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Résumé :
L’espace de travail stable et réalisable (SWFW) d’un manipulateur de tenségrité actionné par câble
définit l’ensemble de toutes les poses de l’effecteur final atteignables avec une configuration d’équilibre
stable, pour un ensemble de forces positives et bornées dans les câbles. Cet article présente une méthode
efficace de calcul pour déterminer la limite du SWFW pour des manipulateurs en série cinématiquement
non-redondants articulés à l’aide de mécanismes de tenségrité de type anti-parallélogramme (X). Pour
un manipulateur composé de n articulations, cela implique un balayage sur (n− 1)-dimension (D) de
l’espace articulaire, à effectuer n fois, c’est-à-dire pour toutes les

(
n

n−1

)
combinaisons des variables ar-

ticulaires. À chaque point de la grille, un ensemble de polynômes univariés est résolu numériquement,
afin de déterminer avec précision les limites de l’espace articulaire stable et réalisable (SWFJ). Ces
points sont projetés dans l’espace de la tâche du manipulateur avec les singularités, pour obtenir les
limites du SWFW souhaité. La méthode proposée est adaptée aux manipulateurs ayant un faible nombre
d’articulations, typiquement (≤ 3). En outre, un algorithme permettant de trouver un ordre cyclique de
ces points limites dans le cas d’un manipulateur à deux degrés de liberté est présenté. Cela permet d’in-
terpoler les points limites entre eux à l’aide de segments de ligne et d’obtenir un ou plusieurs polygones
se rapprochant du SWFW réel. En outre, cela facilite l’utilisation d’algorithmes existants de géométrie
informatique pour inscrire un disque maximal à l’intérieur du SWFW polygonal et quantifier sa taille.
Ce processus est illustré à l’aide d’un manipulateur planaire 2X entraîné par câble avec des décalages
de liaison.

Abstract :

The stable wrench-feasible workspace (SWFW) of a cable-driven tensegrity manipulator defines the set
of all end-effector poses reachable with a stable equilibrium configuration, for a positive and bounded
input cable forces. This paper presents a computationally efficient method to determine the boundary of
SWFW for kinematically non-redundant serial manipulators composed of anti-parallelogram (X) ten-
segrity joints. For a manipulator, composed of n joints, it involves (n − 1)-dimensional (D) scanning
of the joint space, to be performed n times, i.e., for all

(
n

n−1

)
such combinations of the joint variables.

At each grid point, a set of univariate polynomials are solved numerically, to determine the bounding
points of stable wrench-feasible joint space (SWFJ) accurately. These points are mapped onto the task
space of the manipulator along with the singularities, to obtain the boundaries of the desired SWFW.
The proposed method is suitable for manipulators with low (≤ 3)-DoF. Additionally, an algorithm to
find a cyclic ordering of these boundary points in the case of a 2-DoF manipulator is presented. This
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allows one to interpolate between them using line segments and obtain polygon(s) approximating the
actual SWFW. Further, it facilitates the use of existing algorithms from computational geometry to ins-
cribe a maximal disk inside the polygonal SWFW and quantify its size. This process is illustrated with a
cable-driven planar 2-X manipulator with link offsets.

Keywords : Tensegrity manipulator, Workspace, Wrench-feasibility, Stabi-
lity

1 Introduction
Tensegrity manipulators are gaining popularity in the robotics community due to their high strength-to-
weight ratio and variable stiffness properties [1]. In general, such manipulators are remotely actuated by
motors placed on the base, with cables as transmission elements [2]. An important measure to quantify
the performance of these manipulators is its workspace. Since these manipulators are driven by cables
that can sustain only tensile forces, their reachable workspace is further qualified by the condition(s)
of static equilibrium achievable with positive cable forces. When bounds on the maximum cable forces
are imposed, the resulting workspace is called the wrench-feasible workspace (WFW) for a tensegrity
manipulator, as defined in [3]. In this work, the WFW is further qualified by the condition of stability, to
ensure that the equilibrium configurations of the manipulator are stable ones. We refer to this workspace
as the stable wrench-feasible workspace (SWFW). The stability condition is useful from the control
perspective, as the inherent stiffness might be sufficient to mitigate the tracking errors and produce
acceptable motions with simple open-loop control laws.

In the literature, continuation methods have been employed to compute the WFW of a tensegrity ma-
nipulator [3]. However, the time taken for such computations has not been presented. A brute-force
scanning technique has been followed in [4], where a 2-dimensional (D) scanning was performed in the
joint space of a 2-DoF manipulator to determine the wrench-feasible joint space (WFJ) and followed by
the WFW. The limitation of such a technique is that a high scanning resolution is required to obtain the
boundary points with sufficient accuracy, which is a computationally expensive task. Alternatively, it is
possible to derive all the limiting conditions of wrench-feasibility, stability, and joint limits, as implicit
functions of the joint variables and plot their contours in the joint space as in [5]. But, after obtaining
these plots, one needs to manually inspect one point inside each of the connected regions to find which
ones are feasible and which ones are not. Though this is a viable method for analysis of a few designs,
it is not suitable for a design process.

The objective of this work is to propose a computationally efficient method to determine the SWFW
boundary of a kinematically non-redundant tensegrity manipulator with a good accuracy and in an auto-
matic manner (i.e., without requiring human intervention). Such a method is very useful for performing a
design optimization of these manipulators, where several thousand designs will be explored. It combines
the accuracy of resolving implicit equations with the simplicity of scanning to achieve the goal, which
comes at the cost of some tedious symbolic precomputations. For an n-DoF manipulator, it involves
(n − 1)-D scanning of the joint space to be performed n times. At each grid point, the implicit equa-
tions are converted into univariate polynomials in the remaining joint angle and solved numerically, to
determine the boundary points of the stable wrench-feasible joint space (SWFJ) accurately. Then, these
points are mapped onto the task space along with the singularities to obtain the SWFW.
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(a) Schematic (b) Actuation scheme with four cables

Figure 1 – Schematic diagram (left) and cable-routing scheme (right) of the 2-X manipulator with link
offsets actuated by four cables.

As an illustration, the SWFW of a cable-driven 2-DoF tensegrity manipulator shown in Fig. 1 is com-
puted using this method. The manipulator is composed of two anti-parallelogram (X) joints and link
offsets. It is arranged in the vertical plane along gravity as indicated in Fig. 1a. Each joint consists of a
top and base bar of length b, and two crossed bars of length l. The orientation of the top bar w.r.t. the base
bar of ith joint is given by αi. Each joint is composed of identical springs with stiffness ki on either sides,
to ensure that it remains in equilibrium at αi = 0, in the absence of external forces. There is a rigid off-
set of length a between the two joints, and between the second joint and the end-effector point P (x, y).
This manipulator is actuated remotely by four motors, placed in the base, using cables Cl1 , Cr1 , Cl2 , Cr2

as transmission elements, as shown in Fig. 1b. The cables Cl1 , Cr1 actuate the first joint independently
of the second one. Likewise, the cables Cl2 , Cr2 impart movement only in the second joint as they are
routed through rigid links with pulleys, in a strut-routed scheme [4]. The joint space of the manipulator
is formed by (α1, α2), while the task space is formed by (x, y). Note that this manipulator is kinema-
tically non-redundant but has an actuation redundancy of 2. For a numerical illustration, the following
parameters have been adopted for the 2-X manipulator in this paper : b = 0.05 m, l = 0.1 m, a = 0.2 m,
k1 = 600 N/m, k2 = 300 N/m. The forces imparted by all the cables are bounded between Fmin = 5 N
and Fmax = 155 N. In this study, the springs are assumed to be of zero-free length and the pulleys to be
massless points. Friction is neglected everywhere. All the bars (thick lines in Fig. 1a) are considered to
be made of Aluminum material as solid cylinders of radius 0.005 m.

The rest of this paper is organized as follows. A method for computing the SWFJ is presented in Section 2.
An algorithm for obtaining a cyclic ordering of the boundary points for 2-DoF manipulators is reported
in Section 3, derivation of SWFW from SWFJ is addressed in Section 4. Finally, the conclusions are
presented in Section 5.
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2 Stable wrench-feasible joint space
Firstly, the range of motion of an X-joint is limited by the flat-singularities at αi = ±π. Hence, for a
manipulator composed of n X-joints the boundary of SWFJ must be obtained within the limits αi ∈
]−π, π[ , i = 1, . . . , n in the joint space.

The condition of static equilibrium for then-X manipulator is formed byn equations :Gi(α1, . . . , αn) =

Γi(αi) , for i = 1, . . . , n, where Gi represents the wrench due to spring and gravity effects, and Γi

is the wrench due to actuation cables, acting on the ith joint, respectively. A method to compute Gi

and Γi for a stack of n X-joints without offsets has been presented in [6]. It can be extended to include
the link offsets by adding a few terms (see [7] for details on the model of a 2-X manipulator). Note
that in Γi, the terms involving cable forces can vary with the cable routing, but it involves only αi

among the joint variables. The bounds on the actuation forces [Fmin, Fmax] can be transferred onto
the actuation wrenches as : Γi ∈ [Γi,Γi], i = 1, . . . , n. Hence, using the equilibrium equations, the
conditions for wrench-feasibility can be derived as : Gi ≥ Γi and Gi ≤ Γi for i = 1, . . . , n. The
limiting equations (Gi = Γi, Gi = Γi) will be considered for determining the boundary of SWFJ.
Clearly, for an actuation scheme with 2n cables (referred to as 2n-cable scheme), as shown in Fig. 1b,
there are as many as 2n limiting equations obtained from the wrench-feasibility conditions. There might
exist additional conditions if a cable actuates more than one joint as in the case of a side-routed scheme
presented in [4].

The stability of the manipulator can be characterized by the positive-definiteness of the stiffness ma-
trix (Kα)n×n, derived as the Hessian of its total potential energy w.r.t. the joint variables [4]. This
matrix varies as a function of the configuration (α1, . . . , αn) as well as the force combinations that
satisfy the equilibrium equations at that configuration. It is noted that the cable forces appear only on
the diagonal terms of the stiffness matrix, which is evident from the functional dependence of Γi(αi)

only on αi for i = 1, . . . , n in the equilibrium equations. Since it was found that the actuation forces
have a positive influence on the stiffness of a single X-joint [8], it is expected that maximum stiffness be
achieved at a given configuration, when maximum permissible cable forces are imposed. It follows that
stable equilibrium can be achieved at this configuration only when the stiffness matrix corresponding to
maximum forces is positive-definite.

For the 2n-cable scheme, n of the redundant forces (one per joint) must be set to Fmax to achieve maxi-
mum stiffness at any configuration. The remainingn forces can be determined from the equilibrium equa-
tions. In the ith diagonal term of the stiffness matrix, one of the two antagonistic forces (Fli , Fri) actua-
ting the ith joint must be set toFmax. However, while determining the SWFJ boundary, one does not know
a priori which force is the critical one, hence both cases Kα(i, i)|(Fli

=Fmax) and Kα(i, i)|(Fri=Fmax)

must be considered separately, for i = 1, . . . , n. Thus, in total we have 2n possible stiffness matrices
representing the upper boundary of stiffness. From each of these matrices, the limiting condition of
stability (i.e., positive-definiteness) must be obtained to determine the boundary of SWFJ.

Recalling that the stiffness matrix Kα is derived from the Hessian of the potential energy, it is a real
symmetric matrix. Hence, it has n real eigenvalues (see [9], p. 330) and is said to be positive-definite
when all eigenvalues are positive. The limiting case of positive-definiteness occurs when the least eigen-
value becomes zero, while the others remain positive. However, it is difficult to obtain explicit symbolic
expressions for the eigenvalues and impose conditions on them. Hence, we use the fact that the product
of eigenvalues is equal to the determinant of the matrix (see [9], p. 266) and consider det(Kα) = 0
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Figure 2 – Algorithm to compute the boundary points of a set of inequalities in the joint space.
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(a) Intervals of α1 when α2 = 0
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(b) Scanning α2

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(c) Scanning both α1 and α2

Figure 3 – 2X manipulator : Feasible interval of α1 for a given α2 = 0 (left), boundary points obtained
while scanning α2 (middle), and all the boundary points obtained by scanning both α1 and α2 (right).
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as the limiting case of stability. Clearly, it includes the vanishing of the least eigenvalue and also the
vanishing of the others. But, it is possible to filter the relevant solutions from the zeros of det(Kα), by
studying its neighborhood (see Fig. 3a and explanations below).

Thus, for the 2n-cable scheme, there are 2n equations for wrench-feasibility and 2n equations for sta-
bility, resulting in a total of (2n + 2n) equations for the determination of the SWFJ. Another scheme
that uses (n+ 1) cables (referred to as (n+ 1)-cable scheme) is also popular due to the lower number
of actuators involved [10]. This scheme leads to n(n+ 1) equations for wrench-feasibility, and (n+ 1)

equations for stability, respectively, resulting in a total of (n+ 1)2 equations.

As a first step in the determination of SWFJ, all the equations must be consolidated in a vector form
as : f = 0. The successive steps involved are organized into a flow chart shown in Fig. 2. The step 2
involves rewriting the limiting equations f = 0 as polynomials in ti = tan (αi/4) for i = 1, . . . , n.
This step is quite tedious and must be performed in symbolic form a priori (see [7] for more details).
Since each equation must be expressedn times as polynomials in t1, . . . , tn, respectively, for the 2n-cable
schemen(2n+2n) polynomials must be derived, and for the (n+1)-cable schemen(n+1)2 polynomials
must be derived. When n = {2, 3, 4, 5, 6}, this amounts to {16, 42, 96, 210, 456} polynomials for 2n-
cable scheme and {18, 48, 100, 180, 294} polynomials for (n+1)-cable scheme, respectively. Since the
number of polynomials to be derived is very large for n ≥ 4, the proposed method is practically more
suitable for low (n ≤ 3)-DoF manipulators.

For the 2-X manipulator, this method involves two 1-D scans, i.e., of α1, α2 variables separately. They
were each discretized into 50 equally spaced points inside [−0.99π, 0.99π], avoiding the flat-singularities.
Steps 3-7 in the flow chart have been illustrated for the grid lineα2 = 0 in Fig. 3a. All the roots ofα1 have
been indicated with small vertical lines, and the resulting intervals were inspected for wrench-feasibility
and stability with one arbitrary point (α∗

1, α
∗
2) inside it. For wrench-feasibility, (Γi ≤ Gi ≤ Γi), i = 1, 2

were checked. For stability, firstly the two forces that can be set to Fmax at (α∗
1, α

∗
2) while respecting

the bounds of remaining forces were determined. Then, all the force values and configuration (α∗
1, α

∗
2)

were substituted into the matrix Kα and its positive-definiteness was checked. In Fig. 3a, the feasible
(i.e., both wrench-feasible and stable) intervals are indicated with a tick mark, and net bounding values
of α1 are found to be [−1.20613, 1.20613] radians. This process is repeated for other discrete values
of α2 in Fig. 3b and α1 in Fig. 3c. Since the bounding points are obtained by solving polynomials, it is
not possible to miss out on any of these on the grid lines. Also, they are quite accurate with a very small
residue (about 10−10 units) w.r.t. the original conditions.

3 Cyclic ordering of SWFJ boundary points for 2-DoF manipula-
tors

For the 2-X manipulator, an empirical method has been devised to find a cyclic ordering of the SWFJ
boundary points and connect them with linear segments. This is shown as a flow chart in Fig. 5. In
step 2, each of the boundary points is classified by defining four points around it, as illustrated with
point A in Fig. 4a (bottom magnified part). These four points are tested for the wrench-feasibility and
stability conditions, one at a time. Each of them could be either feasible or infeasible, resulting in a total
of 24 = 16 combinations of results. But, since we disregard the cases where all the points are either
feasible or infeasible (see step 2 in Fig. 5), there are 14 possible results. Thus, every boundary point
can be classified into one of the 14 categories as indicated in the last block of step 2 in Fig. 5. For the
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(c) Interpolation between groups

Figure 4 – 2X manipulator : Classification of boundary points into different groups (left), joining the
points within groups (middle), and joining ends of the groups to form a cyclic ordering (right).

point A, only two of the four points (top and right) satisfy the wrench-feasibility and stability conditions.
This case is represented by the blue color and so is point A. Similarly, when the {(top, left), (bottom,
right), (bottom, left)} points are feasible, the respective boundary points are shown in {orange, green,
red} colors, respectively (see Fig. 4a). In this example, it turns out that all the points belong to one of
the four groups discussed above. But, in general, other groups might also exist.

The next step involves definition of rules to connect two points. Note that every point lies on either
an α2 grid line (horizontal) or an α1 grid line (vertical). It is assumed that the boundary of SWFJ must
be a continuous closed loop(s) inside the joint limits (i.e., α1, α2 ∈] − π, π[)). Thus, it follows that for
any given point, its neighbor must necessarily lie on the box formed by the neighboring horizontal and
vertical grid lines, or on the same grid line inside the box. For instance, consider a point B from the α2

grid line (right magnified part of Fig. 4a), the box formed around it is highlighted by blue lines. There
are two possible neighbors for this point and they are said to be proximal to B. Similarly, for a point C
on the α1 grid line (top magnified part of Fig. 4a), the box containing its neighbors has been defined,
and there are two proximal points on it. Note that the shape of the boxes are different depending on the
grid line to which the point belongs.

In step 3 (see Fig. 5), the proximal points within a group are connected starting from an open end,
leading to the interpolations shown in Fig. 4b. It can be found that there are two isolated points that
remain unconnected. Such points are treated as groups with two identical ends, and will be connected
to their proximal points in step 4 (see Fig. 5), along with the other groups. This leads to a complete loop
formed in Fig. 4c, which well approximates the actual SWFJ boundary. The maximum error due to the
linear interpolation is limited above by the step size between two successive grid lines. One can improve
the accuracy by increasing the number of grid lines.

Some other examples have been encountered where all the group ends could not be connected in step 4,
due to the existence of several proximal neighbors. In such cases, the points may be connected using the
minimum 2-norm condition as mentioned in steps 6 and 7 of the algorithm in Fig. 5.



25ème Congrès Français de Mécanique Nantes, 29 août au 2 septembre 2022

Fi
gu

re
5

–
A

lg
or

ith
m

to
fin

d
a

cy
cl

ic
or

de
rin

g
of

pl
an

ar
po

in
ts
(α

1
,α

2
)

on
th

e
bo

un
da

ry
of

th
e

SW
FJ

.



25ème Congrès Français de Mécanique Nantes, 29 août au 2 septembre 2022

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(a) Stable wrench-feasible joint space highlighted by the
shaded region
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(b) Stable wrench-feasible workspace with two maxi-
mally inscribed disks each of radius 0.203 m

Figure 6 – Stable wrench-feasible joint space (left) and stable wrench-feasible workspace (right) of
the 2-X manipulator when b = 0.05 m, l = 0.1 m, a = 0.2 m, k1 = 600 N/m, k2 = 300 N/m,
Fmax = 155 N, Fmin = 5 N. In joint space (α1, α2), the curves in region det(Jx) > 0 are shown in
opaque style while those in region det(Jx) < 0 are shown in transparent style. Their maps in the task
space are also shown in the same style for the sake of clarity.

4 Stable wrench-feasible workspace
The boundary of SWFJ can be mapped onto the task space of the manipulator using the direct kinematic
model. Additionally, the locus of manipulator singularities inside the SWFJ must also be plotted in the
task space to obtain the boundaries of the desired SWFW. For the 2-X manipulator in Fig. 1, the direct
kinematics can be expressed as [11] :

li(αi) =
√
l2 − b2 cos2(αi/2), i = 1, 2

x = −l1(α1) sin(α1/2)− a(sinα1 + sin(α1 + α2))− l2(α2) sin(α1 + α2/2)

y = l1(α1) cos(α1/2) + a(cosα1 + cos(α1 + α2)) + l2(α2) cos(α1 + α2/2)

(1)

Differentiating Eq. (1) w.r.t. time yields :[
ẋ

ẏ

]
= Jx

[
α̇1

α̇2

]
,where Jx =

[
∂x
∂α1

∂x
∂α2

∂y
∂α1

∂y
∂α2

]
is a Jacobian matrix. (2)

The singularity condition is given by the vanishing of det(Jx). The singular points in (α1, α2) space
can also be obtained using the algorithm in Fig. 2, where f in step 1 must be replaced with det(Jx), and
the feasibility check in step 6 can be carried out w.r.t. det(Jx) > 0. The resulting points might be joined
using the algorithm in Fig. 5, with the same condition det(Jx) > 0 instead of wrench-feasibility and
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stability. The singularity contour and the SWFJ boundary are shown together in Fig. 6a. It is found that
the singularity contour splits the SWFJ into two parts. The curves in the region det(Jx) > 0 are shown
in opaque style, while those in the region det(Jx) < 0 are shown in transparent style for the sake of
clarity. The bounding curves of the two parts of SWFJ are plotted in the task space to obtain the SWFW
boundaries as shown in Fig. 6b. It is observed that there are two connected regions in this workspace,
symmetric about x = 0 axis. All the points inside these regions can be reached with a stable equilibrium
configuration with at least one combination of cable forces satisfying [Fmin, Fmax]. The intersection part
in the middle can be reached with two such configurations. It is also apparent that the manipulator can
be used for high stiffness tasks, e.g., machining, near the outer workspace boundary (singularity), and
for low stiffness tasks, e.g., changing tool in a pallet, near the inner workspace boundary (stability limit).

Since the two parts of SWFW have been approximated as polygons, it is possible to use the polylabel
library 1 in c++ to fit maximally inscribed disks inside each of them, as shown in Fig. 6b. The disks are
each of radius 0.203 m. The entire computation starting from the determination of boundary points to
the fitting of disks takes about 91 ms (averaged over 100 runs 2).

5 Conclusions
An algorithm is proposed for computing the stable wrench-feasible workspace (SWFW) of kinematically
non-redundant cable-driven tensegrity manipulators composed of n anti-parallelogram (X) joints. It
improves upon a brute-force n-dimensional (D) scanning algorithm that considers q points along each
direction in the joint space, leading to an exploration of qn grid points for the wrench-feasibility and
stability conditions. However, in the proposed method, nqn−1 grid lines are explored in the joint space
and the feasible bounds on each of the lines are determined accurately by resolving an equivalent system
of polynomial equations. This improvement in accuracy and reduction in the number of explored lines
over the explored points in n-D scanning, comes at the cost of tedious symbolic precomputations of the
equivalent polynomials and their numerical resolution. Due to the increase in the number of polynomials
with n, this method is suitable particularly for low (n ≤ 3) degree-of-freedom manipulators, despite
being applicable to the other cases. The cloud of points on the boundary of stable wrench-feasible joint
space (SWFJ) can be mapped onto the task space along with the singularities to obtain an equivalent
point cloud representing the boundary of SWFW.

This process has been illustrated for a 2-X manipulator with link offsets driven by four cables. Addi-
tionally, another algorithm that finds a cyclic ordering among the SWFJ boundary points for a 2-DoF
manipulator has been proposed. This permits the joining of successive points with linear segments to
obtain a polygonal approximation of the SWFJ and the SWFW. An existing c++ library has been used
to inscribe maximal disk(s) inside the SWFW and evaluate its size. The computation scheme is quite
fast and takes only about 91 ms for the 2-X manipulator. It opens the possibility for exploring several
designs of 2-X manipulator (geometry, springs, force bounds), inside an optimization framework, in a
reasonable duration.

In the future, it would be useful to extend the interpolation algorithm to 3-D points, perhaps using trian-
gulation techniques and find equivalent tools for inscribing a sphere inside the resulting polyhedron(s).

1. The associated code could be found at https://github.com/mapbox/polylabel.
2. The computations have been performed on a computer with an Intel® Core™ i7-6700 CPU running @ 3.40GHz proces-

sor, using a C++ code.

https://github.com/mapbox/polylabel
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