PAS
21448:2019 a. SOTIF offers a proper understand-
ing of road vehicles safety requirements granting
the absence of unreasonable risk caused by the
hazardous behavior of the intended functionality.
More formally, let C1 and C2 denote two vehi-
cles represented in a follower-leader topology. We
define three functions P (x), V (x) and A(x) to
describe the position, the velocity and the acceler-
ation of each vehicle, respectively. The three fol-
lowing operational metrics have been considered:
Time Inter Vehicles (TIV). Heavy traffic on high-
ways requires the optimization of inter-distances
between the follower and leader vehicles in order
to provide safety solution in transport. This dis-
tance allows to react in case of critical situation
taking into consideration the reaction time of the
driver and the braking distance of the car. There-
fore, it’s possible to derive the safety time between
two cars C1 and C2 as TIV = |P (C2)−P (C1)|

V (C1)
.

Time To Collision (TTC). TTC has proven to be

ahttps://www.iso.org/standard/70939.html
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a cue for decision-making in traffic and a pertinent
metric for rating the severity of a conflict. It is de-
fined as the time span left until a collision between
two vehicles occurs if the course and speed differ-
ence are maintained and no evasive action is taken
. The TTC is expressed as TTC = |P (C2)−P (C1)|

V (C1)−V (C2)
.

Braking Time (BT). It is a main component of
the stopping distance in addition to the Driver Re-
action Time. The braking distance can be defined
as the distance the car will travel once the driver
has reacted and applied the brakes. The BT is then
specified as BT = V (C2)−V (C1)

A(C1)
.

A new operational reward Ro is designed by
integrating the safety measures described above:

Ro =

{
min(rf , rft, rbt) if change lane

rfb else,
(2)

where rf , rft and rbt are functions of TTC and
TIV defining, respectively, the risk from exo-
vehicles in front-same lane, front-target lane and
before-target lane. On the other hand, rfb is a
function of braking time of the ego-vehicle (same
lane). The safe reward function is obtained by
shaping the speed-based reward function with the
following minimum bounding combination: R =

min (Rv, Ro).

3.3. Adversarial training

Our second contribution to improve the robust-
ness of RL agent policies consists in adopting an
approach focusing on adversarial training tech-
niques. In this paper, we implement a Proxi-
mal Policy Optimization algorithm (PPO) Schul-
man et al. (2017), however, any other actor-critic
method could be retained. The critic component
yields an estimation of the value function V π(st)

of the state st represented by the observation xt

and following the current policy π learned by the
actor network.

We consider in this work a gradient-based white-
box method inspired by Papernot et al. (2016).
It aims at attacking the actor network of the RL
agent by crafting perturbed observations x̂ to re-
place the actual observations x returned by the
environment, and then allow the agent to decide
the action a = π(x̂). In the case of discrete action
spaces, an attack is effective if the agent modifies
its decision. In the context of a DNN policy, we

operate in two steps. First, we propose to use
the gradient of loss with respect to every compo-
nent of the input (i.e. Jacobian matrix) to extract
the sensitivity direction. Then a saliency map is
computed to select the dimension which generates
the maximum error using as little perturbations as
possible.

More formally, we aim at crafting a perturba-
tion δx of x that minimizes the probability of
the optimal action predicted by the actor using
the Jacobian matrix of the probability function
learned by the actor policy π. Let’s consider its
logit outputs

∏
(x) where

∏
aj
(x) expresses the

probability of the action aj in the policy output
given an input x and aj ∈ A the different possible
actions. Therefore, determining the appropriate
perturbation to attack the observation x consists
in solving the following optimization problem:
argminδx ||δx|| s.t. π(x) ̸= π(x+ δx).

Furthermore, since it’s preferable to change all
input features by no more than a small quantity,
the perturbation is bounded by a parameter ε

defining the budget that the adversary is allowed
to introduce in the input. Building an adversarial
example x̂ from a given input x requires calculat-
ing a perturbation map H(.) with respect to the
input features xi, based on the jacobian ∇x

∏
(x):

H(i) = (
∑

aj ̸=ad,aj∈A

∂
∏

aj
(x)

∂xi
)− (

∂
∏

ad
(x)

∂xi
)

(3)
where ad = argmaxa∈A π(a|x) is the action
corresponding to the highest probability computed
by π in x. The Jacobian matrix identifies how
the elements of the environment observation af-
fect the logit outputs of different discrete actions.
Precisely, the proposed algorithm iteratively per-
turbs the feature xi with the highest value H(i) to
affect the logit outputs significantly. The proposed
method creates an adversarial observation x̂ which
reduces the probability of the selected action ad
and increases the probability of all other actions.
This process is repeated until π(x̂) ̸= π(x).

4. Simulation experiment

In this section, we first describe the simulation
configuration used to run experiment scenarios
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for the RL agent in Highway-v0 simulator. Then
we depict and interpret the results of experiments
conducted to evaluate the defense mechanisms.

4.1. Experimental design

The experimentation is based on the PPO algo-
rithm, which performs comparably to state-of-the-
art RL approaches while being much simpler to
implement and tune. The agent is trained in the
2D open-source simulator for autonomous driving
Highway-v0 described in section 3.1. The pertur-
bations applied on the dynamics of the environ-
ment imply the velocities and positions of the exo-
vehicles as introduced in section 3.3. For the ex-
perimental setup, hyper-parameters tuning is per-
formed following a holdout validation methodol-
ogy which consists in holding out part of the train-
ing set used to evaluate several candidate models
and then selecting the best one (for more details,
cf. Géron (2019).

To quantify the safety and effectiveness of the
proposed robust RL approach in both training and
testing process, we use three metrics that evaluate
the average cumulative return, the episode length
and the average velocity of the ego-vehicle. The
metrics are computed under 10 rollouts average
with a duration of training and testing respectively
equal to two millions and fifty thousand steps per
experiment. The agent purpose is to reach the
highest possible speed avoiding collisions. Each
episode terminates when the agent has a collision
with another vehicle or reaches a time limit. The
results are reported in the form of graphs for train-
ing to apprehend the evolution and convergence of
learning, and boxplot for testing for a more global
and final vision of the performance.

The experiments evaluating the proposed de-
fense mechanisms involve a set of models and
scenarios that are defined in the following.
Unsafe model. Policy of the RL agent that has
been trained using the basic reward function (Rv).
Safe model. Policy of the RL agent that has
been trained using the safe reward function (R).
Attack Attack. Main scenario where the safe
agent is trained and tested in the presence of ad-
versarial attacks. NoAttack Attack. Witness sce-
nario that specifies a safe agent trained with no

adversarial attacks and tested with attacks. At-
tack NoAttack. Complementary scenario to as-
sess the generalization capacities when the safe
agent is trained with adversarial attacks and tested
with no attacks. NoAttack NoAttack. Standard
scenario where the safe agent is trained and tested
with no attacks.

4.2. Results

The evaluation of our contributions consists in an-
alyzing to what extent can the safe reward function
and the adversarial training improve the policy of
the RL agent in the presence of perturbed obser-
vations.

4.2.1. Training with safe reward function

Fig. 1. Safe Vs Unsafe models trained without attack:
Average traveled distance across episodes (left), aver-
age episode length (right).

First, we evaluate the global performance of
the safe reward function in experiment scenarios
without attack. Training results are depicted in
figure 1 where we can see through the curves
of average episodic length and traveled distance
that the safe function improves drastically the per-
formances of the agents, compared to the basic
reward function.

We can also state that the safe model reaches
higher episode length values denoting an improved
capacity of collision avoidance. This interpreta-
tion is compliant with the reward shaping effort
fostering more safety in the interaction between
the neighboring vehicles as described in section
3.2. The testing results presented in figure 2 con-
firm the conclusions stated above. Furthermore,
we observe that the mean velocity of the safe
agent (90.1 km/h) is slightly lower than the un-
safe one (99.9 km/h) but is still very appropriate
to the highway context and comparatively higher
than exo-vehicles average speed (70.3 km/h). This
means that the safe policy has been able to operate
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an efficient tradeoff between higher velocity and
safer driving decreasing the risk of collisions.

Fig. 2. Boxplots of Safe Vs Unsafe models tested
without attack, from left to right: average episode
length, average cumulative episode reward and average
velocities across episodes.

In figure 3(a), we assess the efficiency of the
safe reward defense mechanism in the training en-
vironment over eight experiments with a different
intensity of disturbance ε applied in each one. The
major finding is that the safe model is more robust
and resistant to the increase of the parameter ε.
Indeed, the metrics curves of the unsafe model
are almost flattened starting from ε = 0.1. In
figure 3(b), we expand the y-axis (returns) of the
scenario run with an attack intensity ε = 0.5.

Fig. 3. Adversarial training: (a) Safe Vs Unsafe mod-
els for all ε values (b) Safe Vs Unsafe models for
ε = 0.5.

While the safe model is showing a typic case of
convergence, the unsafe model curve points out a
failure of the learning process. This is probably
due to the fact that the basic reward function Rv is
unable to provide sufficient information to learn
the problem in the context of highly perturbed
observations.

4.2.2. Performance of adversarial training

The evaluation of the second defense mechanism
is depicted in figure 4, where we consider policies

performance in four different scenarios empha-
sizing the contribution of adversarial training in
improving RL agents robustness and generaliza-
tion capacities. Some interpretations can be given
in this respect. In the following, the figures are
presented in terms of episode reward (in first po-
sition) and episode length (between brackets).

Fig. 4. Boxplots of robustness test scenarios: aver-
age cumulative episode reward (left), average episode
length (right).

Robustness. The boxplots related to scenarios At-
tack Attack and NoAttack Attack show that the
agent trained and tested with adversarial attacks
is substantially behaving better than the attacked
agent trained in standard conditions. This defense
mechanism offers 85%(100%) of room for im-
provement. Thus, we can confirm that the ad-
versarial training prevents drastic failures of RL
agents in presence of attacks against environment
observations. Practically, the safety aspect is visi-
ble in the decreasing of collision risk expressed by
higher expectations of episode length.
Generalization. This aspect is analyzed in 2 steps.
First, let’s compare NoAttack NoAttack and NoAt-
tack Attack scenarios. In the case of standard
training, the policy performance is decreasing
when tested in an environment different from the
training one. Concretely, the model trained with-
out attack loses 47% of average reward (50% of
episode length) when it’s tested in an attacked
environment. This can be explained by the inher-
ent feature of deep learning policies which are
sensitive to significant change in data distribution
Lake et al. (2017). On the other hand, we raise al-
most the same performance of Attack Attack and
Attack NoAttack scenarios reflected by a small
improvement of 9% (3%) when training with at-
tacks then testing in standard conditions. Hence,
the defense mechanism of adversarial training not
only enhances the robustness, but also the gener-
alization capacities of RL policies.



February 22, 2024 16:18 RPS ESREL Proceedings/Edited Book: Trim Size: 221mm x 173mm output

8 Yesmina Jaafra and Christophe Bohn

5. Conclusion

Despite its great advances, DRL is vulnerable to
adversarial attacks, which prevents its deployment
in real-life critical systems. This problem has di-
rected our concern to develop defense mecha-
nisms based on reward shaping and adversarial
training. The results reported for a case study
conducted on autonomous vehicles are promising.
The reward shaping has successfully provided suf-
ficient information to accelerate training conver-
gence in the context of perturbed environment.
Furthermore, the adversarial training has specif-
ically fostered the robustness and generalization
capacities of the obtained models in the presence
of attacks. An important direction of future work
is to implement learnable adversaries, which we
assume to be more harmful and susceptible to
demonstrate higher resilience to defense mecha-
nisms. We also intend to enhance the naı̈ve appli-
cation of adversarial training by reformulating the
defense strategy as a modified MDP.
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