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Abstract:  

A proof of concept of a new method for automatic characterization of the dislocation density from 

scanning electron microscopy images is presented. A series of backscattered electron images are 

acquired while the sample is rotated. For each pixel of the region of interest, the variation of the grey-

level intensity as a function of the rotation angle, called the intensity profile, is calculated. This profile 

can be used to determine the nature of each pixel (dislocation, matrix or noise), such that an automatic 

dislocation density can be determined within the region of interest. The method is well adapted for 

dislocation densities ranging from 10
12

 to 10
14

 m
−2

. The simulation of a volume containing dislocations 

enabled the determination of the maximum and minimum densities attainable as well as the theoretical 

and experimental measurement errors related to the projection of this volume on a two-dimensional 

image. The theoretical measurement error due to the projection of dislocation on a surface, is 3% for 

low dislocation densities (1012m−2) and 20% for higher dislocation densities (1014 m−2). 

Experimentally, measurement errors are limited by image analysis conditions, which leads to total 

measurement errors of 15% for 1012m−2 and 34% error for 1014 m−2. These uncertainties were 

obtained considering a given analyzed depth value, that could not be experimentally verified. This 

uncertainty on the depth value leads to large errors bars in the final measurement, which can reach an 

order of magnitude. 

Keywords:  

Density dislocation, ECCI, Clustering 
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Introduction 

Microstructure and dislocations in particular greatly affect the mechanical properties of metallic 

materials [1]. For example, Blaizot et al. showed the effect of dislocation density on the yield strength 

of Ni-based superalloys [2], [3], and Diano et al. demonstrated that tensile properties are mainly 

controlled by the grain size and dislocation density [4]. Therefore, it is necessary to accurately 

characterize these values.  

Several methods can be used to determine the dislocation density. One of the most commonly used 

approaches is to apply the intercept method [5] on transmission electron microscopy (TEM) images. It 

consists in drawing lines of a known length on an image and counting the number of intersection 

between those lines and the dislocations present in the image. Another possibility is to get the 

dislocation density from the crystal distortion using X-ray diffraction (XRD) experiments [6] via the 

broadening of diffraction peaks. Similarly, the crystal deformation can be deduced from Kikuchi 

pattern distortion calculation (high-resolution electron backscattered diffraction, HR-EBSD), and 

disorientation maps can be correlated to local dislocation density estimation [7]. However, there is a 

lack of information regarding accuracy, and these methods are rarely compared with each other, 

making it impossible to know which method is to be preferred depending on the subject studied. The 

ability to image dislocations represents an advantage over other observation techniques because it 

allows the description of heterogeneous microstructures (multiphase or with different grain sizes for 

example). However, the main uncertainty of dislocation imaging methods is in the determination of 

the explored volume. The projection of the explored volume on a two-dimensional image also raises 

questions about the accuracy of the measurement depending on whether the dislocation is 

perpendicular or parallel to the surface. When determining the dislocation density, either from TEM or 

scanning electron microscopy (SEM) images, the visible dislocations present in a given volume are 

projected onto the image. The dislocation density is defined as 𝜌 =
𝐿

V
 , where 𝐿 is the total length of 

the dislocation in the volume 𝑉. Determination of the analyzed volume for electron channeling 

contrast imaging (ECCI) in SEM measurements is difficult, and the value is often approximated as 

several times 𝜉ℎ𝑘𝑙  (the extinction distance), which corresponds to approximately a few tenths of a 

nanometer for steel at 20 kV [8].   

Using the SEM, a method currently called electron channeling contrast imaging (ECCI) , has been 

studied by calculation for the first time by Clarke [9]. Almost ten years later, Morin et al. [10], 

revealed that dislocation contrast in SEM follow similar rules as dislocation imaging in the TEM, 

especially the fact that the sample must be orientated in a suitable ‘Two Beam’ condition so that 

dislocations can be visible. ECCI images were then performed using a high tilt set-up (60-70° tilt) 

[10], with a dedicated SEM detector positioned aside. Later on, the possibility of performing ECCI 

with conventional pole-piece mounted detector, and a low sample tilt, was first proposed by Simkin 

[11], and is nowadays the most popular set-up for ECCI acquisitions. In this mode, dislocations near 

the surface of a bulk material [12]
,
[13] were successfully observed using SEM combined with electron 

channeling contrast. Its advantage lies in the fact that the observed areas are large and that the sample 

preparation is much simpler than for TEM. Even if the spatial resolution is lower than that achieved by 

TEM, it remains sufficient to observe the dislocations [14]. Moreover, it has been shown that via the 

ECCI imaging method, it is possible to obtain dislocation densities [14-15]. 

In order to reach suitable orientation conditions, ECCI imaging has long been performed using 

Selected Area Contrast Patterns, often requiring monocrystals or large grains, due to their relatively 

small spatial resolution. Several improvements of the ECCI method were later proposed. For instance, 

C-ECCI (for ECCI under controlled diffraction conditions) developed by Zaefferer et al. in 2014 [13], 

is based on an in-house-developed software called ToCA that calculates the tilt and rotation angles 

needed to achieve the target two-beam conditions using input data from the electron backscattered 

patterns. Mansour et al. developed another variant called A-ECCI (Accurate-ECCI) in 2014 [17]. 
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However, this method requires a special installation in the scanning electron microscope to perform 

portions of the electron channeling patterns (ECP) acquisition in "rocking beam" mode. Finally, there 

is also the R-ECCI method (Rotation-ECCI) developed by L'hôte et al. in 2017 [18].  This method is 

based on the recording of a series of images during the rotation of the sample. For each pixel of the 

region of interest (ROI), the variation of intensity as a function of the rotation angle is obtained and 

called an intensity profile. This intensity profile contains information on the pixel orientation[19] but 

also on the nature of the considered pixel (noise, or grain boundary, matrix or dislocation) [20]. 

Therefore, by applying a dedicated algorithm, it is possible to automatically determine the dislocation 

density using these intensity profiles. This methodology was successfully applied to a non-deformed 

steel, and a density of 3 × 1013  m−2 was obtained. However, the uncertainty of the measurement and 

limitations of the methodology were not clearly defined. Moreover, the clustering algorithm used for 

this proof of concept was not adapted for deformed grains, which would exhibit internal disorientation, 

as often the case after deformation.   

In the current work, a new dislocation detection algorithm was developed, with the aim of better 

characterizing grains that would exhibit internal disorientation caused by the presence of dislocations. 

This new method has been applied for a duplex stainless steel for different deformation levels. Then, 

the reliability and possibilities, such as the maximum and minimum achievable densities, were 

characterized. First, a theoretical review of the uncertainty factors is presented, and then, some 

parameters are studied theoretically in detail, such as the effect of the analyzed volume projection and 

the effect of dislocation overlap. Then, the effect of the clustering algorithm is presented. The general 

conclusions are finally verified on the experimental data. In this study, the expected dislocation 

densities on undeformed and deformed steels are between 1013 and 1014 m−2, as in the study by 

Ruggles et al.[14]. 

Materials and methods 

The SEM observations were performed on a Zeiss Supra 55VP SEM with an accelerating voltage of 

20 keV using a 120-µm diaphragm and a working distance of ~7 mm. The SEM images were recorded 

with a pixel size of 4.5–6 nm and a size of 1024 × 768 pixels. 

Materials  

Observations were made on a commercial Outokumpo 2101 lean duplex stainless steel that was 

mechanically ground, with final polishing was performed using a 1-μm diamond solution. To avoid 

any strain hardening of the surface, a final electropolishing step was performed using an A2 electrolyte 

(from Struers APS, Denmark) at 20 V for 60 s with the Lectropol 5 device (Struers APS, Denmark).  

The evolution of the dislocation density was characterized in both ferritic and austenitic phases. Micro 

tensile samples (total length 112.5 mm, width 12.5 mm, and thickness of 1.5 mm) were deformed 

using a MTS tensile machine. Standard digital image correlation (DIC) was used to follow and 

precisely measure the deformation of each point of the sample surface. One sample was deformed up 

to 3% and the other one up to 10%. Then, R-ECCI was applied to several grains for each deformation 

state. Figure 1 presents isolated images of the rotation image series that reveal the dislocation structure 

for undeformed and 10% deformed ferrite, Figure 1 (a) and (c), respectively, and for undeformed and 

3% deformed austenite, Figure 1 (b) and (d), respectively.  

In the undeformed state, dislocations in ferrite appear as dots or lines on the image, indicating that 

their orientation relative to the surface is quite random. The matrix is not completely dark and appears 

quite noisy. The contrast of vertical dislocations (appearing as dots) is greater than that of the 

horizontal dislocations. A large white zone is observed that could originate from the presence of a 

large defect or a polishing artifact that was not considered in the data treatment. After deformation, 

more tortuous dislocations appeared in the ferrite grains as well as more dot dislocations. In the grain 

presented in Figure 1c, the bottom part of the grain is in good condition of dislocation imaging 
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(dislocations appear white on a dark matrix), while the top part of the grain appears bright and 

dislocations are not visible. This is due to the local disorientation that appeared during deformation, 

the orientation of the grain is not similar on its top and bottom part. Therefore, the orientation of the 

sample required to image dislocation is not the same for the bottom and top part. This reveals one of 

the major advantages of using intensity profiles instead of single images for the determination of 

dislocation densities, as already presented in [18]. In the rotation image series, all part of the grains 

will become suitably oriented but not for the same rotation angle. Therefore, using an adapted 

clustering algorithm, it is possible to detect dislocations in all part of the grains, even if a slight 

disorientation is present within the grain.   

For austenite grains in the as received condition, Figure 1(b), few dislocations are present, the matrix 

is homogeneously dark, and dislocations present a very high contrast. However, after only 3% of 

deformation, the amount of dislocations in the austenite phase is very high, dislocations are very long 

and linear, and appear aligned along {111} type planes. This high dislocation density is expected as 

austenite deforms before ferrite in duplex stainless steels. In this case a distortion of the grain in also 

present, which explains the fact that the top right and left part of the grain are very bright, while the 

bottom remains in diffraction condition. The apparent density is so high that dislocation might overlap 

within the analyzed volume, which would lead to uncertainties in the density measurement.  

 

Figure 1: BSE image extracted from the series acquired on different grains. For each image, the 

dislocation lines are visible in white on a black background. Each image was acquired with an 

acceleration voltage of 20 keV with a pixel size of 4.5 nm and an aperture of 120 µm. (a) Undeformed 

ferrite grain. (b) Undeformed austenite grain. (c) 10% deformed ferrite grain. (d) Austenite grain 

deformed at 3%, where dislocations are visible. 

Acquisition method 
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When the grain is in appropriate diffraction condition for dislocation imaging (called two-beam (TB) 

condition), dislocations appear white on a dark background. To do this, the sample must first be tilted 

by few degrees and rotated by 360°. A backscattered electron (BSE) image is acquired at each rotation 

step, such that 180 or 360 images are recorded, for 1° or 2° rotation steps, respectively. During the 

rotation, the orientation of a given pixel describes a circle on the selected grain’s electron channeling 

pattern (ECP). The radius of this circle corresponds to the selected tilt angle. It was shown that, 

regardless of the grain orientation, this circular crystallographic path crosses several Kikuchi bands; 

therefore, several rotation angles will correspond to adequate diffraction condition for dislocation 

imaging, i.e., at the Kikuchi band edges [20]. For a large tilt angle, the circle diameter will be larger 

and more diffraction bands will be crossed. However, that can lead to some geometrical difficulties 

within the chamber during the sample rotation; the sample might be touching one of the present 

detectors. A tilt angle of 5°–10° appears to be the best compromise to cross a sufficient number of 

bands without any danger for the detectors.  

This procedure is automated using a rotation sub-stage, together with the use of a program that 

acquires an image after each rotation step, developed in the framework of the e-CHORD project [19]. 

For dislocation imaging, the magnification required is high (minimum 5 nm/pixel), and the image 

quality is sensitive to a perfect astigmatism or focus setting. However, each image acquisition takes 

approximately 1 min 30 s, and a drift in the focus/astigmatism together with a mechanical drift of the 

sample occur along the rotation and time. It is thus necessary to refocus and recenter the ROI by hand 

every 5–10 images.  

To avoid this issue, it is possible to limit the observations to angular ranges that correspond to the 

diffraction conditions for dislocation imaging. It is then possible to switch from a series of images 

over 360° to several “mini-series” of 20° to 30° each, located near local minima. A preliminary 

complete series at very low magnification is first acquired over 360°. For each pixel of the ROI, the 

grey-level intensity is plotted as a function of the rotation angle to obtain a so-called “intensity 

profile”. This complete series is used to identify the angular ranges for each grain where dislocations 

can be observed. The angular ranges corresponding to dislocation contrast conditions are the minimum 

of this intensity profile (see Cazottes et al. [20]). 

A pixel clustering method based on the analysis of the contrast variation between the dislocations and 

the grain-matrix profiles allows an automatic determination of the dislocation density [20].  

Adaptation of the clustering algorithm for distorted grains 

The clustering is divided into two steps. The first step consists of partitioning [19]–[21] the elements 

to be classified, i.e., grouping all the elements contained in the same grain. The second step is the 

classification [22,23], which consists of identifying each of the elements constituting these partitions 

(grains), i.e., identifying dislocation pixels, matrix pixels, and noise pixels. Indeed, the pixels located 

on a dislocation present an identical profile as one of the pixels located on the grain, except for the 

diffraction condition, for which the dislocation appears bright and the matrix dark [17,8].  

The partitioning step presented in Cazottes et al. [20] was based on the calculation of the difference 

between a considered pixel profile and the average profile of the grain. If the difference between the 

two profiles is too high, the pixel is not considered to be part of the grain. However, for a deformed 

grain, an internal disorientation can appear. In that case, profiles from adjacent pixels will still be 

close; however, profiles from further pixels might differ, although they are part of the same grain.  

Figure 2 presents an austenitic grain deformed grain at 35%. It is possible to observe several areas 

with different observation conditions. Zone A is under suitable observation conditions for the 

dislocations; therefore, the dislocations are visible in white on a black background. However, a few 

hundred nanometers around, it is no longer the case: zone B is outside of these observation conditions. 

It is not very far from its observation condition as the dislocations are still barely visible. Finally, zone 
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C, located further away, is completely out of the observation conditions. In this area, the grain is 

completely white and the dislocations are not visible. These findings are similar to the results 

presented in Figure 1, where for higher deformation levels, the distortion leads to different diffraction 

conditions throughout the grain. Therefore, a comparison with the average profile of the grain is no 

longer relevant on deformed materials. It is then necessary to modify the profile comparison strategy 

using a more local average profile around the analyzed pixels. 

 

Figure 2: Example of a BSE image acquired with an acceleration voltage of 20 keV, an aperture of 

120 µm, and a pixel size of 4.5 nm and obtained on a 35% deformed austenite grain. The important 

disorientation in the grain generates three different zones: (a) a zone where the dislocations are in 

observation conditions; (b) the disorientation of the grain moves away from the observation 

conditions, which reduces the contrast between the dislocations and the grain; and (c) the observation 

conditions of the dislocations are lost, and the dislocations are no longer visible. 

The algorithm was changed such that the analyzed pixel intensity profile is compared with a local 

average of intensity profiles around it. The number of neighbors selected for the average is selected, 

with the variable b called the "bin size" (see Figure 3). If the analyzed pixels are located at the edges 

of the image, the area is cropped, and the average is obtained on a reduced number of pixels. 

 

Figure 3: Illustration of the analysis parameter "bin size" with a value of 2, 3, 4, and 5, respectively. 

The analyzed pixel is shown in light blue, and its neighbors are shown in deep blue.  
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For profile comparison, the intensity profiles were then transformed into vectors. The intensity profile 

of a pixel located at (𝑖, 𝑗) will be transformed to the vector 𝑃(𝑖,𝑗)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = (𝑥1, 𝑥2, … 𝑥𝑁) of dimension 𝑁, 𝑁 

being the number of images contained in the stack and the xi values being the intensity in gray level of 

the pixel (𝑖, 𝑗) for the image 𝑁.  

If mini-series are used, then the vector 𝑃(𝑖,𝑗)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  used for comparison of the intensity profiles will have a 

dimension 𝑁′ smaller than that of a complete series, thus decreasing the necessary calculation time 

previously presented in [20]. The distance 𝐷(𝑃𝑖,𝑗
⃗⃗⃗⃗  ⃗ , 𝑃𝑘,𝑙

⃗⃗ ⃗⃗ ⃗⃗ ) between the vectors contained in 𝑏 and the 

central point of the bin size (Figure 3) is calculated using an Euclidean difference: 

𝐷(𝑃𝑖,𝑗
⃗⃗⃗⃗  ⃗ , 𝑃𝑘,𝑙

⃗⃗ ⃗⃗ ⃗⃗ ) = ‖𝑃𝑖,𝑗
⃗⃗⃗⃗  ⃗ −  𝑃𝑘,𝑙

⃗⃗ ⃗⃗ ⃗⃗ ‖.        (1.1) 

For very diffuse dislocations or for noisy images, normalizing the 𝑃𝑖,𝑗 vectors can improve the results. 

In the studied case, the Euclidean normalization was used: �⃗� ′ =
�⃗� 

√∑𝑃𝑖²
 . 

Then, to enable the detection of pixels that have sufficient profile variations to be potential defects, a 

value 𝑑𝑏, representative of the mean distance between this pixel and its environment, is calculated. For 

each pixel (𝑖, 𝑗), surrounded by 𝑏2 − 1 neighbors (see Figure 3): 

 

𝑑𝑏(𝑖, 𝑗)

=
1

𝑏2
 ∑ 𝐷(𝑃𝑖,𝑗

⃗⃗⃗⃗  ⃗ , 𝑃𝑖′,𝑗′
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)

(𝑖′,𝑗′) 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑜𝑓 (𝑖,𝑗)

  (1.2) 

A map, called "Features", represents the areas for which 𝑑𝑏 exceeds a certain threshold 𝑑𝑡 and 

highlights the defects in green (Figure 4(b)). 

 

Figure 4: Example of “Features” map obtained from a series of BSE images of an undeformed 

austenite grain. (a) BSE image where dislocations appear in white on a black background. (b) 

Corresponding “Features” map obtained with the profile analysis, which shows in green all the 

intensity profiles that differ from those of their neighbors. This map was obtained with a bin size of 5 

and a threshold 𝑑𝑡 equal to the 77th percentile of 𝑑𝑏(𝑖, 𝑗). 

This “Features” map (Figure 4(b)) shows areas containing local “anomalies” with respect to the 

profiles contained in the stack. These anomalies may be dislocations but also dust, grain boundaries, or 

other defects that locally affect the contrast. All anomalies (dislocation and noise pixels) are placed in 

a set named 𝛫𝑟𝑜𝑖  (roi stands for region of interest). All the other pixels are considered matrix pixels. 

Noise detection 
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This step aims to distinguish dislocations from other defects within 𝛫𝑟𝑜𝑖 . Defect pixels are stored in a 

cluster called 𝐾𝑑𝑝 (𝑑𝑝 stands for “discarded pixels”). The assumption here is that the difference in the 

intensity profile of a discarded pixel and the local matrix or dislocation profiles will be large 

regardless of the angle and orientation condition. It represents the fact that a defect (dislocations 

excluded) is always visible on all images of the series. In contrast, dislocations become visible only for 

particular angles, which correspond to the visibility conditions.  

For this purpose, it is first necessary to group the different pixels contained in 𝐾𝑟𝑜𝑖  into different 

“objects”, formed by percolating pixels of 𝐾𝑟𝑜𝑖 . Let 𝐾𝑜𝑙 be the ensemble of pixels of an object of 

index 𝑙. Small objects containing less that 𝑛𝑝 pixels, which cannot be dislocations, are automatically 

discarded and their pixels are put in the “discarded pixel” cluster.  

Around each object, we define a local area of the matrix, called the matrix margin (mm), that will be 

used to calculate the average local profile of the matrix 𝑃𝑚𝑒𝑎𝑛
𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. The matrix margin area around each 

object is defined by the sum of matrix pixels contained within a circle of radius 𝑏𝑚 centered on all 

pixels of the object. All pixels lying in the Matrix Margin of object 𝑙 are included in a region named 

𝐾𝑚𝑚
𝑙 : 

∀(𝑖, 𝑗) ∈ 𝐾𝑜𝑙
, for all pixels (𝑖′, 𝑗′)  ∉ 𝐾𝑟𝑜𝑖  such that (𝑖 − 𝑖′)2 + (𝑗 − 𝑗′)2 < 𝑏𝑚

2    (1.3) 

(𝑖′, 𝑗′) ∈ 𝐾𝑚𝑚
𝑙           (1.4) 

The average local profile of the matrix 𝑃𝑚𝑒𝑎𝑛
𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ around object 𝑙 is defined as 

For all (𝑖, 𝑗)  ∈  𝐾𝑚𝑚
𝑙 , 𝑃𝑚𝑒𝑎𝑛

𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  (𝑥𝑖𝑗1̅̅ ̅̅ ̅, 𝑥𝑖𝑗2̅̅ ̅̅ ̅, … , 𝑥𝑖𝑗𝑁̅̅ ̅̅ ̅).       (1.5) 

For the sake of illustration, Figure 6(b) shows the matrix margin region (white pixels) around the 

object indicated by the red arrow. 

All profiles of all pixels of the image are then normalized (profiles with a prime (‘) represent 

normalized profiles): 

𝑃′(𝑖,𝑗)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = (𝑥′1, 𝑥′2 , … 𝑥′𝑁) with  𝑥′𝑛 =
𝑥𝑛−MIN(𝑥𝑛)

MAX(𝑥𝑛)−MIN(𝑥𝑛)
.      (1.6) 

This normalization decreases the distance between the matrix and dislocation profiles, as illustrated in 

Figure 5b. However, the intensity profiles corresponding to noise or artifacts will still have differences 

over the entire profile that do not change much with normalization. This step allows dislocation pixels 

to be distinguished from noise pixels contained in the image. For this, the Euclidean distance 𝐷 of the 

normalized profile is compared with a value 𝐻. The distance 𝐷 between the normalized profiles of the 

matrix dislocations will be very small while the distance 𝐷 between the normalized profiles of the 

matrix and the other defects will remain large. For each object 𝑙, 

∀(𝑖, 𝑗)  ∈  𝛫𝑜𝑙
 , if 𝐷 (𝑃𝑖,𝑗

′𝑙⃗⃗⃗⃗  ⃗ , 𝑃′𝑚𝑒𝑎𝑛
𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) > 𝐻 then (𝑖, 𝑗) ∈ 𝛫𝑑𝑝 .      (1.7) 

Finally, some other black spots usually appear in the images (see Figure 5), which correspond to 

intensity profiles that follow the same trends as the average grain profile and an intensity difference 

with the local matrix that is too low to be discarded in the previous step. These pixels will be removed 

under the assumption that the local difference between the matrix and dislocation is necessarily 

positive (i.e., the dislocations appear white on a black matrix). 

∀(𝑖, 𝑗)  ∈ 𝛫𝑂𝑙
 and ∀(𝑖′, 𝑗′) ∈ 𝐾𝑚𝑚

𝑙 , if (for all series 𝑛, 𝑥𝑖𝑗𝑛 < 𝑥𝑖′𝑗′𝑛) then (𝑖′, 𝑗′) ∈ 𝛫𝑑𝑝 (1.8) 
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Figure 5: (a) BSE image of dislocation contained in an undeformed ferrite grain obtained at an 

accelerating voltage of 20 keV. (b) Intensity profile of the matrix (in black) of a dislocation pixel (in 

blue) and of a black point (in red) without normalization. The green arrows represent conditions where 

dislocations are visible in white on a black background. (c) The same intensity profile as (b) with 

normalization. 

Detection of dislocations 

After having discarded noise pixels (see previous section), dislocation pixels are detected by analyzing 

separately the intensity differences near local minima (diffraction condition). Mini-series are extracted 

from the complete series of image profiles. Each mini-series describes the intensity profile near a local 

minimum: 

𝑃(𝑖,𝑗)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = (𝑥1, 𝑥2, … 𝑥𝑁)  →  𝑃(𝑖,𝑗)

1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑃(𝑖,𝑗)
2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , … , 𝑃(𝑖,𝑗)

𝑁𝑠⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   ,      (1.9) 

where 𝑁𝑠 is the number of observation mini-series. 

For each object of index 𝑙 and each mini-series of index 𝑛𝑠 containing 𝑁𝑛𝑠
 images, we calculate the 

mean local matrix profile: 

For all (𝑖, 𝑗)  ∈  𝐾𝑚𝑚
𝑙 , 𝑃𝑚𝑒𝑎𝑛

𝑙,𝑛𝑠⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
= (𝑥

𝑖′𝑗′1

𝑛𝑠̅̅ ̅̅ ̅̅ ̅, 𝑥
𝑖′𝑗′2

𝑛𝑠̅̅ ̅̅ ̅̅ ̅, … , 𝑥
𝑖′𝑗′𝑁𝑛𝑠

𝑛𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅).     (1.10) 

For each mini-series of each object 𝑙, the difference of the integrals between each pixel of 𝐾𝑜𝑙
 and 

𝐾𝑚𝑚
𝑙  is calculated. If one or more mini-series exhibits a distance larger than a threshold 𝜀𝑑, the pixel is 

considered a dislocation pixel.  

∀(𝑖, 𝑗)  ∈  𝛫𝑜𝑙
 if one or more mini-series satisfies ∫𝑃𝑖,𝑗

𝑙,𝑛𝑠  
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 

  − ∫ 𝑃𝑚𝑒𝑎𝑛
𝑙,𝑛𝑠⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

>  𝜀𝐷, then (𝑖, 𝑗)  ∈

 𝛫𝑑𝑖𝑠𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛   

𝐾𝑑𝑖𝑠𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛  is the set of pixels considered as dislocations. 

The 𝜀𝐷 value represents the difference necessary for the pixel (𝑖, 𝑗) to be considered a dislocation. It is 

therefore necessary to proceed by iteration from the ECCI images to determine and refine its value. 

Results of the clustering 

A so-called « Cluster Map » (Figure 6) is used to verify the parameters used in the previous analyses.  
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Figure 6: Example of Cluster Map obtained on an undeformed austenite grain. (a) The grain appears in 

dark blue while the areas of interest or potential defects appear lighter in this area (yellow arrows). (b) 

Illustration of the "Matrix Margin" (Bm neighbors) zone that appears in white and that is used to 

calculate the local average value of the grain for comparison with the different pixels contained in the 

zone of interest (red arrow). Cluster map obtained with 𝑏𝑚  =  30 𝑝𝑖𝑥𝑒𝑙𝑠, 𝜀𝐷  =  40𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒. 

The objects composed of less than 5 pixels were excluded. 

The excluded profiles (too different from the rest of the grain, grain boundaries, etc.) are plotted in 

black, and the different grains appear with different colors. Moreover, the defects detected via the 

"features" (Figure 4) appear in the same color as their corresponding grain but lighter (yellow arrows). 

In the example in Figure 6, the pixels located in the lighter zone (yellow arrow) can be compared with 

the local average of the grain profiles, calculated in a zone around it, whose thickness is equal at 𝐵𝑚, 

as indicated in white (red arrow). 

In the BSE images presented in Figure 1, dislocations appear with a width of several pixels (30-nm 

width for the steel at this accelerating voltage, i.e., 4–5 pixels wide). However, in Figure 6, some 

isolated pixels are detected as potential dislocation pixels. An additional user-defined parameter is 

used to fix the minimum size of dislocations present in the images to remove the isolated pixels from 

the dislocation clusters.  

Finally, for each mini-series, i.e., each set of orientation conditions, clustered maps are calculated, 

where the matrix is plotted in dark and the dislocations pixels are shown in green, as shown in Figure 

7.  
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Figure 7: Example of clustering result (b) with the corresponding BSE image (a), where dislocations 

are shown in white on a black background. The clustering result shows the pixels detected as 

dislocations in green on a black background. Some well-defined dislocations on the BSE image (red 

arrows) appear with large thicknesses in (b) while more diffuse dislocations have comparable 

thicknesses (yellow arrow). 

Figure 7 shows dislocation clusters with thicknesses greater than those in the original BSE image (red 

arrows, Figure 7). It is possible to refine the detection parameters to obtain a thinner thickness; 

however, a loss of information can occur for dislocations that appear with lower contrasts (yellow 

arrow, Figure 7). The average thickness of the dislocation must be considered in the calculation of the 

dislocation density. Indeed, because the dislocations are not thicker than one pixel, counting the total 

number of green pixels in Figure 7(b) means counting the same dislocation several times in the 

measurement of the total length of dislocation lines used in the density calculation. To avoid this, the 

total number of pixels detected as dislocations is divided by the average thickness of each dislocation, 

and the pixels contained in the other grains are removed manually before the calculation of the 

dislocation density. It is possible to remove the number N of dislocations appearing in green in Figure 

7(b) to determine the dislocation density in the image series. 

Results 

Theoretical maximum and minimum measurable dislocation density Preliminary calculation of the 

measurable dislocation density  

The dislocation density is calculated using the following formula:  𝜌𝑐𝑙𝑢𝑠 =
𝐿

𝑉
 

After data treatment, the total number of dislocation pixels 𝑁𝑑𝑖𝑠𝑙𝑜 is determined. The total length of 

the dislocations is then calculated using  

 𝐿𝑑𝑖𝑠𝑙𝑜 =
𝑁𝑑𝑖𝑠𝑙𝑜  ×  𝑃𝑆  

 𝐸
 (1.11) 

With E the mean thickness of dislocations (in pixels), and  𝑃𝑆 the pixel size in nm.  

 𝐸 = 𝐸𝑎𝑝𝑝/𝑃𝑆 (1.12) 

With 𝐸𝑎𝑝𝑝 the apparent dislocation width in nm.  

  

 

𝜌 =
𝑁𝑑𝑖𝑠𝑙𝑜  ×  𝑃𝑆  

𝑆 ×  𝑡 ×  𝐸
=

𝑁𝑑𝑖𝑠𝑙𝑜  ×  𝑃𝑆²  

𝑁𝑡𝑜𝑡  ×  𝑃𝑆² ×  𝑡 ×  𝐸𝑎𝑝𝑝

=
𝑁𝑑𝑖𝑠𝑙𝑜   

𝑁𝑡𝑜𝑡  ×   𝑡 ×  𝐸𝑎𝑝𝑝
 

(1.13) 

With t the analyzed sample thickness (in nm), and S the analyzed surface in nm². 𝑁𝑡𝑜𝑡  is the total 

number of pixels on the image. Therefore, the dislocation density 𝜌 only depends on 𝐸𝑎𝑝𝑝 measured 

manually on the image. 

The determination of the analyzed thickness is difficult to achieve experimentally. Previous studies 

[8,25,26] considered that the analyzed thickness depends on the orientation conditions of the sample, 

and can be approximated as 𝑡 = 3. 𝜉𝑔 with 𝜉𝑔 the extinction distance corresponding to the diffracting 

vector 𝑔 . This value thus depends on the orientation condition of the sample, and will not be the same 

for all images of a given series. It will range from 70 nm for austenite in 𝑔111⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  orientation, to 115 nm 

for ferrite 𝑔220⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   orientation. For sake of simplification, and for both phases, the analyzed thickness was 
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set to 100 nm for all conditions. The impact of this approximation on the measurement will be 

discussed later in the text.  

However, the observations show that the width of dislocations 𝐸𝑎𝑝𝑝 no longer evolves beyond a given 

magnification. Two images of the same area were acquired on a ferrite grain under the same 

experimental conditions, one with a pixel size of 4.5 nm (1024 x 768 pixels) Figure 8 (a) and the other 

with a pixel size of 2.25 nm (2048 x 1536 pixels) Figure 8 (b). One can see that there is no difference 

in the apparent width of the dislocations (27 nm in that case). Therefore, in order to limit acquisition 

time, all acquisitions performed on this material were made with a pixel size of 4.5 nm. 

 

Figure 8: BSE image acquired on a ferrite grain deformed at about 3%. For each image, the dislocation 

lines are visible in white on a black background. Each image was acquired with an acceleration 

voltage of 20 keV, an aperture of 120 µm and an acquisition time of 3.7 minutes. (a) Ferrite grain 

observed with a pixel size of 4.5 nm. (b) Same area as image (a) but with a pixel size of 2.25nm. 

Dislocation widths were measured perpendicular to the dislocation line. The red lines represent 

examples where identical widths were measured. 

Considering a pixel size of 4.5 nm and an image size of 1024 pixels × 768 pixels, a theoretical 

dislocation density was calculated. Arbitrarily, the minimum density was chosen to corresponds to an 

image where 1% of the pixels are dislocation pixels. Applying equation (1.13) leads to a theoretical 

minimum value of 3.45 × 1012 m−2. 

On the other end, the maximum density measurable cannot exceed the total number of pixels. 

Arbitrarily, the maximum dislocation density is chosen to corresponds to an image where 50% of the 

pixels are dislocations pixels. It leads to a maximum theoretical dislocation density of  1.73 ×

1014 m−2.  

These limits are indicative and should be reconsidered in the light of experimental results and 

associated measurement bias. 

Experimental measurement of high and low dislocation densities 

Two sets of BSE images were acquired for the experimental tests: the first one on an undeformed 

ferritic grain and the second one on a 3% deformed austenitic grain (Figure 1 (a) and (d)). The 

clustering method applied on these two sets of images is presented in Figure 9, with the dislocation 

pixels detected in green on a black background. The measured densities are 𝜌𝑐𝑙𝑢𝑠 = 5.8 ×

1012 m−2 for the undeformed ferritic grain and 𝜌𝑐𝑙𝑢𝑠 =  5.7 × 1013 m−2 for the 3% deformed 

austenitic grain. 𝜌𝑐𝑙𝑢𝑠 was calculated using the following formula: 
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𝜌𝑐𝑙𝑢𝑠 =
𝐿

𝑉
 with 𝐿 =

𝑁𝑑𝑖𝑠𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛

𝐸
 × 𝑃𝑠, where 𝑁𝑑𝑖𝑠𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 is the number of pixels detected as 

dislocations, 𝐸 is the average dislocation thickness, and 𝑃𝑠 is the pixel size. 

In the images, the dislocations have an apparent width of several pixels, which depends on the 

observation conditions and the observed material. Using the total number of dislocation pixels in the 

image, the length of one dislocation is counted several times because of the thickness of several pixels. 

Therefore, to determine the appropriate length of the dislocation, its apparent length should be divided 

by its apparent thickness.  

 

Figure 9: (a) Clustering image of an undeformed ferrite grain, where dislocations appear in green on a 

black background. The dislocation density measured on this grain is equal to 5.8 x 10
12 

m
−2

. (b) 

Clustering image of a 3% deformed austenite grain, where dislocations appear in green on a black 

background. The dislocation density measured on this grain is 5.7 x 10
14 

m
−2

. 

Additionally, for validation purposes, the dislocation density was measured on the clustered image 

presented in Figure 9 using the 𝜌 = 𝑁/𝑆 method, which consists of counting the number of 

dislocations 𝑁 visible on the image and dividing it by the surface of the image. The density 

measurements obtained are 𝜌𝑁/𝑆  =  5 × 1012  m−2 on the undeformed ferritic grains and 𝜌𝑁/𝑆 =  4 ×

1013 m−2 for the austenitic grains deformed at 3%. The difference between these values originates 

from the different uncertainties of measurement, in particular, the one on the volume which is not 

considered with the N/S method but also from the overlapping of the dislocations and the fact that it is 

difficult to really detect everything with the clustering algorithm. However, the measurements are of 

the same order as those obtained by the clustering method, which validates the last step of the 

clustering method. 

Estimation of the dislocation density measurement error  

The dislocation density measurement uncertainty arises from three main factors: the first one is related 

to the apparent thickness of the dislocation and the selection of the pixel size and magnification, the 

second one is related to the projection of the 3D analyzed volume onto a 2D image, and the third one 

is related to the dislocation overlapping.   

It is possible to quantify the measurement error from the apparent thickness of the dislocations 𝐸. As 

this value is obtained with a precision of one pixel it is possible to repeat the previous calculations 

with 𝐸′ =  𝐸 ± 1 pixel. These calculations show that this measurement of the average thickness 𝐸 of 

the dislocations causes an error of 6%–7% in the measurements. 

The second effect that leads to uncertainty in the dislocation density measurement is linked to the 

projection of the analyzed volume. The apparent length of a given dislocation on the 2D projected 

(a) (b) 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



surface is highly dependent on its orientation in the analyzed volume. For instance, a dislocation that is 

strictly parallel to the surface will be counted with its real length, whereas a dislocation perpendicular 

to the surface (red dislocation, Figure 10(a)) will appear as a point on the projected image (red circle 

Figure 10(b)), and its length will be underestimated. 

 

Figure 10:(a) Example of dislocation (in blue) obtained with a random direction in a three-dimensional 

volume and a red dislocation that is almost perpendicular to the (X,Y) plane. The simulated volume is 

comparable to the experimentally explored volume. (b) Projected image of the volume on the (X,Y) 

plane with the dislocation almost perpendicular to the surface, which appears as a point (red circle). 

Volumes containing a given number of dislocations (plotted as straight blue lines, Figure 10(a) were 

simulated, and the projections of those dislocations on a 2D image were calculated (Figure 10 (b)). In 

the case presented in Figure 10, the volume and surface sizes were close to those typically required for 

dislocation images in ECCI (1024 × 768 pixels, a pixel size of 4.5 nm, and a depth of approximately 

100 nm). The orientation of the dislocations was randomly selected by taking randomly generated 

points in the considered volume. A direction was then randomly selected in a sphere around this point 

to draw a line that entirely crosses the volume. 

The real dislocation density was calculated from the 3D volume: 𝜌𝑟𝑒𝑎𝑙 =
∑‖𝑑3𝐷‖

V
 [m−2], where 𝑑3𝐷 is 

the total length of each dislocation. To estimate the uncertainty resulting from the projection of these 

3D objects on a 2D surface, the projected density was estimated:  𝜌𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 =
∑‖𝑑2𝐷‖

V
, where 𝑑2𝐷 is 

the total projected length of each dislocation. The measurement error M was calculated using the 

densities obtained with the linear coordinates in 3D and 2D using the relation 𝑀 =
𝜌𝑟𝑒𝑎𝑙−𝜌𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑

𝜌𝑟𝑒𝑎𝑙
, as 

plotted in Figure 11. 𝑀 increased up to 6% for densities of 2 × 1012 m−2 and then fluctuated between 

5% and 7% for higher densities values. For the maximum density achievable using the present 

method, 𝑀 = 7%. Oscillations in the error measurement are attributed to the random orientation of the 

generated dislocations. When a dislocation is generated parallel to the projection surface, its 

contribution to this source of error is zero. In contrast, if it is generated perpendicular to the projection 

surface, its contribution will be maximum. The rapid increase and fluctuation of the error source for 

low dislocation densities is attributed to so few dislocations being present in the volume. Thus, each 

dislocation will have a significant impact of the difference between the real and projected density. 

However, by increasing the number of dislocations, the proportion of dislocations that are perfectly 

straight compared with all others is necessarily reduced, which has the effect of reducing the 

percentage of error of a measurement. 

Therefore, the measurement error due to the projection remains small because the depth 

(approximately 100 nm) is very small compared with the surface size (4608 nm × 3456 nm). This 

makes the contribution to the total dislocation length along the z axis small compared with the lengths 

along the x and y axes. 

(a) (b) 
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Figure 11: Measurement error between the real and projected density. 

The third measurement artifact arises from the fact that if dislocations overlap, the total dislocation 

length will be underestimated. Indeed, the total dislocation length is calculated using 𝐿 = 𝑁𝑡  × 𝑃𝑠, 

where 𝑁𝑡 is the number of dislocation pixels identified and 𝑃𝑠 is the pixel size.  

If two dislocations overlap, the area of overlapping will be counted only once, whereas it should be 

counted twice. Therefore, for a higher density, the potential overlapping is higher, and thus, the 

measurement error is higher. As an estimate, the so-called apparent dislocation density was calculated 

using  𝜌𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 =
𝑁𝑡∗𝑃𝑠

V x E
 , where 𝐸 is the thickness of a dislocation in number of pixels, 𝑁𝑡 is the total 

number of dislocation pixels, and 𝑃𝑠 is the size of a pixel in nanometers.  

To visualize the effect of overlapping, the real density contained in the volume is plotted as a function 

of the apparent density in Figure 12.  
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Figure 12: Representation of the real dislocation density, obtained in a three-dimensional volume, as a 

function of the apparent density obtained on a projected image of the volume. The divergence that 

appears comes from the phenomenon of overlapping dislocations. 

As expected, the difference between the real density and the apparent density increases with increasing 

dislocation density. The apparent density deviates by a few percent for densities below 4 × 1013 m−2 

and by 20% for densities close to 1014 m−2, which is close to the maximum achievable densities.  

As a conclusion, the main source of measurement error comes from the overlapping of dislocations, 

with a higher density resulting in a higher measurement error. For highly deformed materials, the 

maximum density achievable using the method is close to 1014 m−2, for which an error of 20% due to 

potential overlapping is present.  

In Figure 13, the results obtained during this study on the two grains characterized with the clustering 

method (Figure 9) are presented. The measurement obtained with clustering (in green, Figure 13) 

calculated from the series of BSE images is compared with a traditional N/S measurement (in blue, 

Figure 13) measured on a single BSE image per dislocation observation condition. Considering the 

different sources of measurement error presented previously, the results obtained are comparable in 

their order of magnitude and the measurement uncertainties are superimposed. 
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Figure 13: Representation of the dislocation density measured for two different grains: a non-

deformed ferrite grain and a 3% deformed austenite grain. The measure of dislocation density obtained 

by clustering (in green) is compared with another measure (in blue) taken directly from the images, 

which consists of dividing the total number N of dislocations visible on the image by the surface of 

this image. 

Discussion 

The method presented in this study indicates that it is possible to measure dislocation densities semi-

automatically on deformed materials by switching to a local average of the grain intensity profile 

around the analyzed pixel.  

This methodology was tested on several duplex samples, and the analysis on a deformed grain was 

performed on an austenite grain in which the dislocations were relatively easy to image with little 

noise, thus facilitating the post-processing steps by clustering. Having fewer sharp dislocations with 

more noise can lead to an additional loss of information during the comparison of intensity profiles 

because the local average will be distorted. Nevertheless, this problem can be avoided because the first 

step of the method allows a "feature map" to be obtained, which highlights in green all the profiles of 

the pixels showing a substantial difference with the neighboring profiles. It is therefore sufficient to 

determine the minimum size of the clusters to be analyzed to remove all the pixels that do not form a 

dislocation. The method, however, remains dependent on the quality of the acquired images and the 

polishing state of the material, which must be perfect. 

It was demonstrated by calculation that dislocation densities in the range of 1012 m−2 to 1.2 ×

1014 m−2 can be precisely measured. These limits correspond to dislocation density measurements in 

the literature for undeformed steels. For example, Ruggles et al.[26] observed densities between 1013 

and 1014 m−2  
in an austenitic sample, as did Zaefferer et al.[27], who reported a dislocation density of 

2 × 1013 m−2. Higher densities are expected in deformed steels, as measured by ECCI and TEM by 

Gutierrez-Urrutia et al.[28], who observed densities ranging between 10 ± 4 × 1013 and 17 ± 6 ×

1013m−2. In addition, Bissey-Breton et al. [29] observed a dislocation density of 4.2 × 1013 m−2 in a 

recrystallized bulk. In semiconductors, the measured density has been reported to range between 1011 
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and 1013 m−2 [30], [31]. Even if the minimum densities are lower than those calculated and measured 

in this study, it should be noted that the highest densities for semiconductors were measured using 

XRD, for which the issue of dislocation overlap that can occur in imaging is not observed, as XRD 

does not allow observation of the dislocations.    

It is nevertheless important to specify that these boundary measurements consider values inherent to 

the observed materials; such as the apparent thickness 𝐸 and the explored volume, which are both 

dependent on the material and the crystallographic orientation. During this study, several different 

materials were examined. Images recorded in the same conditions allowed to measure apparent 

thickness 𝐸 for copper (22 ± 2) nm, ferrite (30 ± 2) nm, austenite (32 ± 2) nm, and nickel(27 ±

2) nm. Moreover, in ECCI images, the apparent thickness E of the dislocations may also depend on 

the observation conditions of the sample, as reported by Kriaa et al. [32], who obtained an apparent 

thickness of 30 and 19 nm on the same dislocation, depending on the channeling conditions selected. 

This study has shown that the measurement error due to the orientation of the dislocations relative to 

the surface is negligible and that the main source of uncertainty originates from the overlap of 

dislocations as the dislocation density increases. It gives a measurement error of approximately 3% for 

low densities of approximately 1013 m−2 and 20% for the limit densities of 1014  m−2 achievable with 

this method. This uncertainty, due to the overlap of dislocations, also exists for dislocation densities 

measured from TEM images. Considering a typical TEM image, with a surface size of 4008 × 2664 

pixels, a pixel size of 0.55 nm, and a dislocation width of 6.5 nm, the uncertainty is approximately 5% 

for densities close to 1014 m−2 and can increase to 20% for maximum densities of 3 × 1014 m−2. The 

precision of the measurement is thus drastically better for TEM vs. SEM-ECCI, as for the same 

density, the SEM results in an uncertainty of 20 %, whereas that for TEM is only 5%. This is mainly 

because the higher spatial resolution of TEM allows the dislocations to be better discriminated. 

However, TEM is more localized than SEM, and the question of representativeness can always arise.  

The second major source of error originates from the apparent thickness of the dislocations E, obtained 

from BSE images, which were measured at one-pixel accuracy, resulting in a measurement error of 

6% to 7%. When added to the other contribution to the measurement error, the total measurement error 

for 1012 m−2 is 15% and it is 34% for 1014 m−2. 

Two examples were provided, the first on an undeformed ferrite grain, where the measured dislocation 

density was 5.8 ± 0.6 × 1012 m−2, and the second on a 3% deformed austenite grain, where the 

measured dislocation density was 5.7 ± 1.1 × 1013  m−2. 

Finally, the main source of error is associated with the explored depth, which is directly related to the 

probed volume. The calculations were here performed considering the deepest condition in each mini-

series (around 150 nm). However, the theoretical value of  3𝜉𝑔  varies within an image miniseries. As 

an example, it varies from 70 nm (𝑔111) to 150 nm (𝑔311) for austenite. But, surprisingly, we 

observed that the number of visible dislocations was quite similar for the different conditions, i.e. for 

the different theoretical analyzed depth. For those reasons, the uncertainty of the quantitative measure 

is yet about the order of magnitude. However, when comparing different deformed states, for the same 

material acquired under the same experimental conditions, the measurement uncertainty shall be close 

to the one previously calculated (15 to 34%). A better quantification of the explored depth is thus 

necessary, and could be determined experimentally by the stereo pairs method [32,33], or by 

combining TEM and SEM observations of the same sample. Picard et al. [34] simulated ECCI images 

as a function of the explored thickness. A comparison between simulated and experimental images 

could help to specify the explored volume for this orientation. Moreover, the data treatment procedure 

could be improved by taking into account the nature of the Kikuchi bands crossed, which is 

theoretically possible as each intensity profile is a signature of the orientation [19]. 
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This measurement error affects the mechanical properties, which depend on the dislocation density. 

Blaizot et al.[35] provided an expression of the yield strength, proportional to √𝜌0, where 𝜌0 is the 

initial density, which implies that a measurement error of 10% on the dislocation density, for an 

undeformed material, changes the yield strength by ±5%. For a material with a dislocation density 

close to 1014 m−2, where the measurement error on the density is 20%, the calculated yield strength 

will have an error of ±10%. 

Future studies will be conducted to determine the place of this method in relation to other techniques 

used to obtain dislocation density measurements such as TEM, DRX, or EBSD. Eventually, the 

combination of this detection method and the eCHORD technology could be applied for the 

simultaneous characterization of several undeformed or deformed alloy grains, simultaneously 

characterizing their orientation, dislocation density, and nature. 

Conclusion 

In this study, an approach to measure dislocation density in deformed materials was presented along 

with the measurement uncertainty induced by the method. Using a data-classification algorithm based 

on a local average of the grain around the analyzed pixel, it became possible to obtain a quantitative 

measure of the dislocation density in a deformed sample without knowing the grain orientation. 

Moreover, from the imaging data, it was possible to calculate the measurement uncertainties of this 

method. 

The ranges of densities that can be reached are on the order of 1010 m−2 for semiconductors and can 

increase to 1014 m−2 for steels. The main sources of error are the explored volume and the 

superposition of dislocations. It was also possible to determine the evolution of the error caused by the 

superposition of dislocations as well as that originating from the apparent thickness of dislocations 

present in the images. The uncertainty of measurement for these last two points is 27% at most on the 

highest densities characterizable using this method. This uncertainty does not consider the error made 

on the analyzed volume. Indeed, a change in the value of 𝜉𝑔 can lead to errors on the analyzed volume 

of 20 to 70%. However, when comparing different deformed states of the same material acquired in 

the same experimental conditions, the experimental uncertainty in the density evolution shall be the 

one that we estimated during this study. 

In summary, the R-ECCI method coupled with clustering enabled characterization of the dislocation 

densities in a material, specifically in a deformed material with the presence of local disorientation. 

The method is relevant for the study of heterogeneous microstructures that require imaging but also 

for multiphase materials. Jo
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Objective of the paper 

Present dislocation density measurable using ECCImages and the automatic detection tool presented in 

Cazottes et al. 2019 and the corresponding measurement uncertainty 

Highlights: 

 A new method for automatic characterization of the dislocation density by SEM is presented. 

 The R-ECCI method and clustering are discussed. 

 The measurement error of the dislocation density measurement by the R-ECCI method and 

clustering is estimated. 
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