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Because all stars contribute to its gravitational potential, stellar clusters amplify perturbations collectively. In the limit of small fluctuations, this is described through linear response theory, via the so-called response matrix. While the evaluation of this matrix is somewhat straightforward for unstable modes (i.e. with a positive growth rate), it requires a careful analytic continuation for damped modes (i.e. with a negative growth rate). We present a generic method to perform such a calculation in spherically symmetric stellar clusters. When applied to an isotropic isochrone cluster, we recover the presence of a low-frequency weakly damped = 1 mode. We finally use a set of direct N -body simulations to test explicitly this prediction through the statistics of the correlated random walk undergone by a cluster's density centre.

INTRODUCTION

All the stars in a stellar cluster contribute collectively to the system's potential. This self-consistency naturally allows the cluster to respond and amplify disturbances. In the limit of small perturbations, this is described by linear response theory (see, e.g., [START_REF] Binney | Galactic Dynamics: Second Edition[END_REF]. Such a generic machinery is paramount to characterise a cluster's possible unstable modes, i.e. with an amplitude growing exponentially in time, for example via the radial-orbit instability in radially anisotropic stellar clusters (see, e.g., Merritt 1999;Maréchal & Perez 2011, for reviews).

Yet, even if a cluster is dynamically stable, i.e. there are no unstable modes, it does not imply that it is dynamically static. Indeed, the cluster can still sustain damped modes, i.e. with an amplitude decaying exponentially in time. These are commonly called Landau damped modes, and require a careful analytic continuation of the response matrix following Landau's prescription. While these modes naturally damp when in isolation, they can also be excited by external perturbations, e.g., fly-bys (Weinberg 1989) or continuously seeded by the cluster's intrinsic thermal Poisson shot noise (Weinberg 1998).

The importance of these damped modes in globular clusters is the clearest through its = 1 'sloshing' mode that induces slow long-lasting oscillations of a cluster's centre (see, e.g., Heggie et al. 2020, and references therein) and strong amplifications of largescale dipole fluctuations (Weinberg 1998;[START_REF] Hamilton | [END_REF]Lau & Binney 2019). In a seminal work, Weinberg (1994) developed an elegant numerical procedure to systematically evaluate a cluster's response matrix for such damped frequencies. This is the problem that we revisit here putting forward a different approach to perform efficiently and explicitly this analytic continuation.

The present paper is organised as follows. In §2, we briefly review the linear response theory of stellar systems. In §3, we rewrite the cluster's response matrix to perform its analytic continuation necessary to capture the damped part of the modes' spectrum. We apply this method in §4 to the isotropic isochrone cluster and recover the presence of a weakly damped = 1 mode therein, which is subsequently compared with direct N -body simulations. Finally, we conclude in §5. In all these sections, technical details are either deferred to Appendices or to appropriate references.

LINEAR RESPONSE THEORY

The linear response theory of an integrable long-range interacting system of dimension d is generically characterised by its response matrix, M(ω) (see Eq. (5.94) in [START_REF] Binney | Galactic Dynamics: Second Edition[END_REF], reading

M αβ (ω) = -(2π) d n∈Z d L dJ n•∂Ftot/∂J n•Ω(J) -ω ψ (α) * n (J) ψ (β) n (J).
(1) In that expression, we introduced angle-action coordinates (of dimension d) as (θ, J), and the system's quasi-stationary distribution function (DF), Ftot(J), normalised so that dθdJFtot = M , with M the system's total active mass. Equation (1) contains the orbital frequencies, Ω(J), as well as the Fourier resonance numbers n ∈ Z d . Finally, following the basis method (see §A), Eq. (1) also involves a set of biorthogonal potential basis elements, ψ (α) .

A system sustains a mode at the (complex) frequency ω, if one has det[I-M(ω)] = 0, with I the identity matrix. Here, the sign of Im[ω] controls the nature of the mode, as Im[ω] > 0 corresponds to unstable modes, Im[ω] = 0 to neutral modes, and Im[ω] < 0 to (Landau) damped ones. We refer to Case (1959); Lee (2018); Polyachenko et al. (2021); Lau & Binney (2021) and references therein for detailed discussions on the subtle distinction between genuine (van Kampen) modes and the present Landau damped modes.

Importantly, for Im[ω] < 0 the action integral from Eq. ( 1) must be computed using Landau's prescription (see, e.g., §5.2.4 in [START_REF] Binney | Galactic Dynamics: Second Edition[END_REF], hence the notation L dJ. In the case of 1D homogeneous system, this prescription takes the simple form

+∞ -∞ L du G(u) u-ω =                    +∞ -∞ du G(u) u-ω if Im[ω] > 0, P +∞ -∞ du G(u) u-ω + iπ G(ω) if Im[ω] = 0, +∞ -∞ du G(u) u -ω + 2iπ G(ω) if Im[ω] < 0 (2)
where the function u → G(u) is assumed to be analytic, e.g., G(u) ∝ u e -u 2 in the case of a Maxwellian distribution. In Eq. ( 2), we also introduced P as Cauchy's principal value. Our goal is to illustrate how one may adapt Landau's prescription to the case of self-gravitating systems.

We now focus on spherically symmetric stellar systems. In that case, as detailed in §4 of [START_REF] Hamilton | [END_REF], the response matrix from Eq. ( 1) decouples the various spherical harmonics 0 from one another. The response matrix is then limited to a 2D action integral. For a given harmonic , Eq. ( 1) generically takes the form

M pq (ω) = n∈Z 2 L dJ G n pq (J) n•Ω(J) -ω , (3) 
with (p, q) the radial indices associated with the basis decomposition, and with G n pq (J) fully spelled out in Eq. (A1). In Eq. ( 3), we introduced the 2D action coordinates J = (Jr, L) being the radial action and angular momentum. Similarly, the resonance vectors are 2D, i.e. n = (n1, n2), with the orbital frequencies Ω(J) = (Ω1(J), Ω2(J)), respectively associated with the radial and azimuthal motions.

There are two main difficulties associated with the application of Landau's prescription to Eq. ( 3):

(A) It involves the resonant denominator, 1/(n•Ω(J)-ω), considerably more intricate than the 1/(u-ω) appearing in the homogeneous case. Orbital frequencies are non-trivial functions of the action variables, i.e. non-trivial functions of the coordinate w.r.t. which the integrals are performed. In that sense, the stellar resonance condition is not 'aligned' with one of the integration coordinates.

(B) The numerator, G n pq (J), is an expensive numerical function which, as such, cannot be evaluated for arbitrary complex arguments. This is in stark constrast with the homogeneous case, where it is generically assumed that the numerator, G(u), is an explicitly known analytic function.

Our goal is now to circumvent these two issues.

ANALYTIC CONTINUATION

In order to simplify the notations, we now drop the dependence w.r.t. the harmonics , as well as w.r.t. the considered basis elements (p, q). As a consequence, following Eq. ( 3), our goal is to evaluate an expression of the form

Mn(ω) = L dJ Gn(J) n•Ω(J) -ω , (4) 
for a given resonance vector n = (n1, n2).

We now assume that the cluster's density follows an outward decreasing core profile, as in the isochrone cluster. As such, we introduce the natural frequency scale

Ω0 = Ω1 Jr → 0, L → 0 , (5) 
corresponding to the frequency of harmonic oscillation in the cluster's very core. In order to 'align' the resonant denominator from Eq. ( 4), we introduce the new dimensionless coordinates

α = Ω1 Ω0 ; β = Ω2 Ω1 , (6) 
so that α corresponds to the (dimensionless) radial frequency, and β to the ratio of the azimuthal and radial frequencies. Such a choice stems from the fact that α and β are naturally obtained through the angle-action coordinates mapping (Tremaine & Weinberg 1984)see also §A. Importantly, as long as the cluster's potential is not degenerate, e.g., different from the Keplerian and harmonic ones, the mapping J → (α, β) is bijective. As such, an orbit can unambiguously be characterised by its two orbital frequencies. In addition, we note that α and β satisfy the range constraints

0 α 1; 1 2 β βc(α). (7) 
Here, α → 0 corresponds the outer regions of the cluster, while α → 1 corresponds to the inner regions. One has β = 1 2 along radial orbits (i.e. L → 0), while β = βc(α) stands for the value of the frequency ratio along circular orbits (i.e. Jr → 0). Equation (C6) gives an explicit expression of βc(α) for the isochrone potential.

We may now rewrite Eq. ( 4) as

Mn(ω) = 1 0 L dα βc(α) 1 2 dβ Gn(α, β) n1 α + n2 α β -ω , (8) 
where we introduced Gn(α, β) = Gn(J) |∂J/∂(α, β)|/Ω0, and make the convenient replacement ω/Ω0 → ω for the rest of this section. §C gives an explicit expression of the Jacobian of that transformation for the isochrone potential. The next step of the calculation is to perform one additional change of variables to fully align the resonant denominator from Eq. ( 8) with one of the integration variables (Vauterin & Dejonghe 1996;De Rijcke & Voulis 2016). For a given resonance vector n, with n = (0, 0), we now introduce the (real) resonance frequency

ωn(α, β) = n1 α + n2 α β. (9) 
In practice, we then perform a change of variables of the form (α, β) → (u, v), so that the new coordinates satisfy the three constraints:

(i) u ∝ ωn +cst.; (ii) -1 u 1; (iii) v - n (u) v v + n (u).
We spell out explicitly this change of variables in §B, and tailor it for the isochrone case in §C.

Equation ( 8) can then be rewritten under the generic form

Mn(ω) = 1 -1 L du v + n (u) v - n (u) dv Gn(u, v) u -n(ω) , (10) 
with the detailed expression of Gn(u, v) given in Eq. (B6). In Eq. ( 10), we also introduced the rescaled (complex) frequency

n(ω) = 2ω -ω max n -ω min n ω max n -ω min n , (11) 
with ω min n = Min (α,β) [ωn(α, β)], and similarly for ωmax. Given that ω min n and ω max n are both real, we have from Eq. ( 11) that ω and n(ω) share the same sign for their imaginary part, so that Landau's prescription (Eq. ( 2)) also naturally applies with n(ω).

At this stage, we have made great progress, as problem (A) from §2 has been fully circumvented in Eq. (10). Indeed, the resonant denominator in that equation now takes the simple form 1/(un), with u one of the integration variables.

It now only remains to deal with problem (B) from §2, namely to perform the analytic continuation of Eq. ( 10). In order to further simplify the notations, we now drop the dependences w.r.t. the resonance vector n, and the integral dv, and make the replacement n(ω) → ω. As a consequence, Eq. ( 10) generically asks for the computation of an expression of the form

M (ω) = 1 -1 L du G(u) u -ω , (12) 
We now follow the same approach as [START_REF] Robinson | [END_REF] by projecting the function u → G(u) onto an explicit analytic basis function. Considering that the integration range from Eq. ( 12) is finite, a natural choice is Legendre polynomials, P k (u). More precisely, given a maximum order Ku, we write the expansion

G(u) = Ku-1 k=0 a k P k (u), (13) 
In practice, the frequency-independent coefficients, a k , are obtained through a Gauss-Legendre (GL) quadrature (see §D). Equation (12) then simply becomes

M (ω) = Ku-1 k=0 a k D k (ω), (14) 
with

D k (ω) = 1 -1 L du P k (u) u -ω . (15) 
Given that the integrand from Eq. ( 15) is analytic, it is straightforward to apply Landau's prescription from Eq. (2) to evaluate the D k (ω) in the whole complex frequency plane. §D gives details for their efficient evaluations. We also test this implementation in §E to recover the damped modes of homogeneous stellar systems. Now, problem (B) has been solved. Equation ( 14) is a great simplification of the difficulty of the computation of a cluster's response matrix for Im[ω] < 0. Indeed, the dependence of M (ω), w.r.t. the cluster's properties is fully encompassed by the coefficients a k (that must be computed only once), while its dependence w.r.t. the considered complex frequency, ω, only appears in the analytic functions D k (ω). Finally, in §F, we briefly revisit the alternative approach first put forward in the seminal work from Weinberg (1994), and based on an approximation of Eq. (3) by rational functions.

APPLICATION

We are now set to apply the previous method to the case of spherical stellar clusters, in particular to characterise the properties of their (weakly) damped = 1 mode (Weinberg 1994). Here, we limit ourselves to the particular case of the isotropic isochrone cluster, for which the direct availability of explicit angle-action coordinates simplifies the numerical implementation. We refer to §C for the associated expressions and the detailed numerical parameters used throughout.

Before investigating the cluster's = 1 response matrix in the lower half of the complex plane, let us first investigate the cluster's 

∝ 1/|[(ω R +iη)-ω M ][(ω R +iη)+ω * M ]
| that captures the effect from both damped modes with positive and negative real frequency. Here, the value of ω M was taken from Eq. ( 19) (as inferred from the top panel of Fig. 2), and we limited ourselves to only adjusting each of the ansatzes' maximum height. See §C for the numerical details.

response for frequencies with positive or vanishing imaginary parts. This is captured by the susceptibility matrix

N (ωR +iη) = I -M (ωR +iη) -1 , (16) 
with I the identity matrix, ωR a real frequency, and η 0 the frequency's imaginary part. In Fig. 1, we represent the eigenvalue of N (ωR +iη) that has the largest norm, which we denote with |λ(ωR +iη)|max. In that figure, we clearly observe a narrow amplification in frequency, that gets stronger as one reduces η. This is the direct imprint along the real frequency line of the cluster's nearby = 1 damped mode. Following Eq. ( 139) of Nelson & Tremaine (1999), it is natural to approximate this narrow amplification with

|λ(ωR +iη)|max ∝ 1 |[(ωR +iη) -ωM][(ωR +iη) + ω * M )| , ( 17 
)
where ωM is the complex frequency of the damped mode (with Re[ωM] > 0 and Im[ωM] < 0). In Eq. ( 17), we also accounted for the contribution from the associated counter-rotating damped mode, -ω * M , whose existence is guaranteed by the cluster's spherical invariance. In Fig. 1, we note the good agreement between the approximation from Eq. ( 17) and the numerically measured maximum amplification eigenvalue, for the various values of η considered.

Owing to our explicit analytic continuation of the response matrix in Eq. ( 14), we may push further this analysis by explicitly evaluating the cluster's response matrix in the lower half of the complex plane, i.e. for Im[ω] < 0. As such, we define the (complex) dispersion function

ε (ω) = det I -M (ω) , (18) 
so that damped mode corresponds to solutions of ε (ωM) = 0 with Im[ωM] < 0. In Fig. 2 (upper panel), we present this dispersion function in the lower half of the complex frequency plane. From that figure, we infer that the isotropic isochrone cluster sustains a = 1 weakly 14). One clearly recovers the presence of a (weakly) damped mode of complex frequency ω M /Ω 0 0.0143 -0.00142 i. Bottom: Using an analytic continuation via rational functions, see §F. A damped mode is found with the frequency ω M /Ω 0 0.0143 -0.00140 i. In that panel, the various black points correspond to the frequencies of the damped mode as one varies the considered interpolation frequency grid. Further down in the complex plane, both methods saturate and suffer from spurious numerical oscillations.

damped mode of complex frequency ωM/Ω0 0.0143 -0.00142 i,

with Ω0 = GM/b 3 c the frequency scale of the isochrone cluster. We also recall that owing to spherical symmetry, there exists an associated damped mode of complex frequency -ω * M . We note that the present method suffers unfortunately from spurious numerical oscillations, as visible in Fig. 2 (upper panel), stemming from the truncation of the Legendre series. In that same figure (lower panel), we also illustrate the dispersion function as computed via an analytic continuation through rational functions (Weinberg 1994), for various grids of interpolating complex frequencies, see §F.

As already pointed out by Weinberg (1994), this damped mode, as characterised by Eq. ( 19), is both (i) slow since Re[ωM] Ω0, and (ii) weakly damped since |Im[ωM]/Re[ωM]| 1. These two properties are directly connected since the fact that Re[ωM] Ω0 implies that only a small number of stars can effectively resonate with the mode (there The damped mode tentatively exhibits its first node for r/bc 11. On large scales, the reconstruction suffers from spurious oscillations originating from the finite number of basis elements.

are only a few slowly orbiting stars), which in turn only allows for an inefficient (Landau) damping of the mode itself.

Having determined the mode's complex frequency, it is straightforward to obtain the mode's radial dependence (see, e.g., Eq. ( 72) of [START_REF] Hamilton | [END_REF]), as illustrated in Fig. 3. In that figure, we also present estimations of the radial shape of the mode's density, ρM(r), and potential, ψM(r), from numerical simulations following approaches from Lau & Binney (2019); Heggie et al. (2020), and both presented in §H.

In the bottom panels of Fig. 3, we also present the behaviour of the mode's density, ρM(r), for larger radii. We note that our present reconstruction suffers from spurious oscillations, associated with the finite number of basis elements and the use of a large scale radius for the basis, R b = 20 bc, see §C. This problem could likely be alleviated by using basis elements appropriately tailored to the isochrone potential and obtained from the associated Sturm- (1994), this perturbation drives a shift of the cluster's density centre.

-2 -1 0 1 2 -2 -1 0 1 2 x/bc y/bc
Liouville equation (Weinberg 1999). As pointed in Heggie et al. (2020), the density ρM(r) must necessarily change sign to ensure that the centre of mass of the density perturbation remains at the origin. In Fig. 3, we tentatively find that the mode's first node lies at R node /bc 11. Starting from the mode's oscillation frequency in Eq. ( 19), one can estimate its corotation radius, RCOR via Ω2(r = RCOR, Jr = 0) = Re [ωM], that imposes RCOR/bc 16.3. Fortunately, even if noisy, the present estimation of ρM(r) complies with the requirement R node RCOR, i.e. the oscillation of the cluster's centre must happen slower than the orbital period at the mode's node.

If one were to shift the cluster as a whole of an amount δx along the x-axis, the induced density perturbation would be

δρ(x, y, z) = ρ(x-δx, y, z) -ρ(x, y, z) ∝ dρ dr x r δx, (20) 
with ρ(r) the cluster's mean density. Up to normalisations, the = 1 spherical harmonics are {Y =1,m ( r)} = {x/r, y/r, z/r}, so that Eq. ( 20) simply becomes δρ ∝ (dρ/dr) Y m ( r). The density perturbation generated by the damped mode itself takes the simple form δρ ∝ ρM(r) Y m ( r). As such, comparing ρM and dρ/dr allows one to assess how much the damped mode differs from a simple shift of the cluster as a whole. In Fig. 3, we point out that in the cluster's inner regions, i.e. r/bc 5, the mode's density is strikingly similar to the cluster's mean density gradient, dρ/dr. For larger radii, these two functions must necessarily start to differ, as ρM(r) has to accommodate for the requirement of changing sign, to ensure the conservation of momentum.

When excited, this = 1 mode manifests itself as dipole perturbation. This leads to a shift of the cluster's density centre, as illustrated in Fig. 4. Once again, we emphasise the similarity with Fig. 5 of Weinberg (1994). This drives overall a sloshing motion of the cluster's centre of typical frequency Re[ωM], which, in the ab- While in Fig. 2 we focused our interest on = 1 perturbations, we applied the same method for the other harmonics, namely = 0, 2, 3. We could not recover any significant damped mode before falling in the region of spurious numerical modes (as already visible in Fig. 2). Future works should focus on improving the present scheme's numerical stability in order to delay the appearance of these artificial modes, as one explores the lower half of the complex plane further down.

Having characterised in detail the properties of the cluster's = 1 damped mode, we finally set out to recover its imprints in direct N -body simulations. We follow an approach similar to the one presented in Spurzem & Aarseth (1996); Heggie et al. (2020), and we spell out details in §G.

Similarly to Lau & Binney (2019), we performed direct Nbody simulations of N = 10 5 isotropic isochrone clusters using NBODY6++GPU (Wang et al. 2015), keeping track of the stochastic wandering of the cluster's density centre (Casertano & Hut 1985), as illustrated in Fig. 5 (solid lines). In order not to be polluted by contributions from the outermost bound stars (see §G), we filter these time series (dashed lines) using a Savitzky-Golay (SG) filter on a timescale longer than the mode's expected period. The oscillations of the time series around their underlying smooth evolutions are expected to be driven in part by the cluster's damped mode.

To proceed further, similarly to Heggie et al. (2020), we finally estimate the power spectrum, Pc(ω), of the distance of the cluster's density centre w.r.t. its smooth evolution -see Eq. (G5) for a detailed definition. Similarly to Eq. ( 17), we expect that for a real frequency ωR close to Re[ωM], the power spectrum of the density centre should behave like a Lorentzian of the form

Pc(ωR) ∝ 1 |(ωR -ωM)(ωR +ω * M )| 2 , ( 21 
)
where the value of the complex frequency ωM was obtained in Eq. ( 19). In that expression, similarly to Fig. 1, we accounted for the contributions from both damped modes, i.e. ωM and -ω * M , that only differ in the sign of their real part.

In Fig. 6, we present the estimation of Pc(ω) along with its approximation from Eq. ( 21). Reassuringly, we indeed recover the presence of a narrow amplification peak in the N -body simulations compatible with the one of the = 1 damped mode predicted using linear response theory. However, the measured peak seems slightly offset and somewhat too wide compared to the linear theory predic- 

CONCLUSION

In this work, following the steps of Weinberg (1994), we have tailored the matrix method for self-gravitating systems to also compute the (Landau) damped modes of a stellar system. In order to be able to apply Landau's prescription, we had to (i) 'align' the resonant denominator with one of the integration coordinate, and (ii) project the integrand on some explicit basis function whose analytic continuation is straightforward. This alternative approach was found to be asymptotically as computationally expensive as an analytic continuation based on rational functions (Weinberg 1994). We applied this generic method to the isotropic isochrone cluster to unveil the presence of a low-frequency weakly damped = 1 mode, as already demonstrated by Weinberg (1994) almost three decades ago in King spheres. Finally, following Heggie et al. (2020), we used direct N -body simulations to recover the main properties of this damped mode through the correlated stochastic motion of the clusters' density centre. To conclude, we now mention a few possible avenues for future works.

For the sake of simplicity, we limited ourselves to the sole consideration of an isotropic DF, Ftot = Ftot(E), with an isochrone potential. Of course, it would be worthwhile to perform the same investigation for other classes of potentials, such as King spheres (Weinberg 1994;Heggie et al. 2020). We note that applying the current method to cuspy profiles, e.g., Hernquist, would require some additional tuning, since the orbital frequencies, e.g., α as in Eq. ( 6), can diverge in the central regions. Similarly, following, e.g., Tremaine (2005), the present method would also require some further work to be applicable in dynamically degenerate systems such as quasi-Keplerian ones. Finally, lifting the assumption of velocity isotropy, i.e. considering Ftot = Ftot(E, L), might offer new clues on the numerically observed accelerated relaxation of tangentially anisotropic clusters [START_REF] Breen | [END_REF]) and their = 1, 2 modes, while allowing for ∂Ftot/∂Lz = 0 should give new insights on the impact of rotation on a cluster's long-term evolution (Rozier et al. 2019;Szölgyén et al. 2019;Breen et al. 2021).

We also note that our use of the explicitly integrable isochrone potential eased the numerical tasks of various steps of the present application: (i) to perform systematically numerically stable orbit averages as in Eq. ( A3); (ii) to perform explicitly the change of coordinates towards the orbital frequencies as in Eq. ( 8); (iii) to determine the range of integrations v - n (u) and v + n (u) in Eq. ( 10); (iv) to easily determine the frequency range probed by every resonance vector n, through n(ω) in Eq. ( 11). The present method should be extended to any arbitrary numerically-given radial potential, along with an appropriately tailored basis expansion (Weinberg 1999). Such a generalisation is a necessary first step to ultimately hope for the explicit time integration of dressed kinetic equations such as the Balescu-Lenard equation (e.g., Fouvry et al. 2021).

Lau & Binney (2021) recently derived for the first time the van Kampen modes (Van Kampen 1955) of isotropic stellar clusters, emphasising in particular how they allow for the detailed characterisation of the time-stationary thermal fluctuations present in a stellar cluster. Following the line of Case (1959), it will undoubtedly be of interest to fully clarify the connection between these genuine modes and the present damped ones.

Hamilton & Heinemann (2020) recently introduced the quasilinear collision operator in the context of stellar systems, to describe the evolution of the cluster's distribution function as a result of resonant interactions with Landau damped waves. Benefiting from the present characterisation of a cluster's = 1 damped mode, one should quantitatively investigate the heating signatures arising from such wave-particle interactions. In particular, noting that the present = 1 damped mode is low-frequency, so that resonant interactions with the mode only occur for very small orbital frequencies, it is expected that this process will only affect the cluster's outskirts (see, e.g., Theuns 1996), e.g., through the rate of stellar escapers (Hénon 1960).

Finally, we focused here our interest on spherical stellar clusters. Without much work, the present method could also be applied to razor-thin axisymmetric stellar discs, since their action space is also 2D. In particular, it would surely be physically enlightening to re-interpret the strong swing amplification that inevitably occurs in sufficiently self-gravitating stellar discs (see, e.g., Binney 2020, and references therein) as the imprint of (weakly) damped modes.

Data Distribution

The code and the data underlying this article is available through reasonable request to the authors. numerous remarks on an earlier version of this work. JBF is grateful to D. Heggie for his help in designing appropriate N -body simulations and sharing important insights regarding the isochrone cluster.

APPENDIX A: LINEAR RESPONSE THEORY IN SPHERICAL SYSTEMS

In this Appendix, we reproduce the key equations giving the response matrix of spherically symmetric stellar clusters. For a spher-ically symmetric system, the different spherical harmonics, , decouple from one another. Following Eq. (B9) of Fouvry et al. (2021), the function G n pq (J) introduced in Eq. ( 3) reads

G n pq (J) = - 2(2π) 3 2 + 1 y n 2 2 L n• ∂Ftot ∂J W n p (J) W n q (J), (A1)
where we introduced y n = Y n ( π 2 , 0), with Y m (ϑ, φ) the spherical harmonics normalised so that dϑdφ sin(ϑ)|Y m (ϑ, φ)| 2 = 1. We note that these coefficients impose the constraints |n2| and ( -n2) even, and that the vector n = (0, 0) does not contribute to the response matrix. We also recall that the shape of an orbit is fully characterised by the action J = (Jr, L), with Jr the radial action, and L the angular momentum, with the associated orbital frequencies Ω = (Ω1, Ω2). Equation (A1) also involves the system's total DF, Ftot(J), normalised so that drdv Ftot = M with M the cluster's total mass, and (r, v) the position and velocity coordinates.

In Eq. (A1), p, q 1 stand for the radial indices of the considered biorthogonal basis of potentials and densities. These are introduced following Kalnajs (1976), using the same convention as in Eq. (B1) of Fouvry et al. (2021). In practice, owing to spherical symmetry, it is natural to expand the potential basis elements as

ψ (α) (r) = Y m (ϑ, φ) U n (r), ( A2 
)
and similarly for the densities, with U n (r) some real radial functions with n 1. In practice, we used radial basis elements from Clutton-Brock (1973), and we refer to §B1 of Fouvry et al. (2021) for an explicit expression of U n (r). Equation (A1) also involves the coefficients with the radial velocity v 2 r = 2(E -ψ(r))-L 2 /r 2 and C the contour going from the orbit's pericentre rp up to the current position r = r(θ1) along the radial oscillation. Similarly, (α, β) from Eq. ( 6) are generically given by

W n n (J) = π 0 dθ1 π U n (r) cos(n1θ1 + n2(θ2 -ϕ)), ( 
1 α = 1 π ra rp dr Ω0 |vr| ; β = 1 π ra rp dr L/r 2 |vr| , ( A5 
)
with ra the orbit's apocentre. We refer to §B3 of Fouvry et al. (2021) for details regarding the computation of W n n (J). These coefficients are the numerically most demanding quantities. We finally emphasise that our use of the isochrone potential allows for straightforward numerically stable angular averages, as highlighted in Eq. (G10) of Fouvry et al. (2021).

APPENDIX B: MAPPING TO ORBITAL FREQUENCIES

In this Appendix, we detail the change of variables (α, β) → (u, v) used to obtain Eq. ( 10).

From Eq. ( 9), we recall that the resonance frequency, ωn(α, β), is defined as

ωn(α, β) = n1 α + n2 α β. (B1)
For a given n, we define the minimum value reached by ωn as . Illustration of the radial shape, ψ(r), as presented in Fig. 4 of Saha (1991) and compared with the present method, for the = 2 unstable mode of a radially anisotropic Ra = bc isochrone cluster. The normalisation of the vertical axis is arbitrary. See the text for the detailed numerical parameters.

ω min n = Min (α,β) [ωn(α, β)], ( 
Given that P (q) is at most a second-order polynomial, it is straightforward to determine the existence/absence of extrema for the function α → ω c n (α). We also note that the same polynomial, Pn(q), is used to fully characterise the integration bounds (v - n (u), v + n (u)), as constrained by Eq. (B10).

In order to validate our implementation of the response matrix, we recovered the radial-orbit instability in a radially anisotropic isochrone potential, as investigated in Saha (1991). We refer to §G of Fouvry et al. (2021) for the detailed definition of the considered DF. For this calculation, we used a total of nmax = 100 basis elements with the scale radius R b = 20 bc (see §B1 in Fouvry et al. ( 2021)), and the sum over resonance number was truncated at n max 1 = 10. The orbit-averages in Eq. (A3) were performed with K = 200 steps, while the integrations w.r.t. v (see Eq. ( 10)) were performed with Kv = 200 steps, and the GL quadrature used Ku = 200 nodes.

In Fig. C1, we recover that the radially-anisotropic model, Ra = bc supports an unstable mode with growth rate η 0.023 Ω0 in good agreement with the value 0.024 Ω0 obtained by Saha (1991). Similarly, the radial shapes of the modes are in good agreement. This strengthens our confidence in the present method, at least when searching for instabilities in the upper half of the complex frequency plane.

In §4, when investigating the cluster's = 1 damped mode, we used the exact same numerical control parameters as in Fig. C1. In order to further assess the appropriate numerical convergence of the numerical scheme, following the same calculation as in Fig. 1, we present in Fig. C2 the maximum norm of the susceptibility matrix |N pq (ωR)| as one varies the real frequency ωR, for = 1 and fixed (p, q). In that figure, we recover in particular that for p, q 1, one has Npq(ωR) → δpq, i.e. collective effects can be safely neglected on small physical scales.

APPENDIX D: LEGENDRE FUNCTIONS

In this Appendix, we detail our use of the GL quadrature and our computation of the Legendre functions.

The Legendre polynomials satisfy the normalisation -1 for = 1, as one varies the real frequency ω R for fixed (p, q). Values smaller than 0.05 are replaced with white colors, highlighting the fact that Npq → δpq for p, q 1.

1 -1 du P k (u) P k (u) = c k δ kk , (D1) 
with c k = 2/(2k+1). Following Eq. ( 13), a given coefficient a k is given by

a k = 1 c k 1 -1 du G(u) P k (u). (D2) 
In practice, these coefficients are directly computed through a GL quadrature of order Ku (see, e.g., [START_REF] Press | Numerical Recipes 3rd Edition[END_REF]). As such, we have at our disposal an explicit set of nodes, {ui} 1 i Ku , and weights {wi} 1 i Ku . Then, for any 0 k < Ku, one approximates the integral from Eq. (D2) through

a k = 1 c k Ku i=1 wi G(ui) P k (ui), (D3) 
noting that the values of {P k (ui)} i,k may be computed once and for all, independently of the function G(u).

In order to compute the response matrix, following Eq. ( 15), one has to evaluate the functions

D k (ω) = 1 -1 L du P k (u) u -ω , (D4) 
The P k (u) are analytic functions that can readily be evaluated in the whole complex plane. As such, applying Landau's prescription from Eq. (2), we can rewrite Eq. (D4) as

D k (ω) =              Q k (ω) if Im[ω] > 0, Q k (ω)+iπP k (ω) H(ω) if Im[ω] = 0, Q k (ω)+2iπP k (ω) H(Re[ω]) if Im[ω] < 0. (D5) 
In that expression, we introduced the Heaviside function of the from the initial conditions given by Eqs. (D9), (D10) and (D12), and, for k 2, uses the recurrence relation

P k (ω) = 2k -1 k ω P k-1 (ω) - k -1 k P k-2 (ω), (D13) 
similarly for Q k (ω).

Yet, for some values of ω such a recurrence relation is not numerically stable to compute Q k (ω). In that case, we may resort to a backward recurrence. To do so, we give ourselves a 'warm-up' starting point, Kc > Ku, and initialise the recurrence with

QK c+2 (ω) = 0; QK c+1 (ω) = 1. (D14)
Such an initial condition is appropriate because when the forward recurrence is unstable it is because one is interested in the decaying mode of recurrence, which, fortunately, becomes the growing one of the backward recurrence (see, e.g., [START_REF] Zhang | Computation of Special Functions[END_REF]. In that case, the recurrence is propagated backwards using, for k 0, the relation

Q k (ω) = 2k + 3 k + 1 ω Q k+1 (ω) - k + 2 k + 1 Q k+2 (ω). (D15)
Once Q0(ω) has been reached, owing to the linearity of Eq. (D15), we rescale all the computed values {Q k (ω)} 0 k<Ku to the correct value of Q0(ω) given by Eq. (D10). For a given value of ω and Ku, it only remains to setup a criteria to specify whether the forward or backward recurrence relation should be used. In practice, we follow the exact same criteria as in Heiter (2010) (see in particular the function qtm1 therein). The Legendre functions, P k (ω), are always computed with the forward recurrence relation from Eq. (D13). For the functions Q k (ω), we use the forward recurrence if ω lies within a given ellipse around the real segment -1 Re[ω] 1 and Im[ω] = 0. More precisely, we define b = Min 1, 4.5 (Ku + 1) 1.17 ; a = 1 + b 2 .

(D16)

Then, if ever the criterion

Re[ω] a 2 + Im[ω] b 2 1 (D17)
is satisfied, we use the forward recurrence from Eq. (D13). When Eq. ( D17) is not satisfied, we resort to the backward recurrence from Eq. (D15). In that case, the warm-up, Kc -see Eq. (D14), is determined through

z = Re[ω] + i Im[ω] ; c = z 2 -1; d = 2 ln(|z + c|); Kc = Ku + ln(1/ ) d , (D18) 
with = 10 -14 a given tolerance target.

APPENDIX E: HOMOGENEOUS STELLAR SYSTEMS

In this Appendix, we apply the method from Eq. ( 14) to an homogeneous stellar system (see §5.2.4 of [START_REF] Binney | Galactic Dynamics: Second Edition[END_REF]. This is useful to test our implementation of the Legendre functions, as well as the numerical stability of the overall scheme. As such, we consider the simple case of a 1D Maxwellian velocity distribution with

M (ω) = q √ π +∞ -∞ L du u e -u 2 u -ω (E1)
where 0 < q < 1 ensures linear stability. Following Eq. (5.64) of [START_REF] Binney | Galactic Dynamics: Second Edition[END_REF], one can rewrite Eq. (E1) under the simple form

M (ω) = q 1 + ω Z(ω) , (E2) 
with the usual plasma dispersion function [START_REF] Fried | The Plasma Dispersion Function[END_REF])

Z(ω) = 1 √ π +∞ -∞ L dx e -x 2 x -ω , (E3) 
which can readily be evaluated in the whole complex plane.

We then compare the analytical expression from Eq. (E2) with the result obtained by applying the method from Eq. ( 14). To do so, we introduce a truncation velocity, umax > 0, and rewrite Eq. (E1) as

M (ω) = 1 -1 L du G(u) u - , (E4) 
with

G(u) = q umax √ π u e -u 2 max u 2 ; = ω umax . (E5)
Given that Eq. ( 12) and (E4) are of the exact same form, we may use the same Legendre projection as in Eq. ( 14). In Fig. E1 we illustrate the contours of the associated dispersion function in the lower half of the complex frequency space. We note that both methods are in very good agreement for the first few damped modes. ) in the lower half of the complex plane for the (stable) homogeneous case from Eq. (E1), with q = 1 2 . Around each pole, the outermost contours correspond to ln(|ε|) = -0.5 with the subsequent contours spaced every -0.5. Top panel: Analytical prediction from Eq. (E2) computed with umax = +∞. Bottom panel: Numerical prediction from Eq. (E4), truncating the velocity integral at umax = 20 and using Ku = 200 points to perform the GL quadrature.

For larger damping rates, the present numerical method produces spurious zeros, stemming from the Legendre series truncation -a problem also encountered in Fig. 2 of Weinberg (1994). Similar artificial zeros are also present in the self-gravitating case presented here in Fig. 2.

APPENDIX F: RATIONAL FUNCTION APPROXIMATION

In this Appendix, we recall the approach put forward in the seminal work from (Weinberg 1994) to compute the damped modes of a stellar system.

The key starting point is to note that the evaluation of M pq (ω) from Eq. (3) does not require any subtle prescription for Im[ω] > 0.

As a consequence, one can first evaluate M pq (ωi) for some given complex frequencies {ωi}i, with Im[ωi] > 0 and 1 i n.

Given that Eq. (3) involves a resonant denominator of the form 1/(n•Ω(J)-ω), it is then natural to approximate M pq (ω) with a rational function of the form

M pq (ω) = P pq (ω) Q pq (ω) , (F1) 
where P pq (ω) and Q pq (ω)) are polynomials with deg(P ) = n/2 and deg(Q) = (n-1)/2 , inferred from the gridded evaluations.

In practice, to approximate a rational function of the form

f (ω) = P (ω) Q(ω) , (F2) 
we use reciprocal differences [START_REF] Stoer | Introduction to Numerical Analysis[END_REF], as we briefly reproduce. First, we write f as the continued fraction

f (ω) = a1 + ω -ω1 a2 + ω -ω2 a3 + ω -ω3 a4 + • • • , (F3)
where the last term is an-1 +(ω-ωn-1)/(an). The coefficients ai are given by

a1 = ρ(ω1), a2 = ρ(ω1, ω2), a3 = ρ(ω1, ω2, ω3) -ρ(ω1), ai = • • • , an = ρ(ω1, • • • , ωn) -ρ(ω1, • • • , ωn-2), (F4) 
with the reciprocal differences

ρ(ωi) = fi, ρ(ωi, ωi+1) = ωi -ωi+1 fi -fi+1 , ρ(ωi, ωi+1, • • • , ω i+k ) = ωi -ω i+k ρ(ωi, • • • , ω i+k-1 )-ρ(ωi+1, • • • , ω i+k ) + ρ(ωi+1, • • • , ω i+k-1 ).
(F5) All these differences can straightforwardly be determined by recurrence, starting from the computation of {ρ(ωi)}, then {ρ(ωi, ωi+1)}i, subsquently {ρ(ωi, ωi+1, ωi+2)}i, and so forth.

Once the coefficients ai obtained from Eq. (F4), the polynomials P (ω) and Q(ω) follow from using the initial condition

   P (ω) = an, Q(ω) = 1, (F6)
and proceeding backwards for i from (n-1) to 1 (both boundaries included) with the replacements

   P (ω) ←-P (ω) ai + (ω -ωi) Q(ω), Q(ω) ←-P (ω). (F7)
Yet, these high-degree polynomial expressions should not be used to evaluate the rational function f (ω) itself, as the evaluation of their ratios will be highly numerically unstable. One rather considers the initialisation

f (ω) = an, (F8) 
and proceeds backwards for i from (n-1) to 1 (both boundaries included) with the replacement

f (ω) ←-ai + ω -ωi f (ω) . ( F9 
)
Once the coefficients {ai} 1 i n from Eq. (F3) have been determined, Eq. (F9) can be evaluated in O(n) steps. This is asymptotically the same complexity as the Legendre series from Eq. ( 14), which, once the coefficients {a k } 0 k Ku-1 obtained, can be evaluated in O(Ku) steps owing to the recurrences from §D.

Following this protocol, one can construct a rational approximation for each of the response matrix coefficients ω → M pq (ω). The associated response matrix can subsequently be evaluated in the whole complex frequency plane, in particular for Im[ω] < 0, i.e. to search for damped modes.

One obvious advantage of the method from Weinberg (1994) is that it does not require the series of change of variables that led us to Eq. ( 10). However, from the numerical point of view, the key difficulty of this approach is that it requires an a priori and ad hoc choice for the frequency grid {ωi}i to be used in the rational function approximation. In addition, this scheme does not really converge as one increases the density of nodes ωi used.

In the case of the isochrone cluster, inspired by Weinberg (1994), we consider the linearly-spaced grid Grid-1:

   -0.1 Re[ω]/Ω0 0.1 (40 nodes),
Im[ω]/Ω0 = 0.001, 0.005, 0.01.

(F10)

In order to investigate the impact of the choice of the grids on the approximation, we also consider Grid-2 identical to Grid-1 but with only 20 nodes per value of Im[ω], as well as Grid-3 identical to Grid-1 except that the line Im[ω]/Ω0 = 0.005 is not considered. For each of these grids, we also considered three additional grids where we respectively multiplied the gridded values of Re[ω] by 2, or those of Im[ω] by 2, or those of ω by 2. As such, we considered a total of 12 different grids to obtain the roots presented in the bottom panel of Fig. 2.

The dispersion function constructed from Grid-1 is illustrated in Fig. 2, while the grids Grid-2 and Grid-3 are illustrated in Fig. F1. We emphasise that the interpolating values, M pq (ωi), used to construct these rational function approximations were obtained from Eq. ( 14), i.e. using Legendre series evaluated in the upper half of the complex plane. As such, these interpolating values benefit from a greatly reduced numerical noise compared to the one that would stem from naive evaluations of Eq. (3) using a discretisation of action space, e.g., as in Fouvry et al. (2021).

Reassuringly, the approximation by rational functions tentatively recovers the presence of the cluster's weakly damped = 1 mode. However, its precise frequency depends on the choice for the interpolation grid. This is one of the strength of the Legendre approach from Eq. ( 12), where all the pre-computations are limited to the real axis at locations unambiguously imposed by the GL quadrature nodes. In Fig. F1, we note that the rational approximation function also suffers from spurious numerical oscillations (see also Fig. 2 in Weinberg (1994)) that worsen as one gets lower in the complex plane. The Legendre series suffer from the same issue, but with artificial zeros that appear more structured because they directly stem from the Legendre functions' oscillations.

APPENDIX G: NUMERICAL SIMULATIONS

In this Appendix, we detail the numerical simulations used in Figs. 3, 2 but using rational functions as in Eq. (F1). The two panels correspond to different choices for the frequency nodes, {ω i }, as given in Eq. (F10). While all the grids tend to recover a damped mode in agreement with Fig. 2, its precise frequency somewhat depends on the particular grid's choice, as reported in the bottom panel of Fig. 2. As one gets lower in the complex plane, spurious numerical oscillations occur. therein). Each simulation is composed of N = 10 5 particles, integrated for a total duration tmax = 10 3 HU, with an output every ∆t = 1 HU. For the isochrone potential, Hénon units (Hénon 1971) are such that G = M = Rv, with M the cluster's total mass and Rv = 6 bc/(3π-8) the virial radius. We performed a total of N real = 200 different realisations.

For each output, the position of the density centre was estimated using the algorithm from Casertano & Hut (1985) with j = 6 neighbours. Once the position of the density centre estimated, we followed the same recentring as in Heggie et al. (2020). Namely, we place ourselves within the inertial frame moving along with the system's barycentric uniform motion and fix the origin of the coordinate's system so that all the density centres start their evolution from r = 0. Following these manipulations, each realisation provides us with three time series, namely {xc(t), yc(t), zc(t)}.

The density of the isochrone cluster scales likes ρ(r) ∝ 1/r 4 for r → +∞. As such, it is a rather 'puffy' cluster, i.e. one with a significant population of very loosely bound stars. More precisely, following Eq. (2.51) of [START_REF] Binney | Galactic Dynamics: Second Edition[END_REF], the mass outside radius r in the isochrone model is of order 2bcM/r. As a consequence, the outermost bound star is at a radius of order 2N bc.

While this outermost star orbits the system, it will drive significant excursions of the cluster's density centre of typical lengths 2 bc 0.5 HU, likely visible in Fig. 5 (D. Heggie, private communication). We also point out that the timescales associated with these oscillations is long, and cannot be directly resolved within the timespan of our simulations. In order not to be polluted by these contributions, one must therefore filter our time series to better single out the effect of the cluster's damped mode on the correlated motion of the cluster's density centre.

In that view, we followed an approach similar to Spurzem & Aarseth (1996). For a given realisation, each of the time series, {xc(t), yc(t), zc(t)} is filtered using a SG filter (see, e.g., Schafer 2011). Such a filter is characterised by a (half-)window size M f and an order N f . In practice, in order not to affect the frequency associated with the damped mode, we used M f = 153 3 TM/∆t, with the mode's period TM = 2π/Re[ωM] 50.8 HU, as given by Eq. ( 19). We arbitrarily fixed the order of the filter to N f = 5. For a given choice of filtering parameters, we can then estimate the 3 dB cutoff period of the filter, Tc, through Eq. ( 12) of Schafer (2011). It reads here Recalling that our effective sampling rate is ∆t = 1 HU, each time series consist then of an array {δRi} 0 i<n , with n = 1001-2M f the total length of the available signal after the filtering. For 0 k < n, we define the discrete Fourier transform with the convention

δR k = 1 n n-1 i=0
δRi e -i2πik/n , (G4) so that δR k is associated with the frequency ω k = 2πk n 1 ∆t . Finally, we construct the associated power spectrum

Pc(ω k ) = δR k 2 . (G5)
This is the quantity presented in Fig. 6. To finalise our measurement, Eq. ( G5) is ensemble-averaged over all the N real realisations available. In order to estimate the associated errors, we performed N boot = N real bootstrap resamplings over the available realisations. This is presented in Fig. 6 with the associated 16% and 84% error levels.

APPENDIX H: ESTIMATING THE MODE'S SHAPE

In this Appendix, we detail the approaches followed in Fig. 3 to estimate the shapes of the damped mode's density and potential from the N -body simulations. t = 250 HU 3/|Im[ωM]| (as given by Eq. ( 19)). This ensures that the noise amplitude has enough time to thermalise and saturate, while limiting the pollution associated with the cluster's late times core collapse. To estimate the errors, we use the same bootstrap method as in §G, and we represent the 16% and 84% level lines in Fig. 3.

Figure 2 .

 2 Figure2. Illustration of the = 1 dispersion function ε (ω) in the lower half of the complex plane for the isotropic isochrone cluster. Top: Using an analytic continuation via Legendre series, as in Eq. (14). One clearly recovers the presence of a (weakly) damped mode of complex frequency ω M /Ω 0 0.0143 -0.00142 i. Bottom: Using an analytic continuation via rational functions, see §F. A damped mode is found with the frequency ω M /Ω 0 0.0143 -0.00140 i. In that panel, the various black points correspond to the frequencies of the damped mode as one varies the considered interpolation frequency grid. Further down in the complex plane, both methods saturate and suffer from spurious numerical oscillations.

Figure 3 .

 3 Figure 3. Top: Illustration of the radial dependence of the = 1 damped mode from Fig.2with ρ M (r) the mode's density (full), and ψ M (r) its potential (dashed). The colored curves correspond to estimations from Nbody simulations with their respective errors, following §H. All curves are normalised to be of maximum 1. Middle: Illustration of |ρ M (r)| for larger radii alongside the gradient of the mean isochrone's density, |dρ/dr|, both normalised to be of maximum 1. Bottom: Illustration of the ratio ρ M (r)/|dρ/dr|, with both functions normalised to be of maximum 1. The damped mode tentatively exhibits its first node for r/bc 11. On large scales, the reconstruction suffers from spurious oscillations originating from the finite number of basis elements.

Figure 4 .

 4 Figure4. Illustration of the overall effect of the density perturbation from Fig.3in solid lines, with contours spaced linearly between 95% and 5% of the background maximum. The maximum amplitude of the perturbation is fixed to 20% of the background maximum. The dashed contours correspond to the unperturbed cluster at the same levels. Similarly to Fig.5ofWeinberg (1994), this perturbation drives a shift of the cluster's density centre.

Figure 5 .

 5 Figure 5. Illustration of one realisation of the random walk of the density centre as measured in one N -body realisation, in Hénon units (HU; Hénon 1971). The dashed lines correspond to the filtered stochastic walks, see §G.The oscillations away from these smooth lines are notably signatures from the cluster's damped = 1 mode.

Figure 6 .

 6 Figure6. Illustration of the power spectrum, Pc(T ), of the random motion of the cluster's density centre, as measured in N -body simulations (solid lines), as a function of the period T = 2π/ω R in Hénon units (HU). Errors are estimated through bootstrap resamplings over the available realisations, and the 16% and 84% confidence levels are represented. The dashed line corresponds to the prediction from Eq. (21), where only the overall amplitude has been adjusted to the one of the numerically measured peak. The gray region corresponds to the 3 dB cut region of the SG filter, so that it should not be considered. See §G for all the numerical details.

  A3) which correspond to the Fourier transform of the basis elements w.r.t. the canonical angles θ = (θ1, θ2 -ϕ). Following Tremaine & Weinberg (1984) (recalled in §A of Fouvry et al. (2021)), they read

  Figure C1. Illustration of the radial shape, ψ(r), as presented in Fig.4ofSaha (1991) and compared with the present method, for the = 2 unstable mode of a radially anisotropic Ra = bc isochrone cluster. The normalisation of the vertical axis is arbitrary. See the text for the detailed numerical parameters.

Figure C2 .

 C2 Figure C2. Illustration of the maximum norm, |N pq |max, of the susceptibility matrix N(ω R ) = [I-M (ω R )] -1 for = 1,as one varies the real frequency ω R for fixed (p, q). Values smaller than 0.05 are replaced with white colors, highlighting the fact that Npq → δpq for p, q 1.

Figure D1 .

 D1 Figure D1. Illustration of the complex function D 0 (ω) as defined in Eq. (D4). The top panel corresponds to Re[D 0 (ω)], and the bottom one to Im[D 0 (ω)]. As expected, this function does not suffer from any discontinuities in the upper half of the complex plane, i.e. in the region of unstable modes.

Figure E1 .

 E1 Figure E1. Illustration of the contours of the dispersion function, ln(|ε(ω)|) = ln(|1-M (ω)|) in the lower half of the complex plane for the (stable) homogeneous case from Eq. (E1), with q = 1 2 . Around each pole, the outermost contours correspond to ln(|ε|) = -0.5 with the subsequent contours spaced every -0.5. Top panel: Analytical prediction from Eq. (E2) computed with umax = +∞. Bottom panel: Numerical prediction from Eq. (E4), truncating the velocity integral at umax = 20 and using Ku = 200 points to perform the GL quadrature.

Figure F1 .

 F1 Figure F1. Same as Fig.2but using rational functions as in Eq. (F1). The two panels correspond to different choices for the frequency nodes, {ω i }, as given in Eq. (F10). While all the grids tend to recover a damped mode in agreement with Fig.2, its precise frequency somewhat depends on the particular grid's choice, as reported in the bottom panel of Fig.2. As one gets lower in the complex plane, spurious numerical oscillations occur.

  Tc 2 (3.2 M f -4.6) N f + 1 ∆t 167 HU. (G1)This cutoff period is such that any signal on period faster than Tc is essentially left untouched by the filtering, hence the requirement Tc > TM to characterise the mode's properties.Owing to this filtering, we construct the filtered time seriesδxc(t) = xc(t) -xc(t),(G2)(similarly for yc and zc) where xc(t) is obtained via the filtering of xc(t) and is illustrated in Fig.5. FollowingSpurzem & Aarseth (1996), for each realisation we finally construct one time series δRc(t) = δxc(t) 2 + δyc(t) 2 + δzc(t) 2 .(G3)

  Figure 1. Illustration of the maximum eigenvalue norm, |λ(ω R +iη)|max of the susceptibility matrix N (ω R +iη) for = 1, as a function of the real frequency ω R /Ω 0 , with Ω 0 the isochrone cluster's frequency scale (see §C), for various values of the imaginary frequency η 0. One notes a clear amplification for frequencies close to the real part of the damped mode's complex frequency, ω R Re[ω M ]. The smaller η, the stronger the amplification. This amplification is well reproduced by the ansatz
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With the present convention, for x ∈ R and -1 < x < 1, one hasQ k (x) = -2Q Leg k (x), with Q Leg k (x)the usual Legendre function of the second kind.
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and similarly for ω max n , recalling that (α, β) are confined to the domain from Eq. ( 7). We detail in §C how ω min n and ω max n can easily be determined in the case of the isochrone potential.

We then define the variable u as

so that -1 u 1 by design. As for the second variable, v, we pick

With such a choice, the Jacobian of the transformation (α, β) → (u, v) simply reads

where we recall that n = (n1, n2) = (0, 0). This allows us then to obtain the expression of Gn(u, v) from Eq. ( 10) as

with Gn(α, β) introduced in Eq. ( 8).

Let us now detail how the minimum and maximum frequencies, (ω min n , ω max n ), may be determined. We note that ∂ωn/∂α (resp. ∂ωn/∂β) is of constant sign for fixed β (resp. fixed α). As a consequence, following Eq. ( 7), the extrema of ωn are reached either in the three edges (0, 1 2 ), (0, 1), (1, 1 2 ), or along the curve (α, βc(α)) with 0 α 1. This greatly simplifies the search of these extremum values, as one is left with investigating the behaviour of the function

We detail this characterisation in §C for the isochrone potential.

In addition to determining (ω min n , ω max n ), Eq. ( 10) also requires the knowledge of the integration boundaries (v - n (u), v + n (u)). Following Eq. (B3), we first introduce the quantity

For n2 = 0, Eq. (B4) then gives the simple bounds

For n2 = 0, the integration bounds are more intricate to determine. Following the mapping from Eq. (B4) and the allowed domain from Eq. ( 7), v must satisfy the four constraints

The first two constraints are straightforward to account for. The third one is also easily incorporated provided one deals carefully with the respective signs of n2 and n1 + 1 2 n2. For n2 > 0, the fourth and final constraint can be rewritten as hn(u) ω c n (v), with the opposite inequality for n2 < 0. As a consequence, getting the bounds associated with this constraint asks for the computation of the root of the function v → hn(u)-ω c n (v), at most twice. Fortunately, for the isochrone potential (see §C), the function ω c n (v) is explicitly known, and its extrema as well. In practice, once appropriate bracketing intervals are found, we used the bisection method to find the required roots. Accounting simultaneously for all these constraints finally provide us with the values of (v - n (u), v + n (u)) appearing in Eq. (10). Finally, for a given value of u, once (v - n (u), v + n (u)) determined, we compute the integral over dv in Eq. ( 10) using a midpoint rule with Kv nodes.

APPENDIX C: ISOCHRONE POTENTIAL

In this Appendix, we detail key expressions of the isochrone potential [START_REF] Hénon | [END_REF], following notations similar to §G of Fouvry et al. (2021). We emphasise that the availability of these various analytical expressions greatly eased the practical implementation of the method described in the main text.

The isochrone potential is defined as

with bc the associated lengthscale. In that case, the frequency scale from Eq. ( 5) takes the simple form

As defined in Eq. ( 6), the dimensionless radial frequency, α, and the frequency ratio, β, take the simple form

with the energy and action scales, E0 = -GM/bc and L0 = √ GM bc. Fortunately, Eq. ( C3) can be readily inverted to determine the energy and angular momentum of an orbit with given frequencies. One simply has

These mappings finally allow for the straightforward computation of the Jacobian |∂J/∂(α, β)| appearing in Eq. ( 8), recalling that

As given in Eq. (G8) of Fouvry et al. (2021), along circular orbits, one has

with x = r/bc. Luckily, these two relations can easily be leveraged to express the frequency ratio, βc, along circular orbits, as a function of the associated (dimensionless) radial frequency. One gets

It is this function that characterises the bound of the integration domain in Eq. ( 8).

Finally, for a given resonance n, we must determine the minimum and maximum frequencies, (ω min n , ω max n ) as defined in Eq. (B2). This asks for the determination of the extrema of the function α → ω c n (α), as defined in Eq. (B7). Owing to Eq. ( C6), for the isochrone potential one has

with q = 1+α 2/3 . In Eq. (C7), we also introduced the polynomial

(D6)

In Eq. (D5), we also introduced the function

(D7)

The Legendre polynomials, P k (ω), generically satisfy Bonnet's recursion formula. For k 1, it reads

Given the definition from Eq. (D7), the exact same recurrence relation also applies for Q k (ω). It now only remains to specify the initial conditions of these functions. For the Legendre polynomials, one naturally has

For the function Q0(ω), we straightforwardly obtain the expression

) where the complex logarithm, ln(ω), is defined with its usual branch cut in Im[ω] = 0 and Re[ω] < 0. Finally, noting that

we can complement Eq. (D10) with the additional relation

In Fig. D1, we illustrate the behaviour of the function D0(ω). We note that this function does not present any discontinuities in the upper half of the complex plane, but suffers from two discontinuities in the lower half, namely: (i) Re[D0(ω)] diverges in ω = ±1; (ii) Im[D0(ω)] has step discontinuities along all the lines Im[ω] < 0, in the locations Re[ω] = ±1. Such discontinuities originate from the fact that the integral from Eq. (D4) only covers a finite range of frequencies, i.e. -1 u 1.

For a given value of Ku and a given complex frequency ω, a natural way to compute {P k (ω)} 0 k<Ku and {Q k (ω)} 0 k<Ku is to use Eq. (D8) as a forward recurrence relation. Namely, one starts

H1 Density of the mode

To estimate the mode's density, ρM(r), we follow Heggie et al. (2020). At any given time, the cluster's empirical density

with µ the star's individual mass, can be expanded as

with r = r/r and Y m ( r) the real spherical harmonics. As detailed in §G, we recall that our coordinates system is defined as the inertial frame that moves along the cluster's uniform barycentric motion and so that r = 0 corresponds to the location of the density centre at the initial time.

Forgetting about normalisation, Eq. ( H2) equivalently gives us

Rather than evaluating ρ m (r) for a given radius, we estimate it over narrow radial ranges. More precisely, on the domain rmin r rmax, we compute 

where the sum over i is restricted to the particles satisfying rmin ri rmax. In practice, as in Heggie et al. (2020), we use d = 2 in all our estimations. Finally, as we are interested in = 1 dipole perturbations, up to normalisation and re-ordering, the real spherical harmonics are simply given by

For simplicity, we may therefore denote the projection from Eq. (H5) with the shortened notation ρx(r, t) and similarly for the two other directions.

Let us now assume that for a given realisation and a given radial bin centered around r, we have computed the time series of ρx(r, t). Jointly with this projection, we also have at our disposal the time series of the position of the density centre, xc(t). As illustrated in Fig. H1, a clear linear correlation can be observed between these two quantities. We therefore write ρx(r, t) = γx(r) xc(t), (H7)

where the slope, γx(r), is estimated via a linear regression. Owing to spherical symmetry, we finally construct

subsequently averaged over all available realisations. Heggie et al. (2020) importantly points out that the shape of the radial perturbations in the cluster, and therefore the density of the dominant = 1 damped mode, up to an overall normalisation, can directly be estimated through ρM(r) ∝ γ(r).

( This is what is illustrated in Fig. 3. In practice, to obtain Fig. 3, we used radial bins of width ∆r/bc = 0.05 and averaged over 200 independent realisations. In addition, we only used the values for 0 t 500 HU to circumvent the pollution associated with the (slow) onset of the cluster's core collapse at late times. Finally, errors are estimated using the same bootstrap method as in §G, and the 16% and 84% level lines are represented in Fig. 3.

H2 Potential of the mode

To estimate the mode's potential, ψM(r), we follow Lau & Binney (2019). As in Eq. (H2), the instantaneous potential in the cluster can be written as

where we place ourselves within the same inertial frame as in §H1.

Up to normalisation and prefactors, we can then write This is what is illustrated in Fig. 3 by averaging over 200 realisations. In practice, we plotted the dipole power at