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Abstract

It has been suggested that engraved abstract patterns dating from the Middle and Lower

Palaeolithic served as means of representation and communication. Identifying the brain

regions involved in visual processing of these engravings can provide insights into their

function. In this study, brain activity was measured during perception of the earliest known

Palaeolithic engraved patterns and compared to natural patterns mimicking human-made

engravings. Participants were asked to categorise marks as being intentionally made by

humans or due to natural processes (e.g. erosion, root etching). To simulate the putative

familiarity of our ancestors with the marks, the responses of expert archaeologists and con-

trol participants were compared, allowing characterisation of the effect of previous knowl-

edge on both behaviour and brain activity in perception of the marks. Besides a set of

regions common to both groups and involved in visual analysis and decision-making, the

experts exhibited greater activity in the inferior part of the lateral occipital cortex, ventral

occipitotemporal cortex, and medial thalamic regions. These results are consistent with

those reported in visual expertise studies, and confirm the importance of the integrative

visual areas in the perception of the earliest abstract engravings. The attribution of a natural

rather than human origin to the marks elicited greater activity in the salience network in both

groups, reflecting the uncertainty and ambiguity in the perception of, and decision-making

for, natural patterns. The activation of the salience network might also be related to the pro-

cess at work in the attribution of an intention to the marks. The primary visual area was not

specifically involved in the visual processing of engravings, which argued against its central

role in the emergence of engraving production.
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Introduction

The cognitive abilities of our prehistoric ancestors and how they evolved have become a crucial

area of research in archaeology and anthropology [1–4]. Different research strategies are fol-

lowed to investigate this topic. Past cognition can be inferred by analysing the material culture

prehistoric populations have left behind, under the assumption that behavioural patterns

reflect cognitive processes. A wide range of past behaviours have been investigated in this per-

spective, such as subsistence strategies [5, 6], stone and bone tool-making [7–15], containers

[16], pigments [17–21], tool hafting [22, 23], mortuary practices [24, 25], ornamental objects

[26–28], engraving and painting of cave walls and objects [29, 30]. More recently, past cogni-

tion has become the subject of interdisciplinary research combining archaeological data with

methods and concepts from neuroscience [31–33].

Neuroarchaeology, as it has been termed, aims to create conceptual frameworks for model-

ling the evolution of human cognition in light of advances in the neurosciences, and to test

such models experimentally based on data collected from modern participants. Research in

this domain has investigated the potential co-evolution of tool-making and language by study-

ing the overlap of the brain networks mobilised by these two skills [34–38]. The implication of

executive functions and working memory in the production of knapped stone tools, involving

different levels of cognitive control and neural substrates depending on the complexity of the

practised stone tool technology, has also been the subject of studies [34, 35, 39, 40].

The emergence of symbolic behaviour has also been investigated recently by neuroarchaeol-

ogy. Some archaeologists have argued that the earliest graphic manifestations, dating from the

Lower and Middle Palaeolithic in Eurasia and the African Middle Stone Age, were conceived

and used as signs or symbols, and thus demonstrate abstraction and communication capacities

that were not previously attributed to the human populations of those times [41–49]. Others

contend that early abstract engraving production resulted from low-level visual perceptual

phenomena [50–52] and should be interpreted as a “proto-aesthetic” behaviour devoid of

semiotic intent. Still others see the production of abstract engravings as resulting from kinaes-

thetic dynamics of a non-representational sort that allowed hominins to engage and discover

the semiotic affordances of mark-making [53], or as decorative, cultural transmitted patterns

with no apparent symbolic meaning [54]. In a previous study [55], we characterised the neural

basis of the visual processing of prehistoric abstract engravings dated between 540,000 and

30,000 years before the present, and showed that despite their relatively simple structure,

engraving perception engaged the visual cortices of the ventral visual pathway that are involved

in the recognition and identification of objects.

Consistent with the view of their being representational in nature, our first results showed

that the primary visual area was not sensitive to the global organisation of the engravings, and

thus did not support the previously suggested hypothesis that this region played a specific and

exclusive role in the emergence and perception of the production of early engravings [50, 56].

The debate stimulated by these findings [57, 58] and, in particular, the criticism that inferences

drawn from experiences with present-day humans could be inadequate for understanding per-

ceptual processes specific to our prehistoric ancestors, makes it necessary to develop strategies

to overcome this potential drawback to the extent possible.

Attributing intentional human agency to abstract marks is a prerequisite for using them as

a medium for culturally-mediated indexical communication. Our ancestors needed to distin-

guish purposely made engravings from other accidental or natural marks in order to recognise

their communicative potential and use them as means to store, transmit and retrieve meaning.

It is reasonable to assume that if abstract engravings were used as signs or symbols by our

ancestors, the latter must have shared a knowledge that allowed them to recognise the
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engravings as the result of a conscious, deliberate, technical action intended to embody mean-

ing in a tangible medium. In our previous study [55], the participants lacked archaeological

knowledge. The brain regions mobilised by the perception of the engravings be altered accord-

ing to the level of familiarity that the subjects have with these productions. The inclusion of

participants with this familiarity allows approaching the knowledge that the engravers proba-

bly possessed and thus avoid a novelty effect at the brain level in the participants [59, 60]. To

simulate this knowledge, we included archaeologist participants who are familiar with or

experts in prehistoric engravings. We compared them at both behavioural and brain functional

levels to a control group with no such expertise, paired for age, gender, and level of education.

The first aim of the present work was to estimate the effect of familiarity and prior knowledge,

hereafter referred to as Expertise, on the brain regions involved in the perception of abstract

engravings and their attribution to human agency. The present study investigated this effect in

a “Judgment” task where participants had to assess whether past humans had intentionally

produced the marks on objects, or whether the marks resulted from natural processes such as

erosion, carnivore gnawing or root etching. Therefore, this study explored whether familiarity

modifies the regions involved in the visual processing of engravings, particularly in the pri-

mary visual area. The second aim of the study was to assess whether the attribution of the

marks to human versus non-human agency could be differentiated at the functional brain

level, and to what extent such difference could be conditioned by the observer’s expertise.

Materials and methods

Participants

Thirty-one healthy adults with no neurological history were included after providing written

informed consent to participate in the study. They were divided into two groups according to

their expertise in Palaeolithic archaeology: Controls, without any prior background in the dis-

cipline (n = 15, mean age ± SD: 44 ± 10 years, range: 30–63 years, six women, none left-

handed) and Experts, i.e. scholars actively working in the discipline with knowledge in Palaeo-

lithic art and bone modifications (n = 16, mean age ± SD: 44.6 ± 10 years, range: 32–61 years,

six women, one left-handed). The two groups of participants were matched for age, gender,

and education level (PhD, 20 years of schooling after first grade).

Ethics statements

The ’Sud-Ouest outremer III’ local Ethics Committee approved the study (N˚ = 2016-A01007-

44).

MRI acquisition

The blood oxygen level-dependent (BOLD) signal was mapped in the 31 volunteers using

functional magnetic resonance imaging (fMRI) with a Siemens Prisma 3 Tesla MRI scanner.

The structural images were acquired with a high-resolution 3D T1-weighted sequence

(TR = 2000 ms, TE = 2.03 ms; flip angle = 8˚; 192 slices and 1 mm isotropic voxel size). The

functional images were acquired with a whole-brain T2�-weighted echo-planar image acquisi-

tion (T2�-EPI Multiband x6, sequence parameters: TR = 850 ms; TE = 35 ms; flip angle = 56˚;

66 axial slices and 2.4 x 2.4 x 2.4 mm isotropic voxel size). The functional images were acquired

in three runs during a single session. The experimental design was programmed using E-

prime software (Psychology Software Tools, Pittsburgh, PA, USA). The stimuli were displayed

on a 27" screen. The participants viewed the stimuli through the magnet bore’s rear via a mir-

ror mounted on the head coil.
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Description of the task

Participants performed a judgment task based on the visual presentation of pictures of inten-

tionally human-made and natural marks. The judgment task included two conditions: Attribu-

tion ("is the mark intentionally made by a human being?") or Orientation ("is the longest axis

of the medium on which the marks are present vertical?"). The orientation task is a control

condition. It used the same images as the attribution condition in a task that does not require

visual analysis of the marks (defining the orientation of the longest axis of the object without

paying attention to the marks present on them) nor any archaeological knowledge. When sub-

tracting the activations of the orientation task from those of the attribution task, all the activa-

tions that are not specific to the latter (low-level perceptual processes such as contrast,

luminance, perception of the shape of the support, motor activity related to button press. . .)

are cancelled-out. For each stimulus, the type of judgment to be made (i.e. Attribution or Ori-

entation) was displayed during 0.5s, before the stimulus was presented. Then the stimulus was

presented for 3s (Fig 1). Participants had to answer "yes" or "no" by clicking on a response

box as soon as the stimulus was replaced by the one-second reminder of the instruction

("human?" or "vertical?"). During the baseline, a fixation cross was displayed and a square

appeared after a variable delay (3.5s ± 1s). Participants had to click on the response box as

soon as the square appeared (Fig 1). The participants saw a total of 21 different human-made

marks and 21 different natural marks divided into three runs lasting 5 min and 57 sec each,

presented in a randomized order. Participants thus saw the item twice, once in the Attribution

judgement and once in the Orientation judgement.

Stimuli. The 21 pictures of engravings included in the study were abstract engravings,

dated between 800 ka to 30 ka, not found in Upper Paleolithic contexts in association with fig-

urative art, have demonstrated anthropogenic origin [29, 61, 62, see S1 Table], and were recog-

nizable on a photo of the object on which they occur. The number of items (21 human and 21

non-human) was chosen in order not to tire the participants since we adopted a so-called slow

event-related paradigm (a 3s presentation every 9.5s). The engravings come from African and

Eurasian sites, and are attributed to Homo erectus, Neanderthals and Early Modern Humans.

The original pictures were converted into greyscale and put on a grey background (Fig 2,

left). The natural marks category included 21 objects in different materials bearing modifica-

tions produced by natural modelling of the bone surface (e.g. imprints of nerves and vascular

canals), gnawing by carnivores, root etching, erosion, and fossilisation of plants [63]. Pictures

were converted into greyscale and displayed on a grey background (Fig 2, right).

Post fMRI session debriefing. After the fMRI session, the participants were asked to indi-

cate the criteria on which they had based their decision. The criteria were: shape of the marks,

criss-cross patterns, presence of parallel marks, repetition of identical marks, depth of the

marks, number of marks and the nature of medium of the marks.

In addition, the experts were asked whether they had ever seen any of the engravings.

Fig 1. Organization of a trial in the judgment task. Participants were presented each item twice (once during the Attribution and once during the

Orientation task). The participants were shown 21 different human-made and 21 natural marks.

https://doi.org/10.1371/journal.pone.0271732.g001

PLOS ONE Neural correlates of perception and interpretation of engraved prehistoric patterns

PLOS ONE | https://doi.org/10.1371/journal.pone.0271732 August 3, 2022 4 / 18

https://doi.org/10.1371/journal.pone.0271732.g001
https://doi.org/10.1371/journal.pone.0271732


Data analysis

Preprocessing. Functional volumes were processed using Nipype, which allows the differ-

ent steps to be chained together [64]. The T1-weighted scans of the participants were normal-

ised to a site-specific template, matching the MNI space using the SPM12 ’segment’ procedure

with the default parameters. To correct for subject motion during the fMRI runs, the 192 EPI--

BOLD scans were realigned within each run using a rigid-body registration. Then, the EPI--

BOLD scans were rigidly registered structurally to the T1-weighted scan. The combination of

all the registration matrices allowed warping of the EPI-BOLD functional scans to the standard

space with trilinear interpolation. Once in the standard space, a 5 mm FWHM Gaussian filter

was applied.

First level analysis. For each subject, global linear modelling (GLM, statistical parametric

mapping (SPM 12), http://www.fil.ion.ucl.ac.uk/spm/) was used for processing the task-related

fMRI data, with effects of interest (tasks) being modelled by boxcar functions corresponding

to paradigm timing, convolved with the standard SPM hemodynamic temporal response func-

tion. We then computed the effect of interest-related individual contrast maps, corresponding

to each experimental condition. Note that 8 regressors of no-interest were included in the

GLM analysis: time series for WM, CSF (average time series of voxels belonging to each tissue

class), the six motion parameters and the temporal linear trend.

Analysis of behavioural response. To assess whether the observed correct response rates

were different from chance, we calculated the 95% confidence interval of a random response

rate for 42 trials. Rates outside the 34–66% range were considered significantly different from

chance.

To estimate the effect of Expertise on correct response rates, we analysed the behavioural

responses for Attribution and Orientation separately, since the distribution of the correct

response rate for the Orientation condition was not Gaussian. We used a non-parametric Wil-

coxon test to evaluate performance differences between Experts and Controls in the Orienta-

tion condition.

To test whether the effect of Expertise depended on the type of judgment made in the Attri-

bution condition, we estimated the interaction effect between Expertise and Attribution on the

correct response rate, using a linear mixed-effect model fitting random effects at the partici-

pant level. A two-way interaction term between Expertise and Attribution (and their lower-

Fig 2. Examples of stimuli used in the judgment task. Left: human stimulus (engraving from Blombos Cave, Southern Africa, c. 77,000

years old). Right: non-human marks due to carnivore gnawing.

https://doi.org/10.1371/journal.pone.0271732.g002
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order terms) was set as the fixed effect predictors, and correct response rate as the dependent

variable. The significance of fixed effects was assessed through ANOVA components.

Analysis of debriefing data. To assess the effect of Expertise on the criteria used to dis-

criminate intentional human marks versus non-human ones, we computed a chi-squared test

for each of the seven criteria.

Analysis of fMRI data. Group analysis of fMRI data was carried out using JMP1, Ver-

sion 15. SAS Institute Inc., Cary, NC, 1989–2019. A first step was to select the regions that

were activated significantly in the contrast of interest, namely [Attribution minus Orientation].

We extracted signal values from the first-level analysis maps of each of the 192 homotopic

regions of interest (hROI) of the AICHA functional atlas [65] for each experimental condition.

Two hROIs were excluded from the analysis because of a lack of signal in at least 15% of their

volume: gyrus_parahippocampal-4 (19% non-signal) and Thalamus-8 (46.66% non-signal).

The hROIs included in the analysis fulfilled two criteria in each group of participants: 1. Signif-

icantly more activated in the [Attribution minus baseline (cross fixation)] contrast (univariate

t-test p< 0.05 uncorrected) to discard deactivated hROIs. 2. Significantly more activated in

the [Attribution minus Orientation] contrast (univariate t-test p< 0.05 FDR corrected) to dis-

card activation not specific to Attribution. hROIs selected for Experts and Controls were

grouped to obtain the final list of hROIs included in the subsequent analysis.

To assess the effect of Expertise on BOLD activations according to the Attribution response

(human or non-human marks), a mixed-effect linear regression model was implemented on

the BOLD values of the 64 hROIs activated in the [Attribution minus Orientation] contrast. A

three-way interaction term between hROIs (64) X Expertise (Experts, Controls) X Attribution

(Human, Non-human) and all lower order terms was set as the fixed effect predictors, BOLD

values as the dependent variable and random effects were fitted at the participant level. The

significance of fixed effects was assessed through ANOVA components.

Results

Behavioural results

In the Attribution condition, Experts gave 81.3% (mean) ± 15% (SD) of correct responses (for

both human and non-human attribution) while Controls responded correctly to 61.3%

(mean) ± 17% (SD) of the items. The number of correct responses in Orientation did not differ

between Experts and Controls (88.1% ± 14% and 86.7% ± 17% respectively, p = 0.96, Wil-

coxon), thus showing, as expected, that the expertise effect was present in Attribution but not

in Orientation condition.

We did not observe any significant interaction between Expertise and Attribution (F(1,29) =

0.56, p = .46, Fig 3). However, the linear mixed-effect model revealed a main effect of Exper-

tise, with Experts exhibiting better performances than Controls (F(1,29) = 31.3, p< 0.0001), and

a main effect of Attribution, as the rate of correct responses was higher for human than non-

human judgments (F(1,29) = 14.3, p< 0.0007). Thus, whatever the type of judgment made,

experts had a better rate of correct response than controls on average and, whatever the level

of expertise, the correct response rate was higher on average for human than non-human

judgment.

Debriefing results

The decision criteria reported by the participants for attributing a human agency to abstract

marks were repetition of identical marks, shape of the marks, presence of parallel marks, and

presence of criss-cross patterns. Note that the engravings of European origin are mainly made

of parallel in pattern, whereas African engravings often show cross-patterns However, none of
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the experts reported having used this information to attribute a European or African origin to

the engravings (which was not asked of them). Some participants also reported paying atten-

tion to the support of the marks, the depth of the marks, and the number of marks. Despite a

higher rate of correct responses for Experts than Controls, Expertise had no effect on the deci-

sion criteria reported by subjects in the debriefing (p> .05 for all chi-squared tests).

Neuroimaging results

Selection of hROIs. The comparison of the Attribution and Orientation conditions evi-

denced 64 hROIs that were significantly more activated in Attribution than in Orientation

(Fig 4, and see S2 and S3 Tables). They included the occipito-temporal regions, lateral occipital

cortex, anterior insula, parahippocampal cortex, hippocampus, medial frontal cortex, anterior

cingulate and at the subcortical level, thalamus and caudate nuclei. The effect of expertise and

the type of judgement (i.e. human or non-human) were explored within this set of hROIs.

Effect of Expertise and Attribution on BOLD activations in the 64 selected hROIs. To

assess whether Expertise interacts with Attribution and hROIs to modify BOLD levels, we set

their 3-way interaction as fixed effects in a mixed-effect linear regression model. We observed

no interaction between Expertise, Attribution, and hROIs (F(63,1827) = 0.63, p = 0.99) nor

between Expertise and Attribution F(1,29) = 0.01, p = 0.90). This suggests that differences in

brain region between attribution of human and non-human origin of the marks were the same

in Experts and Controls.

Fig 3. Effects of Expertise and Attribution (human vs non-human marks) on the correct response rate. Orange:

Expert, blue: Controls. Error bars represents the confidence interval (95%).

https://doi.org/10.1371/journal.pone.0271732.g003
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Effect of expertise. We found that regional BOLD response differed between Experts and

Controls (Expertise X hROI interaction: F(63,1827) = 2.14, p< .0001). Posthoc analysis revealed

that visual areas were more activated by Experts than by Controls (Fig 5). It included regions

belonging to the lateral occipital cortex, the occipital pole (all p< .05, FDR corrected) and a

part of the left fusiform gyrus that nearly reached significance after correction for multiple test-

ing (p = .02, uncorrected). In addition, Experts activated the anterior medial thalamus more

strongly (p< .05, corrected), while a more posterior part of the medial thalamus did not sur-

vive correction (p = .04, uncorrected). No region was more activated in Controls than in

Experts.

Effect of attribution. We found that regional BOLD response differed according to the

type of judgment expressed during the Attribution condition (Attribution X hROI interaction:

F(63,1827) = 2.87, p< .0001). Post-hoc analysis revealed that regions belonging to the anterior

Fig 4. Superimposition on an MRI template of the 64 hROIs activated during the [Attribution minus Baseline] condition

and showing a significant BOLD signal increase in the Attribution minus Orientation contrast (p< 0.05, FDR corrected).

https://doi.org/10.1371/journal.pone.0271732.g004
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Fig 5. Experts compared to controls in the judgment task. Top: hROIs that showed a greater activity in Experts than in Controls. �: G_Fusiform-

4_L and N_Thalamus-4_R were significant at uncorrected threshold only (puncorr = 0.015 and puncorr = 0.019, respectively). (a) Lateral view of the

left hemisphere. (b) Inferior view of the left hemisphere. (c) Medial view of the left hemisphere. Bottom: plots of the BOLD values in these regions in

Controls (blue) and Experts (orange). Error bars represents the confidence interval (95%).

https://doi.org/10.1371/journal.pone.0271732.g005
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insula, the anterior cingulate, the medial thalamus, and the right caudate nucleus were signifi-

cantly more activated when a non-human origin was attributed to the marks (Fig 6, all p< .05,

FDR corrected). No regions were more activated for the “Human” attribution.

Discussion

This study aimed to characterise the effect of expertise in the perception of the earliest Palaeo-

lithic abstract engravings at the behavioural and brain levels, using a judgment task between

human-made engravings and surface modifications resulting from natural phenomena.

Effect of expertise

During the Attribution condition of the judgement task, the participants had to decide

whether the marks were intentionally human-made or the result of natural processes. This task

was contrasted with an Orientation condition in which the same stimuli were used without

Fig 6. Human vs non-human attribution. Top: hROIs that showed a greater activity for non-human than for human

attribution. (a) Lateral view of the left hemisphere. (b) Lateral view of the right hemisphere. (c) Medial view of the left

hemisphere. (d) Medial view of the right hemisphere. Bottom: plots of the BOLD values in these regions for human

attribution (purple) and non-human attribution (green). Error bars represents the confidence interval (95%).

https://doi.org/10.1371/journal.pone.0271732.g006
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participants paying attention to the marks on the supports. Although the distinction criteria

did not differ between experts and controls, the performances were significantly better for the

experts. Note that archaeologists usually rely on much more refined analysis, not limited to a

short visual analysis, to discern the human or natural origin of the marks. Nonetheless, the

archaeologists confirmed their expertise in judging the natural or human origin of the engrav-

ings better than Controls, while they did not differ from them in the Orientation condition. As

experts, the performances of archaeologists benefited from a greater ability to focus on the

most discriminating elements, thus reducing the complexity of perceptual analysis. In addi-

tion, they could connect the perceptual analysis to knowledge stored in long-term memory

and gained over many years and even decades. One could argue that these better performances

reflected recognition of engravings previously encountered in the literature or their own

research rather than an actual process of visual analysis. However, although a majority of

experts recognised some of the engravings, only four recognised about ten, while the others

recognised less than five. In addition, the experts were also better at identifying traces of natu-

ral origin for which a recollection process was unlikely, which supports the role of expertise in

determining their higher performances. Finally, the brain regions more activated in the

archaeologists than in the control participants do not correspond to the brain areas classically

involved in long-term memory recall, such as the hippocampus, dorsolateral prefrontal cortex

and parietal cortex [66–68].

During Attribution, Experts showed greater activation in the ventral part of the lateral

occipital cortex and a strong trend in the left fusiform gyrus (G_Fusiform-4 in the AICHA

atlas) in the occipito-temporal cortex (OTC). This result could reflect more discriminating

visual analysis, which allowed a correct diagnosis of the origin of the marks. It has already

been shown that the visual cortex and particularly OTC are involved in the visual processing

of objects pertaining to the domain of expertise of the observer [69, 70]. For example, in a field

that involves long-term acquired knowledge, as in the present study, it has been shown that

experienced radiologists exhibit greater activation in OTC than less experienced ones when

they detect lesions on chest radiographs [71, 72]. Most of the studies demonstrating the role of

OTC in expertise have reported activation of a part of the fusiform gyrus called FFA [73–77].

It has been suggested that this region, which is crucial in face recognition, is more generally

specialised in discriminating between stimuli that share common (prototypical) visual features

and differences that are essentially accessible to the expert. This region is included in G_Fusi-

form-6 in the AICHA atlas and was not activated differently in Experts and Controls. Most of

the studies that reported more activated FFA in experts relied on tasks favouring holistic pro-

cessing (as in face recognition, [69]). In our study, participants based their decision on visual

details (number of crossings, depth of marks) and were therefore processing the marks analyti-

cally rather than holistically. This could explain the lack of an expertise effect in this region,

while it was present in adjacent areas.

The involvement of the "low level" visual areas was limited to a small region of the occipital

pole (Fig 5, light purple blob), which was detected in both groups and more important in

Experts than in Controls. Activity in the calcarine sulcus, which includes the primary visual

area, did not increase during the attribution task compared to the Orientation task. This lack

of activation argues against the hypothesis that low-level perceptual processes in this area are

at the origin of the emergence of engravings production, as previously suggested [52, 56], even

in subjects familiar with Palaeolithic marks. As a matter of fact, the vast majority of activations

were in the associative visual cortex, including the OTC. The involvement of the visual cortex

in this study illustrates its role in visual expertise. It does not fundamentally alter the conclu-

sions of a previous study that highlighted the role of these regions in the visual analysis of
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engravings [55]. In particular, it confirms that the visual analysis of the earliest abstract engrav-

ings engaged integrative visual areas involved in identifying visual percepts.

In the present work, Experts showed a greater involvement of the medial thalamus than

Controls. The mediodorsal part of the thalamus is known to be involved in familiarity, corre-

sponding to the impression that a percept or percepts of the same category have been experi-

enced previously [60, 78]. In the present study, the archaeologists did not implement a

different strategy from the control participants. Both groups relied on similar criteria to decide

whether the engravings were of human or natural origin. The main difference is the long expe-

rience of archaeologists with both types of marks. Activation of the mediodorsal thalamus in

the experts could reflect familiarity with these types of stimuli.

Attributing a human or non-human origin to the marks

Our results showed that attributing a human or non-human origin to the marks is not equiva-

lent, whether at the behavioural or the neural level. The lack of interaction between the Attri-

bution, Expertise and hROIs indicated that the type of judgment (i.e. human or not human)

did not affect BOLD differently in Experts and Controls. This is congruent with the absence of

interaction between the attributed origin of the marks and the level of expertise at the beha-

vioural level, indicating that both Experts and Controls made more errors for non-human

than human attribution (with the Experts being better than controls in both categories). At the

cerebral level, attributing a non-human origin to the marks resulted in greater activation in

subcortical regions such as the head of the caudate nucleus and the thalamus and cortical areas

including the anterior insula and the anterior cingulate, compared to assigning a human ori-

gin. All these regions belong to the so-called salience network [79–81]. This plays a fundamen-

tal role in detecting and selecting behaviourally relevant stimuli and is thus crucial in the

decision-making process [82–84]. It is therefore not surprising that it was activated in our

attribution task. The question is why it was activated more by the "non-human" choice than by

the "human" choice. A meta-analysis showed that the activity in this network increased with

uncertainty [85]. The rate of correct responses indicated that deciding that a mark was non-

human was more uncertain than the opposite choice and might have triggered the greater acti-

vation of the salience network. This hypothesis is further supported by the fact that the anterior

insula and anterior cingulate cortex would be particularly active during decision-making in a

context of strong perceptual ambiguity [86, 87].

Interestingly, it has recently been shown that the cingulate and insular cortex in the salience

network were involved in attributing others’ intentions [88]. In addition, the anterior insula

region is also generally associated with the sense of agency, i.e., the awareness of who performs

an action [89]. In the present study, the participants discriminated between marks resulting

from human intention and those caused by fortuitous natural events. The processes associated

with this choice likely contributed to the mobilisation of the cingulate and insular regions,

thus suggesting that the salience network could be involved in attributing an origin to the out-

come of an action, in addition to its role in attributing an action or intention. Notably, the

regions concerned belong to the dorsal part of the salience network, mainly involved in cogni-

tion [90]. Interestingly, this subnetwork has not been found in the macaque, suggesting that it

is engaged in human-specific abilities [91]. Distinguishing between human production and

natural marks could be part of these functions.

Conclusion

In a first study, we showed that the perception of schematic engravings engaged visual associa-

tive areas similar to those involved in object recognition [55]. This result was compatible with
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a representational function of the engravings. The present study represents a further step.

Whereas the first study was based on a brief presentation of schematised engravings, the exper-

imental protocol of the present study involved a more careful inspection of actual pictures to

recognize intentionally-made engravings from non-human marks. In addition, this study

allowed the effect of expertise to be characterised, as well as the direct comparison of attribut-

ing human or not human origin to abstract marks. The comparison of activations between

archaeologists and controls showed that the effect of familiarity mainly concerned visual asso-

ciative areas, confirming their central role in the visual processing of engravings. The results

showed that it was easier to correctly attribute a human than a non-human origin to the

marks, whichever the expertise level, but that the nature of the attribution did not bear on

visual regions. Since Palaeolithic abstract patterns resulted from human intention, the judg-

ment concerning their attribution involved the salience network, which plays a pivotal role in

perceptual decision-making and attribution of intention. The present study indicates that the

visual processing of the earliest known engravings involves two categories of brain regions: 1.

visual regions and, more specifically, associative visual areas for the processing of their global

visual organisation, some of which are sensitive to familiarity, and 2. the salience network,

which is necessary for deciding whether the marks result from a human intention. This result

confirms that mere and exclusive processing of abstract engravings by the primary visual cor-

tex is unlikely to explain their emergence and pristine perception, which required actions,

intentions and the brain areas to infer the communicative potential of visual patterns.

Supporting information

S1 Table. Contextual and descriptive data on early engravings used as visual stimuli.

(DOCX)

S2 Table. Mean value and standard deviation of the BOLD signal in the 64 hROIs activated

by at least one of the two groups of participants in Attribution minus Orientation contrast.

(DOCX)

S3 Table. MNI coordinates of the 64 hROIs activated by at least one of the two groups of

participants in Attribution minus Orientation contrast.

(DOCX)

Acknowledgments

The authors thank Ginesis Lab (Labcom Programme 2016, ANR 16LCV2-0006-01) for their

help in data management and processing. They are also indebted to Violaine Verrecchia for

her help in data analysis.

Author Contributions

Conceptualization: Francesco d’Errico, Emmanuel Mellet.

Formal analysis: Sandrine Cremona, Emmanuel Mellet.

Funding acquisition: Francesco d’Errico, Emmanuel Mellet.

Investigation: Sandrine Cremona, Emmanuel Mellet.

Methodology: Mathilde Salagnon, Sandrine Cremona, Francesco d’Errico, Emmanuel Mellet.

Supervision: Francesco d’Errico, Emmanuel Mellet.

Visualization: Mathilde Salagnon.

PLOS ONE Neural correlates of perception and interpretation of engraved prehistoric patterns

PLOS ONE | https://doi.org/10.1371/journal.pone.0271732 August 3, 2022 13 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0271732.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0271732.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0271732.s003
https://doi.org/10.1371/journal.pone.0271732


Writing – original draft: Mathilde Salagnon, Marc Joliot, Francesco d’Errico, Emmanuel

Mellet.

Writing – review & editing: Sandrine Cremona.

References
1. Coolidge FL, Wynn T. An Introduction to Cognitive Archaeology. Curr Dir Psychol Sci. 2016 Dec; 25

(6):386–92.

2. Currie A, Killin A. From things to thinking: Cognitive archaeology. Mind Lang. 2019 Apr; 34(2):263–79.

3. Davidson I. The archeology of cognitive evolution. Wiley Interdiscip Rev Cogn Sci. 2010 Mar; 1(2):214–

29. https://doi.org/10.1002/wcs.40 PMID: 26271236

4. Renfrew C, Zubrow EBW, editors. The Ancient Mind: Elements of Cognitive Archaeology [Internet]. 1st

ed. Cambridge University Press; 1994 [cited 2021 Nov 30]. Available from: https://www.cambridge.org/

core/product/identifier/9780511598388/type/book

5. Burke A. Spatial abilities, cognition and the pattern of Neanderthal and modern human dispersals. Quat

Int. 2012 Jan; 247:230–5.

6. Wadley L, Backwell L, d’Errico F, Sievers C. Cooked starchy rhizomes in Africa 170 thousand years

ago. Science. 2020 Jan 3; 367(6473):87–91. https://doi.org/10.1126/science.aaz5926 PMID:

31896717

7. Ambrose SH. Paleolithic Technology and Human Evolution. Science. 2001 Mar 2; 291(5509):1748–53.

https://doi.org/10.1126/science.1059487 PMID: 11249821

8. Henshilwood C, D’Errico F. Homo symbolicus. The Dawn of Language, Imagination and Spirituality.

Cape Town, South Africa: Zebra Press; 2011. 249 p.

9. Langley MC, editor. Osseous projectile weaponry: Towards an Understanding of Pleistocene Cultural

Variability (Vertebrate Paleobiology and Paleoanthropology. New York, NY: Springer; 2016.

10. Lewis JE, Harmand S. An earlier origin for stone tool making: implications for cognitive evolution and

the transition to Homo. Philos Trans R Soc B Biol Sci. 2016 Jul 5; 371(1698):20150233.

11. Nowell A, Davidson I, editors. Stone tools and the evolution of the human cognition. First pbked. Boul-

der, Colo: University Press of Colorado; 2011. 234 p.

12. Soressi M, McPherron SP, Lenoir M, Dogandzic T, Goldberg P, Jacobs Z, et al. Neandertals made the

first specialized bone tools in Europe. Proc Natl Acad Sci. 2013 Aug 27; 110(35):14186–90. https://doi.

org/10.1073/pnas.1302730110 PMID: 23940333

13. Van Kolfschoten T, Parfitt SA, Serangeli J, Bello SM. Lower Paleolithic bone tools from the ‘Spear Hori-
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