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Paragliders’ Launch Trajectory is Universal
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(Dated: May 18, 2022)

We design, build and run a reduced-scale model experiment to study the paragliding inflation
and launching phase at given traction force. We show that the launch trajectory of the glider is
universal, that is, independent of the strength of the exerted force. As a consequence, the length of
the take-off run required for the glider to reach its “ready to launch” vertical position is also universal.
We successfully confront our results to real scale experiments, and show that such universality can
be understood through a simple theoretical model.

INTRODUCTION

Paragliding is a young adventure sport (dating back
to early 80’s) consisting in flying lightweight, free-flying,
foot-launched glider aircrafts with no rigid primary
structure [8, 11]. For a physicist, it truly is a bot-
tomless drawer of fascinating unexplored phenomena,
combining a variety of fields covering fluid mechanics,
fluid-structure interactions, flight mechanics, materials
science, micrometeorology, and even game theory in the
context of understanding exploration-exploitation op-
tima in paragliding competitions.

Since the first prototypes, paraglider wings haven’t
ceased to evolve, both in terms of performance and se-
curity. While most of the research done by paraglid-
ing manufacturers (see e.g. [2, 6]) has focused on opti-
mising wings for steady flight phases, unsteady regimes
have only received limited attention [10]. In particu-
lar, many questions remain unsolved when it comes to
the dynamics of stalls or wing collapses combined with
the aircraft specific pendulum-motion. Further inde-
pendent and fundamental research is susceptible to pro-
vide quantitative elements for improving the safety of
modern gliders, the approval of which is now based on
the rather qualitative feeling of test pilots. In addition,
accidentology studies shows that a substantial fraction
of accidents occur at take-off [7, 13], which makes cru-
cial the study of the launching phase.

In the present communication, we investigate the dy-
namics of the launching phase: How does a seemingly
simple rag inflate when pulled by the pilot to become a
rather stable aircraft in just a matter of seconds? We
design, built and run a reduced-scale model experiment
to study the paragliding inflation and launching phase
at given traction forces. We find that the launch trajec-
tory is universal – in the sense that it does not depend
on the strength of the exerted force – and as a result so
is the distance required for the glider to reach its “ready
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to launch” vertical position. Due to the potential limi-
tations of the model experiment, namely the difficulty
to scale down the stiffness of the materials (fabric and
lines), we decided to perform real scale experiments on
the field which nevertheless showed excellent agreement
with the reduced scale results.

I. REDUCED-SCALE EXPERIMENT

With the aim of working in a controlled environment
to ensure reproducibility of our results, we start with a
reduced-scale experiment in which a small paraglider is
pulled from its risers along a horizontal 3m long guide
rail by a wire and pulley system (see Fig. 1). To mini-

Figure 1: Reduced-scale experiment (see Sec. I). The
top left captions show chronophotographic runs of the
experiment with respectively Mg = 7.0N and 15.0N.
The timestep between shots is 40ms.
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Figure 2: (a) Dimensionless trajectory of the trailing
edge of a reduced-scale glider during launching at
constant traction force with X = x/` and Y = y/`, for
different values of the traction force (denoted by the
grayscale, bullet markers). Corresponding trajectories
for a real-scale AirDesign® UFO glider (triangle
markers). (b) Time evolution of the glider’s angle θ.
Rescaling with the characteristic timescale
τ =

√
m`/FO collapses the data (inset).

mize friction, the paraglider is fastened to a ring looped
around a taught string that serves as the guide.

Consistent with realistic conditions, we chose to work
with given traction force rather than given velocity. In-
deed, when a pilot launches he exerts a given physical
effort. While such effort is most certainly not perfectly
constant over the launching phase, assuming constant
force is a good approximation. It is indeed what the
pilot attempts to achieve. Here, the constant force is
ensured via a falling mass M attached to the wire and
pulley system.

During the launching process, one would like to dis-
tinguish two phases: (i) that during which the chambers
fill with air to give the aircraft its wing shape ensuring
lift, and (ii) the phase where the “inflated” wing rises
from the horizontal to the vertical position. Yet, these
two phase are not separable in time as they take place

somewhat simultaneously, at least in the early stages.
Here we use a 130 cm flat wingspan single-surface glider
(Oxy 0.5 model designed by Opale Paramodels), see
Tab. I. This is convenient because for single-surface glid-
ers, the time overlap between phases (i) and (ii) appears
to be much weaker, due to the very rapid dynamics of
phase (i). In the top left panels of Fig. 1 one can see
that the glider is fully inflated when the trailing edge
(used to track its position and to identify t = 0 in the
following) leaves the ground. See Sec. IV for a discus-
sion on regular double-surface gliders.

Figure 2a displays the dimensionless trajectory Y (X)
of the trailing edge during launching runs with different
values of the traction force, ranging from 5.9 to 17.8N.
Its position is tracked manually using ImageJ for image
analysis. Note that the taught string that is used as a
guide rail tends to distort a little under the pulling ac-
tion of the glider. To account for this upwards shift, we
substract the height of the attachment point to that of
the trailing edge. Strikingly enough all the trajectories
fall on top of each other in Fig. 2a, thereby indicating
the independence to the traction force and universality
of the launch trajectory. The traction force however de-
termines the speed at which the paraglider moves along
this universal trajectory, as shown in the time-evolution
of its angle θ(t) in Fig. 2b. As shall be discussed in Sec-
tion III, this force FO sets the characteristic time scale
of the ascent τ =

√
m`/FO, with m the wing mass and

` the length of the glider lines (see the collapse of data
recasted as a function of t/τ in the inset of Fig. 2b).

Glider Oxy 0.5 UFO 13
Flat wingspan (m) 1.3 8.04
Flat area (m2) 0.5 13.0
Aspect ratio 4.2 4.9
Cells 17 27
Weight (kg) 0.05 1.36
Takeoff weight (kg) –0.3 45–80

Table I: Glider characteristics for the Oxy 0.5 wing
(Opale Paramodels) and the UFO 13 (AirDesign
Gliders). For the detailed line charts see
manufacturer’s websites [3, 4].

II. REAL SCALE EXPERIMENT

Concerned with the difficulty to downscale all char-
acteristics of a real glider (as mentioned above), we de-
cided to confront our results to real scale experiments
(see Fig. 3). Using a 13m2 flat single-surface glider
(AirDesign® gliders UFO wing), see Tab. I, we were
able to record a few launches on a calm day at Puy de
Dome (Auvergne, France). A seasoned test pilot was



3

Figure 3: Real scale experiment (see Sec. II). The timestep between shots is 200ms.

asked to launch with low and strong traction strength
respectively. Unlike laboratory experiments, a slight
wind was present here, with speeds around 7m.s−1 mea-
sured during each run. To account for this and be able
to compare both configurations, the wind is treated as
an additional forward motion of the paraglider at con-
stant speed in a still air environment. As one can see
in Fig. 2a the trajectories collapse with their reduced-
scale counterparts, thereby validating the reduced-scale
methodology.

III. THEORETICAL MODEL

In this section we present a simple theoretical model
to account for the experimental results (see Fig. 4). We
assume that a rigid glider of mass m is characterised by
its lift and drag coefficients [9, 12], commonly denoted
CL(α) and CD(α) respectively, where α is the angle of
attack. The lift and drag forces applying to the center
of pressure M (or aerodynamic center) write:

L = 1
2ρSCL(α)V

2
Me⊥ (1a)

D = 1
2ρSCD(α)V

2
Me‖, (1b)

with ρ the air density, S the planform (projected) wing
area, and VM the norm of the velocity of M in the lab’s
frame of reference (or true airspeed). We further assume
that the center of pressure is attached to the traction

Figure 4: Schematics supporting the theoretical model
(see Sec. III).

point O with a rigid weightless line of length ` exerting a
tension ±T e = ∓Teer on both its extremities. Finally,
the traction point is constrained to move along the x
axis only, and submitted to a horizontal force FO =
FOex.

Applying Newton’s second law to point M , together
with the angular momentum theorem relative to O
yields the following dimensionless equations (see Ap-
pendix):

V̇O cos θ − θ̇2 + 1
cos θ = 1

2ρSV
2
M (CL cosα+ CD sinα)(2)

θ̈ + tan θ
cos θ − θ̇

2 tan θ = 1
2ρSV

2
M

(
CL[sinα+ cosα tan θ]

+CD[sinα tan θ − cosα]
)
, (3)

with dimensionless variables t → t/τ , V → V τ/` with
τ2 = m`/FO, ρ→ ρ`3/m and S → S/`2, and where we
have neglected gravity forces. As one can see, FO only
appears in the equations through the timescale τ used
to non-dimensionalize time, thereby explaining the uni-
versality of the trajectories observed in Sections I and
II. For the small-scale glider, one has τ ≈ 0.3/

√
FO s,

while for the real scale UFO wing τ ≈ 3/
√
FO s. This

typical timescale allows to compute the typical force
that is required to launch in a given amount of time.

Equations (2) and (3) constitute a system of two cou-
pled ordinary differential equations, with only θ, VO and
their derivatives as unknowns (see Appendix). There-
with, they can be jointly solved numerically for given
CL, CD. We do not expect standard forms of CL, CD
(see e.g. [1]) to provide good quantitative agreement
with the experiments for the following reason. Typi-
cal lift and drag coefficients are only valid in stationary
conditions. As such, they are not expected to stand in
the fundamentally unsteady conditions of the launch-
ing phase (for one thing, within steady flight theory the
wing should stall in the very beginning of the launch as
the angle of incidence α→ π/2, which is obviously not
the case here). Measuring unsteady lift and drag coeffi-
cients would be very interesting, but doing so comes
with its own difficulties and would require an entire
and independent analysis, way beyond the scope of the
present story. Note that such unsteady lift and drag
coefficients are expected to be highly intricate as in the
early stages the wing is not fully inflated, and thus its
very shape varies over time (this might explain why the
wing doesn’t stall in the early stages). Our main claim
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here is thus on the universality and the identification
of the timescale τ , not on the precise theoretical trajec-
tory, which is left for future research.

IV. DISCUSSION

This study revealed a number of other exciting ques-
tions, such as the optimal folding of the wing for a com-
fortable launch in strong wind conditions, or the dif-
ferences between regular and single skin wings during
unsteady phases, and the launching phase in particu-
lar. Single-surface gliders are known to launch much
faster than their regular counterparts. This is often at-
tributed to the fact that they are lighter and thus have
less inertial effects, but we believe it can also be re-
lated to the fact that the inflation phase is much faster,
as argued in Section I. For regular double skin gliders
the question of the simultaneity for the chambers air-
filling and rising phases, is an intricate one. Indeed,
one expects that the lift coefficient grows progressively
as the chambers fill with air, which explains why the
wing starts to take off before the glider is fully inflated.

To quantitatively unravel the role of these phases, one
could think of combining high speed camera filming of
a static inflation experiment (in which the glider is at-
tached to the ground at its trailing edge), together with
an experiment on rigid wings (printed in 3D or cut with
a hot wire in polystyrene), and compute the character-
istic times of each isolated phase to disentangle their
interactions. One should bare in mind that while seem-
ingly irrelevant in the present communication, the lim-
itations to scale down the stiffness of the materials in
our experiments might have important implications on
the characteristics of the inflation phase. These ideas
are left for future research.
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APPENDIX

Consider Fig. 4. The angular momentum of the glider relative to O reads m`2θ̇ez. The forces acting on M in
the non-inertial frame of reference attached to O are the lift and drag forces, as given by Eqs. (1a) and (1b), the
weight mg, the tension −Teer, and the fictitious force −mV̇Oex, where VO denotes the velocity of point O in the
inertial frame of reference. The angular momentum theorem then writes:

m`θ̈ = L sinα−D cosα−mg cos θ +mV̇O sin θ, (4)

where the right hand side denotes the torque on M with respect to O along ez. Newton’s second law to point M
along er writes:

−m`θ̇2 = L cosα+D sinα−mg sin θ − Te −mV̇O cos θ. (5)

The angle of attack α and the true airspeed VM are kinematically related to θ through:

cosα =
`θ̇ − VO sin θ√

V 2
O cos2 θ + (`θ̇ − VO sin θ)2

; sinα = − VO cos θ√
V 2
O cos2 θ + (`θ̇ − VO sin θ)2

; (6)

V 2
M = V 2

O cos2 θ + (`θ̇ − VO sin θ)2. (7)

Finally, applying Newton’s second law to massless point O yields:

Te =
FO
cos θ

, (8)

which can be injected into Eq. (5) to eliminate Te. Therewith, Eqs. (4) and (5) – combined with Eqs. (1a), (1b),
(6), (7) and (8) – constitute a system of two coupled ordinary differential equations, with only θ, VO and their
derivatives as unknowns. Isolating V̇0 in (5) and injecting it into (4) finally yields:

˙̃VO cos θ =
˙̃
θ2 +

1

2
ρ̃S̃Ṽ 2

M (CL(α) cosα+ CD(α) sinα)− g̃ sin θ −
1

cos θ
(9)

¨̃
θ +

tan θ

cos θ
− ˙̃
θ2 tan θ =

1

2
ρ̃S̃Ṽ 2

M [CL(α)(sinα+ cosα tan θ) + CD(α)(sinα tan θ − cosα)]

−g̃(cos θ + sin θ tan θ) (10)

where we have introduced the dimensionless variables t̃ = t/τ , Ṽ = V τ/`, ˙̃
θ = θ̇τ , ¨̃

θ = θ̈τ2, g̃ = gτ2/` with
τ2 = m`/FO, ρ̃ = ρ`3/m and S̃ = S/`2. Equations (9) and (10) are equivalent to Eqs. (2) and (3) in the main
text, where all the ∼ have been dropped, and where the gravity terms have been set to zero, given that their
contribution turns out to be negligible. If one wishes to solve numerically the equations, this can be done using a
standard RK45 method (explicit Runge-Kutta [5]) choosing e.g. CL = µL sin 2α and CD = µD sin2 α+cst (see [1]).
Again, we do not expect quantitative agreement with the experimental trajectories for the reasons presented in
Sec. III. The theory is only intended to account for the universality, and the identification of the typical timescale τ .
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