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Résumé
Le contrôle d’un robot inspiré du cou d’un oiseau est proposé. Le système est composé de joints anti-
parallélogrammes [1] assemblés les uns sur les autres et entraînés par des câbles de chaque côté. Le
nombre d’articulations et le nombre de câbles sont choisis de manière à ce que le robot soit à la fois
redondant (il y a plus d’articulations que nécessaire pour contrôler la position et l’orientation de l’effec-
teur du robot dans le plan) et sous-actionné (il y a plus d’articulations que de degrés de liberté pouvant
être contrôlés par actionnement, l’un de ces degrés de liberté étant utilisé pour la tension des câbles).
Des problèmes similaires peuvent également être rencontrés avec les robots continus [2]. Cependant,
les lois de contrôle proposées dans ce domaine sont principalement basées sur la statique du robot. En
revanche, la loi de commande proposée dans cet article est basée sur la dynamique du robot.

La dynamique du robot peut être exprimée par 2 équations : d’une part, les équations de Lagrange re-
lient l’accélération des coordonnées de l’espace articulaire à la tension dans les câbles, d’autre part, le
principe fondamental de la dynamique relie l’accélération des moteurs à la tension dans les câbles et
aux couples appliqués dans les moteurs. La loi de commande proposée utilise ces deux équations dyna-
miques pour produire un mouvement dans l’espace opérationnel avec un asservissement dans l’espace
opérationnel et dans l’espace moteur.

Abstract

The control of a robot inspired from a bird neck is proposed. The system is composed of anti-parallelogram
joints [1] assembled on top of each other and driven by cables on each side. The number of joints and the
number of cables is chosen such that the robot is both redundant (there are more joints than necessary
to control the position and orientation of the robot end effector in the plane) and underactuated (there
are more joints than degrees of freedom that can be controlled by actuation, with one of these degrees
of freedom being used for tension in the cables). Similar problems can also be found with continuous
robots [2]. However, the control laws proposed in this domain are mainly based on the statics of the
robot. In contrast, the control law proposed in this paper is based on the dynamics of the robot.

The dynamics of the robot can be expressed by two equations : on the one hand, the Lagrange equations
link the acceleration of the joint space coordinates to the tension in the cables, on the other hand, the
fundamental principle of dynamics links the acceleration of the motors to the tension in the cables and
to the torques applied in the motors. The proposed control law uses these two dynamic equations to
produce a motion in the operational space with a servoing in the operational space and in the motor
space.
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1 Introduction
The bird neck is known to be very dextrous and acts for the bird like an arm for human : it uses it to
move and carry object with its beak to hold it. The neck of some birds, such as the woodpecker, can
also produce high-speed movements. In this study, a planar tensegrity structure is used to model the bird
neck. A tensegrity structure is composed of solid compressive elements (e.g. bars) and flexible tensile
elements (e.g. cables or springs) that are assembled such that the structure is in a stable equilibrium [3].
An assembly of anti-parallelogram joints [4] actuated by two cables, derived from the Snelson X-shape
mechanism [5], is used to model the bird neck. This joint, referred to as X-joint, models the joint between
two successive vertebrae. The vertebrae are defined by the upper bars of the X-joints. The bottom bar
of a given X-joint is coincident with the upper bar of the preceding X-joint. The upper bar is moved by
two tendons attached at its extremities and that pulls it in two opposite directions. Springs are added in
parallel of the cables such that the system has a stable equilibrium position without tension in the cables.
The X-joint configuration can be modified through input forces applied in the cables.

Figure 1 – Schematic of a tensegrity robot with 6 X-joints (black) and 4 cables (purple, blue, red,
yellow).

In this study, a mechanism composed of exactly four cables actuated by four motors and at least four
X-joints is used. One cable is used to actuate all the mechanisms on one side while the three others ac-
tuate one or several successive X-joints on the other side. Therefore, several X-joints will be actuated by
the same cables (an example is presented in Figure 1). This cable routing is also inspired from the bird
neck that has muscles connected to several vertebrae and notably a ventral muscle connected to all the
vertebrae in several species. Thus, the tensegrity robot at hand is under-actuated. Since all input forces
must be positive (cables cannot push), only 3 degrees of freedom can be controlled with 4 cables. Regar-
ding the kinematic model between joint space and operational space, this model is therefore redundant
since there are more than 3 joints. We propose a control law using the dynamics the robot. The dynamic
equations are separated between those driving the manipulator structure and those driving the motors.
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Figure 2 – Left : representation of the X-joint (in black) actuated by cables (in grey) in parallel with
springs (in orange). Right : representation of the motor (in black) pulling the cable (in grey) through a
winch

2 Kinematic modelling
All the X-joints have the same dimensions : the length of bottom and top bars is b and the length of
the crossed bars is L (with the assembly condition b ≤ L). The orientation angles ϕi and ψi of each
crossed bars (Figure 2) can be calculated as functions of the top bar orientation angle αi as shown in
[6]. Therefore, the configuration of each X-joint is only defined by its angle αi.

We define the space of the orientation angles αi, i = 1, .., N of theN X-joints as the joint space and we
define the space of the positions (x, y) and orientations γ of the end effector as the operational space.
The relationships between the operational space X = (x, y, γ) and the joint space can be written as [7] :

X = fX(α)

Ẋ = JXα̇

Ẍ = JXα̈+ J̇Xα̇

(1)

Finally, we define the space of the motor positions θi as the actuation space. Each motor position θi is
linked to the unwound cable length li by :

θi =
rg
Rd

li (2)

Where Rd is the radius of the winch drum and rg is the motor gear ratio. The length of a cable can
be computed as fonction of the angle α as presented in [6]. Therefore, if the cables are inelastic, the
position, velocity and accelerations of the actuation space can be computed from the joint space :

θ = fθ(α)

θ̇ = Jθα̇

θ̈ = Jθα̈+ J̇θα̇

(3)
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3 Dynamic modelling
The Lagrange equations allows us to compute the dynamic model of our robot [8] :

d

dt

(
∂T

∂α̇

)
− ∂T

∂α
+
∂V

∂α
= Γ (4)

Where T is the kinetic energy, V the potential energy and Γ the generalized efforts.

After taking into account frictions, the Lagrange equations can be rewritten as follows (see [9], [10] for
more details) :

Ms
αα̈+ cs(α̇,α) + g(α) = Z (tc − frc)− Γrα (5)

Where Ms
α is the inertia matrix of the structure, cs(α̇,α) are the Coriolis and centripetal effects, g(α)

corresponds to the effect of the gravity and the effect of the springs in parallel of the cables, Z is aN×4

matrix linked to Jθ by Z = − rg
Rd
J⊤
θ , tc are the tension in the cables, frc are the friction in the cables

and Γrα are the resistive torques produced by friction in the X-joints.

The dynamics of one motor (Figure 2, right) can be derived using the fundamental principle of the
dynamics :

Iθθ̈i = Γim − Γirθ +
Rd
rg
tic (6)

Where Iθ is the equivalent inertia resulting from the inertia of the motor, the inertia of the gear and the
inertia of the drum. Γim is the motor torque, Γirθ is the friction in the motor and tic is the tension of the
cable attached to the motor.

The dynamic of all the motors, which are identical, can be collected into one equation :

Mm
θ θ̈ = Γm − Γrθ +

Rd
rg

tc (7)

WhereMm
θ = diag(Iθ),Γm = [Γ1

m,Γ
2
m,Γ

3
m,Γ

4
m]

⊤,Γrθ = [Γ1
rθ,Γ

2
rθ,Γ

3
rθ,Γ

4
rθ]

⊤ and tc = [t1c , t
2
c , t

3
c , t

4
c ]
⊤.

4 Proposed control law

4.1 Computed torque control in the operational space
Since the robot at hand is kinematically redundant, an infinity of configurations in the joint space exist to
follow a prescribed trajectory (Xd,Ẋd and Ẍd) in the operational space defined in position, orientation
and acceleration. However, these configurations are not all feasible because the robot is under-actuated
The idea is then to manipulate Eq. (5) in order to express the dynamic of the acceleration in the opera-
tional space as a function of cable tensions and, finally to apply a computed torque control. First, one
can multiply the equation by the inverse of the inertia matrix and express α̈ as :

α̈ = (Ms
α)

−1 (Z (tc − frc)− cs(α̇,α)− g(α)− Γrα) (8)

From Eq. (1), we obtain :

Ẍ = JX(M
s
α)

−1 (Z (tc − frc)− cs(α̇,α)− g(α)− Γrα) + J̇X α̇ (9)
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Let ZX = JX(M
s
α)

−1Z, cX(α̇,α) = JX(M
s
α)

−1cs(α̇,α), gX(α) = JX(M
s
α)

−1g(α) and ΓrαX =

JX(M
s
α)

−1Γrα. The preceding equation can be written as :

Ẍ− J̇Xα̇+ cX(α̇,α) + gX(α) = ZX (tc − frc)− ΓrαX (10)

We then obtain an equation linking the acceleration in the operational space to the cable tension. Our
objective is that the end-effector in closed loop evolves as : Ẍ = wX where wX corresponds to a PID
(Proportional Integrate Derivative) servoing expressed in the operational space :

wX = Ẍd +KX
p (Xd −X) +KX

d (Ẋd − Ẋ) +KX
i

∫
(Xd −X)dt (11)

Where KX
p , KX

d and KX
i are constants chosen to insure a stable behaviour.

Let us define Γd as :
Γd = wX − J̇Xα̇+ cX(α̇,α) + gX(α) + ΓrαX (12)

Since matrixZX is of dimension 3×4, positive cable tensions can be defined with one degree of freedom
and Eq. (10) yields :

(tc − frc) = Z+
XΓd +NZX

λF (13)

where NZX
, a vector of dimension 4, is the null space of ZX and λF is a scalar defined such that all the

tensions are greater than a predefined minimal value.

4.2 Computed torque control in the actuation space
Equation (13) allows computing the desired tension in the cables. However, the acceleration in the ac-
tuation space is also required to compute the motor torques in Eq. (7). Nonetheless, there is no direct
equation linking the acceleration in the actuation space to the one in the operational space. From Eq.
(1), the set of joint configurations that allows tracking the desired trajectory in the operational space can
be expressed as : 

∆α = J+
X∆X+NJXλα

α̇ = J+
XẊ+NJXλα̇

α̈ = J+
X(Ẍ− J̇Xα̇) +NJXλα̈

(14)

where NJX is the null space of JX (dimension (N − 3) ×N ) and λα, λα̇ λα̈ are 3 vectors of dimen-
sion N − 3. These vectors are difficult to determine as they also depend on the forces that need to be
computed. Therefore, we hypothesize that the real resulting joint configuration is close to the case where
these vectors are null. With this hypothesis, we insure null joint velocities and accelerations for a static
configuration. Therefore, the result corresponds to the minimization of the norm of ∆α, α̇ and α̈. Thus,
the desired positions, velocities and acceleration in the joint space are :

αd = α+ J+
X(Xd −X)

α̇d = J+
XẊd

α̈d = J+
X(Ẍd − J̇Xα̇)

(15)
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Their corresponding values in the actuation space are :
θd = fθ(αd)

θ̇d = Jθα̇d

θ̈d = Jθα̈d + J̇θα̇

(16)

In Eq. (7), a PID servoing on the acceleration in the actuation space can thus be carried out as follows :

wθ = θ̈d +Kθ
p (θd − θ) +Kθ

d

(
θ̇d − θ̇

)
+Kθ

i

∫
(θd − θ) dt (17)

Γm = Mm
θ wθ + Γrθ −

Rd
rg

tc (18)

Where Kθ
p , Kθ

d and Kθ
i are constants.

This servoing is based on an hypothesis on the evolution of the joints to satisfy a desired trajectory in the
operational space. The first computed torque control applied directly in the operational space therefore
compensates the error on the estimated evolution of the joint. If the error in the operational space is low,
the error in the joint space will be low as well and the computed torque control in the actuation space
will not diverge. Especially, when the robot is not moving, the desired configuration in the joint space is
the correct one.

The scheme of the control law is shown in Figure 3.

Reference
trajectories : Xd, Ẋd, Ẍd

Robot state : α, α̇

X = fX(α)

Ẋ = JXα̇

θ = fθ(α)

θ̇ = Jθα̇

αd = α+ J+
X (Xd −X)

α̇d = J+
XẊd

α̈d = J+
X

(
Ẍd − J̇Xα̇

)

wX = Ẍd +KX
p (Xd −X)

+KX
d (Ẋd − Ẋ) +KX

i

∫
(Xd −X)dt

θd = fθ (αd)

θ̇d = Jθα̇d

θ̈d = Jθα̈d + J̇θα̇

wθ =θ̈d +Kθ
p(θd − θ)

+Kθ
d(θ̇d − θ̇) +Kθ

i

∫
(θd − θ)dt

Γd = wX − J̇Xα̇+ gX(α)
+cX(α̇,α) + ΓrαX

tc = frc + Z+
XΓd

+NZX
λF

Γm = Mm
θ wθ

+Γrθ − Rd
rg
tc

Γm

Figure 3 – Control law in the operational space

5 Simulation

5.1 Parameters of the simulation
For the simulation, the friction in the motor Γrθ and in the cables frc are neglected and the friction in
the joints corresponds to viscous friction of the form Γrα = 2fv(

∂ϕ
∂α

2
+ ∂ψ

∂α

2
)α̇ where fv is a constant

friction, identical for all joints. The elasticity in the cable is associated to a spring tc = kcxc, where kc is
the cable stiffness. The bars of the X-joints are considered symmetric and all the X-joints have the same
dimensions. The values of the different parameters are given in Table 1.
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b 5 cm
L 10 cm
m short bar 0.014 kg
m long bar 0.02 kg
I short bar 7e-6 kg.m2
I long bar 3e-5 kg.m2
Rd 2 cm
rg 1
Iθ 4e-6 kg.m2
kc 1e-5 N/m
fv 0.1 N.m/(rad/s)

Table 1 – Robot parameters used for the simulation

The springs that are in parallel of the cables have a free length of 4.6 cm. Their constant varies from 100
N/m to 2000 N/m, depending on the number of X-joints used. Moreover, spring constants are higher in
X-joints located near the robot base.

The PID constants have been set such that :{
KX
p = 3ω2

X , KX
d = 3ωX , KX

i = ω3
X

Kθ
p = 3ω2

θ , Kθ
d = 3ωθ, Kθ

i = ω3
θ

(19)

where ωX = 2 and ωθ = 20.

The simulation is done using a time-stepping implicit scheme (backward Euler) [11] that integrates the
dynamic equations.

5.2 Results

Figure 4 – Trajectory of the movement

Our control law has been tested for a number of joints N varying from 4 to 10 stacked X-joints and
proved satisfying in every case. Results for 6 joints are presented in this section as an example. θ1 pull a
cable linked on the left side of all the joints, θ2, respectively θ3, respectively θ4 pull a cable linked on the
right side of the joints number 1 and 2, respectively 3 and 4, respectively 5 and 6. The springs on each
side of each X-joint are identical and the value of their constant are, from base to top :800 N/m, 800 N/m,
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600 N/m, 600 N/m, 400 N/m, 400 N/m. The desired trajectory is shown in Figure 4 and the minimal
cable tension is set to 10 N. Figures 5, 6 and 7 show the evolution of the robot during this trajectory. In
Figure 5, it can be seen that the trajectory is well followed with a mean error around 0.01 mm on the
position and less than 0.001° on the orientation. These errors are linked to the estimation of the desired
position, velocity and acceleration in the joint space (Eq. 14). Figure 7 shows cable tensions during the
trajectory. It can be observed that it almost fully respects the limit of 10 N as minimal tension. There
is an error of 0.1 N in the minimal tension. This error is linked to the addition of the computed torque
control in the actuation space (Eq. 18).

Figures 8, 9 and 10 show the time histories of the robot for a desired steady state after a perturbation of
-0.05 rad on all the joints from the last position of the previous trajectory. It can be observed that the
control law makes the robot converge to the desired position in less than 1 s with an overshoot of the
desired position in the operational space and oscillations. In the joint space, the oscillations of the angles
α4, α5 and α6 are very different from the oscillations of the positions in the operational space, showing
the difficulty to predict the dynamic equilibrium leading to the desired evolution in the operational space.
In Figure 10, it can be observed that the minimal tension is below the desired minimal one with an error
of 5 N. This result is due to the jump of the angles after the perturbation to reach a stable dynamic position
and to the computed torque control in the actuation space that imposes a great correction. Figure 9 also
shows that the robot reaches the same joint configuration as before the perturbation to obtain the same
position and orientation of the end-effector for this small perturbation. Similarly, Figure 10 shows that
the forces are also the same before and after the perturbation.
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Figure 5 – Tracking of the trajectory

Figure 6 – Evolution of the joints during the tra-
jectory

Figure 7 – Tension in the cables during the trajec-
tory

Figure 8 – Tracking after a perturbation

Figure 9 – Evolution of the joints after a perturba-
tion

Figure 10 – Tension in the cables after a perturba-
tion
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6 Conclusion and future work
This article has presented a control law for the servoing in the operational space of a tensegrity robot.
The important, original point is that the robot is both kinematically redundant and under-actuated, which
makes it difficult to design a satisfactory control law. The control law was design upon separating the
dynamics of the structure from the dynamics of the motors that are linked together by cable tensions.
Two computed torque control laws have been applied, each linked to one dynamic equation. An hypo-
thesis on the evolution of the joint space has been made to apply the PID in the actuation space. It has
been observed in simulation that this control law allows the robot to follow a desired trajectory in the
operational space.

A prototype with 6 modules is currently built. The control law will be tested on this prototype and
friction will be identified.
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