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Models of topological barriers and molecular motors of bacterial DNA 

Bacterial genomes are partitioned into kilobases long domains that are 

topologically independent from each other, meaning that change of DNA 

superhelicity in one domain does not propagate to neighbours. This is made 

possible by proteins like the LacI repressor, which behave like topological 

barriers and block the diffusion of torsion along the DNA. Other proteins, like 

DNA gyrases and RNA polymerases, called molecular motors, use the energy 

released by the hydrolysis of ATP to apply forces and/or torques to the DNA and 

modify its superhelicity. Here, we report on simulation work aimed at 

enlightening the interplay between DNA supercoiling, topological barriers, and 

molecular motors. To this end, we developed a coarse-grained Hamiltonian 

model of topological barriers and a model of molecular motors and investigated 

their properties through Brownian dynamics simulations. We discuss their 

influence on the contact map of a model nucleoid and the steady state values of 

twist and writhe in the DNA. These coarse-grained models, which are able to 

predict the dynamics of plectonemes depending on the position of topological 

barriers and molecular motors, should prove helpful to back up experimental 

efforts, like the development of Chromosome Conformation Capture techniques, 

and decipher the organisational mechanisms of bacterial chromosomes. 

Keywords: bacterial nucleoid; DNA supercoiling; topological barrier; molecular 

motor; coarse-grained model. 

1. Introduction 

The chromosomal DNA of bacteria is folded into a compact body called the nucleoid 

[1,2], which is composed essentially of DNA (≈80%), RNA (≈10%), a dozen of major 

nucleoid proteins (≈10%) [3], DNA polymerases, RNA polymerase, and about hundred 

species of transcription factors. In contrast with the nucleus of eukaryotic cells, the 

nucleoid is not enclosed in a membrane, but it still occupies only part of the cell volume 

[1,2]. The bacterial chromosome itself is organized into independent topological 

domains, whose torsional state is not affected by the torsional state of neighbouring 

domains [4,5]. For example, the genome of E. coli is composed of several hundred 

topological domains with average size ≈10000 base pairs (bp) [6]. Organization of the 

DNA into independent domains is made possible by proteins, which behave like 
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topological barriers and block the diffusion of torsional stress along the DNA. Proteins 

capable of acting as topological barriers include (i) actively transcribing RNA 

polymerases [7-9] and (ii) certain DNA-bridging nucleoid proteins, like pairs of LacI 

repressor [10-13], which form DNA loops that are topologically isolated from the rest 

of the chromosome [10,14-16]. In a recent work [17], we determined under which 

conditions DNA-bridging proteins may act as topological barriers. To this end, we 

developed a coarse-grained bead-and-spring model and investigated its properties 

through Brownian dynamics simulations. We showed that proteins must block the 

diffusion of the excess of twist through the two binding sites on the DNA molecule and, 

simultaneously, prevent the rotation of one DNA segment relative to the other one [17]. 

Other proteins called molecular motors introduce activity in the DNA coil, that 

is, they use the energy released by the hydrolysis of ATP to apply forces and/or torques 

to the DNA molecule. For example, the constitutive level of DNA tension is in the 

range from 0.1 to 1.0 pN [18], but bursts of significantly larger forces arise from the 

action of DNA polymerases and RNA polymerases [19-21]. Moreover, alteration of the 

torsional state of bacterial circular DNA is mediated by the recruitment of 

topoisomerases, which can either increase or decrease the winding of the double helix 

[22]. The maximal value of superhelical density generated by DNA gyrases and RNA 

polymerases is of the order of 0.12σ = −  [23-25], that is, about 4 times the superhelical 

density of protein-bound DNA in living E. coli cells [26] and twice that of naked DNA 

in vitro [27]. 

In the present paper, we report on simulation work aimed at enlightening the 

interplay between DNA supercoiling, topological barriers, and active mechanisms. To 

this end, we revisited and extended the results of our recent work [17], where the role of 

activity was ignored, in spite of the fact that activity was (unwittingly) introduced at two 

different places. We first point out in Section 3.1 that a counter-intuitive result 

discussed in [17] was actually due to an erroneous symmetrisation in the expression of 

torsional forces, which introduced activity in the model and modified sensitively the 

final steady state reached by the system. We next propose in Section 3.2 a Hamiltonian 

model of topological barrier, which does not result in energy being injected into the 

DNA loop, in contrast with the model proposed in [17], and discuss the differences 

between the two models. Finally, we propose in Section 3.3 a model of molecular motor 

that exerts a constant torque on the DNA helix and study its effects on the contact map 

of the nucleoid. It is anticipated that simulations based on the models of topological 
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barrier and molecular motor proposed in the present paper may help in understanding 

and deciphering experimental results, like those obtained with Chromosome 

Conformation Capture set-ups [28]. 

2. Simulation details and methods 

2.1 DNA molecule 

The model of DNA molecules used in this work was described in the Supporting 

Material of [17]. It is summarized here briefly for the sake of completeness and clarity. 

Circular DNA molecules are modeled as circular chains of n beads ( 600n =  or 

2880=n ) with radius 1.0=a  nm separated at equilibrium by a distance 0 2.5l =  nm. 

Each bead represents 7.5 base pairs (bp), so that chains of 600 and 2880 beads represent 

a plasmid of 4500 bp and a longer DNA molecule of 21600 bp, respectively. The 

potential energy of the DNA molecule, DNAE , consists of four terms 
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describe the stretching, bending, torsional, and electrostatic energy of the DNA chain, 

respectively. sV , bV  eV  are expressed in terms of a set of vectors kr , which represent the 

position of bead k in the space-fixed frame, with the convention that + ≡k n kr r . In 

Equation (2), 1+= −
k k k

l r r  denotes the distance between successive beads k and 1k + . 
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In Equation (3), θk  denotes the angle between vectors 1+ −k kr r  and 2 1+ +−k kr r . Torsional 

energy tV  is instead expressed in terms of the rotation of body-fixed frames ( , , )k k ku f v , 

which are attached to each bead k. 1( ) /+= −k k k klu r r  denotes the unit vector pointing 

from bead k to bead 1k + , whereas kf  and kv  describe the rotation of the DNA helix 

perpendicular to ku . For example, it may be considered that kf  points towards the 

major groove. Angle kΦ  quantifies the rotation around ku  of 1 1( , )+ +k kf v  with respect to 

( , )k kf v , with the convention that +Φ ≡ Φk n k . 

 The stretching rigidity in Equation (2) was set to 2

B 0100 /=h k T l , where 295T =  

K, because this value ensures that the variations of the distance between successive 

beads remain small enough when reasonably large integration time steps are used [29]. 

The value of h is about 4 orders of magnitude smaller than real stretching force 

constants of the DNA backbone. In contrast, the bending rigidity in Equation (3) was 

deduced from the known persistence length of DNA, 50=ξ  nm, according to 

B 0 B/ 20ξ= =g k T l k T . The torsional contribution tV  in Equation (4) was borrowed 

from Reference [30] and torsion forces and momenta were computed as described 

therein, except where otherwise stated. The value of the torsional rigidity, 
B25 k Tτ = , 

ensures that the writhe contribution rW  accounts for approximately 2/3 of the linking 

number difference kL∆  at equilibrium [31], see Figure S1 of [17]. Finally, the 

electrostatic energy of the DNA chain is expressed as a sum of repulsive Debye-Hückel 

terms with hard core. Function ( )H r  in Equation (5) is defined according to 

 
1

( ) exp
4 D

r
H r

r rπε
 

= − 
 

, (6) 

where 
080ε ε=  denotes the dielectric constant of the buffer and 1.07Dr =  nm the Debye 

length inside the buffer. This value of the Debye length corresponds to a concentration 

of monovalent salt of 100 mM, which is the value that is generally assumed for the 

cytoplasm of bacterial cells. 3.52= −q e , where e  is the absolute charge of the 

electron, is the value of the electric charge, which is placed at the centre of each DNA 

bead. This value was deduced from Manning’s counterion condensation theory 

[17,32,33]. 
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2.2 Cell membrane 

The longer DNA chain with 2880=n  beads is enclosed in a confinement sphere of 

radius 1200 =R  nm. The contour length of the DNA chain and the volume of the 

confinement sphere correspond approximately to 1/200th of their values in E. coli cells, 

so that the DNA base pair concentration of the model is close to the physiological value 

(about 10 mM). The confinement energy wallE  is expressed in the form 
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where the repulsive force constant ζ was set to 1000 Bk T  and the function ( )f r  is 

defined according to 
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2.3 Langevin equations 

The dynamics of the system was investigated by integrating numerically overdamped 

Langevin equations. Practically, the updated positions and torsion angles at time step 

i+1 were computed from the positions and torsion angles at time step i according to 
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where the ( )i

k
f  are vectors of inter-particle forces arising from the total potential energy 

of the system, 298T =  K is the temperature of the system, ( )i

k
x  and ( )i

k
X  are vectors of 

random numbers extracted from a Gaussian distribution of mean 0 and variance 1, 

0.00089η = Pa s is the viscosity of the buffer at 298 K, and 10t∆ =  ps is the integration 

time step. 



7 

2.4 Topological barrier 

In [17], we determined under which conditions a protein that bridges beads α and β of a 

circular DNA chain may work as a topological barrier [10-13]. More precisely, the goal 

was to determine which constraints the protein must exert on these beads in order to 

separate the DNA chain into two topologically independent loops. A diagram of the 

DNA chain in the neighbourhood of beads α and β is shown in Figure 1. The DNA 

chain is formally divided into two segments, namely segment 1=S , which extends 

from bead α to bead β and is shown in green, and segment 2=S , which extends from 

bead β to bead α (through beads n and 1) and is shown in red. It was found in [17] that 

the protein must block the diffusion of the excess of twist through beads α and β and, 

simultaneously, prevent the rotation of segment ( 1, , 1)α α α− +  relative to segment 

( 1, , 1)β β β− + . This was achieved in [17] by introducing a potential energy term BPE , 

which mimics the action of the protein on the two binding sites, 

 
0 2 2 2 2

BP

5 5 5 2
( ) ( ) ( ) ( )

2 2 2 2 2 2 3
αβ αβ α β αβ

π π πξ ξ ψ= − + − + − + −h g g g
E d d , (11) 

and imposing that αf  and βf  remain perpendicular to αβ β α= −r r r  at all times, that is 

 . . 0α αβ β αβ= =f r f r . (12) 

In Equation (11), dαβ  denotes the distance between the centres of beads α and β. The 

value 
0 4dαβ =  nm is small enough to ensure that no DNA segment can cross the line 

between α and β, which is formally occupied by the DNA bridging protein [17]. In the 

same equation, αβψ  denotes the angle between vectors αu  and βu  (see Figure 1), so 

that the last term in the right-hand side of Equation (11) restricts strongly the amplitude 

of the rotation of the DNA segment containing bead α with respect to the DNA segment 

containing bead β. 

 In [17], the requirement of Equation (12) was fulfilled by computing, after each 

integration step, the angles 
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for ,k α β= , and rotating kf  and kv  around ku  by kδ  

 
cos sin

sin cos

δ δ
δ δ

→ +
→ − +

k k k k k

k k k k k

f f v

v f v
 (14) 

for ,k α β= . The angles kδ  in Equation (13) and the corrections in Equation (14) 

remain small if αβr  is not perpendicular simultaneously to kf  and kv , that is, if vectors 

αβr  and ku  ( ,k α β= ) are not collinear. It is precisely the role of the second and third 

term in the right-hand side of Equation (11) to prevent such collinearity. αξ  denotes the 

angle between vectors αβ−r  and αu  and βξ  the angle between vectors αβr  and βu  (see 

Figure 1). These two terms consequently ensure that αξ  and βξ  deviate only moderately 

from / 2π , so that αβr  and the ku  remain far from collinearity. 

2.5 Computation of the excess of twist and the writhe 

The excess of twist 
( )w S

T∆ , the writhe 
( )r S

W  and the linking number difference ( )k S
L∆  

are computed for each segment S comprised between beads mink  and maxk  according to 
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whereas the inter-segment writhe 
(1,2)rW  resulting from the entanglement of the two 

segments is computed according to 
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The total excess of twist wT∆ , the total writhe rW , the total linking number difference 

kL∆ , and the superhelical density σ of the DNA chain are subsequently obtained from 
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 (1) (2)w= w w∆ ∆ + ∆T T T  (19) 

 (1) (2) (1,2)r r r r= + +W W W W  (20) 

 (1) (2) (1,2)k= w+Wr= k k r∆ ∆ ∆ + ∆ +L T L L W  (21) 

 
10.5 k

7.5
σ ∆= L

n
 (22) 

3. Results and discussion 

3.1 Effect of asymmetric torsional forces 

In order for the two loops extending on both sides of beads α and β (segments 1 and 2) 

to be topologically independent, the protein that bridges beads α and β must block the 

diffusion of wT∆  through the two beads and prevent the rotation of the segment centred 

on α relative to the segment centred on β [17]. If the second condition is not fulfilled, 

that is, if the effect of the DNA-bridging protein is modelled by Equations (12)-(14) and 

 
0 2 2 2

BP

5 5
( ) ( ) ( )

2 2 2 2 2
αβ αβ α β

π πξ ξ= − + − + −h g g
E d d  (23) 

instead of Equation (11), then (2) (1)k k∆ − ∆L L  remains constant along the trajectory, but 

(1)k∆L , (2)k∆L  and (1,2)rW  do vary, which indicates that the two loops are not 

topologically independent from each other (Figure 4 of [17]). 

More surprisingly, it was additionally found in [17] that, if the second condition 

is not fulfilled, then at long times (1) (2)r r 0+ →W W  (or equivalently (1,2)r r→W W ), 

meaning that the entanglement of the two loops accounts for all the writhe of the DNA 

chain (Figure 4b of [17]). Very compact conformations with highly entangled DNA 

loops were accordingly observed (Figure 3b of [17]). We were unable to propose a 

rationale for this latter result [17]. Recently, we however noticed that a term was 

inappropriately symmetrised in the code used in [17] and that an error was consequently 

introduced in the computation of torsional forces. More precisely, according to 

Equations (A26) and (A27) of [30], the component of the torsional force acting on bead 

i must be computed according to 
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 1 1 1 1 1 1
( ) ( ) ( ) ( )

τ
+ + + +

− − − − − −= + + + − + − +ti
i i i i i i i i i i i i

F F V V F F V V
F

f v f v , (24) 

whereas we mistakenly used 

 1 1 1 1 1 1
( ) ( ) ( ) ( )

τ
+ + + +
+ + − − − −= + + + − + − +ti

i i i i i i i i i i i i
F F V V F F V V

F
f v f v  (25) 

(see [30] for the meaning of the various symbols). If Equation (25) is used instead of 

Equation (24), then the sum of all torsional forces exerted on the DNA chain is still 

zero, but the force exerted by bead i on bead 1+i  is no longer equal to minus the force 

exerted by bead 1+i  on bead i. We checked that the net result of this asymmetry is that 

plectonemes travel at nearly constant speed along the DNA chain. This is clearly seen in 

Movie 1 of the Supplemental Material, which shows the time evolution of the contact 

map of the DNA chain with 2880=n  beads enclosed in the confinement sphere and 

submitted to a torsional constraint k = 132∆ −L  ( = 0.064σ − ), when no protein bridges 

beads α and β and Equation (25) is used instead of Equation (24). It was considered that 

two DNA beads are in contact if their centres are separated by less than 10 nm. Each 

frame of Movie 1 shows the probability density for beads i (abscissa) and j (ordinate) to 

be in contact, and the movie shows the evolution of this map over a time window of 20 

ms. Lines of increased contact probability perpendicular to the main diagonal of the 

map denote plectonemes. Movie 1 indicates that the plectonemes travel (slither) through 

the whole DNA chain in about 20 ms, that is, at a speed of roughly 1000 bp/ms. In 

contrast, if (correct) Equation (24) is used instead of (incorrect) Equation (25), then 

plectonemes fluctuate around their current position for long times, as can be checked in 

Movie 2 of the Supplemental Material, which shows the evolution of the contact map 

over a time window of 40 ms when Equation 24 is used. 

 Breaking the symmetry of torsional forces by using Equation (25) instead of 

Equation (24) clearly introduces activity in the model, which manifests itself through 

the slithering of plectonemes along naked DNA chains. Moreover, asymmetry of 

torsional forces is also responsible for the puzzling limit (1,2)r r→W W  reported in [17]. 

This point was ascertained by running simulations using the correct expression for 

torsional forces in Equation (24) and involving DNA-bridging proteins described by 

Equations (12)-(14) and (23). These simulations confirm the result of [17] that such 

proteins fail to divide the DNA chain into two topologically independent loops, because 
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(1)k∆L  and (2)k∆L  do not remain constant along the trajectories, in spite of the fact that 

(2) (1)k k∆ − ∆L L  does. However, the puzzling limit (1,2)r r→W W  of [17] no longer holds 

true. This is illustrated in Figure 2, which shows the result of a simulation performed 

with the DNA chain with 600=n  beads submitted to a torsional constraint k 7∆ ≈ −L  (

0.016σ ≈ − ). At time 0=t , when the bond between beads α and β is formed and the 

diffusion of twist through the two beads is blocked, the torsional constraint is essentially 

localized in segment 2 ( (2)k 7∆ ≈ −L  against (1)k 1∆ ≈L ). Figure 2 indicates that (1)k∆L , 

(2)k∆L , (1)rW , (2)rW  and (1,2)rW  fluctuate only moderately around their initial values. In 

particular, the inter-segment writhe (1,2)rW  remains small compared to the intra-segment 

write (1) (2)r rW W+ , so that (1) (2)r r rW W W≈ + , in strong contrast with the results in [17]. 

Moreover, the amplitude and the frequency of occurrence of the fluctuations of (1)k∆L , 

(2)k∆L  and (1,2)rW  away from their initial values are larger for moderate values of k∆L  

than for larger values of k∆L , the reason being that tight plectonemes are quite 

efficient in blocking the rotation of the DNA segment containing bead α with respect to 

the segment containing bead β and in preventing the entanglement of the two loops. 

3.2 Hamiltonian model of topological barrier 

Simulations involving DNA-bridging proteins acting as topological barriers (Equations 

(11)-(14)) and using the correct expression for torsional forces (Equation (24)) still 

display an unexpected feature that deserves closer scrutiny. This feature is illustrated in 

Figure 3a, which shows a snapshot extracted from a simulation performed with the 

DNA chain with 600=n  beads submitted to a torsional constraint k 23∆ ≈ −L  (

0.054σ ≈ − ). At time 0=t , the torsional constraint is localized in segment 2 (

(2)k 23∆ ≈ −L  against (1)k 0∆ ≈L ). Because of the DNA-bridging protein acting as a 

topological barrier, (1)k∆L  and (2)k∆L  do not vary along the trajectory, in spite of the 

strong unbalance in the linking number differences. Segment 1 (in green in Figure 3a) 

nevertheless displays a rather complex geometry, which is quite unexpected owing to 

the fact that (1)k 0∆ ≈L . Closer examination of the data indicates that the reason for this 

complex geometry is that (1)w∆T  evolves in a few tens of microseconds from ≈0 to ≈2 

and (1)rW  from ≈0 to ≈−2, while preserving a vanishing sum (

(1) (1) (1)w r k 0∆ + = ∆ ≈T W L ). After the rapid initial evolution, (1)w∆T  and (1)rW  



12 

oscillate around nearly opposite values. In contrast, (2)w∆T  remains close to −8 and 

(2)rW  close to −15 throughout the trajectory. At this point, it is worth remembering that, 

at thermodynamic equilibrium, the excess of twist and the writhe account for about one 

third and two thirds of the linking number difference, respectively [17,31]. In Figure 3a, 

segment 2 (red) is therefore at (or close to) equilibrium, whereas segment 1 (green) is 

instead far from equilibrium. All the simulations we performed display this non-

equilibrium feature for the segment with ( )k 0∆ ≈S
L , the effect being all the more 

pronounced for larger values of 
(2) (1)k k∆ − ∆L L . 

Non-equilibrium in the segment with ( )k 0∆ ≈S
L  is due to the fact that the 

condition in Equation (12) and its fulfilment through Equations (13) and (14) are non-

Hamiltonian and therefore do not warrant energy conservation. The second and third 

terms in Equation (11) ensure that the correction introduced in the system by the use of 

Equations (13) and (14) is small at each time step, but do not provide any warranty 

concerning the evolution over long time intervals and many time steps. We checked that 

the two segments remain at thermodynamic equilibrium if (1) (2)k k∆ = ∆L L , which 

means that the effects of successive corrections cancel each other. However, for non-

vanishing values of 
(2) (1)k k∆ − ∆L L , the effects of successive corrections clearly add 

up and maintain the segment with ( )k 0∆ ≈S
L  out of thermodynamic equilibrium. Stated 

in other words, Equations (12)-(14) describe an active process with injection of energy 

in the system. 

Some proteins that are candidates for stabilizing supercoiled domains in 

bacterial chromosomes, like the E. coli and Salmonella MukBEF complex [34], are 

molecular motors which hydrolyse ATP [35]. It has been suggested that the energy 

generated by the MukBEF ATPase unit is used, like in ABC transporters [36] and the 

SMC-like protein Rad50 [37], to cause a massive transversal motion within the protein 

complex, for example by tilting the coiled arms of the complex [34]. It is probable that 

this motion breaks the thermodynamic equilibrium, as does the injection of energy in 

the model described by Equations (11)-(14). At present, there is of course no indication 

that Equations (11)-(14) may describe the MukBEF complex adequately and further 

work would be needed to model such energy-consuming topological barriers. Still, the 

model of Equations (11)-(14) highlights the interesting possibility that active 

topological barriers, in addition to isolating domains with different superhelicity, may 
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also modify their contact maps by breaking the thermodynamic equilibrium, thereby 

producing for example more entangled structures. 

Other proteins, like pairs of LacI repressors [10-13], are however passive 

systems, which do not consume energy and cannot be described by Equations (11)-(14). 

A Hamiltonian model of topological barriers is therefore required to describe these 

proteins. In order to find one, we scrutinized several models that hopefully block the 

diffusion of twist. It turned out, that one of these models works perfectly as a 

topological barrier and is nonetheless quite simple. According to this model, the effect 

of the protein bridging beads α and β is described by 

 BP ( . . )α β α β= +E K f f v v , (26) 

meaning that the protein strives to maintain vectors αf  and βf  (as well as vectors αv  

and βv ) anti-parallel. This mechanism is sufficient to block the diffusion of twist 

through beads α and β and replaces the non-Hamiltonian constraint in Equations (12)-

(14). What was not clear a priori is whether the potential function in Equation (26) is 

also able to block the rotation of the two DNA segments relative to each other. We 

checked that this is indeed the case (see below). Setting K to 
B125 k T , that is 5 times the 

torsional rigidity τ, worked fine for all the simulations we ran. 

Using Equation (A21) of [30], according to which 

 δ ( .δ ) (δ )= − + Φ
k k k k k k

f f u u v , (27) 

 δ ( .δ ) (δ )= − − Φ
k k k k k k

v v u u f , (28) 

the contributions of BPE  to the torque k
T  and force k

F  felt by bead k write 

 : ( . . )α α β α β+ −T K f v v f , (29) 

 : ( . . )β α β α β− −T K f v v f , (30) 

 : ( . ) ( . )α α β α α β α
α α

− −K K

l l
F u f f u v v , (31) 
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 1 : ( . ) ( . )α α β α α β α
α α

+ + +K K

l l
F u f f u v v , (32) 

 : ( . ) ( . )β α β β α β β
β β

− −K K

l l
F f u f v u v , (33) 

 1
: ( . ) ( . )β α β β α β β

β β
+ + +K K

l l
F f u f v u v , (34) 

Figure 4 shows the result of a simulation performed with the same initial 

conditions as Figure 2, but with the DNA-bridging protein being described by Equation 

(26) instead of Equations (12)-(14) and (23). It is seen in this figure that (1)k∆L , (2)k∆L  

and (1,2)rW  remain constant along the trajectory, meaning that Equation (26) describes 

an effective topological barrier, like Equations (11)-(14). However, unlike the model in 

Equations (11)-(14), both segments remain at thermodynamic equilibrium throughout 

the trajectory. This is illustrated in Figure 3b, which shows a snapshot extracted from a 

simulation with the same initial conditions as in Figure 3a, but with the DNA-bridging 

protein being modelled by Equation (26) instead of Equations (11)-(14). From the 

torsional point of view, segment 1 (green) looks much more relaxed in Figure 3b than in 

Figure 3a, and the simulation confirms that 
(1) (1)r 0.62 kW L≈ ∆ , as expected for a loop of 

this length at thermodynamic equilibrium. For comparison, we instead obtained 

(1) (1)r 6.70 kW L≈ − ∆  for the model in Equations (11)-(14). 

Equation (26), together with the expression of torques and forces in Equations 

(27)-(34), consequently provides a simple but efficient model of DNA-bridging proteins 

acting as passive (Hamiltonian) topological barriers. 

3.3 Model of molecular motor 

It was shown in Section 3.1 that the use of Equation (25) for computing torsional forces 

introduces activity in the system, which results in plectonemes travelling monotonously 

along the DNA chain. Equation (25) can however not be considered as a model of 

molecular motor, because Equation (25) was applied to all the beads of the DNA chain, 

whereas a model of molecular motor should involve only the few beads to which the 

motor binds. A local model of molecular motor is described below and the resulting 

dynamics of the DNA chain is discussed. 
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Equation (25) of Reference [30], wherefrom the description of DNA torsion was 

borrowed, indicates that the vector ( 1)+i
k

f  of the local basis at bead k and time step 1+i  

must be computed from the local basis at bead k and time step i according to 

 ( 1) ( ) ( 1) ( ) ( ) ( ) ( 1) ( )( ) ( . )+ + += + Φ − Φ −i i i i i i i i

k k k k k k k k
f f v f u u . (35) 

The component of ( 1)+i
k

f  parallel to ( 1)+i
k

u  is then deleted and ( 1)+i
k

f  is renormalized. 

Vector ( 1)+i
k

v  is finally obtained from the direct product 

 ( 1) ( 1) ( 1)+ + += ×i i i

k k k
v u f . (36) 

Equations (35) and (36) describe the time evolution of the angular state of the slice of 

the DNA helix perpendicular to k
u  at bead k. Modifying Equation (35) provides a 

simple way to model the action of molecular motors which modify the torsional state of 

the DNA helix. For example, the action of transcribing RNA-polymerases, which track 

the major groove of the DNA [38], thereby over-winding it downstream and under-

winding it upstream [39], can be modelled by computing the new vector 
( 1)

γ
+i

f  at bead γ 

(where the RNA polymerase binds) according to 

 
( 1) ( ) ( 1) ( ) ( ) ( ) ( 1) ( )( ) ( . )γ γ γ γ γ γ γ γ

+ + += + Φ − Φ + ∆Φ −i i i i i i i i
f f v f u u , (37) 

instead of Equation (35). Since the motion of most molecular motors along the DNA 

(around 40 bp/s for RNA polymerase [40]) is slow compared to the relaxation of twist 

(characteristic relaxation time of ≈ 1 µs for this model [17]) and writhe (characteristic 

relaxation time of ≈ 200 µs for this model [17])), γ can be taken as a constant for most 

purposes, although it may be assumed to be a function of time whenever needed. The 

molecular motor described by Equation (37) exerts a torque of vector 
( )

γ
i

u  and 

magnitude τ ∆Φ  at bead γ, which tends to increase continuously the twist on one side 

and decrease it on the other side, while leaving the linking number difference unaffected 

(see the bottom plot of Figure 5). In order to speed up calculations, simulations were run 

with 0.001∆Φ =  rad, that is, a torque of about 100 pN.nm, which is roughly 5 to 10 

times larger than the torque exerted by RNA polymerase on its substrate [41,42]. 
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Movie 3 of the Supplemental Material shows the time evolution of the contact 

map of the DNA chain with 2880=n  beads enclosed in the confinement sphere and 

submitted to a torsional constraint k = 132∆ −L  ( = 0.064σ − ) in the absence of any 

topological barrier, but with a molecular motor described by Equation (37) binding to 

bead = 720γ . Movie 3 encompasses a total time window of 110 ms and the position of 

the molecular motor is indicated by green dashed lines. This movie indicates that the 

activity of the molecular motor triggers the reorganisation of the DNA from branched 

plectonemes to a single long plectoneme with the motor located close to one apex. 

Closer examination of the results reveals that the total number of supercoils remains 

nearly constant during the reorganisation of the plectonemes. Indeed, rW  varies only 

slightly from ≈-92 to ≈-96 (see the middle plot of Figure 5), which is exactly 

compensated by a modest increase of the excess of twist from ≈-40 up to ≈-36 (see the 

top plot of Figure 5). Stated in other words, the continuous diffusion of twist generated 

by the molecular motor and the subsequent local interconversion from twist to writhe 

provoke a global reorganisation of the plectonemes but do not affect sensitively the ratio 

of writhe and twist. 

Finally, Movie 4 of the Supplemental Material shows the time evolution over a 

total time window of 105 ms of the contact map of the DNA chain obtained from a 

simulation performed with both a topological barrier described by Equation (26) and a 

molecular motor described by Equation (37). As in Movie 3, the molecular motor binds 

to bead = 720γ  of the DNA chain and its position is indicated by green dashed lines. 

The protein acting as a topological barrier bridges beads =1α  and =1441β , the position 

of bead β being indicated by red dashed lines. The red lines divide each frame of Movie 

4 into four quadrants, the bottom left quadrant showing the contacts inside segment 1 

(which contains the molecular motor), the top right quadrant the contacts inside segment 

2, and the two other quadrants the contacts between segments 1 and 2. Clearly, the 

dynamics of the plectonemes in segment 2 resembles the dynamics of the plectonemes 

in Movie 2, meaning that the molecular motor in segment 1 does not affect the 

fluctuations of the plectonemes around their current position in segment 2. Conversely, 

the fact that beads α and β block the diffusion of twist does not hinder the formation in 

segment 1 of a long plectoneme with the motor close to one apex, like in Movie 3. The 

passive (Hamiltonian) topological barrier described by Equation (26) is consequently 

able to separate a DNA chain into two loops with very different properties, namely a 
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loop containing a molecular motor which promotes the formation of a single long 

plectoneme and a second loop containing shorter plectonemes which essentially 

fluctuate around their current position. 

4. Conclusion 

The introduction of Chromosome Conformation Capture (3C) techniques two decades 

ago [28,43] prompted an unprecedented effort to investigate DNA folding and 

understand its connections with chromosome functions. In particular, these techniques 

have shown that the genome of many species is organized into domains of preferential 

internal contacts, which are called “topologically associating domains” (TADs) [44]. 

TADs appear as a feature common to most organisms, although they display a great 

diversity in size, structure and mechanism of formation [44]. 3C techniques have 

evolved to the point where (a) cell-to-cell variability in the structure of the genome can 

be investigated [45,46], (b) contacts can be imaged at a resolution better than 1000 bp 

[47], and (c) measuring the time evolution of contact maps might be feasible shortly 

[48]. Coarse-grained models proved helpful to back up these revolutionary experimental 

efforts [49]. For example, the relative accuracy of three different experimental methods, 

Hi-C, GAM and SPRITE, has recently been questioned using the coarse-grained SBS 

model [50]. 

Studies performed in C. crescentus [51] and B. subtilis [52,53] have shown that 

the genome of prokaryotes is spatially organized into Chromosomal Interaction 

Domains (CIDs) ranging from 30 to 400 kbp, which resemble the TADs of eukaryotic 

cells. Moreover, regions enriched in plectonemes probably form CIDs, whereas 

boundaries between CIDs are essentially free of plectonemes [51]. Further studies 

performed in M. pneumoniae confirmed that the sharpness of CIDs depends on 

supercoiling [54]. It may therefore be safely anticipated, that coarse-grained models like 

those proposed in the present work, which are able to predict the dynamics of 

plectonemes depending on the position of topological barriers and molecular motors, 

will also prove helpful to decipher the organisational mechanisms of bacterial 

chromosomes. 
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Figure captions 

Figure 1. Diagram showing the DNA chain in the neighbourhood of beads α and β and 

illustrating the definition of the various symbols. 

 

Figure 2. Time evolution of the writhe (top plot) and linking number difference (bottom 

plot) for a simulation performed with the DNA chain with 600 beads at k = 7∆ −L  (

= 0.016σ − ) and a protein modelled by Equations (12)-(14) and (23). 

 

Figure 3. Representative snapshots extracted from simulations performed with the DNA 

chain with 600 beads at k 23∆ ≈ −L  ( 0.054σ ≈ − ) and a topological barrier modelled by 

(a) Equations (11)-(14), or (b) Equation (26). 

 

Figure 4. Time evolution of the writhe (top plot) and linking number difference (bottom 

plot) for a simulation performed with the DNA chain with 600 beads at k = 7∆ −L  (

= 0.016σ − ) and a topological barrier modelled by Equation (26). 

 

Figure 5. Time evolution of the excess of twist (top plot), writhe (middle plot) and 

linking number difference (bottom plot) for a simulation performed with the DNA chain 

with 2880 beads at k = 132L∆ −  ( = 0.064σ − ) when a molecular motor described by 

Equation (37) comes into operation at time =0t . 
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